初一几何练习题及答案汇编
2024年数学七年级上册几何基础练习题(含答案)

2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
初中数学几何图形初步真题汇编附答案

A. B. C. D.
【答案】B
【解析】
试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.
考点:棱柱的侧面展开图.
3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
【详解】
解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.
故选:D.
【点睛】
本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.
10.如图,在 中, , 是 的平分线, 是 上一点,以 为半径的 经过点 .若 , ,则 的长为()
A.6B. C. D.8
【答案】A
“好”与“友”是相对面.
故选:A.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
17.如图,将一副三角板如图放置,∠COD=28°,则∠AOB的度数为( )
A.152°B.148°C.136°D.144°
【答案】A
【解析】
【分析】
根据三角板的性质得 ,再根据同角的余角相等可得 ,即可求出∠AOB的度数.
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
初一几何练习题及答案

初一几何三角形一.选择题 (本大题共 24 分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()(A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形3.下列给出的各组线段中,能构成三角形的是()(A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()(A) DC=DE (B) ∠ADC=∠ADE (C) ∠DEB=90°(D) ∠BDE=∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()(A)12 (B)10 (C) 8 (D) 56.下列说法不正确的是()(A)全等三角形的对应角相等(B)全等三角形的对应角的平分线相等(C)角平分线相等的三角形一定全等(D)角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()(A)3个(B)4个(C)5个(D)无数个8.下列图形中,不是轴对称图形的是()(A)线段MN (B)等边三角形(C) 直角三角形(D) 钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()(A)2对(B)3对(C)4对(D)5对10.直角三角形两锐角的平分线相交所夹的钝角为()(A)125°(B)135°(C)145°(D)150°11.直角三角形两锐角的平分线相交所夹的钝角为()(A)125°(B)135°(C)145°(D)150°12.如图已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()(A) AC=DE (B) AB=DF (C) BF=CE (D) ∠ABC=∠DEF二.填空题 (本大题共 40 分)1.在Rt△ABC中,∠C=90°,如果AB=13,BC=12,那么AC= ;如果AB=10,AC:BC=3:4,那么BC=2.如果三角形的两边长分别为5和9,那么第三边x的取值范围是。
初中几何考试题型及答案

初中几何考试题型及答案一、选择题(每题2分,共10分)1. 以下哪个图形是轴对称图形?A. 平行四边形B. 等腰梯形C. 不规则多边形D. 矩形答案:B2. 已知一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,那么这个三角形的周长是多少?A. 7cmB. 10cmC. 11cmD. 14cm答案:C3. 在一个圆中,直径的长度是半径的多少倍?A. 1倍B. 2倍C. 3倍D. 4倍答案:B4. 一个等边三角形的每个内角是多少度?A. 30度B. 60度C. 90度D. 120度答案:B5. 一个长方体的长、宽、高分别为2cm、3cm和4cm,那么这个长方体的体积是多少立方厘米?A. 24立方厘米B. 26立方厘米C. 12立方厘米D. 6立方厘米答案:A二、填空题(每题2分,共10分)1. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是______度。
答案:602. 一个圆的周长是62.8厘米,那么这个圆的半径是______厘米。
答案:103. 如果一个多边形的内角和是900度,那么这个多边形有______条边。
答案:74. 一个长方体的长、宽、高分别为5cm、4cm和3cm,那么这个长方体的表面积是______平方厘米。
答案:945. 在一个等腰三角形中,如果底角是70度,那么顶角是______度。
答案:40三、解答题(每题10分,共20分)1. 已知一个直角三角形的两条直角边长分别为6cm和8cm,求这个三角形的斜边长。
答案:根据勾股定理,斜边长为\(\sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10\)cm。
2. 一个圆柱的底面半径为3cm,高为5cm,求这个圆柱的体积。
答案:圆柱体积的计算公式为\(V = \pi r^2 h\),代入数值得\(V = \pi \times 3^2 \times 5 = 45\pi\)立方厘米。
初中几何考试题及答案

初中几何考试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正方形的对角线性质?A. 相等且互相垂直B. 相等且互相平行C. 相等且互相垂直平分D. 相等但互相不垂直答案:C2. 一个圆的半径增加一倍,其面积将如何变化?A. 增加一倍B. 增加两倍C. 增加四倍D. 增加八倍答案:C3. 在直角三角形中,斜边与直角边的关系是?A. 斜边是直角边的两倍B. 斜边是直角边的一半C. 斜边是直角边的和D. 斜边是直角边的差答案:C4. 一个正五边形的内角和是多少度?A. 540°C. 720°D. 900°答案:A5. 一个圆的周长是其直径的多少倍?A. 2倍B. 3倍C. π倍D. 2π倍答案:D6. 如果一个三角形的两边相等,那么这个三角形被称为?A. 等腰三角形B. 直角三角形C. 等边三角形D. 等角三角形答案:A7. 一个长方形的长是10厘米,宽是5厘米,其面积是多少平方厘米?A. 25B. 50C. 100D. 200答案:B8. 一个三角形的三个内角之和是多少度?B. 180°C. 270°D. 360°答案:B9. 在一个平行四边形中,对角线将平行四边形分成两个什么形状?A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰梯形答案:A10. 一个圆的直径是6厘米,其周长是多少厘米?A. 6πB. 12πC. 18πD. 24π答案:B二、填空题(每题2分,共20分)1. 一个等腰三角形的顶角是100°,那么它的底角是________度。
答案:402. 如果一个圆的半径是4厘米,那么它的面积是________平方厘米。
答案:50.243. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是________度。
答案:604. 一个长方形的长是8厘米,宽是4厘米,其周长是________厘米。
初一几何图形初步试题及答案

初一几何图形初步试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是几何图形?A. 圆B. 三角形C. 正方形D. 直线答案:D2. 一个正方形的边长为4厘米,它的周长是多少厘米?A. 8厘米B. 12厘米C. 16厘米D. 20厘米答案:C3. 一个圆的半径是5厘米,它的直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A4. 下列哪个图形是轴对称图形?A. 正方形B. 圆形C. 长方形D. 所有选项答案:D5. 如果一个三角形的三个内角之和为180度,它是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B二、填空题(每题2分,共10分)6. 平行四边形的对边________。
答案:平行且相等7. 一个圆的周长公式是________。
答案:C = 2πr8. 如果一个多边形的内角和是900度,那么它是________边形。
答案:六9. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长度是________厘米。
答案:510. 一个正六边形的内角是________度。
答案:120三、简答题(每题5分,共15分)11. 描述什么是几何图形的对称性?答案:几何图形的对称性是指图形在某个点、直线或平面上翻转或反射后,能够与原图形完全重合的性质。
12. 解释什么是相似图形?答案:相似图形是指两个图形在形状上完全相同,但大小可以不同,且它们的对应角相等,对应边成比例。
13. 什么是圆周角定理?答案:圆周角定理是指一个圆周角的度数是它所截取的弧所对圆心角的一半。
四、计算题(每题10分,共20分)14. 已知一个三角形的三个顶点坐标分别为A(1,2),B(4,6),C(7,4),请计算这个三角形的面积。
答案:首先计算AB和AC的长度,然后使用海伦公式计算三角形的面积。
15. 一个圆的半径为7厘米,求这个圆的面积。
答案:使用圆的面积公式A = πr²,代入半径r=7厘米,计算得到面积。
七年级数学几何练习题及答案

七年级数学几何练习题及答案练题一:直线的性质1. 试述直线的定义和特点。
答案:直线是由一连串无限延伸的点组成,它没有弯曲和拐角。
直线上的任意两点可以用唯一一条直线连接。
2. 画出以下直线的标志并写出它们的名称:水平线、垂直线、倾斜线、平行线、相交线。
答案:- 水平线:⎕,两端点的纵坐标相同。
- 垂直线:⎈,两端点的横坐标相同。
- 倾斜线:/,连接两个不同的点。
- 平行线://,在同一平面内永不相交的两条直线。
- 相交线:+,两条直线在同一点相交。
练题二:三角形的性质1. 试述三角形的定义和特点。
答案:三角形是由三条线段组成的图形。
它的特点是三条边相连的三个点不在一条直线上。
2. 根据三角形的边长关系,判断以下三角形的类型:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
答案:- 等边三角形:三条边的长度都相等。
- 等腰三角形:两条边的长度相等。
- 直角三角形:有一个角度为90度。
- 锐角三角形:三个角都小于90度。
- 钝角三角形:有一个角度大于90度。
练题三:四边形的性质1. 试述四边形的定义和特点。
答案:四边形是由四条线段组成的图形。
它的特点是四条边相连的四个点不在一条直线上。
2. 根据四边形的边长关系,判断以下四边形的类型:平行四边形、矩形、正方形、菱形、梯形。
答案:- 平行四边形:有两对平行的边。
- 矩形:有四个直角。
- 正方形:既是矩形又是菱形,四个边的长度相等且都是直角。
- 菱形:四个边的长度相等。
- 梯形:有一对平行的边。
练题四:圆的性质1. 试述圆的定义和特点。
答案:圆是平面上所有到中心点距离相等的点的集合。
圆由一个中心点和半径组成。
2. 根据圆的性质,判断以下说法的正误:半径相等的圆周长相等、直径相等的圆周长相等。
答案:半径相等的圆周长相等是正确的,直径相等的圆周长相等也是正确的。
以上是七年级数学几何练习题及答案的简要概述,希望对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线 练习题及答案(1)一、填空题1. 如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2=_______.2. 已知直线AB CD ∥,60ABE =∠,20CDE =∠,则BED =∠ 度.3. 如图,已知AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠1=60°,则∠2=______度.4. A =70°,∠P =_____.5. 设a 、b 、c 为平面上三条不同直线,(1) 若//,//a b b c ,则a 与c 的位置关系是_________; (2) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3) 若//a b ,b c ⊥,则a 与c 的位置关系是________. 6. 如图,填空: ⑴∵1A ∠=∠(已知)∴_____________( ) ⑵∵2B ∠=∠(已知)∴_____________( ) ⑶∵1D ∠=∠(已知)∴______________( ) 二、解答题7. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD与OE 的位置关系,并说明理由.第2题PB M A N第1题第3题 第4题第6题8.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC 的度数.9.如图,直线//a b,求证:12∠=∠.10.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则B∠=∠____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE.12如图,AB∥DE,那么∠B、∠BCD、∠D有什么关系?13、如图9,直线a∥b,∠1=28°,∠2=50°,则∠3=____。
∠3+∠4+∠5=___。
14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则()A只能求出其余3个角的度数B只能求出其余5个角的度数C只能求出其余6个角的度数D只能求出其余7个角的度数15、如图,已知AB∥CD,EG平分∠FEB,若∠EFG=40°,则∠EGF=( )A 60°B 70°C 80°D 90°16、设A 、B 、C 是直线a 上的三点,P 为直线a 外一点,若PA =2,PB =3,PC =5,则点P到直线a 的距离( )A 等于2B 小于2C 不小于2D 不大于2。
17、两条直线被第三条直线所截,则( ) A 同位角的邻补角相等 B 内错角的对顶角相等C 同位角一定不相等D 两对同旁内角的和一定等于一个周角18、如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A 1个B 2个C 3个D 4个(提示:三角形内角和为180°) 19、如图,已知∠AGD =∠ACB ,∠1=∠2。
求证:CD ∥EF 。
(填空并在后面的括号中填理由)证明:∵∠AGD =∠ACB ( ) ∴DG ∥____ ( ) ∴∠3=____ ( )∵∠1=∠2 ( ) ∴∠3=____ (等量代换)∴___∥___( )20、如图,已知∠1=∠C ,∠2=∠3。
BE 是否平分∠ABC ?为什么?21、如图,∠A =60°,DF ⊥AB 于F ,DG ∥AC 交AB 于G ,DE ∥AB 交AC 于E 。
求∠GDF 的度数。
解:∵DF ⊥AB ( )∴∠DFA =90° ( )∵DE ∥AB ( )∴∠1=___=__( ) ∠EDF =180°-∠DFA=180°-90°=90° ( ) ∵DG ∥AC ( )∴∠2=____=____ ( ) ∴∠GDF =22、阅读:如图①,CE ∥AB ,∴∠1=∠A ,∠2=∠B 。
∴∠ACD =∠1+∠2=∠A +∠B 。
这是一个有用的事实,请用这个事实在图②的四边形ABCD 内引一条和边平行的直线,求出∠A +∠B +∠C +∠D 的度数。
D CB A 21B D EFGA C 321B D E AC 31BDEFG A C223、如图,已知四边形ABCD 中,AD ∥BC ,AB ∥DC ,试说明∠A =∠C ,∠B =∠D 。
24、如图,已知∠A =∠1,∠C =∠D 。
试说明FD ∥BC 。
25、如图,直线a ∥b ,A 、B 为直线b 上两点,C 、D 为直线a 上两点。
(1)请写出图中面积相等的三角形;(2)若A 、B 、C 为三个定点,点D 在a 上移动,那么无论D 点移动到何处,总有_____与△ABC 的面积相等。
理由是______________________。
26、如图,已知AD ⊥BC 于D ,EF ⊥BC 于F ,∠E =∠1,AD 平分∠BAC 吗?若平分,请写出推理过程;若不平分,试说明理由。
《垂线》练习题(检测时间50分钟 满分100分) 班级___________________ 姓名_______________ 得分____一、选择题:(每小题3分,共18分) 1.如图1所示,下列说法不正确的是( )AB C 图 ②图 ①1B D E ACD 2B D AC2B D FA C 1ECBD E F A 1A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°. 2.过一点有且只有________直线与已知直线垂直. 3.画一条线段或射线的垂线,就是画它们________的垂线. 4.直线外一点到这条直线的_________,叫做点到直线的距离. 三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.G OF EDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BAlA六、中考题与竞赛题:(共20分)(2001.杭州)如图7所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N•分别是位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,•离村庄N最近,请你在AB上分别画出P,Q两点的位置.N BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∠BOC+∠BOC=180°,∴13∠BOC=•180°,∴43∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.六、解:如图4所示.AN。