最新北师大版八年级数学上册《复杂一次函数的实际应用》教学设计(精品教案)
北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计
4.写一篇学习心得,总结一次函数在实际问题中的应用,以及在本节课中学到的解题策略和技巧。要求不少于300字,重点突出自己的收获和感悟。
5.预习下一节课的内容,提前思考如何将一次函数的知识应用到更广泛的实际问题中。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生已有的知识经验,通过生活中的实例,引发学生的思考,激发他们的学习兴趣。
“同学们,我们在前面的学习中已经了解了一次函数的概念和性质。那么,你们知道一次函数在实际生活中有哪些应用吗?”通过这个问题,让学生回顾一次函数的知识,并思考其与现实生活的联系。
5.总结反思,提升认识
课后,教师应引导学生对所学知识进行总结反思,提炼关键点,形成知识体系。同时,教师也要对课堂教学进行反思,了解学生的学习情况,不断调整教学策略,提高教学效果。
6.关注个体差异,因材施教
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,教师要有耐心,帮助他们克服困难,增强自信心;对于优秀生,则要适当提高要求,激发他们的潜能。
3.根据一次函数的性质,我们可以求出使总费用最低的小车数量。
(三)学生小组讨论,500字
在学生小组讨论环节,我将把学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.你还能想到生活中哪些问题可以用一次函数来解决?
2.在解决实际问题时,如何正确列出一次函数表达式?
3.如何利用一次函数的性质,找到实际问题的最优解?
接着,我展示一个实例:“假设我们班要组织一次郊游活动,需要租车。租车公司给出了如下收费标准:每辆小车租金100元,每辆大车租金200元。我们班共有50人,请同学们思考,如何选择车辆才能使总费用最低?”
北师大版数学八年级上册《4.4一次函数的应用》教学设计
北师大版数学八年级上册《4.4一次函数的应用》教学设计一. 教材分析北师大版数学八年级上册《4.4一次函数的应用》这一节的内容,主要让学生掌握一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
教材通过生活实例,引导学生认识一次函数在实际生活中的重要性,并通过例题和练习,让学生学会如何用一次函数解决问题。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识和理解。
但是,将函数应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用一次函数进行解答。
三. 教学目标1.了解一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
2.学会用一次函数解决实际问题,提高学生的数学应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 教学重难点1.一次函数在实际生活中的应用。
2.如何将实际问题转化为数学问题,并用一次函数解决。
五. 教学方法采用案例教学法,通过生活实例,引导学生认识一次函数在实际生活中的应用,然后通过例题和练习,让学生学会如何用一次函数解决问题。
在教学过程中,注重学生的参与和实践,提高学生的动手能力和实际问题数学化能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备PPT,用于展示和讲解。
3.准备练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例,引出一次函数在实际生活中的应用。
例如,一家商店进行打折活动,打折力度与顾客购买的金额有关,可以设打折力度为一次函数,让学生思考如何表示这个关系。
2.呈现(10分钟)通过PPT,呈现一次函数在实际生活中的其他应用,如温度与海拔的关系、速度与时间的关系等。
引导学生认识到一次函数在生活中的重要性。
3.操练(10分钟)给出一个实际问题,让学生尝试用一次函数解决。
例如,一家工厂的生产成本与生产数量有关,可以设生产成本为一次函数,让学生求解在某一生产数量下的成本。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
今天在教授一次函数的应用这一章节时,我发现学生们对于一次函数的实际意义和如何建立数学模型感到很有兴趣。他们对于将实际问题转化为数学表达式的过程感到好奇,这也让我意识到,将数学知识与现实生活紧密结合起来,能够有效提升学生的学习积极性。
在讲授过程中,我注意到有些学生在理解斜率的物理意义时遇到了困难。我通过举例和图示来帮助他们理解,但感觉还需要在今后的教学中继续加强这一部分的讲解和练习。可能通过更多的实际案例,让学生自己探索和发现斜率在不同情境下的含义,会更加有助于他们的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在总结回顾环节,我询问了学生是否有疑问,很高兴的是,他们能够提出一些深入的问题,这表明他们真正在思考和学习。但我也意识到,可能还有部分学生因为害羞或其他原因没有提问。我需要寻找更多途径,如课后辅导、小组互助等,来确保每一个学生都能得到帮助,解决他们的困惑。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
一、教学内容
本节课选自北师大版八年级数学上册第四章一次函数的4.4节,主要内容包括:
1.利用一次函数解决实际问题,如斜率与实际意义的联系;
2.一次函数图像在坐标平面上的应用,如何从图像中获取信息;
3.通过一次函数的例子,让学生理解函数与方程的关系;
举例:在讲解斜率的实际意义时,通过具体例子(如物体的匀速运动)来说明斜率与速度的关系,帮助学生理解斜率在现实中的具体应用。在绘制图像时,指导学生通过选取点、画直线等步骤,掌握绘制一次函数图像的技巧。对于变量关系的识别,可以通过案例教学,让学生在实际问题中练习区分变量和常量。在参数估计方面,教授学生使用实际数据点和函数表达式来计算k和b的值,并进行验证。
北师大版八年级数学上册:4.4《一次函数的应用》教学设计
北师大版八年级数学上册:4.4《一次函数的应用》教学设计一. 教材分析《一次函数的应用》这一节的内容,主要让学生了解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
北师大版八年级数学上册的教材,通过生动的实例,引导学生理解一次函数的定义,掌握一次函数的性质,并能够运用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前期内容,对数学知识的接受能力较强。
但是对于一次函数的应用,部分学生可能会觉得抽象难懂,因此,在教学过程中,需要教师通过生动的实例,让学生感受一次函数的实际意义,从而提高学生的学习兴趣和理解能力。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解一次函数的定义和性质,通过实际问题的解决,让学生掌握一次函数的应用。
同时,采用小组合作的学习方式,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例,如购物、出行等问题。
2.准备一次函数的图片或模型,帮助学生直观理解一次函数。
3.准备练习题,巩固学生对一次函数的应用。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学知识解决实际问题。
例如,一件商品原价80元,降价20%,求降价后的价格。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的定义和性质,通过图片或模型,让学生直观理解一次函数。
同时,引导学生发现生活中的线性关系,如速度、时间、路程的关系,加深学生对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决问题。
例如,一组选择出行问题,一组选择购物问题。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。
北师大版八年级数学上册【教学设计】一次函数的实际应用【新版】
4.4.2 一次函数的实际应用教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y为方案一的1为方案二的函数图象.从图中信息解答如下问题:函数图象,y2的函数关系式;(1)求y1(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案. 【答案】(1)设y 1的函数表达式为y=kx(x ≥0). ∵y 1经过点(30,720), ∴30k=720.∴k=24.∴y 1的函数表达式为y 1=24x(x ≥0). (2)根据图象可知x=50,把x=50代入y 1=24x 得:y 1=24×50=1200,∴A(50,1200)当销售量为50件时两种方案工资相同,都是1200元. (3)设y 2的函数表达式为y 2=ax+b(x ≥0),经过点(30,960),(50,1200) ∴,解得:,∴b=600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【答案】设月薪y(元),月销售额为x(元). 方案甲:y=1500+x(x ≥0) 方案乙:y=750+x(x ≥0)当y 甲=y 乙时,1500+x=750+x,解得x=7500.求得y 甲=y 乙=2250 即销售额为7500元时,这两种方案所定的月薪相同. 在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7500,y 甲>y 乙,x>7500时,y 甲<y 乙. 提问:说一说用图象的方法解决问题有哪些优点? 二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(图1).图2中l 1,l 2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与追赶时间之间的关系? (2)A,B 哪个速度快? (3)15 min 内B 能否追上A?(4)如果一直追下去,那么B 能否追上A?(5)当A 逃到离海岸12n mile 的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?(6)l 1与l 2对应的两个一次函数y=k 1x+b 1与y=k 2x+b 2中,k 1,k 2的实际意义各是什么?可疑船只A 与快艇B 的速度各是多少?【答案】(1)当t=0时,B 距海岸0 n mile,即s=0,故l 1表示B 到海岸的距离与追赶时间之间的关系.(2)t 从0增加到10时,l 2的纵坐标增加了2,而l 1的纵坐标增加了5,即10 min,A 行驶了2n mile,B 行驶了5n mile,所以B 的速度快.(3)延长l 1,l 2(图3),可以看出,当t=15时,l 1上的对应点在l 2上对应点的下方,这表明,15 min 时B 尚未追上A.(4)如图3,l 1,l 2相交于点P.因此,如果一直追下去,那么B 一定能追上A. (5)图3中,l 1与l 2交点P 的纵坐标小于12,这说明,在A 逃入公海前,B 能够追上A.(6)k 1表示快艇B 的速度,k 2表示可疑船只A 的速度.可疑船只A 的速度是0.2n mile/min,快艇B 的速度是0.5n mile/min. 三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s 的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到: 距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
北师大版八年级数学上册4.4.3一次函数的应用教学设计
-导入新课:通过生活中的实例,引出一次函数的概念,激发学生的学习兴趣。
-新知探究:引导学生通过绘制一次函数图像,观察和分析图像特征,理解斜率和y轴截距的意义。
-应用拓展:设计一些实际问题,让学生尝试建立一次函数模型,解决具体问题,培养学生的建模能力和解决问题的能力。
-巩固提高:通过设置不同层次的练习题,巩固学生对一次函数的理解,提高其运用能力。
教师在批改作业时,应关注学生的解题过程和思路,及时给予反馈和指导,帮助学生发现并改正错误,提高学生对一次函数的理解和应用能力。同时,教师应鼓励学生在课堂上分享作业成果,促进生生之间的交流与学习。
(四)课堂练习
1.教学内容ቤተ መጻሕፍቲ ባይዱ设计不同难度的练习题,让学生巩固一次函数的应用知识。
2.教学方法:采用个别指导和小组讨论相结合的方式,关注学生的个体差异。
3.教学步骤:
-步骤1:教师发放练习题,学生独立完成。
-步骤2:教师针对学生答题情况进行个别指导,帮助学生解决疑问。
-步骤3:组织学生进行小组讨论,共同解决难题。
1.学生在图像识别和分析方面的能力,引导他们通过图像直观地理解一次函数的性质,从而加深对一次函数的理解。
2.学生在解决实际问题时,往往难以将问题转化为数学模型,教师应引导学生学会从实际问题中抽象出一次函数关系,培养学生的建模能力。
3.针对学生个体差异,教师应设计不同难度的练习题,使每个学生都能在原有基础上得到提高,增强学生的学习成就感。
-结合现实生活中的问题,设计一个一次函数的应用案例,要求原创性,并在课堂上分享。
作业要求:
1.学生需认真完成作业,确保作业质量。
2.对于必做题,要求学生在课后自主完成,巩固课堂所学知识。
北师大版八年级数学上册《一次函数》教案
北师大版八年级数学上册《一次函数》教案一、教学目标首先我们希望同学们能够理解一次函数的基本概念,对于八年级的学生来说,我们不仅仅是记住这个概念,更希望同学们能真正明白一次函数是什么,它的特点是什么。
我们希望同学们能够主动思考,从实际生活中找到一次函数的例子,真正体会到数学与实际生活的联系。
1. 知识与技能:本节课我们将要学习一次函数,提到函数大家可能会觉得是个听起来很高大上的内容。
但实际上函数与我们日常的生活息息相关,这次我们要深入了解一次函数的基础知识,为后续的数学学习打下坚实的基础。
一次函数是数学中的基础概念之一,通过本节学习,学生应明确掌握一次函数的定义和表现形式。
简单来说一次函数就是自变量和因变量之间呈现一种线性关系的函数。
这种线性关系可以通过一个方程式来表示,例如大家熟悉的ykx+b。
其中k是斜率,表示函数的增减性;b是截距,表示函数与y轴的交点。
掌握了这两个要素,就等于掌握了理解一次函数的关键。
学习一次函数,不仅仅是记住定义和公式那么简单。
更重要的是,要掌握函数的性质和应用。
通过本章节的学习,学生将了解一次函数的单调性、图象(是一条直线)等关键特性。
这些都是在解决实际问题时会用到的关键知识点,掌握了这些性质,就意味着具备了利用数学工具解决实际问题的能力。
同学们将会发现,数学原来可以这么有趣和实用!学习的最终目的是应用,在本节课的最后阶段,我们将通过一些具体的例子,让学生尝试将所学知识应用到实际问题中去。
比如日常生活中的距离、速度和时间的关系问题,或者是更为复杂的实际应用场景,比如水电费的计算等。
通过这些实际应用,让学生更加深刻地理解一次函数的重要性和实用性。
相信同学们一定能在实践中感受到数学的魅力!2. 过程与方法:我们先来回顾一下之前学过的知识,比如线性方程,这样可以帮助我们更好地理解一次函数的概念。
通过实例引出一次函数,让学生感受到一次函数在生活中的实际应用,增加学生的学习兴趣。
最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)
一次函数第四章一次函数与正比例函数2.4 一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一种函数——一次函数。
由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成等,培养学生良好的书写习惯。
二、教学任务分析八年级《一次函数》是义务教育课程标准北师大版实验教科书个课时:让学生1第六章《一次函数》的第二节。
本节内容安排了)上(理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次并初步形成利用函数的观点认识现实世界的意识和能力。
函数表达式,与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的。
三、教学目标分析)结合具体情境体会一次函1依据新课程标准中一次函数中关于(制定。
)58(参见例能根据已知条件确定一次函数的表达式数的意义,教学目标:.教学目标:1理解一次函数和正比例函数的概念;(1) 能根据所给条件写出简单的一次函数表达式。
(2) 知识目标:2. 经历一般规律的探索过程,发展学生的抽象思维能力;(1)经历从实际问题中得到函数关系式这一过程,发展学生的数学(2) 应用能力。
能力目标3. (1)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
在探索过程中体验成功的喜悦,树立学习的自信心。
(2) 。
依据新课程标准制定教学重点2 理解一次函数和正比例函数的概念。
依据学情制定教学难点3发展学生的抽象思,能根据所给条件写出简单的一次函数表达式维能力。
北师大版 八年级上册 一次函数的应用教学设计
北师大版八年级上册一次函数的应用教学设计一. 教材分析北师大版八年级上册一次函数的应用教学设计,主要涵盖了一次函数的概念、性质、图像及其在实际问题中的应用。
本节课的内容是学生学习一次函数的重要环节,通过本节课的学习,使学生掌握一次函数的基本知识,能够解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在七年级时已经学习了代数基础知识,对代数式、方程、不等式有一定的了解。
但是,对于一次函数的概念、性质及其图像的认识还有待提高。
此外,学生对于数学在实际生活中的应用还比较陌生,需要通过本节课的学习,培养学生的数学应用意识。
三. 教学目标1.知识与技能:使学生掌握一次函数的概念、性质、图像,能够解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学应用意识。
四. 教学重难点1.一次函数的概念和性质。
2.一次函数图像的特点及其绘制方法。
3.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现数学问题,激发学生的学习兴趣。
2.探究式教学法:引导学生通过观察、分析、归纳等方法,自主发现一次函数的性质和图像特点。
3.案例教学法:通过具体案例,使学生学会如何将一次函数应用于实际问题。
六. 教学准备1.教学课件:制作一次函数的概念、性质、图像及其应用的教学课件。
2.教学案例:准备一些实际问题,作为教学案例。
3.教学素材:准备一些与一次函数相关的图片、视频等素材。
七. 教学过程1.导入(5分钟)利用生活实例,引导学生发现数学问题,激发学生的学习兴趣。
例如,通过分析出租车行驶的路程与时间的关系,引出一次函数的概念。
2.呈现(10分钟)呈现一次函数的概念、性质、图像,让学生初步了解一次函数的基本知识。
3.操练(10分钟)让学生通过观察、分析、归纳等方法,自主发现一次函数的性质和图像特点。
例如,让学生观察一次函数的图像,分析其斜率和截距的含义。
最新北师大版初中数学八年级上册《4.4一次函数的应用》精品教案 (6)
4.4 一次函数的应用(3)教学设计一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.二、教学任务分析本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息三、教法学法1.教学方法:“问题情境—建立模型—应用与拓展”2.课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺四、教学过程:本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第二环节:问题解决 内容1:例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36km /h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km /h . (1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米? 分析:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?解:设经过t 时,小聪与小慧离“古刹”的路程分别为1S 、2S ,由题意得:t S 361=,10262+=t S 将这两个函数解析式画在同一个直角坐标系上,观察图象,得⑴两条直线t S 361= ,10262+=t S 的交点坐标为(1,36)这说明当小聪追上小慧时,1236km S S ==,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸”⑵当小聪到达“飞瀑”时,即145km S =,此时242.5km S = .所以小慧离“飞瀑”还有45-42.5=2.5(km )思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为t S 361= ,小慧的解析式为10262+=t S )?活动目的:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析。
期八年级数学上册 4.4 一次函数的应用 第3课时 复杂一次函数的应用教案 (新版)北师大版
第3课时复杂一次函数的应用【知识与技能】能利用一次函数解决复杂的实际问题.【过程与方法】通过生活中的实例结合一次函数的图象解决问题,进一步体会数形结合的思想在数学中所起的重要作用.【情感与态度】让学生认识到数学来源于生活,又在生活中得到了运用,培养学生热爱生活的热情.【教学重点】利用一次函数解决复杂的实际问题.【教学难点】根据两个一次函数图象去分析解决问题.一、创设情境,导入新课教材第93页习题4.6下方的内容【教学说明】让学生在同一题中利用图象体会两个一次函数中量与量之间的关系,找到解决问题的方法,为下面的学习奠定基础.思考:图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?二、思考探究,获取新知复杂一次函数的实际应用师生共同完成例题:教材第94页例3【教学说明】教师引导学生完成,给学生创造展示自己的机会,通过相互讨论形成共识,得出结果,充分发挥了学生的主体作用.想一想:你能用其他方法解决上面的例题(1)~(5)吗?【教学说明】给学生充分的思考空间,让他们采用多种方法解决同一个问题,从而体会一题多解给大家的学习带来的快乐.三、运用新知,深化理解1.如图,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数图象,图中s,t分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h.2.甲乙两队举行一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系式如图所示,请你根据图象判断,下列说法正确的是().A.甲队率先到达终点B.甲队比乙队多走了200米C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的的速度大.3.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题.(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是 .(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式.(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?【教学说明】让学生自主完成,加深对所学知识的理解和考查学生对这一节课掌握情况,学生发生的错误和学习中的困难教师要及时纠正并给予解答.【答案】1.4;2.C;3.解:(1)30厘米,25厘米2小时,2.5小时(2)甲:设y=k1x+b1.将(0,30)代入y=k1x+b1中得b1=30,再将点(2,0)和b1的值代入y=k1x+b1中可得k1=-15.所以y=-15x+30.乙:设y=k2x+b2.把(0,25)代入y=k2x+b2可知b2=25,再将(2.5,0)和b2的值代入y=k2x+b2中得k2=-10.所以y=-10x+25.(3)令-15x+30=-10x+25,解得x=1.所以燃烧1小时时,甲、乙两根蜡烛的高度相等;当0≤x<1时间段内,甲蜡烛比乙蜡烛高;在1<x<2.5时间段内,甲蜡烛比乙蜡烛低.四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识?能解决跟一次函数有关的实际问题吗?学习中还存在哪些疑惑?与同学们交流.【教学说明】引导学生归纳总结,特别是解题方法和技巧对于今后的学习很有指导意义.通过交流形成学习上的互利,便于共同进步.1.布置作业:习题4.7中第3题2.完成本课时练习部分.本节课主要研究利用两个一次函数图象解决实际问题.通过独立思考并相互交流讨论,分析问题中量与量之间的关系,建立函数模型,提高学生的实践意识与综合运用数学知识的能力.。
新北师大版八年级数学上册全册教案
新北师大版八年级数学上册全册教案一、内容概述数与代数:包括有理数的概念与运算、代数式的初步认识与化简、一元一次方程的解法与应用等,旨在培养学生的数感和代数思维能力。
几何图形:主要学习图形的性质与分类、图形的变换(平移、旋转、对称等)、三角形和全等图形的概念与性质等,旨在提高学生的空间观念和几何证明能力。
函数与图象:通过实例引入函数的概念,学习函数的图象与性质,为后续的数学学习打下基础。
统计与概率:学习数据的收集与整理、概率的初步认识与应用等,培养学生的数据分析能力和概率思维。
教材中还融入了数学文化、数学史话等内容,旨在拓宽学生的视野,增强对数学的兴趣和热爱。
每个章节都设计了丰富的例题、习题和探究活动,以帮助学生巩固知识、提高能力。
教案在设计和实施过程中,注重知识的连贯性和系统性,同时也注重培养学生的创新思维和实践能力。
1. 介绍教材版本及适用年级本教案将针对《新北师大版八年级数学上册》展开详细解读与教学设计。
此教材版本属于北京师范大学出版社,是八年级数学上册全册的新修订版本。
本教材旨在满足八年级学生的认知水平和学习需求,涵盖了初中数学的核心知识点,包括代数、几何、概率与统计等多个领域。
其设计思路清晰,内容深入浅出,适合八年级学生使用。
通过学习本册教材,学生将掌握初中数学的基础知识,为将来的数学学习奠定坚实的基础。
2. 简述八年级数学在基础教育阶段的重要性八年级数学在基础教育阶段占有极其重要的地位。
学生所接触的数学知识深度和广度都在逐渐提升,涉及到的数学概念和原理更为复杂,为后续的数学学习和实际应用打下坚实的基础。
八年级数学是连接初中数学与高中数学的重要桥梁。
学生在这个阶段开始接触到更为高级的数学知识,如代数、几何、概率等,这些知识的掌握程度将直接影响其后续的高中数学学习。
数学作为一门基础学科,其教育价值不仅仅在于知识的灌输,更在于培养学生的逻辑思维能力和问题解决能力。
八年级的数学课程通过一系列的问题解决和推理训练,有助于培养学生的抽象思维、逻辑推理和创新能力。
北师大版八年级数学上册4.1一次函数的应用优秀教学案例
3.教师巡回指导,解答学生疑问,给予鼓励和评价,提高学生的自信心。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结一次函数在购物、出行等方面的应用。
2.学生总结一次函数的图像特征和性质,加深对一次函数的理解。
3.教师强调一次函数在实际生活中的重要性,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.利用多媒体展示购物、出行等实际场景,让学生身临其境,引发学生的学习兴趣。
2.设计具有挑战性和趣味性的数学问题,激发学生的求知欲。
3.以生活实例为载体,引导学生发现数学规律,感知数学与生活的紧密联系。( Nhomakorabea)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
五、案例亮点
1.生活情境导入:通过购物、出行等生活场景的展示,引导学生发现数学问题,激发学生的学习兴趣,增强学生的数学应用意识。
2.问题导向:本节课以问题为导向,引导学生主动探究、积极思考,培养学生的问题意识和解决问题的能力。
3.小组合作:组织学生进行小组讨论,培养学生的团队协作能力和沟通能力,提高学生的学习效果。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价、同伴评价,培养学生的评价能力。
3.教师对学生的学习过程和结果进行多元化评价,激发学生的学习动力。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、积极思考,提高学生的数学素养。通过情景创设、问题导向、小组合作和反思与评价等策略,培养学生的问题意识、团队协作能力和自我评价能力,使学生在学习一次函数的应用过程中,既能掌握数学知识,又能培养良好的学习习惯和价值观。
北师大版八年级数学上册:4.4 《一次函数的应用》教案3
北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。
本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。
但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。
三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。
2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。
3.提高学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。
六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。
2.准备课件,展示一次函数在实际问题中的应用。
3.准备练习题,巩固学生对一次函数应用的理解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。
让学生思考如何用数学语言描述这种关系,引出一次函数的概念。
2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。
引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。
3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。
北师大版数学八年级上册4.一次函数的应用(第3课时)课件
y/元
6000 5000 4000 3000 2000 (0,2000)
l1
y=1000x
关系式设为y1=k1x,
l2
y=500x+2000 只需要一个点的坐标.
y=k1x 4000=4k, k=1000
(4,4000)
l2的图不过原点
y=1000x (0,2000)(4,4000)
1000 O
1 23
O
l2 A l1 B
2 4 6 8 10
t /分
即10分钟内,A行 驶了2海里,B行
P94例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶(如图).
快艇
海
B
岸
A 可疑船
公
海
下图中 l1 ,l2 分别表示两船相对于海岸的距离s与追赶时间t之间
的关系.根据图象回答下列问题:
(1)哪条线表示快艇B到海岸的距离与追赶时间之间的关系?
s /海里
8 6 4 2
北师大版 数学 八年级上册
第四章 一次函数
4.4.3 一次函数的应用
第3课时 复杂一次函数的应用
学习目标
1.进 一 步 训 练 识 图 能 力 , 通 过 函 数 图 象 获 取 信 息 , 解 决 简单的实际问题。
2.在 函 数 图 象 信 息 获 取 过 程 中 , 进 一 步 培 养 数 形 结 合 意 识,发展形象思维。
该公司盈利(收入大于成 6000
本); 当销售量 小于4吨 时,
5000
该公司亏损(收入小于成 4000
本) ;
3000
2000
1000
O
销售收入
北师大版八年级上册4.4一次函数的应用(教案)
-强调将实际问题抽象成数学模型的过程。
2.教学难点
-待定系数法求解一次函数解析式的理解和应用。
-难点在于如何从实际问题中抽象出两个方程组成,进而求解k和b的值。
-通过具体例子,解释如何列出方程组,并指导学生进行求解。
-一次函数在实际问题中的应用,如最值问题、效益问题和路程问题。
-难点在于如何将实际问题转化为数学表达式,并找出函数的最大值或最小值。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,如待定系数法求解一次函数解析式,我会通过具体例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如归一问题或计算公式问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图象的绘制及其性质。
-通过案例分析,指导学生如何确定变量之间的关系,并求解最值。
-对一次函数性质的理解,尤其是斜率k对图象的影响。
-难点在于理解斜率k与函数增减性之间的关系。
-通过图象观察和实例分析,帮助学生理解斜率k的正负如何决定函数的增减性。
-数形结合的解题思路。
-难点在于如何将抽象的数学问题与直观的图象结合起来,以简化问题解决过程。
-在求解一次函数解析式的过程中,培养逻辑推理和数学运算能力
-通过对一次函数性质的学习,提升抽象逻辑思维能力
4.增强学生的几何直观和空间观念,提高数形结合的解题能力。
北师大版八年级数学上册全册精品教案教学设计
北师大版八年级数学上册全册精品教案教学设计一、教学内容1. 函数及其表示方法2. 一次函数性质与图像3. 二次函数性质与图像4. 概率初步5. 平行四边形与菱形6. 解直角三角形二、教学目标1. 理解函数概念,掌握函数表示方法。
2. 掌握一次函数和二次函数性质、图像及应用。
3. 理解概率意义,掌握概率基本计算方法。
4. 掌握平行四边形和菱形性质、判定及应用。
5. 学会解直角三角形,掌握三角函数定义及计算。
三、教学难点与重点1. 教学难点:函数性质与图像、概率计算、解直角三角形。
2. 教学重点:函数概念、一次函数和二次函数图像与性质、平行四边形与菱形性质、概率计算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入:通过生活中实例,引导学生解函数在现实中应用。
2. 例题讲解:(1)讲解函数概念,举例说明函数表示方法。
(2)讲解一次函数图像和性质,通过例题使学生掌握一次函数图像绘制和性质分析。
(3)讲解二次函数图像和性质,通过例题使学生掌握二次函数图像绘制和性质分析。
(4)讲解概率基本计算方法,结合实际例子进行讲解。
(5)讲解平行四边形和菱形性质,通过例题使学生掌握性质应用。
(6)讲解解直角三角形方法,结合实际例子进行讲解。
3. 随堂练习:针对每个知识点设计练习题,巩固所学内容。
六、板书设计1. 函数及其表示方法2. 一次函数性质与图像3. 二次函数性质与图像4. 概率初步5. 平行四边形与菱形6. 解直角三角形七、作业设计1. 作业题目:(1)绘制一次函数图像,并分析其性质。
(2)绘制二次函数图像,并分析其性质。
(3)计算给定事件概率。
(4)证明平行四边形和菱形性质。
(5)解直角三角形,求各角度三角函数值。
2. 答案:根据学生完成作业情况,给出详细答案。
八、课后反思及拓展延伸1. 反思:针对本节课教学内容,反思教学方法是否得当,学生掌握情况如何,及时调整教学策略。
八年级数学上册 4.4 复杂一次函数的实际应用(第3课时)学案 (新版)北师大版
复杂一次函数的实际应用【学习目标】1.进一步提高识图能力,通过函数图象获取信息.2.能利用函数图象解决较复杂的实际问题.【学习重点】两个一次函数图象的应用.【学习难点】通过函数图象解决实际问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题教师引导学生研读教材第93页习题4.6下方的内容.【说明】让学生在同一题中利用图象体会两个一次函数中量与量之间的关系,找到解决问题的方法,为下面的学习奠定基础.思考:图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y =k2x+b2中,k2和b2的实际意义各是什么?自学互研生成能力知识模块一两个一次函数图象在同一坐标系中的应用师生合作完成教材第94页例3的学习与探究.【说明】教师引导学生完成,给学生创造展示自己的机会,通过相互讨论达成共识,得出结果,充分发挥学生的主体作用.想一想:你能用其他方法解决上面的例题(1)~(5)吗?【说明】给学生充分的思考空间,让他们采用多种方法解决同一个问题,从而体会一题多解给大家的学习带来的快乐.知识模块二最佳方案问题典例讲解:例:某单位急需用车,但不准备买车,他们准备和一个个体车主或一国有出租车公司中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,应付给国有出租车公司的月租费是y2元,y1、y2分别与x之间的函数关系的图象(两条射线)如图所示,观察图象,回答下列问题.(1)分别写出y1,y2与x之间的函数关系式;(2)每月行驶的路程在什么范围内时,租国有公司的车合算?(3)每月行驶的路程等于多少时,租两家车的费用相同?(4)如果这个单位估计平均每月行驶的路程为2300km,那么这个单位租哪家的合算?解:(1)由图象可知,设y1=k1x+b(k1,b为常数,k≠0),y2=k2x(k≠0).∵y1,y2都经过点(1000,2000),∴2000=1000k2,∴k2=2.将点(0,1000)代入y1中可求得b=1000,再将点(1000,2000)代入y1中可得k1=1,∴y1=x+1000(x≥0),y2=2x(x≥0);(2)当y2<y1时,有2x<x+1000,∴x<1000,∴每月行驶路程小于1000km时,租国有公司的车合算;(3)当y2=y1时,有2x=x+1000,∴x=1000,∴每月行驶的路程等于1000km时租两家车的费用相同;(4)当y2>y1时,有2x>x+1000,∴x>1000,∴每月行驶的路程大于1000km时,租个体车主的车比较合算.∴当x=2300km时,这个单位租个体车主的车比较合算.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.仿例:如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( D )A.①②B.②③④C.②③D.①②③交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两个一次函数图象在同一坐标系中的应用知识模块二最佳方案问题检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时复杂一次函数的实际应用
【学习目标】
1.进一步提高识图能力,通过函数图象获取信息.
2.能利用函数图象解决较复杂的实际问题.
【学习重点】
两个一次函数图象的应用.
【学习难点】
通过函数图象解决实际问题.
学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.情景导入生成问题
教师引导学生研读教材第93页习题4.6下方的内容.
【说明】让学生在同一题中利用图象体会两个一次函数中量与量之间的关系,找到解决问题的方法,为下面的学习奠定基础.
思考:
图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?
自学互研生成能力
知识模块一两个一次函数图象在同一坐标系中的应用
师生合作完成教材第94页例3的学习与探究.
【说明】教师引导学生完成,给学生创造展示自己的机会,通过相互讨论达成共识,得出结果,充分发挥学生的主体作用.
想一想:
你能用其他方法解决上面的例题(1)~(5)吗?
【说明】给学生充分的思考空间,让他们采用多种方法解决同一个问题,从而体会一题多解给大家的学习带来的快乐.
知识模块二最佳方案问题
典例讲解:
例:某单位急需用车,但不准备买车,他们准备和一个个体车主或一国有出租车公司中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,应付给国有出租车公司的月租费是y2元,y1、y2分别与x之间的函数关系的图象(两条射线)如图所示,观察图象,回答下列问题.
(1)分别写出y1,y2与x之间的函数关系式;
(2)每月行驶的路程在什么范围内时,租国有公司的车合算?
(3)每月行驶的路程等于多少时,租两家车的费用相同?
(4)如果这个单位估计平均每月行驶的路程为2300km,那么这个单位租哪家的合算?
解:(1)由图象可知,设y1=k1x+b(k1,b为常数,k≠0),y2=k2x(k≠0).∵y1,y2都经过点(1000,2000),∴2000=1000k2,∴k2=2.将点(0,1000)代入y1中可求得b=1000,再
将点(1000,2000)代入y1中可得k1=1,∴y1=x+1000(x≥0),y2=2x(x≥0);
(2)当y2<y1时,有2x<x+1000,∴x<1000,∴每月行驶路程小于1000km时,租国有公司的车合算;
(3)当y2=y1时,有2x=x+1000,∴x=1000,∴每月行驶的路程等于1000km时租两家车的费用相同;
(4)当y2>y1时,有2x>x+1000,∴x>1000,∴每月行驶的路程大于1000km时,租个体车主的车比较合算.∴当x=2300km时,这个单位租个体车主的车比较合算.
学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.
仿例:如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时
甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( D )
A.①②B.②③④C.②③D.①②③
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一两个一次函数图象在同一坐标系中的应用
知识模块二最佳方案问题
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:_______________________________________________________ _________________
2.存在困惑:_______________________________________________________ _________________。