概率统计知识点提纲

合集下载

小学概率统计知识点总结

小学概率统计知识点总结

小学概率统计知识点总结一、基本概率概念1.1 随机事件随机事件是指在一定条件下发生或不发生的事件,通常用字母A、B、C等表示。

1.2 样本空间样本空间是指所有可能结果的集合,通常用S表示。

1.3 事件的概率事件A的概率P(A)是指在重复试验中,事件A发生的可能性的大小。

通常用0到1之间的数值表示,0表示不可能发生,1表示一定发生。

二、概率的计算2.1 等可能性事件如果各个事件在一次试验中发生的可能性相同,那么这些事件称为等可能性事件。

在等可能性事件中,事件A的概率P(A)可以用公式P(A) = 发生事件A的次数 / 总次数来计算。

2.2 互斥事件互斥事件是指两个事件不可能同时发生,例如抛一枚硬币得到正面和反面就是互斥事件。

如果事件A和事件B是互斥事件,即P(A和B) = 0,那么事件A和事件B发生的总概率为P(A或B) = P(A) + P(B)。

2.3 独立事件独立事件是指事件A的发生不影响事件B的发生,事件A和事件B同时发生的概率等于它们各自发生的概率的乘积,即P(A和B) = P(A) × P(B)。

三、概率的应用3.1 抽样调查在进行抽样调查时,可以根据概率的原理,通过少数样本推断整体的状况,例如在调查学生喜欢的食物时,可以先从小范围内进行调查,再推广到整个班级或学校的学生。

3.2 游戏中的概率在各种游戏中,概率统计知识都会被应用。

比如掷骰子的概率、抽卡牌的概率等,在游戏中通过对概率的计算和分析,可以制定出更加合理的策略。

3.3 日常生活中的概率日常生活中也处处都有概率的应用,比如在买彩票时考虑中奖的概率、在出行时考虑天气的概率等。

通过对概率的理解,能够使孩子们学会做出更加合理的选择。

四、小学概率统计习题4.1 题目一:有一副52张的扑克牌,其中有13张红桃牌。

随机抽取一张牌,求抽中红桃牌的概率。

解答:红桃牌的概率P(红桃) = 红桃牌的数量 / 总牌数 = 13 / 52 = 1/4。

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

(完整版)概率论与数理统计复习提纲

(完整版)概率论与数理统计复习提纲
二、矩估计法
1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

概率 统计知识点总结

概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。

样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。

2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。

基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。

4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。

二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。

2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。

3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。

三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。

2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。

3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。

四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。

中考概率和统计知识点总结

中考概率和统计知识点总结

中考概率和统计知识点总结一、概率的基本概念1.实验、随机现象和样本空间2.事件和事件的关系(包括互斥事件、对立事件等)3.概率的定义及其性质4.等可能概型二、概率的运算与应用1.概率的加法法则2.概率的乘法法则3.条件概率4.全概率公式和贝叶斯公式5.区间估计三、统计的基本概念1.数据的收集和整理2.数据的组织和展示(包括频数分布表、频数分布直方图等)3.平均数、中位数、众数等常用统计量的计算与应用4.极差、四分位数、标准差等常用离散程度的计算与应用四、统计的运算与应用1.抽样调查和总体推断2.关联图与线性回归线的绘制与分析3.相关系数与相关性分析4.统计问题的解决思路和方法五、典型例题解析通过分析和解答一些典型的例题,总结和归纳其中的解题思路和方法,帮助学生掌握应用概率和统计知识解决实际问题的能力。

其中,概率的基本概念是理解概率的基础。

实验、随机现象和样本空间是研究概率问题的起点,通过定义事件和事件的关系可以帮助学生理解事件的概率计算。

概率的定义及性质是概率题目的出发点,通过等可能概型的学习可以对概率有更深入的理解。

概率的运算与应用是概率题目的核心内容。

概率的加法法则和乘法法则是计算复杂概率事件的基本工具,条件概率是解决复杂概率问题的重要手段。

全概率公式和贝叶斯公式是处理复杂问题的常用公式。

区间估计是概率应用的重要方法,通过样本估计可以对总体进行推断。

统计的运算与应用主要包括抽样调查和总体推断、关联图与线性回归线的绘制与分析、相关系数与相关性分析等内容。

抽样调查和总体推断是通过样本对总体进行估计的方法,关联图和线性回归线可以帮助学生分析变量之间的关系,相关系数的计算和分析可以帮助学生评价相关性的强度和方向。

最后,通过解析典型例题可以帮助学生掌握概率和统计知识的解题思路和方法。

通过分析例题,可以发现一些常见的解题方法和技巧,帮助学生在考试中更好地应对各类概率和统计题目。

综上所述,中考概率和统计知识点主要包括概率的基本概念、概率的运算与应用、统计的基本概念、统计的运算与应用以及典型例题解析等内容。

概率统计知识点提纲

概率统计知识点提纲

概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。

随机事件和概率考查的主要内容有:(1)事件之间的关系与运算,以及利用它们进行概率计算;概率论与数理统计知识点与考点第一章知识点:18§1.1 随机试验:随机试验的三个特点。

(1)样本空间:样本空间;样本点;(2)随机事件:随机事件;事件发生;基本事件;必然事件;不可能事件;(3)事件间的关系与事件的运算:包含关系;相等关系;互不相容;和事件、积事件、差事件、对立事件;(4)事件的运算律。

§1.2、概率的定义及运算:(1)频率定义;(2)概率的统计定义,(3)概率公理化定义,(4)古典概型,(5)几何概型§1.3、条件概率:(1)定义;(2)性质;(3)乘法公式。

(4)全概率公式,(5)贝叶斯公式;,§1.4事件的独立性:(1)两事件相互独立的性质;(2)三(多)个事件相互独立的定义,(3)伯努利试验模型考点:1、事件的表示和运算,2、有关概率基本性质的命题,3、古典概型的计算,4、几何概型的计算,5、事件的独立性的命题,6、条件概率与积事件概率的计算,7、全概率公式和Bayce公式的命题,8、Bernoulli试验。

第二章知识点:19§2.1 (1) 随机变量的定义;(2)随机变量的分布函数及其性质§2.2 离散型随机变量及其概率分布:(1)离散型随机变量的定义;(2)离散型随机变量的分布律;几种常见的离散型随机变量:(1) (0-1)分布;(2) 二项分布;(3) 泊松分布;(4)超几何分布;(5)几何分布;(6)帕斯卡(Pascal)分布,掌握每一种分布的模型,写出其分布律或分布密度。

§2.3连续型随机变量及其概率分布:(1)分布函数的定义;(2)分布函数的基本性质;(3)分布函数与离散型随机变量的分布律之间的联系;(4)连续型随机变量的概率密度的定义;(5)概率密度的性质;几种常见的连续型随机变量(一)均匀分布:(1)概率密度;(2)分布函数;(二)正太分布:(1)概率密度;(2)分布函数;§2.4 随机变量的函数的分布(1)离散型随机变量的函数的分布(2)连续型随机变量的函数的分布考点:1、有关分布律、分布函数以及分布密度的基本概念的命题,2、有关分布律、分布密度以及分布函数之间的关系的命题,3、已知事件发生的概率,反求事件中的参数,4、利用常见分布求相关事件的概率,5、求随机变量的分布律、分布密度以及分布函数,6、求随机变量函数的分布。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率统计复习提纲(百度文库)讲解

概率统计复习提纲(百度文库)讲解

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为:,.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验F的所有可能结果组成的集合称为F的样本空间;记为Q;试验的每一个可能结果,即Q中的元素,称为样本点,记为「(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为「)和不可能事件(记为-).2、事件的关系与运算(1)包含关系与相等:“事件一发生必导致匸'发生”,记为二一「或丄-J ; A=B^AcB 且鸟匚乂.(2)互不相容性-互为对立事件1 :、「-门且一 :.(3)独立性:(i)设丄:'为事件,若有匸二-匸二y 口‘,则称事件-与F相互独立.等价于:若* 1 2 3 4(2)多个事件的独立:设一……;是n个事件,如果对任意的乂山二口匚,任意的1■\ ',具有等式,称;个事件…人相互独立.3、事件的运算(1)和事件(并):“事件一与匸'至少有一个发生”,记为」一丄.(2)积事件(交):“ 事件」与匸'同时发生”,记为』丄「或丄.(3)差事件、对立事件(余事件):“事件发生一而匸'不发生”,记为」「称为一与匚'的差事件;…二二称为T的对立事件;易知:二】匸.4、事件的运算法则1 交换律:亠二一二一 _」,二土;2结合律:』u0uO = (£u仍uC,(曲)0 =玫蜀;3分配律:(心―2此,的uC = (g(S;4 对偶()律:丸匸二丄,,一二二一1,十十u A=n n©u血可推广* ■'5、概率的概念(1)概率的公理化定义:i厂存v「J的f事件域.恥F隹义在F上的一个集值函数P(備足;1)菲负性:旳1)20;2)规范性:卩⑼訂3)可列可加性;设力岀,…是可列个互不相容事件,则则称P")为事件胡概率.(2)频率的定义:事件」在「次重复试验中出现11次,则比值」称为事件」在[次重复试验中出现的频率,记为 ,即— 」.即随旳的増大越来越韋近基个常数戸切丹斗审冲 n 称W 为事件一的(统计)概率在实际问题中,当「很大时,取f 一,“(4)古典概率:若试验的基本结果数为有限个, 且每个事件发生的可能性相等,则(试验对应古典概型)事件 」发生的概率为:—A 中所含样本点数」/(占) c 中样本点总数n(5)几何概率:若试验基本结果数无限,随机点落在某区域 g 的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域「中随机地取一点落在区域-中”这一事件二发生的概率为:1丿Q 的测度. (6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念6、概率的基本性质(3)统计概率: 频率具有稳定性, 9 QD(1)不可能事件概率零:= 0.(2)有限可加性:设\ \ -是n个两两互不相容的事件,即」•.=;,(;) 丄,12…j 则有= + 酗)+…+P⑷.(3)单调不减性:若事件口—上「」「—」,且冊卜附也).(4)互逆性:丿二】且H上-(5)加法公式:对任意两事件二:,有二二-匚—二二I-P匚.—厂扑;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件二:,有门上二:,且AAu3)<PU) + ?(3)7、条件概率与乘法公式(1)条件概率:设丄E是两个事件,即」.,则P(AB)称为事件一发生的条件下事件匸'发生的条件概率.(2)乘法公式:设丄H 且「一•〕「"」则W = P(^P(B| X) = P^)P(A13)称为事件二-的概率乘法公式.8全概率公式与贝叶斯()公式(1)全概率公式:设-…二是异的一个划分,且S,•厂亠,…,则对任何事件”」,有p(s)=^mwi4)2-1称为全概率公式(2)贝叶斯()公式:设是打的一个划分,且■ 1 ' 1 _'\ ,则对任何事件丄「一,有P(AAP(B\JL)mi月)=丨宀心=1,…⑻i-L称为贝叶斯公式或逆概率公式9、贝努里()概型(1)只有两个可能结果的试验称为贝努里试验,常记为丄.丄也叫做“成功—失败”试验,“成功”的概率常用/ " L:/表示,其中」成功”.(2)把匚重复独立地进行•.次,所得的试验称为!重贝努里试验,记为匸.(3)把::'重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为孑.以上三种贝努里试验统称为贝努里概型.(4)匸中成功卜次的概率是二」mi其中—1 1:--/--1.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件•它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件」与厂必有一个事件发生,且至多有一个事件发生,则J、'为互逆事件;如果两个事件」与1不能同时发生,则J、'为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形•作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个3、两事件独立与两事件互斥两事件」、T独立,则」与T中任一个事件的发生与另一个事件的发生无关,这时「'' ■:' 1;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时二一二二二.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1咖)二.P⑷丄F(B) 一、^ 亠、4 2 ,表示样本空间中两事件的独立关系,而在右边的正方形中,丄匸•,表示样本空间中两事件的互斥关系.4、条件概率''与积事件概率「卜是在样本空间「内,事件二的概率,而’'''是在试验丄增加了新条件发生后的缩减的样本空间中计算事件』的概率.虽然都发生,但两者是不同的,一般说来,当」、-同时发生时,常用「加,而在有包含关系或明确的主从关系时,用"八二.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率•问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯()公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件•贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设「是随机试验的样本空间,如果对于试验的每一个可能结果二一X,都有唯一的实数'与之对应,则称为定义在「上的随机变量,简记为.随机变量通常用大写字母二-■-等表示.设g,F*)是一t概率空间,若枷W R有珂紋是-个随腋氢离散型随机喪量(可能取值至多可列)随机变量连续型随机变量(可育諏值充满某个区间〉奇异型随机变量■-2、离散型随机变量及其分布列如果随机变量二只能取有限个或可列个可能值,贝淋二为离散型随机变量.如果」的一切可能值为〔1 ,并且負取:;的概率为X,则称儿":一:一】“:为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为匸:日,分布列为丄工卜;■'■-■'!5 P或(2)二项分布:记为'-,,概率函数尸区胡乂”(1-卩严北二0「也0<^<1(3)泊松分布,记为'-',概率函数iJtP&"}二斗,"Oh, 4 0<1泊松定理设“::是一常数,J是任意正整数,设’人',则对于任一固定的非负整数i,有八,■-.当〔很大且|很小时,二项分布可以用泊松分布近似代替,即切(1宀年,其中5(4) 超几何分布:记为概率函数(5) 几何分布:记为上•「心口,概率函数> ;< :匚 ‘ .;■..3、分布函数及其性质分布函数的定义:设"为随机变量,:为任意实数,函数阳=P{X <X)(-0O<X< +oo)称为随机变量負的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下 性质: (1) 有界性(-00 < X <松);⑵ 单调性 如果:'< ,则旳g(xj ;(3) 右连续, 即戸;7C(4) 极限性 血 F(i) = 0> 陀)二127 W-Hfi ;(5)完美性 Pg fXSxj =P{X “卜P{X 二F(xj-F(xj .4、连续型随机变量及其分布分布如果对于随机变量二的分布函数门「,存在非负函数「九,使对于任一实数:, 有宀'",则称;为连续型随机变量.函数—称为;的概率密度函数.P{X "}= pJtr k- 0丄…,min (丹,M) ,其中匚暑为正整数,且:二「- \n 当:「很大,且'1较小时,有马軒泌"(1十严概率密度函数具有以下 性质:(1)工沁〕;⑵二(3) - ' _、「 7 '■ ' ; ( 4)丄;二 11 ;(5) 如果在:处连续,则.常用连续型随机变量的分布:(1) 均匀分布:记为- ; ,概率密度为a①其它分布函数为Q,x <a-f a<x<bl, x(2) 指数分布:记为工- ,概率密度为分布函数为0, A<0(3) 正态分布:记为--,概率密度为p(x) = -=^ 2f2 ? -DO <z < +CO* ?相应的分布函数为di当"-"■■■-1时,即「时,称負服从标准正态分布.这时分别用」:和 _1表示二的密度函数和分布函数,即具有性质:①」:i .jPW = 加-X >Q0,其它②一般正态分布]」严丁的分布函数门与标准正态分布的分布函数■' 有关系:陀)二①¥5、随机变量函数的分布(1)离散型随机变量函数的分布设;为离散型随机变量,其分布列为(表2-2):则亠— if任为离散型随机变量,其分布列为(表2-3):表2-3h有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设;为离散型随机变量,概率密度为'-'1,贝L 「二的概率密度有两种方法可求.1)定理法:若f在丄的取值区间内有连续导数「,且:单调时,X⑷ 是连续型随机变量,其概率密度为11 / 27• ①其它其中二一匸「7二「代汕匚一二1二;I—]:门是]:的反函数.2)分布函数法:先求的分布函数F,(y) = P(Y<y^P(g(X)<y)=X[人何必 &止心)然后求疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间沐上,对试验的每一个可能结果:,都有唯一的实数•「与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数门「左连续,但大多数书籍定义分布函数「二为右连续.左连续与右连续的区别在于计算「二时,二二点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于 '負-^ ,则定义左连续或右连续时门值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布1、二维随机变量及其联合分布函数如果随机变量血(讥血(町…,血@)定义在同一概率空间(Q FQ上则称恥)心⑷兀(叭-北3)为n维(n元)随机变量或随机向量.当沪2时诽为二维随戕氢常记为工儿联合分布函数的定义设—-匸丄二一「赴随机变量,心"为随机向量1■的联合分布函数特别卄血称为二淼合分布函数即恥』)訂(淞汀幻)二维联合分布函数具有以下基本性质:(1)单调性是变量:或;的非减函数;(2)有界性一―]I:* ;(3)极限性” 7」,:',一,厂「.一(?」丨一■.- -」.-工-1「-工,亠二(3)连续性l I;.关于:右连续,关于^也右连续;(4)非负性对任意点 =.「_.「,若「;二,贝V式表示随机点二门落在区域内的概率为:二…2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称■'为二维离散型随机变量.设「「为二维离散型随机变量,它的所有可能取值为匸- 将f 一—°厂一」或表3.1称为「「的联合分布列.表3.1(1)「「';( 2)肴' 联合分布列具有下列性质:3、二维连续型随机变量及其概率密度函数如果存在一个非负函数和乩门,使得二维随机变量的分布函数‘八「对任意实数「有 'f,则称 — 是二维连续型随机变量,称u为的联合密度函数(或概率密度函数)联合密度函数具有下列性质:设…丄|为二维随机变量,则称F x (x ) = P (X<^<Y <+oo ) 的0)二 P 卜00 <X <4007<7) 分别为关于二和关于「的边缘(边际)分布函数当为离散型随机变量,则称(1) 非负性对一切实数",有■" 1;(3) *-ho在任意平面域-上,「厂 取值的概率F {(工二[“(砂)如y Q ;3细(兀刃=Xj 为如果小」在;’处连续,则 「八一八 规范性(4)4、二维随机变量的边缘分布P 广乞珂(八12…):-1分别为关于;和关于『的边缘分布列当为连续型随机变量,则称內A )二ph 』)必分别为关于二和关于「的边缘密度函数5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为P(X = ip/ = - p^,P(X= f P(Y -y^} = (ij = 12…),则当 j 固定P{f = ”} = Pj>Ci 时,称---------------------------------- 二——为'「条件下随机变量匚的条件分布律.同理,有吃讪|XrJ 二丝八12…Pi(2)连续型随机变量的条件分布设■= 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:心.则当’•时,在和门,的连续点处,-在条件’下,】的条件概率密度函数为曲力)=畔 Px Wp^\y)=p (兀力p^y) 同理,6、随机变量的独立性设;」’及匚:'1分别是的联合分布函数及边缘分布函数.如果对任何实数「有『上=则称随机变量;与「相互独立.设:;'|为二维离散型随机变量,..与『相互独立的充要条件是廿妝血=12…).设为二维连续型随机变量,二与[相互独立的充要条件是对几乎一切实数,有7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为」;」,「—“ —「是;'的函数,则匚的分布函数为马⑵二\\p(x t yyixdy.(1);'二的分布若.1;|为离散型随机变量,联合分布列为',则】的概率函数为:易仇)=£临耳-吗)&仇)=5>%巩-为);或>若丄八为连续型随机变量,概率密度函数为W,则匚的概率函数为:严r-Ko旳⑵二p^z-x)dx=\ p(z-y r y)dy的分布若I为连续型随机变量,概率密度函数为小乩门,则]的概率函数为:8.最大值与最小值的分布曲”冊勺)畝阿〔兀…兀)勺厂P©)畅)胡旳)*血吃…北)勺)4*(卜恥))9.数理统计中常用的分布(1)正态分布:设随机变劉諾厂也相互紐,肮广N仏口;),心谊…也则2也皿左的加巾其中用心…尼为常黏(2)宀 *:设随机变就“血…也相互從,且丫厂M(叮〉心12…”则(3)「• 卄:亡*……-厂\ L書让二I(4)「—--:亡「疑难分析1、事件=-丄二「表示事件梟•丄「与的积事件,为什么二计不一定等于'■■■'■ :■■■.■ ?如同仅当事件二f相互独立时,才有「二-1三匚二一样,这里依乘法原理只有事件一与1「■'/.相互独立时,才有P{X<x t Y<y) = P(X<^ P(Y<y\,因为P{Y<y\X<x} = P{Y <y).2、二维随机变量「厂的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由「丄丫二心」宀「7 r知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果二『相互独立,贝V「仁―t —:,即卩宀二;丄J •:'.说明当二『独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量二〕相互独立,是指组成二维随机变量•厂的两个分量二〕中一个分量的取值不受另一个分量取值的影响,满足儿」—匸-:匚-.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有「二—L匚.两者可以说不是一个问题.但是,组成二维随机变量I的两个分量二「是同一试验丄的样本空间上的两个一维随机变量,而丄f也是一个试验的样本空间的两个事件.因此,若把“匸土”、”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质1、随机变量的数学期望设离散型随机变量負的分布列为「工二:!亠,如果级数台"'绝对收敛,则称级数的和为随机变量J丄的数学期望.设连续型随机变量x的密度函数为p⑴,如果广义积分L腴R处绝对收敛,则f-HD称此积分值」为随机变量匚的数学期望•数学期望有如下性质:(1)设「是常数,则"'■;(2)设]'是常数,则和(3)若-1:'是随机变量,则-[丄:_:丄-';对任意〔个随机变量■ ' - ■ ',有(4)若-亠相互独立,贝U -七--'-.1 ;对任意「个相互独立的随机变量 u :•,有2、随机变量函数的数学期望设离散型随机变量 負的分布律为■"丄|丄,则」的函数一1 一的设连续型随机变量 負的密度函数为;;|,则負的函数'■_ ■的数学期望为i +®购恥讥讷,式中积分绝对收敛 3、随机变量的方差设匚是一个随机变量,贝V 丄一匸「L - - 称为匚的方差-一“称为;的标准差或均方差.计算方差也常用公式 方差具有如下性质:(1)设一1是常数,则\ '-; (2)设「是常数,则--------;(3)若分1、*2相互独立,则0区+托)=D(X])+°(為);对任意〔个相互独立的随机变量■' -■' ,有- ;(4) 的充要条件是:存在常数 「,使- - - -二八 4、几种常见分布的数学期望与方差 (1)匸;.「匸;二:.:;(2) 「——数学期望为亟(②卜另欽亦)久朮=12…jt-i 式中级数绝对收敛(3)(4)匸」已匸二2 1 ;(5)「一 -'■- :丫;(6)—「二 < 匚一,「I」门一:■汀匸⑺—:'二一;:.;;(8)八“血刊凤& = “23)=代5、矩设;是随机变量,贝y L 「2;* 4称为;的一阶原点矩.如果f存在,则■ ■ _ ' ' ■ '■■ - - - | "'-称为負的;阶中心矩.设「「是二维随机变量,贝y心亠;止【;;「工称为的I 阶混合原点矩;址=E ([X-E(Q*•[『-占(別),灯=1,2,…称为(x,y)的七+]阶混合中心矩.6、协方差与相关系数随机变量(XQ的协方差为^f Y^E{[X-E^Y-£(『)]).它是i+i阶混合中心矩,有计算公式:沏(工『)二E(沼)・E(x)E(y).随机变量■= 的相关系数为_ cov(xn呛二亦页相关系数具有如下性质:(1)卜冷」;(2)卜」存在常数•:',使";-汇+「=1,即二与1以概率1线性相关;(3)若;独立,则L •,即不相关.反之,不一定成立.(4)() 设()是二维随机变量,若X与Y的方差都存在,则[Cau(X r^<DX DY疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性•但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数1■二反映了随机变量二和「之间的什么关系?相关系数;I是用随机变量就和[的协方差和标准差来定义的,它反映了随机变量二和『之间的相关程度.当时,称二'与丁依概率1线性相关;当匚二I 时,称免与『不相关;当时,又分为强相关与弱相关.4、两个随机变量二与]相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则川;「厂小.,故心二-一,从而七j,所以J、r不相关.(2)若不相关,则门、「不一定独立.如:f —]"兀x2+y2 <}rPW= 1 o, 其它一因为TO = £(y)= 0,TO=1/4-1'1二•,知」、」不相关.但U ;1「’L,加y)二2尸加,瞼J)HP占)P0 ,知乂、『不独立.(3)若相关,则匚、[一定不独立.可由反证法说明.(4)若匚、)不相关,则二、不一定不相关.因为二、不独立,二—〕,但若汇-厂m时,可以有―,从而可以有」、不相关.但是,也有特殊情况,如服从二维正态分布时,不相关与;、J 独立是等价的第五块大数定律和中心极限定理内容提要基本内容:切比雪夫()不等式,切比雪夫大数定律,伯努里()大数定律,辛钦()大数定律,棣莫弗-拉普拉斯()定理,列维-林维德伯格()定理.1、切贝雪夫不等式设随机变量二的数学期望m—工,方差匸,则对任意正数「,有不等刊■心沪召或刊,小"-召成立2、大数定律(1)切贝雪夫大数定律:设…是相互独立的随机变量序列,数学期望J. 1和方差’二都存在,且「二」〔|,则对任意给定的I「,有1丄如列-乞凶-欧扎)]|<沪1“讯i-i .(2)贝努利大数定律:设L是「次重复独立试验中事件d发生的次数,:是事limP(|^-^|<F)=l件丿在一次试验中发生的概率,则对于任意给定的:'.■丨,有…贝努利大数定理给出了当[很大时,」发生的频率一=依概率收敛于d的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列且匸也〕卫(:=匚),则对任意给定的:,I,有3、中心极限定律(1) 林德贝格-勒维中心极限定理:设〔芒〕,…丄 是独立同分布的随机变量 序列,有有限的数学期望和方差,「二-「,「..「一、:.则对任意实数刀(血-“)刀疋厂冲“Y _ ____:,随机变量■■,'■--■的分布函数二-满足 Em 氏⑵二曲尸也<i} = fJ2/T(2) 李雅普诺夫定理:设是不同分布且相互独立的随机变量,它护—y 2 们分别有数学期望和方差:小1 一畀,■'■■'■■<;「厂-八-■-;亠文欧因-丛角TO正数$,,使得当心谕时,有盯口,则随机变量»X屋据F7 _ i-1 H _ J-1 X的分布函数对于任意的x ,满足当〔很大时,爲』㈣总拓』(也昭.(3)德莫佛一拉普拉斯定理:设随机变量'■. 1 " 1 1服从参数为匚时卩J 匸;的二项分布,则对于任意的:,恒有疑难分析D 乞逊!-1lim 坨(打=lira <>=r 加 J 十矩rlimP\%-® J 誓(D<x1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列J依概率收敛于,,说明对于任给的£>0,当"很大时,事件“”的概率接近于1•但正因为是概率,所以不排除小概率事件“ 1八_2卜6”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结一、基本概念随机事件:在条件S下可能发生也可能不发生的事件,称为相对于条件S的随机事件。

必然事件:在条件S下,一定会发生的事件,称为相对于条件S的必然事件。

不可能事件:在条件S下,一定不会发生的事件,称为相对于条件S的不可能事件。

确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。

频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。

对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,则把这个常数记作P(A),称为事件A的概率。

二、概率的计算互斥事件的概率加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。

独立事件的概率乘法公式:如果事件A与事件B独立,则P(AB)=P(A)P(B)。

古典概型及其概率计算公式:如果试验的样本空间S只包含有限个样本点,且每个样本点发生的可能性相同,则称这种概率模型为古典概型。

在古典概型中,事件A的概率P(A)等于事件A包含的样本点个数除以样本空间S中样本点的总数。

三、随机变量及其分布随机变量:在随机试验中可能出现的各种结果所对应的变量称为随机变量。

随机变量可以是离散型或连续型。

离散型随机变量的分布列:对于离散型随机变量X,其所有可能取值的概率组成的列表称为X的分布列。

期望与方差:随机变量的期望值表示随机变量取值的平均水平,方差表示随机变量取值与其期望值的离散程度。

四、几何概型几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

几何概型的概率计算:在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)等于区域d的测度与区域D的测度的比值。

以上是高中数学概率统计的主要知识点。

掌握这些知识点并灵活应用于解题中,是学好数学概率统计的关键。

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

高中概率统计考点归纳

高中概率统计考点归纳

高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。

举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。

概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。

举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。

由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。

二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。

举例:抛掷两颗骰子,求点数之和为7的概率。

总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。

因此,点数之和为7的概率为6/36=1/6。

几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。

举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。

样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。

因此,该点位于线段前1/3部分的概率为1/3。

三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。

计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。

举例:一个班级中有40名学生,其中25名男生和15名女生。

已知某学生是女生,求该学生数学成绩优秀的概率。

概率与统计的复习知识点

概率与统计的复习知识点

概率与统计的复习知识点概率与统计是数学中的重要分支,在日常生活、科学研究以及各个领域都有着广泛的应用。

为了帮助大家更好地复习这部分知识,下面将对一些关键的知识点进行梳理。

一、概率的基本概念1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

例如,抛硬币时正面朝上就是一个随机事件。

2、样本空间样本空间是指随机试验中所有可能结果的集合。

比如抛一次硬币,样本空间就是{正面,反面}。

3、事件的概率事件的概率是指某个事件在一次试验中发生的可能性大小,通常用0 到 1 之间的数来表示。

概率的计算方法有古典概型、几何概型等。

古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。

其概率计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数。

几何概型则是适用于试验中每个结果出现的可能性相等,但结果是无限个的情况。

例如,在一个区间内随机取一个点,计算该点落在某个子区间的概率。

二、概率的基本运算1、互斥事件互斥事件是指两个事件不可能同时发生。

如果事件 A 和事件 B 互斥,那么它们的和事件的概率等于各自概率之和,即 P(A∪B) = P(A) + P(B)。

2、对立事件对立事件是指两个事件非此即彼,且它们的概率之和为 1。

即事件A 的对立事件记为A,P(A) + P(A)= 1。

3、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

记作 P(B|A),其计算公式为 P(B|A) = P(AB) / P(A)。

4、乘法公式P(AB) = P(A)P(B|A) (当 A、B 相互独立时,P(AB) = P(A)P(B))三、随机变量及其分布1、随机变量随机变量是用来表示随机试验结果的变量。

它可以是离散型的,如掷骰子的点数;也可以是连续型的,如某段时间内的气温。

2、离散型随机变量的概率分布离散型随机变量的概率分布可以用分布列来表示,即列出随机变量取每个值的概率。

概率统计讲义提纲1

概率统计讲义提纲1

概率统计讲义提纲第一章一、排列组合3.组合:注:0!=1.(1)(2)(1)r nA n n n n r =---+ !rr n n A C r =!()!!n n r r =-二、随机事件及其概率1、概率论是研究随机现象规律性的一门数学学科.2、随机现象是通过随机试验来研究的. 3.样本空间、样本点4、随机事件、基本事件、必然事件、不可能事件5、事件之间的关系及运算律含义:A 发生,则B 一定发生含义:A ,B 至少一个发生,or A 发生或B 发生 含义:A ,B 同时发生,or A 发生且B 发生A ,B 互不相容 (互斥),含义:A ,B 不同时发生 A 的逆事件或对立事件,含义:A 发生,但B 不发生:,.A B A B A B A B ⋅==(4) 德摩根律 (对偶律)例1、用A 、B 、C 表示如下事件1)A 、B 、C 至少有一个发生 A B C2)A 、B 、C 恰有一个发生 3)A 、B 、C 至多有两个发生 ABC A B C =A B ⊂A B=A B ⋃A B⋂A A B ⋂=∅A A S A A ==∅ 且AB A AB AB -=-=ABC ABC A BC例2、一个工人生产了3个零件,以事件i A 表示他生产的第i 个零件是合格品,i =1,2,3,试用i A (i =1,2,3)表示下列事件:6.频数与频率:在相同的条件下,进行了 n 次试验:7. 概率的统计定义:大量重复同一试验时事件A 发生频率的稳定值。

8. 概率的公理化定义::)(,,)(,.,满足下列条件如果集合函数的概率件称为事记为赋予一个实数的每一事件对于是它的样本空间是随机试验设⋅P A A P A E S E (1):,()0;对于每一个事件有A P A ≥非负性(2):,()1;S P S =对于必然事件有规范性12(3):,,,,,1,2,, 设是两两互不相容的事件,即对于则有i j A A i j A A i j ≠=∅= 可列可加性1212()()()P A A P A P A =++11()(B );只有第一个零件是合格品22()(B );三个零件中只有一个零件是合格品33(),(B );第一个是合格品但后两个零件中至少有一个次品();4(4)B 三个零件中最多有两个合格品55()(B ).三个零件都是次品11231();B A A A =21231231232();B A A A A A A A A A = 31233()();B A A A = 41234(),B A A A =4123;B A A A = 或51235(),B A A A =5123.B A A A = 或9. 概率的性质: 有限可加性特别,若AB =Φ(互不相容),则()()()P A B P A P B ⋃=+ (3) (减法公式) 特别若B A ⊂,则()()(),()P A BP A P B P B P A-=-≤且对三个事件, 例3、解:(1)(2) P(BA )P(B )P(A )=- (3)).()()()(,)()6(AB P B P A P B A P B A -+= 有对于任意两事件加法公式10()().P ∅=12(2),,,,n A A A 若是两两互不相容的事件则有).()()()(2121n n A P A P A P A A A P +++= ()()().P A B P AP AB -=-(5),()1().A A P A P A =-设是的对立事件则 (4),() 1.对于任一事件A P A ≤123()P A A A 123122313123()()()()()()().P A P A P A P A A P A A P A A P A A A =++---+113211238A,B ,P(B A ).()A B ;()A B;()P(AB ).⊂=设事件的概率分别为和求在下列三种情况下的值与互斥12P(BA )P(B ).==111236.=-=P(BA )P(B A )=-P(B )P(AB )=-113288.=-=概率统计讲义提纲第一章三、古典概型样本点有限(n 个):等可能性:古典概率: ()=k P A n例1. 甲、乙两人连续赌四次,每次双方赢的机会均相同,求乙连续赢 4 次的概率?解:A ——乙连赢4次k=1所以 P (A )=1/16例2. 有100件同类型同批次的产品,按性能分成两类:甲40件,乙60件。

《概率论与数理统计》(公共)复习提纲

《概率论与数理统计》(公共)复习提纲

概率论与数理统计(公共课)复习提纲 注:方框标示的内容为重点。

第1章 随机事件及其概率1. 样本点与样本空间、事件的关系与运算;2. 事件的运算规律;(1) 交换律 A ∪B =B ∪A , A ∩B =B ∩A ;(2) 结合律 (A ∪B )∪C =A ∪(B ∪C ), (A ∩B )∩C =A ∩(B ∩C );(3) 分配律 (A ∪B )∩C =(A ∩C )∪(B ∩C ), (A ∩B )∪C =(A ∪C )∩(B ∪C)3. 事件概率的定义及其性质、古典概型的概率计算;条件概率 P (B |A ) = P (AB ) / P (A );乘法公式 P (AB ) = P (A )P (B |A ) 或 P (AB ) = P (B )P (A |B )全概率公式 P (B ) = P (A 1)P (B |A 1) + … + P (A n )P (B |A n ) + …n = 2的情形(样本空间被对立事件划分) )|()()|()()(A B P A P A B P A P B P += n = 3的情形 )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=贝叶斯公式(已知事件B 发生后,求其由A i 所引起的概率),...2,1,)|()()|()()()()|(===∑i A B P A P A B P A P B P B A P B A P jj j i i i i事件的独立性 P (AB ) = P (A )P (B );9.有限事件的两两独立与相互独立;伯努利概型及其概率计算;随机变量及其分布与数字特征1. 常用离散型概率分布两点分布(0-1分布) P { X = x 1 } = p , P { X = x 2 } = 1 – p (0 < p < 1) E (X ) = p , D (X ) = p (1 – p )二项分布 X ~ b (n , p ) n k p p C k X P k n k k n ,...,1,0,)1(}{=-==-E (X ) = np , D (X ) = np (1 – p )泊松分布 X ~ P (λ) ,...2,1,0,!}{===-k e k k X P k λλE (X ) = D (X ) = λ2. 二项分布的泊松近似100,10,!)1(><=≈---n np e k p p C kk n k kn λλλ 3. 随机变量的分布函数(1) 定义:F (x ) = P { X ≤ x };(2) 性质:a. 单调非减;b. F (-∞) = 0、F (+∞) = 1;c. 右连续;4. 常用连续型概率分布均匀分布 X ~ U (a , b )密度函数:b x a a b x f <<-=,1)(,分布函数:⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab a x a x x F ,1,,0)( 2)(a b X E -=, 12)()(2a b X D -= 指数分布 X ~ e(λ)密度函数:0,)(>=-x ex f x λλ,分布函数:⎩⎨⎧>-=-其它,00,1)(x e x F x λ λ1)(=X E , 21)(λ=X D正态分布 X ~ N (μ, σ2) μ=)(X E , 2)(σ=X D标准正态分布 X ~ N (0, 1),E (X ) = 0, D (X ) = 1;5. 随机变量函数 Y = f ( X ) 的分布离散型:列出分布律;连续型:(1)用概率的方法求出函数 Y 的分布函数后,再求其密度函数;(2)如果函数 Y = f (X ) 满足严格单调,则可使用公式直接求 Y 的密度函数: 的反函数为其中)()(,|,)(|))(()(x f y y h y y h y h f y f X Y =<<'=βα6. 随机变量函数 Y = f ( X ) 的数学期望离散型:∑==ii i p x g X g E X E )()]([)(连续型:⎰+∞∞-==x x f x g X g E X E d )()()]([)( 7. 方差的计算D (X ) =E [ X – E (X ) ]2 = E (X 2) – [E (X )]28. 数学期望与方差的性质(E (X ), E (Y ), D (X ), D (Y )均存在)E (aX ± bY ) = aE (X ) ± bE (Y ) D (aX ± bY ) = a 2D (X ) + b 2D (Y )9. 中心极限定理定理3 设随机变量 X 1, X 2, …, X n , … 相互独立,服从同一分布,且 E (X i ) = μ, D (X i ) = σ2, ( i = 1, 2, …),则)(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ或),(~2n n N X X n i i σμ ∑= 即n 个随机变量的和的极限分布是正态分布。

概率与统计基本知识点总结

概率与统计基本知识点总结

概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。

概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。

加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。

乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。

条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。

贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。

2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。

离散型随机变量:取有限个或可数个值的随机变量。

连续型随机变量:取任意实数值的随机变量。

概率分布:描述随机变量取各个值的概率的函数。

离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。

连续型概率分布:包括连续均匀分布、正态分布、指数分布等。

期望:随机变量的平均值,反映其分布的中心位置。

方差:随机变量偏离其均值的程度,反映其分布的离散程度。

3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。

抽样分布:样本统计量的概率分布。

中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。

置信区间:用样本统计量作为总体参数的估计范围。

假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。

概率统计各章节知识点总结

概率统计各章节知识点总结

n k 1
Xk
P
p
X1, X 2 ,, X n ,相互独立
E( Xk ) 同分布
1
n
n k 1
Xk
P
n
X1 , X 2 ,, X n ,相互独立
X k n 近似
同分布E( X k ) D( X k ) 2 k1 n
~ N (0,1)
X n ~ B(n, p)
Xn np
近似
~ N(0,1)
f ( x, y)dxdy D是积分区域g( x, y) z与f ( x, y)
D(z)
取值非零区域的交集
第四章
随机变量的数学期望与方差
离散型随机变量
X
E( X ) xk pk
k 1
Y g( X ) E(Y ) E[g( X )]
g连续
g( xk ) pk
k 1
连续型随机变量
E( X ) xf ( x)dx
第三章 第四节 两个随机变量的函数的分布
Z g(X ,Y ) f ( X ,Y ) fZ (z) ? f Z (z) FZ (z)
1)Z X Y
fZ (z)
f (z y, y)dy
f X (z y) fY ( y)dy
2)Z max{X ,Y } Z min{X ,Y }
np(1 p)
第六章
常用统计量及抽样分布
2分布
X i ~ N (0,1) i 1,2,, n 独立
n
2
X
2 i
~
2(n)
i 1
2 (n)
E( 2 ) n D( 2 ) 2n 2 (n) 1 2(z
X ~ N (0,1), Y ~ 2 (n), 独立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。

随机事件和概率考查的主要内容有:(1)事件之间的关系与运算,以及利用它们进行概率计算;概率论与数理统计知识点与考点第一章知识点:18§1.1 随机试验:随机试验的三个特点。

(1)样本空间:样本空间;样本点;(2)随机事件:随机事件;事件发生;基本事件;必然事件;不可能事件;(3)事件间的关系与事件的运算:包含关系;相等关系;互不相容;和事件、积事件、差事件、对立事件;(4)事件的运算律。

§1.2、概率的定义及运算:(1)频率定义;(2)概率的统计定义,(3)概率公理化定义,(4)古典概型,(5)几何概型§1.3、条件概率:(1)定义;(2)性质;(3)乘法公式。

(4)全概率公式,(5)贝叶斯公式;,§1.4事件的独立性:(1)两事件相互独立的性质;(2)三(多)个事件相互独立的定义,(3)伯努利试验模型考点:1、事件的表示和运算,2、有关概率基本性质的命题,3、古典概型的计算,4、几何概型的计算,5、事件的独立性的命题,6、条件概率与积事件概率的计算,7、全概率公式和Bayce公式的命题,8、Bernoulli试验。

第二章知识点:19§2.1 (1) 随机变量的定义;(2)随机变量的分布函数及其性质§2.2 离散型随机变量及其概率分布:(1)离散型随机变量的定义;(2)离散型随机变量的分布律;几种常见的离散型随机变量:(1) (0-1)分布;(2) 二项分布;(3) 泊松分布;(4)超几何分布;(5)几何分布;(6)帕斯卡(Pascal)分布,掌握每一种分布的模型,写出其分布律或分布密度。

§2.3连续型随机变量及其概率分布:(1)分布函数的定义;(2)分布函数的基本性质;(3)分布函数与离散型随机变量的分布律之间的联系;(4)连续型随机变量的概率密度的定义;(5)概率密度的性质;几种常见的连续型随机变量(一)均匀分布:(1)概率密度;(2)分布函数;(二)正太分布:(1)概率密度;(2)分布函数;§2.4 随机变量的函数的分布(1)离散型随机变量的函数的分布(2)连续型随机变量的函数的分布考点:1、有关分布律、分布函数以及分布密度的基本概念的命题,2、有关分布律、分布密度以及分布函数之间的关系的命题,3、已知事件发生的概率,反求事件中的参数,4、利用常见分布求相关事件的概率,5、求随机变量的分布律、分布密度以及分布函数,6、求随机变量函数的分布。

第三章知识点:13§3.1 多维随机变量及其分布(一)(1)二维随机变量的定义;(二)(1)二维随机变量的联合分布函数的定义与基本性质;(2)边缘分布函数的定义与基本性质(三)离散型的二维随机变量:(1)联合分布律,(2)边缘分布律,(3)分布函数;(四)连续型的二维随机变量:(1)联合概率密度,(2)边缘概率密度,(3)有关性质(五)推广:(1)n维随机变量及其分布§3.2二维随机变量的条件分布(不讲,不考)§3.3 (1)二维随机变量的独立性的定义;§3.4 两个随机变量的函数及其分布:(1)两个离散型随机变量的函数的概率分布,(2)两个连续型随机变量的函数的概率分布(主要是和以及最值)考点:1、有关二维随机变量及其分布的基本概念和性质的命题,2、有给定的试验确定各种概率分布,3、由给定的事件或随机变量定义新的二维随机变量的联合分布的计算,4、由给定的联合分布或联合密度求边缘分布,5、利用已知分布、独立性等计算相关事件的概率,6、求随机变量函数的分布,7、随机变量的独立性。

第四章知识点:15§4.1(一)离散型随机变量的数学期望的定义;(二)连续型随机变量的数学期望的定义;(三)随机变量的函数的数学期望;(四)数学期望的性质§4.2随机变量的(1)方差的定义;(2)标准差;(3)性质。

(4)离散型及连续型随机变量的方差;(5)方差的计算公式;§4.3(1泊松分布数学期望与方差、(2)均匀分布数学期望与方差、(3)指数分布的数学期望与方差;(4)二项分布数学期望与方差、(5)正态分布的数学期望与方差;§4.4(1)协方差与相关系数的定义及计算;(2)矩的定义及计算。

考点:1、求离散型随机变量的期望与方差,2、求连续型随机变量的期望与方差,3、求随机变量函数的期望与方差,4、有关协方差、相关系数、矩的讨论与计算。

第五章知识点:5§5.1 大数定律(一)切比雪夫不等式及应用(二)(1)伯努利大数定律,(2)切比雪夫大数定律§5.2 中心极限定理(一)独立同分布中心极限定理;(二)德莫佛-拉普拉斯定理及其应用举例考点:1、有关车比雪夫不等式与大数定律的命题,2、有关中心极限定理的命题。

第六章知识点:10§6.1 随机样本:(1)总体,个体,简单随机样本,样本值等;(2)统计量定义;几个常用的统计量:(1)样本均值,(2)样本方差,(3)样本标准差等;(4)阶样本原点矩,(5)阶样本中心矩。

§6.2抽样分布:(1)分布,(2)分布(学生分布),(3)常见统计量的分布。

考点:1、求样本的联合分布函数,2、求统计量的数字特征,3、求统计量的分布,4、求统计量取值的概率、样本的容量。

第七章知识点:12§7.1参数的点估计方法:(1)矩估计法;(2)极大似然估计法似然函数:离散型;连续型;§7.2点估计的评价标准(一)(1)无偏性、(2)有效性、(3)一致性(自学)§7.3 区间估计(一)区间估计的概念:(1)置信区间,置信水平;枢轴量。

(二)(1)求未知参数的置信区间的步骤(三)正态总体均值与方差的区间估计(只讲单正态总体情形)(1)均值的置信区间;(2)方差的置信区间;(3)单侧置信区间;考点:1、求矩法估计和极大似然估计,2、估计量的评选标准的讨论,3、求参数的区间估计。

第八章知识点:10§8.1 (一)假设检验的基本概念:(1)检验统计量;原假设;备择假设;拒绝域;(2)两类错误;(二)(1)假设检验的程序;§8.2 (一)单个正态总体均值的假设检验(1)已知,检验(Z检验)(2)未知,检验(t检验)(三)单个正态总体方差的假设检验(1)未知,检验(检验)(2)已知,检验(检验)两类假设检验要分清:(1)双边假设检验,(2)左边假设检验,(3)右边假设检验考点:1、单个正态总体均值的假设检验,2、单个正态总体方差的假设检验。

(2)概率的定义及性质,利用概率的性质计算一些事件的概率;(3)古典概型与几何概型;(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(5)事件独立性的概念,利用独立性计算事件的概率;(6)独立重复试验,伯努利概型及有关事件概率的计算。

要求考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。

随机变量及概率分布考查的主要内容有:(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;(3)会求随机变量的函数的分布。

(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。

要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。

随机变量的数字特征考查的主要内容有:(1)数学期望、方差的定义、性质和计算;(2)常用随机变量的数学期望和方差;(3)计算一些随机变量函数的数学期望和方差;(4)协方差、相关系数和矩的定义、性质和计算;要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。

大数定律和中心限定理考查的主要内容有:(1)切比雪夫不等式;(2)大数定律;(3)中心极限定理。

要求考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。

数理统计的基本概念考查的主要内容有:(1)样本均值、样本方差和样本矩的概念、性质及计算;(2)χ2分布、t分布和F分布的定义、性质及分位数;(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。

要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。

参数估计考查的主要内容有:(1)求参数的矩估计、极大似然估计;(2)判断估计量的无偏性、有效性、一致性;(3)求正态总体参数的置信区间。

要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。

假设检验考查的显著的主要内容有:(1)正态总体参数的显著性检验;(2)总体分布假设的χ2检验。

要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。

相关文档
最新文档