高二数学期末复习15

合集下载

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)第 1 题已知命题,,则为()A.,B.,C.,D.,【答案解析】B【分析】根据全称命题的否定是特称命题的知识选出正确选项.【详解】原命题是全称命题,其否定是特称命题,注意到要否定结论,故B选项正确,D选项不正确.故选:B【点睛】本小题主要考查全称命题的否定,属于基础题.第 2 题某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A. 420人B. 480人C. 840人D. 960人【答案解析】C【分析】先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型..第 3 题已知双曲线的离心率是2,则其渐近线方程为()A. B.C. D.【答案解析】A【分析】利用离心率求得,由此求得渐近线方程.【详解】依题意,所以渐近线方程为,即.故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于基础题.第 4 题设,则“”是“”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案解析】C【分析】首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.第 5 题若将一个质点随机投入如图所示的长方形ABCD中,其中,,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.【答案解析】C【分析】利用几何概型概率计算公式,计算出所求的概率.【详解】依题意,长方体的面积为,半圆的面积为,所以质点落在以为直径的半圆内的概率是.故选:C【点睛】本小题主要考查几何概型的计算,属于基础题.第 6 题在正三棱柱ABC﹣A1B1C1中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案解析】D【分析】作出异面直线所成的角,解三角形求得其余弦值.【详解】设,是的中点,所以,所以是两条异面直线所成的角(或补角).在三角形中,,,所以.所以异面直线与所成角的余弦值为.故选:D【点睛】本小题主要考查异面直线所成角的求法,属于基础题.第 7 题若函数在区间(1,+∞)单调递增,则的取值范围是()A. B. C. D.【答案解析】B【分析】利用函数在区间上的导函数为非负数列不等式,解不等式求得的取值范围.【详解】依题意在区间上恒成立,所以,所以.所以实数的取值范围是.故选:B【点睛】本小题主要考查利用导数,根据函数在给定区间上的单调性求参数的取值范围,属于基础题. 第 8 题设函数是奇函数的导函数,(),,当时,,则使得成立的的取值范围是()A. B.C. D.【答案解析】A【分析】构造函数,当时,根据已知条件,判断出.当时,根据为偶函数,判断出的单调性.结合,求得使得成立的的取值范围.【详解】由于是定义在上的奇函数,所以.构造函数,当时,,所以在上递增,由于,所以为偶函数,所以在区间上递减且.所以当时,,;当时,,.所以使得成立的的取值范围是.故选:A【点睛】本小题主要考查利用导数研究不等的解集,考查函数的奇偶性和单调性,属于中档题.第 9 题(多选题)下列命题中真命题的是()A. 若实数,满足,则,互为倒数B. 面积相等的两个三角形全等C. 设,“若,则方程有实根”的逆否命题D. “若,则”的逆命题【答案解析】AC【分析】A利用倒数的知识进行判断;B利用全等三角形的知识进行判断;C利用原命题的真假性来判断;D利用原命题的逆命题的真假性来判断.【详解】对于A选项,根据倒数的知识可知,A选项正确.对于B选项,两个三角形的面积相等,不一定是全等三角形,所以B选项错误.对于C选项,当时,,所以方程有实根,为真命题,故其逆否命题为真命题,所以C选项正确.对于D选项,原命题的逆命题为“若,则”不正确,因为也可以,所以D选项为假命题.综上所述,正确的为AC.故选:AC【点睛】本小题主要考查命题真假性的判断,考查逆否命题、逆命题真假性,属于基础题.第 10 题(多选题)“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况,某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A. 月跑步里程逐月增加B.l 一共个月份,里程中间的是从小到大的第个,根据折线图可知,跑步里程的中位数为月份对应的里程数,故C选项正确.根据折线图可知,月至月的月跑步里程相对于月至月波动性更小,变化比较平稳,故D选项正确.综上所述,正确的选项为BCD.故选:BCD【点睛】本小题主要考查折线图,考查图表分析、数据处理能力,属于基础题.第 11 题(多选题)设椭圆的左右焦点为,,P是C上的动点,则下列结论正确的是() A. B. 离心率C.面积的最大值为D. 以线段为直径的圆与直线相切【答案解析】AD【分析】根据椭圆的定义判断A选项正确性,根据椭圆离心率判断B选项正确性,求得面积的最大值来判断C选项的正确性,求得圆心到直线的距离,与半径比较,由此判断D选项的正确性.【详解】对于A选项,由椭圆的定义可知,所以A选项正确.对于B选项,依题意,所以,所以B选项不正确.对于C选项,,当为椭圆短轴顶点时,的面积取得最大值为,所以C选项错误.对于D选项,线段为直径的圆圆心为,半径为,圆心到直线的距离为,也即圆心到直线的距离等于半径,所以以线段为直径的圆与直线相切,所以D选项正确.综上所述,正确的为AD.故选:AD【点睛】本小题主要考查椭圆的定义和离心率,考查椭圆的几何性质,考查直线和圆的位置关系,属于基础题..第 12 题(多选题)定义在区间上的函数的导函数图象如图所示,则下列结论正确的是()A. 函数f(x)在区间(0,4)单调递增B. 函数f(x)在区间单调递减C. 函数f(x)在处取得极大值D. 函数f(x)在处取得极小值【答案解析】ABD【分析】根据导函数图像判断出函数的单调性和极值,由此判断出正确选项.【详解】根据导函数图像可知,在区间上,,单调递减,在区间上,,单调递增.所以在处取得极小值,没有极大值.所以A,B,D选项正确,C选项错误.故选:ABD【点睛】本小题主要考查利用导函数图像判断函数单调区间、极值,属于基础题第 13 题同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是.【答案解析】【详解】列表如下:从列表中可以看出,所有可能出现的结果共有36种,这些结果出现的可能性相等.∵点数的和为5的结果共有4种:(1,4),(2,3),(4,1),(3,2)∴点数的和为5的概率P==故答案为第 14 题已知函数,为的导函数,则的值为__________.【答案解析】【分析】求得函数的导函数,由此求得的值.【详解】依题意,所以.故答案为:【点睛】本小题主要考查导数的计算,属于基础题.第 15 题已知向量,,且满足,则的值为__________.【答案解析】【分析】先求得,根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,即,解得.故答案为:【点睛】本小题主要考查空间向量垂直的坐标表示,考查空间向量的线性运算,属于基础题.第 16 题设抛物线的焦点为F,过点F作直线与抛物线交于A、B两点,点M满足,过M作轴的垂线与抛物线交于点,若,则点P的横坐标为__________,__________.【答案解析】1 ; 8【分析】利用抛物线的定义,求得点的坐标,设出直线的方程,联立直线的方程和抛物线的方程,利用韦达定理,求得点坐标的表达式,根据两点的纵坐标相同列方程,解方程求得直线的斜率,由此求得.【详解】由于点满足,所以是线段中点.抛物线的焦点坐标为,准线方程为.设,由于在抛物线上,且,根据抛物线的定义得,所以,则,不妨设.若直线斜率不存在,则,则,此时的纵坐标和的纵坐标不相同,不符合题意.所以直线的斜率存在.设,设直线的方程为,代入抛物线方程并化简得,则.由于是线段中点,所以,而,所以,即,即,解得.所以,所以,则到准线的距离为,根据抛物线的定义结合中位线的性质可知.故答案为: 1 ; 8【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查运算求解能力,属于中档题.第 17 题已知函数.(1)求曲线在点(0,0)处的切线方程;(2)求f(x)在区间[-2,2]上的最大值与最小值.【答案解析】(1);(2)最大值为,最小值为【分析】(1)求得函数在时的导数,由点斜式求得切线方程.(2)利用导数求得的单调区间,区间端点的函数值和极值点的函数值,由此求得在区间上的最大值与最小值.【详解】(1)由题意得,则,所以曲线在点处的切线方程为,即;(2)令,得,当时,,当时,,所以在上单调递减,在上单调递增,又,所以,所以在上的最大值为,最小值为.【点睛】本小题主要考查利用导数求切线方程,考查利用导数求函数的最值,属于基础题.第 18 题已知双曲线E的两个焦点为,,并且E经过点.(1)求双曲线E的方程;(2)过点的直线与双曲线E有且仅有一个公共点,求直线的方程.【答案解析】(1);(2)或【分析】(1)利用,以及列方程组,解方程组求得,由此求得双曲线的方程.(2)当直线斜率不存在时,直线与双曲线没有交点.当直线斜率存在时,设出直线的方程,联立直线的方程和双曲线的方程,消去得到,根据二次项系数和判别式进行分类讨论,由此求得直线的方程.【详解】(1)由已知可设双曲线的方程为,则,解得,所以双曲线的方程为.(2)当直线斜率不存在时,显然不合题意所以可设直线方程为,联立,得,①当,即或,方程只有一解,直线与双曲线有且仅有一个公共点,此时,直线方程为,②当,即,要使直线与双曲线有且仅有一个公共点,则,解得,此时,直线方程为,综上所述,直线的方程为或.【点睛】本小题主要考查双曲线方程的求法,考查根据直线和双曲线交点个数求参数,属于中档题. .第 19 题某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得,求出关于的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程中斜率和截距的最小二乘估计分别为,【答案解析】(1);(2)【分析】(1)利用回归直线方程计算公式,计算出关于的线性回归方程.(2)利用列举法和古典概型概率计算公式,计算出所求概率.【详解】(1)由,,,,得所以关于的回归直线方程为.(2)现从表格中的种保费任选种,所有的基本事件有:,,,,,,,,,,共有种.其中至少有一种保费能使厂商获利的基本事件有:,,,,,,,共种.所以从表格中的种保费任选种,其中至少有一种保费能使厂商获利的概率为.【点睛】本小题主要考查回归直线方程的计算,考查古典概率问题的求解,属于基础题.第 20 题在如图所示的六面体中,四边形ABCD是边长为2的正方形,四边形ABEF是梯形,,平面ABCD⊥平面ABEF,,.(1)在图中作出平面ABCD与平面的交线,并写出作图步骤,但不要求证明;(2)求证:平面;(3)求平面ABEF与平面所成角的余弦值【答案解析】(1)见解析;(2)见解析;(3)【分析】(1)延长与相交于点,连接,根据公理和公理可知,即是所求.(2)通过证明四边形是平行四边形,证得,由此证得平面.(3)利用勾股定理计算出,建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)延长与相交于点,连接,则直线就是平面与平面的交线.(2)因为,,所以是的中位线,故,因为,所以,且,所以四边形是平行四边形,所以,因为面,面,所以平面.(3)在平面内,过点作的平行线交于点,又,所以四边形为平行四边形,所以,,,又因为,所以,所以为直角三角形,且,,.在平面内,过点作的垂线交于点,又因为平面平面,平面平面,所以面.以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间直角坐标系.则,,,,所以,,设是平面的法向量,则,即,所以可取.因为是平面的法向量,所以,所以平面与平面所成角的余弦值.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.第 21 题已知椭圆的离心率为,,,,的面积为.(1)求椭圆C的方程;(2)过右焦点F作与轴不重合的直线交椭圆C于P,Q两点,连接,分别交直线于,M,N两点,若直线,的斜率分别为,,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【答案解析】(1);(2)为定值,理由见解析【分析】(1)结合椭圆离心率、的面积、列方程组,解方程组求得,由此求得椭圆的标准方程.(2)当直线斜率不存在时,求得两点的坐标,由此求得直线的方程,进而求得两点的坐标,由此求得,,求得.当直线斜率存在时,设直线方程为,联立直线的方程和椭圆方程,写出韦达定理,求得直线的方程,进而求得两点的坐标,由此求得,,结合韦达定理计算.由此证得为定值.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知,,①当直线斜率不存在时,直线方程为,联立,得,不防设,,则直线方程为,令,得,则,此时,,同理,所以,②当直线斜率存在时,设直线方程为,联立,得,设,,则,,直线方程为,令,得,则,同理,所以,,所以综上所述,为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查根与系数关系,考查运算求解能力,考查分类讨论的数学思想方法,属于难题.第 22 题已知函数,,为的导函数.(1)若,求a的值;(2)讨论的单调性;(3)若恰有一个零点,求a的取值范围.【答案解析】(1);(2)见解析;(3)或【分析】(1)利用列方程,解方程求得的值.(2)求得函数的导函数,对分成等四种情况,分类讨论的单调区间.(3)结合(1)求得的的单调区间,判断出的单调区间,结合的取值范围、零点的存在性定理进行分类讨论,由此求得的取值范围.【详解】(1)由,得,得;(2)①当时,令,得,令,得,所以在上单调递增,在上单调递减;②当时,令,得,,i)当时,,所以在上单调递增;ii)当时,令,得或;令,得,所以在和单调递增,在单调递减;iii)当时,令,得或;令,得,所以在和单调递增,在单调递减;综上:①当时,在上单调递增;在单调递减;②i)当时,在上单调递增;ii)当时,在和单调递增,在单调递减;iii)当时,在和单调递增,在单调递减;(3)①当时,由(2)知,在单调递增,在单调递减,所以在单调递增,在单调递减,又因为,所以恰有一个零点,符合题意;②i)当时,在单调递增,所以在单调递增,又,所以在恰有一个零点,符合题意;ii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,因为,所以是函数的一个零点,且,当时,取且,则,所以,所以在恰有一个零点,所以在区间有两个零点,不合题意;iii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,又因为,所以是函数的一个零点,且,又因为,所以,所以在区间有两个零点,不合题意;综上的取值范围为或.【点睛】本小题主要考查导数的计算,考查利用导数研究函数的单调性,考查利用导数研究函数的零点,考查零点的存在性定理,考查分类讨论的数学思想方法,属于难题.。

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。

高二数学期末复习卷

高二数学期末复习卷
A.10B.13C.15D.25
7、若 , , ,则a,b,c的大小关系为( )
A. B. C. D.
8、函数 的大致图象是( )
A. B.
C. D.
9、已知 是两条不同的直线, 是一个平面,则下列命题中正确的是
A.若 B.若
C.若 D.若
10、为了得到函数 的图象,可以将函数 的图象( ).
A.向左平移 个单位长度,再向下平移 个单位长度
4、已知 , ,则 ( )
A. B. C. D.
5、某地区空气质量检测资料表明,一天的空气质量为优良的概率是0.9,连续两天为优良的概率是0.75,已知某天的空气质量为优良,则随后一天的空气质量也为优良的概率为( )
A. B. C. D.
6、如图,某城市中, 、 两地有整齐的道路网,若( )
A. B. C. D.
二、填空题()
13、已知实数 , 满足 ,则目标函数 的最小值为______.
14、函数 在点 处的切线的倾斜角是_____________.
15、 展开式的二项式系数之和为256,则展开式中 的系数为_____.
16、现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)
B.向右平移 个单位长度,再向上平移 个单位长度
C.向左平移 个单位长度,再向下平移 个单位长度
D.向右平移 个单位长度,再向上平移 个单位长度
11、若双曲线 ( , )的一条渐近线被圆 所截得的弦长为2,则 的离心率为( )
A.2B. C. D.
12、已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 两两垂直,则球 的体积为()。
(2)若关于 的方程 在区间 上有两个不同的实根,求实数 的取值范围.

高二期末数学复习试卷

高二期末数学复习试卷

高二期末数学复习试卷一、选择题('60'512=⨯)1、已知α、β是两个不重合的平面,l 、m 是两条不重合的直线,则α∥β的一个充分条件是………………………………………( )(A) βββα//,//,m l m l 且⊂⊂ (B) m l m l //,且βα⊂⊂(C) m l m l //,且βα⊥⊥(D) m l m l ////,//且βα2、在正方体ABCD-A 1B 1C 1D 1过顶点A 1在空间作直线l ,使l 与直线AC 、BC 1所成的角都等于60°,这样的直线的条数为………( )(A) 1 (B) 2 (C) 3 (D) 43、已知菱形ABCD 的边长为1,∠DAB=60°,将这个菱形沿AC 折成120°的二面角,则B,D 两点间的距离为………………………( ) (A)23 (B)21 (C)23 (D)434、PA、PB 、PC 为三条射线,且 ∠APB = ∠APC= 60°, ∠BPC=90°,则PA 与平面BPC 所成的角为…………………( )(A )30° (B )45° (C )60° (D )90°5、6人并排站成一排,乙必须站在甲的右方,丙必须站在乙的右方,则不同排法的种数为……………………………………………( )(A )4433A A (B )44A (C )3366A A (D )3544A A6、用1,2,3,4,5,7这6 个数字排成无重复的六位数,其中偶数数字不相邻的排法有………………………………………………………() (A )5566A A -(B )224466A A A -(C )141512A A A (D )3544A A 7、在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为………………………………………( )(A )39723C C (B )2973339723C C C C +(C )497135100C C C -(D )5975100C C - 8、n 是奇数,二项式(1-x)2n+1展开式中系数最大的项是…( )(A )第n 项(B )第n +1项(C )第n+2项(D )第n+1,n +2项9、二项式244)1(xx +的展开式中,有理项共有………( ) (A )3项 (B )5项 (C )6项(D )7项 10、从装有白球3个、红球4个的箱子中,把球一个一个地取出来,到第五个恰好把白球全部取出的概率是………………………( )(A )354 (B )71 (C )356(D )72 11、从两件正品和两件次品中任取两件互为对立事件的是() (A )至少有一件正品与至少有一件次品(B )恰有一件正品与恰有两件正品(C )至多有一件次品与全是次品(D )至少有一件正品与全是正品12、一次游戏中有人出了12道选择题,每题附有4个答案,其中只有一个是符合要求的。

高二上学期文科数学期末总复习

高二上学期文科数学期末总复习

高二上学期文科数学期末总复习一、选择题:每小题5分,共60分(1)直线3410x y +-=的斜率是 ( )(A)34 (B)43 (C) 34- (D) 43-(2)不等式“2a b c +>”成立的一个充分条件是( )(A )c b c a >>或(B )c b c a <>且(C )b c a >且(3)双曲线2224x y -=的离心率是( )(4)已知1a >,则11a a +-的最小值是 ( )(A )(B 1 (C )(5)直线120l y --=与2:10l x +=的夹角( ) (A )6π (B )4π (C )3π (D )2π2x ≤⎧x y =-的取值范围是( )2,2)的双曲线方程是( )1=(C )22128x y -=(D )221312x y -= ) 32⎫<⎬⎭ (C) 322x x ⎧⎫-<<⎨⎬⎩⎭ (D) {}1x x <(9)若椭圆221259x y +=上 的一点P 到左准线的距离为25.,则点P 到右焦点的距离是( )(A )258(B )92 (C )163 (D )8(10)若直线210x ay +-=与直线(31)10a x ay --+=平行,则a 的值是 ( )(A )0 (B )16 (C )13 (D )3(11)设经过双曲线22149x y -=左焦点的直线l 与双曲线交于点A 、B ,若6AB =,则这样的直线有 ( )(A )1 条 (B )2条 (C )3条 (D )4条 (12)设点2222(3,1)1(0)x y P a b a b-+=>>在椭圆的左准线上,过点P 且方向为(2,5)a =-的光线经直线2y =-是( )(A )22132x y += (B )22143x y += (C )25x 二、填空题(13)圆22(1)1x y -+=的圆心到直线y =的距离是(14)若直线41ax y +=与直线(1)1x a y +-=-(15)以双曲线221169x y =-(16)一段长为L 米的篱笆围成一个一边靠墙的矩形菜园,则这个菜园的最大面积是_________ 三、解答题:(17)解下列不等式:(Ⅰ)3≤|x -2|<9.(Ⅱ)261513121x x x -+>+.5)x -的最大值(2)已知x , y ∈( 0,+∞) 且 2x +3y=1,求 1x + 1y的最小值(19)已知圆C 同时满足两个条件:①圆心是直线x y 2=与052=-+y x 的交点;②直线03534=-+y x 与圆C 相切. 求圆C 的方程.(20)(本题12分)如图,已知矩形ABCD 的两条对 角线的交点为E (1,0),且AB 与BC 所在的直线 方程分别为:05053=+-=-+y ax y x 与 (1)求a 的值;(2)求DA 所在的直线方程及CD 所在的直线方程。

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)1.复数ii -+1)1(4+2等于A .2-2iB .-2iC .1-ID .2i2.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为A. ]3,1[B. ]1,(-∞C. ]3,(-∞D. ),1[+∞ 3.32()32f x x x =-+在区间[]1,1-上的最大值是(A)-2 (B)0 (C)2 (D)44.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 (A )36个(B )24个 (C )18个(D )6个5.已知(5x -3)n 的展开式中各项系数的和比nyy x 2)1(--的展开式中各项系数的和多1023,则n 的值为 A .9 B .10 C .11 D .126.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 A .17 B .27 C .37 D .477.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为A .3B .4C .2和5D .3和48.已知关于x 的方程09)3(222=-+--b x a x ,其中a ,b 都可以从集合{1,2,3,4,5,6}中任意选取,则已知 方程两根异号的概率为A .61 B .21 C .121 D .31 9.设n 是奇数,12)(,,++∈n i x b a R x 分别表示的展开式中系数大于0与小于0的项的个数,那么A .a =b +2B .a =b +1C .a =bD .a =b -110.设函数b x a x g x f b a x g x f <<'<'则当且上均可导在),()(,],[)(),(时,有 A .)()(x g x f >B .)()(x g x f <C .)()()()(a f x g a g x f +<+D .)()()()(b f x g b g x f +<+11.已知二项式31()nx x-的展开式中的第三项为常数项,则n= 12. 若O 为ABC 内部任意一点,边AO 并延长交对边于A′,则'AOAA =,同理边BO ,CO 并延长,分别交对边于B′,C′,这样可以推出'AO AA +'BO BB +'COCC =____ 类似的,若O 为四面体ABCD 内部任意一点,连AO ,BO ,CO ,DO 并延长,分别交相对面于A ′,B′,C′,D′,,则'AO AA+'BO BB +'CO CC +'DODD =_____ 13. 从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是____0.75____ 14. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为________15.设三位数n abc =,若以,,a b c 为三边的长可以构成一个等腰(不含等边)三角形,则这样的三位数n 有________个16.为应对艾滋病对人类的威胁,现在甲、乙、丙三个研究所独立研制艾滋病疫苗,他们能够成功研制出疫苗的概率分别是41,31,21,求: (1)恰有一个研究所研制成功的概率;(2)若想在到研制成功(即至少有一个研究所研制成功)的概率不低于10099,至少需要多少个乙这样的研究所?(参考数据:lg2=0.3010, lg3=0.4771)17.在nx x )12(2+的展开式中,第三项的二项式系数比第二项的二项式系数大27,求展开式中的常数项及系数最大的项。

数学高二上期末考试知识点

数学高二上期末考试知识点

数学高二上期末考试知识点高二上学期即将结束,期末考试即将来临,对于数学学科而言,学生们需掌握一定的知识点才能在考试中取得好成绩。

本文将重点介绍高二数学上学期期末考试的知识点,以帮助各位同学更好地复习和备考。

一、函数与方程1. 函数概念与性质:函数的定义、定义域、值域、奇偶性、周期性等基本性质。

2. 一次函数:一次函数的定义、函数图像、斜率、截距、函数间的等式与不等式关系等。

3. 二次函数:二次函数的定义、函数图像、顶点坐标、对称轴、零点、极值点、函数间的等式与不等式关系等。

4. 指数与对数函数:指数函数与对数函数的基本性质、定义、图像、指数方程与对数方程的解法等。

二、数列与数列极限1. 等差数列:等差数列的定义、通项公式、前n项和公式等。

2. 等比数列:等比数列的定义、通项公式、前n项和公式、求和公式等。

3. 数列极限:数列极限的定义、收敛与发散的判断、极限性质、极限计算等。

三、三角函数1. 常用角:角度制与弧度制的相互转换、正弦、余弦、正切等常用角的值计算。

2. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像特征、周期性、奇偶性、函数图像的平移等。

3. 三角函数的基本关系与恒等式:三角函数之间的基本关系、和差角公式、倍角公式、辅助角公式等。

四、解析几何1. 直线与圆的方程:直线的斜截式、点斜式、一般式等,圆的标准式与一般式等。

2. 直线与圆的位置关系:直线与直线的位置关系、直线与圆的位置关系等。

3. 向量:向量的定义、运算、数量积、向量坐标法、向量的共线条件等。

五、概率与统计1. 基本概念与方法:随机事件、样本空间、基本概率、频率与概率的关系等。

2. 排列与组合:排列与组合的基本概念、思想方法、计算公式等。

3. 统计初步:频数表、频率表、频率分布直方图等。

六、数学推理与证明1. 数学归纳法:数学归纳法的基本思想、证明方法等。

2. 数列的证明:数列的单调性、有界性、极限等的证明。

3. 函数的证明:函数的奇偶性、周期性等的证明。

高二数学期末考哪些知识点

高二数学期末考哪些知识点

高二数学期末考哪些知识点高二数学期末考知识点数学是一门学科,对学生来说,无论是在基础教育阶段还是高中阶段,都是必修的科目。

针对高二数学期末考试,下面列举了一些较为重要的知识点供大家学习和复习参考。

一、函数与方程1. 函数的概念与性质- 函数的定义及表示方法- 奇偶函数的判断及性质- 函数的单调性及最值2. 一次函数和二次函数- 一次函数的性质、图像及应用- 二次函数的性质、图像及应用- 二次函数与一元二次方程的关系3. 三角函数- 基本概念与性质- 三角函数的图像、周期性及性质- 三角函数的和差化积、倍角公式等运算方法二、空间与向量1. 空间几何- 点、线、面的性质与判定- 空间中的平面与直线的位置关系- 空间几何问题的应用2. 向量的基本概念与运算- 向量的定义、性质及表示方法- 向量的加减、数量积及应用- 向量的线性相关性与线性无关性3. 空间中直线和平面的方程- 直线的向量方程、参数方程及一般方程 - 平面的点法式方程及一般方程- 直线和平面的位置关系与应用三、概率与统计1. 概率基础- 随机事件及其运算- 事件的概率及性质- 古典概型与几何概型2. 排列与组合- 排列与组合的基本概念- 排列与组合的计算公式- 排列组合问题的应用3. 统计与抽样调查- 数据的收集与整理- 描述统计与统计图表- 抽样调查与推断统计四、导数与微分1. 导数的概念与性质- 导数的定义与计算方法- 导数的几何意义与物理应用- 导数与函数的关系2. 微分的概念与应用- 微分的定义及计算方法- 微分中值定理的应用- 高阶导数与函数的性质以上列出的知识点只是高二数学期末考试的一部分内容,学生在复习时还需综合教材、教师的指导以及平时的学习情况进行全面复习。

通过归纳总结每个知识点的要点,合理安排复习时间,并进行大量的练习和习题训练,相信可以在期末考试中取得好成绩。

祝愿所有参加考试的学生都能充分发挥自己的优势和潜力,取得令人满意的成绩!加油!。

高二数学期末复习(15)

高二数学期末复习(15)

常熟市浒浦高级中学高二数学期末复习(15)部分选自2011.6期末试卷期末考试倒计时:3天姓名:____________1.已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是_________.2.式子C125+C126=_________(用组合数表示).3.设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=_________.4.若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=_________.5.函数y=x﹣ln(x+1)的单调递减区间为_________.6.上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有_________种不同的排法.7.设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为_________.8.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为_________.9.曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积为= _________.10.观察下列不等式:≥,≥,≥,…,由此猜测第n个不等式为________ _.(n∈N*)11.一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有_________种不同的选答方法.14.已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围_________.14.已知二项式的展开式中,前三项的系数成等差数列.(1)求n;(2)求展开式中的一次项;(3)求展开式中所有项的二项式系数之和.15.一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:(1)求取出的3个小球上的数字互不相同的概率;(2)求随机变量ξ的概率分布.16.已知z为虚数,为实数.(1)若z﹣2为纯虚数,求虚数z;(2)求|z﹣4|的取值范围.17.已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.(1)求a1,a2,a3;(2)猜想a n的表达式,并用数学归纳法加以证明.18.已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;(2)在(1)的条件下,求函数g(x)的单调递增区间;(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.2010-2011学年江苏省苏州市常熟市高二(下)期中数学试卷(理科)参考答案与试题解析一、第一卷填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.(5分)已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是(2,3).2.(5分)式子C125+C126=C136(用组合数表示).3.(5分)设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=1.4.(5分)(2009•泰安一模)若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=.z==故答案为5.(5分)函数y=x﹣ln(x+1)的单调递减区间为(﹣1,0).﹣6.(5分)上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有12种不同的排法.7.(5分)设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为.∴,,∵,∴故答案为8.(5分)甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为0.2016.9.(5分)曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积为=1.x=×﹣a3=10.(5分)(2010•镇江模拟)观察下列不等式:≥,≥,≥,…,由此猜测第n个不等式为…≥….(n∈N*)个不等式为≥故答案为≥11.(5分)一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有200种不同的选答方法.12.(5分)已知f1(x)=sinx+cosx,且f2(x)=f1′(x),f3(x)=f2′(x),…,f n(x)=f n﹣1′(x),…(n∈N*,n≥2),则=0.(=cos13.(5分)已知数列{a n}满足a1=1,a n+a n﹣1=()n(n≥2),S n=a1•2+a2•22+…+a n•2n,类比课本中推导等比数列前n项和公式的方法,可求得3S n﹣a n•2n+1=n+1.(((14.(5分)已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围.=所以即,<时,≤∴≤当<<综上所述,故答案为:二、第二卷解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(14分)已知二项式的展开式中,前三项的系数成等差数列.(1)求n;(2)求展开式中的一次项;(3)求展开式中所有项的二项式系数之和.)由题意二项式,解此方程求出n的值;)由项的展开式)前三项的系数为)令所以展开式中的一次项为16.(14分)一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:(1)求取出的3个小球上的数字互不相同的概率;(2)求随机变量ξ的概率分布.则===.4 5 6 7 8所以17.(15分)已知z为虚数,为实数.(1)若z﹣2为纯虚数,求虚数z;(2)求|z﹣4|的取值范围.的值,再由)由,从而得到)∵∴∴=18.(15分)已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.(1)求a1,a2,a3;(2)猜想a n的表达式,并用数学归纳法加以证明.,∴,∴,∴)猜想:)时等式成立,即:∴∴知:19.(16分)已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;(2)在(1)的条件下,求函数g(x)的单调递增区间;(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.由与可转化为)上恒成立,从而只需求由题意得,∴,得当得)的单调递增区间是当或)的单调递增区间是可得设则,得20.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.用倒序相加法求得故n1n n n n n∴参与本试卷答题和审题的老师有:caoqz;刘长柏;席泽林;wubh2011;wfy814;xintrl;haichuan;wsj1012;俞文刚;lily2011;若尘;wdnah(排名不分先后)菁优网2014年6月17日。

高二数学期末复习题

高二数学期末复习题

高二数学期末复习题一、选择题: (每小题5分,共60分)1、复数1i1.1i z -+=-+在复平面内,z 所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限2、若复数312a ii++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为 A .-2B .4C .-6D .63由曲线2y x =与y =的边界所围成区域的面积为( )A.13B.23C.1D.164、若函数f (x )在x =1处的导数为3,则f (x )的解析式可以为 A .f (x )=(x -1)2+3(x -1) B .f (x )=2(x -1) C .f (x )=2(x -1)2 D .f (x )=x -15、一个学生能够通过某种英语听力测试的概率是12,他连续测试2次,那么其中恰有一次获得通过的概率是A .14B .13C .12D .346、曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离是( )A.5B.52C.53D.07、已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A.),3[]3,(+∞--∞B.]3,3[-C.),3()3,(+∞--∞D.)3,3(-8..连续抛掷一枚骰子两次,得到的点数依次记为(m ,n ),则点(m ,n )恰能落在不等式组|4|23x y y +-<⎧⎨≤⎩所表示的平面区域内的概率为( ) A .14 B .29 C .736D .169、从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人,要求这3位教师中男、女教师都要有,则不同的选派方案有 A .210种 B .186种 C .180种 D .90种10、若A ,B ,C ,D ,E ,F 六个不同元素排成一列,要求A 不排在两端,且B 、C 相邻,则不同的排法共有 A .72种 B .96种 C .120种 D .144种 11. 5678(1)(1)(1)(1)x x x x -+-+-+-在的展开式中,含3x 的项的系数( )A.74B.121C.-74D.-12112.已知函数32()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极值为 ( )A.极大值为427,极小值为0 B.极大值为0,极小值为427 C.极小值为427-,极大值为0 D. 极大值为427-,极小值为0二、填空题: (每小题5分,共20分) 13、若,)2(i b ii a -=-,其中a 、b ∈R ,i 是虚数单位,则____22=+b a .14、(1)⎰321dx x的值为__________.(2)01-⎰(x 2+2 x +1)dx =_________________.15、从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A ,那么第2次也抽到A 的概率为_______________________16、若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____________. 三、解答题:(共70分.解答应写出文字说明、演算步骤或推证过程。

高二数学期末复习知识点归纳整理

高二数学期末复习知识点归纳整理

高二数学期末复习知识点归纳整理高二数学期末复习知识点1导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学期末复习知识点23.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。

高二期末数学知识点

高二期末数学知识点

高二期末数学知识点高二期末考试是学生们面临的一项重要考试,其中数学作为一门基础学科,对于学生们来说至关重要。

本文将介绍高二数学期末考试可能涉及的一些重要知识点。

一、函数与方程1.函数的概念与性质在高二数学中,函数是一个非常重要的概念。

学生们需要了解函数的定义和性质,掌握函数的图像、增减性、奇偶性等基本属性。

2.一次函数和二次函数一次函数和二次函数是高中数学的基础内容。

学生们需要掌握一次函数和二次函数的图像、性质、常用公式以及与实际问题的应用。

3.高次多项式函数高次多项式函数是高中数学中的重点知识之一。

学生们需要掌握高次多项式函数的性质、根和系数的关系,以及多项式函数的因式分解等相关知识。

4.指数与对数函数指数与对数函数也是高中数学的重要内容。

学生们需要了解指数与对数函数的图像、性质、常用公式,并能够灵活运用指数与对数函数解决实际问题。

二、几何与三角函数1.平面几何平面几何是高中数学的一大模块。

学生们需要掌握平面图形的性质和判定方法,如线段、角、三角形、四边形等,以及相关的面积和周长计算方法。

2.立体几何立体几何是数学中的一块较难的内容。

学生们需要掌握立体图形的性质、投影以及相关的体积和表面积计算方法。

3.三角函数与三角恒等式三角函数是高中数学的重点内容之一。

学生们需要掌握各种三角函数的定义、性质、图像以及相关的计算方法和恒等式。

三、数列与数学归纳法1.数列的概念与性质数列是高中数学中的重要知识点之一。

学生们需要掌握数列的定义、性质,并能够分析数列的模式、递推关系以及求和等问题。

2.等差数列和等比数列等差数列和等比数列是常见的特殊数列。

学生们需要掌握等差数列和等比数列的性质、通项公式、前n项和公式等,并能够灵活应用于实际问题。

3.数学归纳法数学归纳法是高中数学的重要思维工具。

学生们需要了解数学归纳法的基本原理和应用,能够通过数学归纳法证明一些基本的数学命题。

四、概率与统计1.概率基础概率是高中数学的一项重要内容。

高二数学上学期期末复习备考黄金30题 专题03 小题好拿分(提升版,30题)苏教版-苏教版高二全册数

高二数学上学期期末复习备考黄金30题 专题03 小题好拿分(提升版,30题)苏教版-苏教版高二全册数

专题03 小题好拿分(提升版,30题)一、填空题1.已知椭圆22221x yaa b+=>>(b0)的离心率为32, A为左顶点,点,M N在椭圆C上,其中M在第一象限, M与右焦点的连线与x轴垂直,且4?10AM ANk k+=,则直线MN的方程为_______.【答案】36 y x =答案:36 y x =2.已知椭圆22:143x yC+=的右顶点为A, 点()2,4M,过椭圆C上任意一点P作直线MA的垂线,垂足为H,则2PM PH+的最小值为_________.【答案】2172-3.如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率为_____.【答案】【解析】设右焦点F(c,0),将直线方程代入椭圆方程可得,可得由可得,即有化简为,由,即有,由故答案为.4.如图,在平面直角坐标系xOy中,F1,F2分别是椭圆(a>b>0)的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若,则直线CD的斜率为_____.【答案】5.在△ABC中,,BC=2,D是BC的一个三等分点,则AD的最大值是_____.【答案】【解析】如图建立坐标系,如图 的外接圆满足∵若取最大值,在同一直线上,设点坐标为解得的外接圆的圆心故答案为6.已知线段AB 的长为2,动点C 满足CA CB μ⋅=(μ为常数, 1μ>-),且点C 始终不在以B 为圆心12为半径的圆内,则μ的范围是_________. 【答案】][35144⎛⎫--⋃+∞ ⎪⎝⎭,,7.已知半径为的动圆经过圆的圆心,且与直线相交,则直线被圆截得的弦长最大值是__________.【答案】8.(文科选做)如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是_____。

2020-2021学年高二数学期末复习题选择性必修第一册第一章空间向量与立体几何(含答案)

2020-2021学年高二数学期末复习题选择性必修第一册第一章空间向量与立体几何(含答案)

2020-2021学年高二数学人教A 版(2019)期末复习题第一章空间向量与立体几何一、选择题1.已知空间点()()1,,5,2,7,2A a B a ---,则AB 的最小值是( )A .B .C .D .2.若向量(,4,5),(1,2,2)a x b =--=-,且a 与b 的夹角的余弦值为,则实数x 的值为( ) A.-3 B.11 C.3 D.-3或113.已知(2,1,4),(1,1,2),(7,5,)a b c m =-=--=,若,,a b c 共面,则实数m 的值为( ) A.607B.14C.12D.6274.在空间直角坐标系中, 点()3,4,5P 与点(3,4,5)Q --的位置关系是( ) A.关于x 轴对称B.关于xOy 平面对称C.关于坐标原点对称D.以上都不对二、填空题5.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1,EFGC P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2HP 的范围是__________.6.若(2,1,2),(6,3,2)a b =-=-,且()a b a λ+⊥,则实数λ= .7.如图,在底面是直角梯形的四棱锥P ABCD -中,侧棱PA ⊥底面,,90,2,1ABCD BCAD ABC PA AB BC AD ∠=︒====,则AD 到平面PBC 的距离为_______.三、多项选择题8.已知空间中三点()()()0,1,0,2,2,0,1,3,1A B C -,则下列说法不正确的是( )A.AB 与AC 是共线向量B.与AB 同向的单位向量是⎫⎪⎪⎝⎭C.AB 与BCD.平面ABC 的一个法向量是()1,2,5-9.已知点P 是平行四边形ABCD 所在的平面外一点,如果(2,1,4),(4,2,0),(1,2,1)AB AD AP =--==--,则下列结论正确的是( )A.AP AB ⊥B.AP AD ⊥C.AP 是平面ABCD 的法向量D.APBD10.设,,a b c 是任意的非零空间向量,且两两不共线,则下列结论中正确的有( ) A.()()0⋅-⋅=a b c c a b B.||||||-<-a b a bC.()()⋅-⋅b a c c a b 不与c 垂直D.22(32)(32)9||4||+⋅-=-a b a b a b11.设,a b 为空间中的任意两个非零向量,下列各式中正确的有( ) A.22||=a a B.2⋅=a b ba aC.222()⋅=⋅a b a bD.222()2-=-⋅+a b a a b b四、解答题12.ABC △的内角,,A B C 对的边为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行. (1)求角A ;(2)若2,a =求b c +的取值范围.13.如图,在边长为2的正三角形ABC 中,点,,D E G 分别是边,,AB AC BC 的中点,连接DE ,连接AG 交DE 于点F .现将ADE 沿DE 折叠至1A DE 的位置,使得平面1A DE ⊥平面BCED ,连接1,AG EG .求点B 到平面1A EG 的距离.14.如图,在三棱柱111ABC A B C -中,已知四边形11AA C C 为矩形,16AA =,4AB AC ==,160BAC BAA ∠=∠=︒,1A AC ∠的角平分线AD 交CC 于D .(1)求证:平面BAD ⊥平面11AA C C ; (2)求二面角111A B C A -的余弦值.15.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求1D E 的长;(2)求异面直线AE 与1BC 所成的角的余弦值.16.如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=︒,O 为BC 中点.(1)证明:SO ⊥平面ABC ; (2)求二面角A SC B --的余弦值参考答案1.答案:C2.答案:A3.答案:B4.答案:A 点()3,4,5P 与点()3,4,5Q --的横坐标相同,而纵、竖坐标分别互为相反数,所以两点关于x 轴对称.5.答案:11322,4⎡⎤⎢⎥⎣⎦ 根据题意,以D 为原点建立空间直角坐标系如下图所示:作'HM BB ⊥交'BB 于M ,连接PM 则HM PM ⊥作'PN CC ⊥交'CC 于N,则PN 即为点P 到平面11CDD C 距离 设(),4,P x z ,则()()()1,4,3,4,4,3,0,4,F M N z ()04,04x z ≤≤≤≤ 由题意点P 到平面11CDD C 距离等于线段PF 的长 所以PN PF =由两点间距离公式可得x =化简得()2213x z -=-,则210x -≥解不等式可得12x ≥综上可得142x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222443x z =+-+-()224421x x =+-+-()2322x =-+142x ⎛⎫≤≤ ⎪⎝⎭所以211322,4HP ⎡⎤∈⎢⎥⎣⎦ 答案: 11322,4⎡⎤⎢⎥⎣⎦6.答案:919-7.2分析知,,AB AD AP 两两垂直,∴可建立以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴的空间直角坐标系(如图所示),则()()()()()()0,0,0,2,0,0,2,2,0,0,0,2,2,0,2,0,2,0A B C P PB BC =-=,设平面PBC 的法向量为(),,a b c =n ,则0PB BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即22020a c b -=⎧⎨=⎩,取1a =,则0,1b c ==,则()1,0,1=n 是平面PBC 的一个法向量.又(2,0,0),AB AD =平面,PBC ∴所求距离为||||AB ⋅=n n . 8.答案:ABC解析:对于A,(2,1,0),(1,2,1)AB AC ==-,所以不存在实数λ,使得AB AC λ=,则AB 与AC 不是共线向量,所以A 错误;对于B,因为(2,1,0)AB =,所以与AB同向的单位向量为⎫⎪⎪⎝⎭,所以B 错误;对于C,向量(2,1,0),(3,1,1)AB BC ==-,所以cos ,||||AB BC AB BC AB BC ⋅〈〉==-,所以C 错误;对于D 项,设平面ABC 的一个法向量是(,,),(2,1,0),(1,2,1)x y z AB AC ===-n ,所以0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 则20,20,x y x y z +=⎧⎨-++=⎩令1x =,则平面ABC 的一个法向量为(1,2,5)=-n ,所以D 正确.故选ABC. 9.答案:ABC 解析:0,0,,AB AP AD AP AB AP AD AP ⋅=⋅=∴⊥⊥,则选项A,B 正确.又AB 与AD 不平行,AP∴是平面ABCD 的法向量,则选项C 正确.(2,3,4),(1,2,1),BD AD AB AP BD =-==--∴与AP 不平行,故选项D 错误. 10.答案:BD解析:根据空间向量数量积的定义及性质,可知⋅a b 和⋅c a 是实数,而 c 与 b 不共线,故()⋅a b c 与()⋅c a b 一定不相等,故A 错误;因为2[()()]()()()⋅-⋅⋅=⋅-⋅⋅b a c c a b c b a c c a b c ,所以当⊥a b ,且⊥a c 或⊥b c 时,[()()]0⋅-⋅⋅=b a c c a b c ,即()()⋅-⋅b a c c a b 与 c 垂直,故C 错误;易知BD 正确.故选BD. 11.答案:AD解析:由数量积的性质和运算律可知AD 是正确的.12.答案:(1)由于(,3)m a=与(cos sin )n A B =+平行,∴sin cos 0a B A =,∴sin sin cos A B B A ,∵sin 0B ≠,∴tan A , ∵0πA <<,∴π3A =.(2)∵π2,3a A ==,∴22sin R A == ∴2ππ2(sin sin )2sin sin 4sin 36b c R B C R B B B ⎛⎫⎛⎫⎛⎫+=+=+-=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∵2πππ5π0,3666B B <<<+<, ∴1πsin 126B ⎛⎫<+≤ ⎪⎝⎭, ∴24b c <+≤. 解析:13.答案:连接BE .以F 为坐标原点,1,,FG FE FA 所在直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,则111,0,,0,,0,2B A E G ⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 1331331,,0,0,,,,,0222EB EA EG ⎛⎫⎛⎫⎛⎫∴=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.设平面1A EG 的法向量为(,,)x y z =n ,则11023102EA y n EG x y ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩n ,取x =则3,y z ==,则=n 是平面1A EG 的一个法向量,∴点B 到平面1A EG 的距离||||EB d ⋅===n n 解析:14.答案:解:(1)如图,过点D 作//DE AC 交1AA 于E ,连接CE BE ,, 设AD CE O ⋂=,连接BO ,1AC AA ⊥,DE AE ∴⊥,又AD 为1A AC ∠的角平分线,∴四边形AEDC 为正方形, CE AD ∴⊥,又AC AE =,BAC BAE ∠=∠,BA BA =,BAC BAE ∴≅△△,BC BE ∴=,又O 为CE 的中点,CE BO ∴⊥, 又AD ,BO ⊂平面BAD ,AD BO O ⋂=,CE ∴⊥平面BAD .又CE ⊂平面11AA C C ,∴平面BAD ⊥平面11AA C C . (2)在ABC △中,4AB AC ==,60BAC ∠=︒,4BC ∴=,在RtBOC △中,12CO CE ==BO ∴=又4AB =,12AO AD ==222BO AO AB +=,BO AD ∴⊥,又BO CE ⊥, AD CE O ⋂=,AD ,CE ⊂平面11AA C C ,BO ∴⊥平面11AA C C ,故建立如图空间直角坐标系0xyz -,则(2,2,0)A -,1(2,4,0)A ,1(2,4,0)C -,1B ,11C B ∴=,1(4,6,0)AC =-,11(4,0,0)C A =,设平面11AB C 的一个法向量为()111,,m x y z =, 则111m C B m AC ⎧⊥⎪⎨⊥⎪⎩,11111460220x y x y -+=⎧⎪∴⎨++=⎪⎩, 令16x =,得(6,4,m =-,设平面111A B C 的一个法向量为()222,,n x y z =, 则1111n C B n C A ⊥⎧⎨⊥⎩,222240220x x y =⎧⎪∴⎨++=⎪⎩,令2y =,得(0,2,1)n =-,92cos ,||||102m n m n mn ⋅∴<>==⋅⋅,故二面角111A B C A --解析:15.答案:(1)以AD ,AB ,1AA 的正方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 则()12,0,2D ,()0,2,1E ,可得1(03D E ==, 所以1D E 的长为3.(2)由(1)的坐标系,可得()0,0,0A ,()0,2,1E ,()0,2,0B ,()12,2,2C ,所以()0,2,1AE =,()12,0,2BC =,设异面直线AE 与1BC 所成的角为θ,所以111cos cos ,5AE BC AEBC AE BC θ⋅====, 即异面直线AE 与1BC. 解析:16.答案:(1)由题设AB AC SB SC SA ====,连结,OA ABC △为等腰直角三角形,所以OA OB OC ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且SO =,从而222OA SO SA +=.所以SOA △为直角三角形,SO AO ⊥.又AO BO O =.所以SO ⊥平面ABC .(2)取SC 中点M ,连结,AM OM ,由(1)知,SO OC SA AC ==,得,OM SC AM SC ⊥⊥. OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SO SO BC O ⊥⊥=,,得AO ⊥平面SBC .所以AO OM ⊥,又AM =,故sin AO AMO AM ∠===所以二面角A SC B --。

高二数学期末复习题及答案

高二数学期末复习题及答案

高二数学期末复习题及答案SANY GROUP system office room 【SANYUA16H-高二理科数学期末复习训练题(一)命题人:张泉清 (增城市仙村中学)注意:本试卷满分150分,分为Ⅰ卷和Ⅱ卷两部分,第Ⅰ卷的答案涂在答题卡上,第Ⅱ卷的答案按要求写在答题纸上。

Ⅰ卷(满分40分)一、选择题:本题共8个小题,每小题5分,共40分,每题只有一个正确答案,答案涂在答题卡上。

1. 在复平面内,复数1ii+对应的点位于 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限2. 函数f(x)=ax 3+3x 2+2,若(1)4f '-=,则a 的值是( )A.319 B. 316 C. 313 D. 3103.120(23)x x dx -=⎰( )A 1B 0C 0或1D 以上都不对。

4.在某一试验中事件A 出现的概率为p ,则在n 次试验中A 出现k 次的概率为( )A 1-k pB ()k n k p p --1C 1-()k p -1D ()k n k kn p p C --1 个人站成一排,其中甲不在左端也不和乙相邻的排法种数是( )。

A 48 B 54 C 60 D 666.若3322103)45(x a x a x a a x +++=+,则=+-+)()(3120a a a a ( ) A 1- B 1 C 2 D 2-7. 如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( )。

A. 32B. 34C. 38D. 3128图:x 解密密钥密加密密钥密明密密发送明现在加密密钥为 log (2)a y x =+ ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”。

问:若接受方接到密文为“4”,则解密后得到明文为( )。

A. 12B. 13C. 14D. 15 二、填空题(每小题5分,共30分,请将正确答案填写到答题卡上) 9.函数1y x=的导函数是 ; 10.(ax -x1)8的展开式中2x 的系数为70,则a 的值为;11.实数x 、y 满足(1-i)x+(1+i)y=2,则 xy 的值是 _________ ; 12. 设ξ是一个离散型随机变量,其分布列如下:则q= ;13. 一同学在电脑中打出如下若干个圆,○●○○●○○○●○○○○●○○○○○●…若将此若干个圆依此规律继续下去,得到一系列的圆,那么在前100个圆中有_ ___ 个●;14.函数2()276f x x x =-+-与()g x x =-的图象所围成封闭图形的面积为 . 三、解答题(共80分,请写到答题卡上)15(14分)已知函数321()252f x x x x =--+( 1 ) 求函数的单调区间。

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二上学期数学期末复习试题一、单选题1.已知复数满足,若为纯虚数,则的值为( )z (34i)4i()z b b -=+∈R z b A .B .C .4D .34-3-【答案】D【分析】首先变形求出的表达式,再根据纯虚数的定义求解即可.z 【详解】∵,,()()34i 4i z b b -=+∈R ()()()()4i 34i 124316i 4i 34i 2525b b b b z ++-+++∴===-因为为纯虚数,z 124033160b b b -=⎧⇒=⎨+≠⎩故选:D2.已知平面两两垂直,直线满足:,则直线不可能满足αβγ、、a b c 、、,,a b c αβγ⊆⊆⊆a b c 、、以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面【答案】B【分析】通过假设,可得平行于的交线,由此可得与交线相交或异面,由此不可能//a b ,a b ,αβc 存在,可得正确结果.////a b c 【详解】设,且与均不重合l αβ= l ,a b 假设:,由可得:,////a b c //a b //a β//b α又,可知,l αβ= //a l //b l 又,可得:////a b c //c l因为两两互相垂直,可知与相交,即与相交或异面,,αβγl γl c 若与或重合,同理可得与相交或异面l a b l c 可知假设错误,由此可知三条直线不能两两平行本题正确选项:B【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果.3.“m =0是“直线与直线之间的距离为2”的( )()12110mx m l y +-+=:()22110l mx m y +--=:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据平行线间的距离公式可得或,进而根据充分与不必要条件的定义判断即可.0m =45m =【详解】两条平行线间的距离,即,解得或,2d ==2540m m -=0m =45m =即“”是“两直线间距离为2”的充分不必要条件.0m =故选:A.4.如图所示,在平行四边形中,,沿将折起,使平面平面ABCD AB BD ⊥BD ABD △ABD ⊥,连接,则在四面体的四个面中,互相垂直的平面的对数为( )BCD AC ABCDA .1B .2C .3D .4【答案】C【分析】利用线面垂直得到平面平面,平面平面,平面平面,ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 得到答案.【详解】平面平面,平面平面,ABD ⊥BCD ABD ⋂BCD BD =,平面,故平面,平面,故平面平面;AB BD ⊥AB ⊂ABD AB ⊥BCD AB ⊂ABC ABC ⊥BCD ,平面,故平面,平面,故平面平面;CD BD ⊥CD ⊂BCD CD ⊥ABD CD ⊂ACD ACD ⊥ABD 综上所述:平面平面;平面平面;平面平面;ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 故选:C5.直线被圆截得的弦长的最小值为( ):310l ax y a --+=22:(1)(2)25C x y ++-=A .B .C .D .【答案】B【分析】确定直线过定点,当时,直线被圆截得的弦长最短,计算即可.()3,1P PC l ⊥l C 【详解】直线,即,直线过定点,:310l ax y a --+=()310a x y --+=l ()3,1P 圆的圆心为,,当时,直线被圆截得的弦长最短.C ()1,2C -=5r PC l ⊥l C因为,所以弦长的最小值为.PC ===故选:B6.在平面内,,是两个定点,是动点,若,则点的轨迹为( )A B C 1AC BC ⋅=C A .圆B .椭圆C .双曲线D .抛物线【答案】A【分析】设出、、的坐标,利用已知条件,转化求解的轨迹方程,推出结果即可.A B C C 【详解】解:在平面内,,是两个定点,是动点,A B C 不妨设,,设,(,0)A a -(,0)B a (,)C x y 所以,(),AC x a y =+(),BC x a y =-因为,1AC BC ⋅= 所以,即,()()21x a x a y +-+=2221x y a +=+所以点的轨迹为圆.C 故选:A .7.与双曲线有共同渐近线,且经过点的双曲线的虚轴的长为( )22148x y -=()2,4A .B .C .2D .4【答案】D【分析】依题意,设双曲线的方程为,将点的坐标代入可求.即可求解.()22048x y λλ-=≠()2,4λ【详解】设与双曲线有共同的渐近线的双曲线的方程为,22148x y -=()22048x y λλ-=≠该双曲线经过点,()2,4.416148λ∴=-=-所求的双曲线方程为:,即.∴22148x y -=-22184y x -=所以,2b =所以虚轴长为4.故选:D8.已知,,动点满足,则动点的轨迹与圆的位置()0,0O ()3,0A (),P x y 2PAPO=P ()2221x y -+=关系是( )A .相交B .外切C .内切D .相离【答案】B【分析】由题意求出动点的轨迹方程,再由两圆圆心距与半径的关系判断.P 【详解】设,由题意可知,(,)P x y ()222222||4||,(3)4PA PO x y x y =∴-+=+ 整理得,点的轨迹方程为,P 22(1)4x y ++=其图形是以为圆心,以2为半径的圆,(1,0)-而圆的圆心坐标为,半径为1,22(2)1x y -+=(2,0)可得两圆的圆心距为3,等于,213+=则动点的轨迹与圆的位置关系是外切.P 22(2)1x y -+=故选:B.9.已知点是抛物线上的动点,点A 的坐标为,则点到点A 的距离与到轴的距P 24x y =()12,6P x 离之和的最小值为( )A .13B .12C .11D 【答案】B【分析】作出辅助线,利用抛物线定义得到点到点A 的距离与到轴的距离之和P x ,由两点之间,线段最短,得到距离之和的最小值为,求出答案.1PA PH PA PF +=+-1AF -【详解】如图,⊥轴,连接,PH x PF 由抛物线定义得:抛物线的准线方程为,焦点坐标为,24x y =1y =-()0,1故,1PH PF =-则点到点A 的距离与到轴的距离之和,P x 1PA PH PA PF +=+-连接,与抛物线交于点,此时,AF P '11P A P F AF ''+-=-故点到点A 的距离与到轴的距离之和的最小值为,P x 1AF -其中,故最小值为.13AF ==112AF -=故选:B10.设,分别为双曲线:的左、右焦点,为双曲线的左顶点,以1F 2F C ()222210,0x y a b a b -=>>A 为直径的圆交双曲线的某条渐近线于,两点,且,(如图),则该双曲线的12F FM N 135MAN ∠=︒离心率为( )ABC .2D【答案】D【分析】联立与求出,进而的正切可求,得出的关系,从222x y c +=by xa =(),M a b MAO ∠a b 与而进一步解出答案.【详解】依题意得, 以线段为直径的圆的方程为 ,12F F 222x y c +=双曲线 的一条渐近线的方程为.C b y x a =由 以及222,,b y x a x y c ⎧=⎪⎨⎪+=⎩222,a b c +=解得 或,x a y b =⎧⎨=⎩,.x a y b =-⎧⎨=-⎩不妨取 , 则.(),M a b (),N a b --因为,(),0,135A a MAN ∠-=所以 ,45MAO ∠=又,tan 2b MAO a ∠=所以,12b a =所以 ,2b a =所以该双曲线的离心率 e ==故选:D.二、填空题11.在复数范围内分解因式:___________.44x +=【答案】()()()()1i 1i 1i 1i x x x x +--+++--【分析】因式分解第一步将,第二步()()2422i 4i 2x x x =+-+=()()2222i 1i xx +=-- 综合起来即可得到答案.()()2222i 1i xx -=-+【详解】由题意知()()()()22222242i 2i 14i 1i x x x x x ⎡⎤⎡⎤=+-=+---+⎣⎦⎣⎦故答案为:.()()()()1i 1i 1i 1i x x x x +--+++--12化简后为______.10=【答案】2212516y x +=【分析】运用方程的几何意义得出结果.【详解】解:,10+=故令,,(),M x y ()10,3F -()20,3F ∴,1212106MF MF F F +=>=∴方程表示的曲线是以,为焦点,长轴长的椭圆,()10,3F -()20,3F 210a =即,,,5a =3c =4b =∴方程为.2212516y x +=故答案为:.2212516y x +=13.已知集合,,若集合中有2个元素,则实数(){,A x y x ==(){},B x y y x b ==+A B ⋂b 的取值范围是______【答案】(1⎤-⎦【分析】首先分析集合、的元素特征,再数形结合求出参数的取值范围.A B b 【详解】解:由,所以,x =0x ≥221x y +=()0x ≥所以表示以为圆心,为半径的圆在轴及右侧部分的点集,(){,A x y x ==()0,01y 集合表示直线上的点集,(){},B x y y x b ==+y x b =+集合与集合都是点集,集合中有个元素,A B A B ⋂2由,解得1d ==b =由图可知,即.1b <≤-(1b ⎤∈-⎦故答案为:(1⎤-⎦14.已知实数满足,则的最大值为__________.,x y 2222x y x y+=+4yx -【答案】1【分析】由曲线方程画出曲线所表示的图形,将看作曲线上的点与坐标为的点连线的斜4y x -()4,0率,求出最大值.【详解】由“”和“”代入方程仍成立,所以曲线关于x 轴和y 轴对称,故只x -y -2222xy x y+=+需考虑,的情形,0x ≥0y ≥此时方程为,即,所以的轨迹如下图,2222x y x y +=+()()22112x y -+-=(),x y,表示点和连线的斜率,由图可知,当曲线第四象限部分半圆(圆心为044y y x x -=--(),x y ()4,0l l.()1,1-设:,解得或(舍去),l ()4y k x =-1k =17-所以的最大值为1.4yx -故答案为:1.15.在正方体中,N 为底面的中心,为线段上的动点(不包括两个1111ABCD A B C D -ABCD P 11A D 端点),为线段的中点,则下列说法中正确的序号是________________.M AP①与是异面直线;CM PN ②;CM PN >③平面平面;PAN ⊥11BD B ④过三点的正方体的截面一定是等腰梯形.,,P A C 【答案】②③④【分析】连接NC ,根据平面几何知识可得CN ,PM 交于点A ,可判断①;分别在△MAC 中,和在△PAN 中,运用余弦定理求得CM 2和PN 2,比较大小可判断②;证明与平面后可得面AN 11BDD B 面垂直,可判断③;作出过三点的截面后可判断④.,,P A C 【详解】解:连接NC ,因为共线,即交于点,共面,,,C N A ,CN PM A因此共面,①错误;,CM PN 记,则,PAC θ∠=2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅,2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅又,AP AC <,,即.②正确;22223()04CM PN AC AP -=->22CM PN >CM PN >由于正方体中,,平面,平面,AN BD ⊥1BB ⊥ABCD AN ⊂ABCD 所以,因为,平面,1BB AN ⊥1BB BD B ⋂=1,BB BD ⊂11BB D D 所以平面,AN ⊥11BB D D 因为平面,AN ⊂PAN 所以平面平面,即平面平面,③正确;PAN ⊥11BDD B PAN ⊥11BD B过点作交于点,连接,由正方体性质知,,P 11//PK A C 11C D K 11,KC A C 11//A C AC 所以,共面,且,//PK AC ,PK AC 11A P C K =故四边形就是过P ,A ,C 三点的正方体的截面,PKCA 因为,为线段上的动点(不包括两个端点),P 11A D 所以,,PK AC ≠2222221111AP A P A A C K C C CK =+=+=故四边形是等腰梯形,故④正确.PKCA 故答案为:②③④.三、解答题16.已知直线():10l x m y m +--=(1)若直线的倾斜角,求实数m 的取值范围;ππ,42α⎡⎤∈⎢⎥⎣⎦(2)若直线l 分别与x 轴,y 轴的正半轴交于A ,B 两点,O 是坐标原点,求面积的最小值及此AOB 时直线l 的方程.【答案】(1)01m ≤≤(2)最小值为2,直线l 方程为:.AOB S 20x y +-=【分析】(1)由直线的斜率和倾斜角的范围可得的不等式,解不等式可得;m (2)由题意可得点和点,可得,由基本不0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 111[(1)2]221S OA OB m m ==-++-等式求最值可得.【详解】(1)解:由题意可知当时,倾斜角为,符合题意1m =2π当时,直线l 的斜率1m ≠11k m =-∵倾斜角,∴.[)ππ,tan 1,42k αα∞⎡⎫∈⇒=∈+⎪⎢⎣⎭11011m m ≥⇒≤<-故m 的范围:.01m ≤≤(2)解:在直线l 中:令x =0时,即,令y =0时x =m ,即1m y m =-0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 由题意可知:得001x m m y m =>⎧⎪⎨=>⎪-⎩1m >即()()()2212111112212121AOBm m m m S OA OB mm m m -+-+=⋅=⋅==---△()1111222212m m ⎡⎤⎡⎤=-++≥+=⎢⎥⎢⎥-⎣⎦⎣⎦当且仅当时取等号,()2111121m m m m -=⇒-=⇒=-故最小值为2,此时直线l 方程为:.AOB S 20x y +-=17.已知圆经过点,,且______.从下列3个条件中选取一个,补充在上面的横E ()0,0A ()2,2B 线处,并解答.①与轴相切;②圆恒被直线平分;③过直线与直线y E ()20R mx y m m --=∈440x y +-=的交点C .240x y --=(1)求圆的方程;E (2)求过点的圆的切线方程.()4,3P E 【答案】(1)任选一条件,方程都为22(2)4x y -+=(2)或4x =512160x y -+=【分析】(1) 选①,设圆的方程为,根据题意列出方程组,求解即可;E 222()()x a y b r -+-=选②,由题意可得直线恒过为圆的圆心,代入A 点坐标即可求解;20mx y m --=(2,0)E 选③,求出两直线的交点为,根据圆过A ,B ,C 三点求解即可;(4,0)C E (2)先判断出点P 在圆外,再分切线的斜率存在与不存在分别求解即可.E 【详解】(1)解:选①,设圆的方程为,E 222()()x a y b r -+-=由题意可得,解得,则圆的方程为;222222(2)(2)a ra b ra b r ⎧=⎪+=⎨⎪-+-=⎩202a b r =⎧⎪=⎨⎪=⎩E 22(2)4x y -+=选②,直线恒过,20mx y m --=(2,0)而圆恒被直线平分,E 20(R)mx y m m --=∈所以恒过圆心,因为直线过定点,20mx y m --=20mx y m --=(2,0)所以圆心为,可设圆的标准方程为,(2,0)222(2)x y r -+=由圆经过点,得,E (0,0)A 24r =则圆的方程为.E 22(2)4x y -+=选③,由条件易知,(4,0)C 设圆的方程为,2222(4)00x y Dx Ey F D E F ++++=+->由题意可得,解得,082201640F D E F D F =⎧⎪+++=⎨⎪++=⎩400D E F =-⎧⎪=⎨⎪=⎩则圆的方程为,即.E 2240x y x +-=22(2)4x y -+=综上所述,圆的方程为;E 22(2)4x y -+=(2)解:因为,所以点P 在圆外,22(42)3134-+=>E 若直线斜率存在,设切线的斜率为,k 则切线方程为,即3(4)y k x -=-430.kx y k --+=,解得.2512k =所以切线方程为,512160x y -+=若直线斜率不存在,直线方程为,满足题意.4x =综上过点的圆的切线方程为或.(4,3)P E 4x =512160x y -+=18.如图,在三棱一中,为等腰直角三角形,.-P ABC ABC π,2BAC ∠=π3PAC PAB ∠=∠=(1)求证:;PA BC ⊥(2)若,求平面与平面的夹角的余弦值.24PA AC ==PAB PBC 【答案】(1)证明见解析【分析】(1)取中点,连接以及,先证明,再根据线面垂直的判定证BC D AD PD ACP ABP ≌△△明平面,进而根据线面垂直的性质证明即可;BC ⊥PAD (2)根据角度关系,结合线面垂直的判定可得平面,再根据线线垂直,以为原点,AC ⊥CPE A 为轴,为轴,建立空间直角坐标系,再分别计算平面与平面的法向量求解即AB x AC y PAB PBC 可.【详解】(1)证明:取中点,连接以及,如图2,BC D AD PD图2在和中,,,,ACP △ABP AB AC =AP AP =PAC PAB ∠=∠所以ACP ABP ≌△△所以,所以CP BP =PD BC⊥又因为,平面,平面,,AD BC ⊥AD ⊂PAD PD ⊂PAD AD PD D = 所以平面BC ⊥PAD又因为平面,所以AP ⊂ADP PA BC⊥(2)在平面中,过点作,垂足为,连接,,,如图3,PAD P PE AD ⊥E CE BE PE图3由(1)平面,则,则平面BC ⊥PAD BC PE ⊥PE ⊥ABC 在中,,,同理PCA π3PAC ∠=π22AP AC PCA =⇒∠=π2PBA ∠=∵,,且,平面,则平面.AC PE ⊥AC CP ⊥PE CP P ⋂=,PE CP ⊂CPE AC ⊥CPE 又∵平面,∴,同理可得,CE ⊂CPE A C CE ⊥AB BE ⊥则四边形为正方形,ABCE,则在中,可求出2AB AC BE CE ====Rt PBE △PB =PE =则以为原点,为轴,为轴,如图建立空间直角坐标系,A AB x AC y则,,,,()0,0,0A ()2,0,0B ()0,2,0C (2,2,P设平面的法向量为,,,PAB (),,m x y z =()2,0,0AB =(0,2,BP =则,令,则,2020x y =⎧⎪⎨+=⎪⎩1y =0x=0,1,z m ⎛=⇒= ⎝ 设平面的法向量为,,,PBC (),,n x y z =()2,2,0CB =-(0,2,BP =则,令,则,22020x y y -=⎧⎪⎨+=⎪⎩1x =1y=1,1,z n ⎛=⇒= ⎝ 记二面角的平面角为,A PBC --θ则cos m nm n θ⋅===⋅又因为为锐角,则θcos θ=19.已知椭圆C :与椭圆的离心率相同,为椭圆C 上()222210x y a b b a +=>>22184x y +=P ⎫⎪⎪⎭一点.(1)求椭圆C 的方程.(2)若过点的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点?若1,03Q ⎛⎫⎪⎝⎭T 存在,求出的坐标;若不存在,请说明理由.T 【答案】(1)2212y x +=(2)存在的坐标为,理由见解析T (1,0)-【分析】(1)先求出椭圆,由此得到,将点的坐标代入椭22184x y +=222a b =P 圆,得到,再代入,解得,,则可得结果;C 221112b a +=222a b =21b =22a =(2)先用两个特殊圆求出交点,再猜想以AB 为直径的圆经过定点,再证明猜想,(1,0)-(1,0)T -设直线,并与联立,利用韦达定理得到,,进一步得到,1:3l x my =+2212y x +=12y y +12y y 12x x +,利用,,,证明即可.12x x 12y y +12y y 12x x +12x x 0TA TB ⋅=【详解】(1)在椭圆中,,,离心率22184x y +=1a =12b=12c ==e =11c a ==在椭圆C :中,()222210x y a b b a +=>>c e a ===,=222a b =因为在椭圆C :上,P ()222210x y a b b a +=>>所以,所以,所以,,221112b a +=2211122b b +=21b =22a =所以椭圆.22:12y C x +=(2)当直线的斜率为0时,线段是椭圆的短轴,以AB 为直径的圆的方程为,l AB 221x y +=当直线的斜率不存在时,直线的方程为,代入,得,以AB 为直径的圆的l l 13x =2212y x +=43y =±方程为,22116()39x y -+=联立,解得,2222111639x y x y ⎧+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩10x y =-⎧⎨=⎩由此猜想存在,使得以AB 为直径的圆是经过定点,(1,0)T -(1,0)T -证明如下:当直线的斜率不为0且斜率存在时,设直线,l 1:3l x my =+联立,消去并整理得,221312x my y x ⎧=+⎪⎪⎨⎪+=⎪⎩x 22128(0239m y my ++-=,224184()0929m m ∆=++⋅>设、,11(,)A x y 22(,)B x y 则,,122213()2m y y m +=-+122819()2y y m =-+则,121212112()333x x my my m y y +=+++=++2222133()2m m =-++121211()()33x x my my =++2121211()39m y y m y y =+++22228211199()9()22m m m m =--+++,22101199()2m m =-++因为TA TB⋅1122(1,)(1,)x y x y =+⋅+1212(1)(1)x x y y =+++1212121x x x x y y =++++222221012281111939()3()9()222m m m m m =-+-++-+++2216816199()2m m +=-++,0=所以,所以点在以为直径的圆上,TA TB ⊥(1,0)T -AB 综上所述:以AB 为直径的圆是经过定点.(1,0)T -【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。

高二期末复习卷shux(函数与导数三角函数)

高二期末复习卷shux(函数与导数三角函数)

高二数学期末考试复习卷班级: 学号: 姓名: 得分: 一、选择题.1.已知集合{|10}M x x =+≥,{|24}x N x =<,则M N = ( ) A .(,1]-∞- B .[1,2)- C .(1,2]- D .(2,)+∞ 2. 已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 3.下列函数中,最小正周期T π=的是(A .tan 2y x = C .sin y x =4.设命题p :n n N n 2,2>∈∃,则p ⌝为( )A .n n N n 2,2>∈∀B .n n N n 2,2≤∈∃C .n n N n 2,2≤∈∀D .n n N n 2,2=∈∃ 5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,sin :sin :sin 3:2:4A B C =,则cos C 的值为( )A 6. “2a =”是“函数()222f x x ax =+-在区间(],2-∞-内单调递减”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.若,) A . B C . D .8.为了得到函数sin 2cos2y x x =+的图象,可以将函数 ) A B C D 9.函数54ln)(2++-=x x x x f 的零点个数为( )A.0B.1C.2D. 310.函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图 )A .0 C .1 D 11.已知α,π),sin αtan (α= ( )A .7B .-7 D 12.设αβ、都是锐角,且,则cos β等于( )A 二、填空题.13. 已知幂函数)(x f 过点,则函数)(x f 的表达式为 .14.已知,则= . 15.设函数是定义在上的奇函数,且对任意都有,当时,,则(2015)(2012)f f +的值为 .16.若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是 .三、解答题.17. (1)化简()f α;0.52a =πlog 3b =b c a >>a b c >>c a b >>2log x x f (x)f (x ) x >⎧=⎨+≤⎩010)1(-f )(x f R R x ∈)4()(+=x f x f )2,0(∈x xx f 2)(=18. 在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C所对的边,且=2csinA(1)确定角C 的大小; (2)若c=,且△ABC 的面积为,求a+b 的值.19.在ABC ∆中,角A 、B 、C 的对边分别为c b a 、、,且满足C b B c a cos cos )2(=-,()1求角B 的大小; ()2若求ABC ∆的面积.20.(1)求()f x 的最小正周期; (2)求()f x 在区间21. 设函数. (1)若曲线在点(2,(2))f 处与直线相切,(1)求的值; (2)求函数的极值点与极值.22.已知函数x ax x x f 3)(23--=.(1)若)(x f 在区间上),1[+∞是增函数,求实数a 的取值范围; (2是)(x f 的极值点,求)(x f 在],1[a -上的最大值和最小值.3()3(0)f x x ax b a =-+≠()y f x =8y =,a b ()f x。

四川省仁寿县汪洋中学2024-2025学年高二上学期期末复习数学试卷(含解析)

四川省仁寿县汪洋中学2024-2025学年高二上学期期末复习数学试卷(含解析)

仁寿县汪洋中学高二、下期数学期末复习题卷班级:_______姓名:________考号:_______一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1. 已知函数f (x )=(1―2x )2 ,则f′(1)= A. 8 B. 4C. 3D. 12. 调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数,下列说法正确的是A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是3.有甲、乙两台车床加工同一种零件,且甲、乙两台车床的产量分别占总产量的,甲、乙两台车床的正品率分别为.现从一批零件中任取一件,则取到正品的概率为A .0.93B .0.934C .0.94D .0.9454. 甲、乙两人计划分别从“围棋”,“篮球”,“书法”三门兴趣班中至少选择一门报名学习,若甲只选一门,且甲乙不选择同一门兴趣班,则不同的报名学习方式有A. 3种B. 6种C. 9种D. 12种5.已知为实数,函数,,下列说法中不正确的是A.若,则函数为奇函数 B.函数在上单调递增C.是函数的极大值点 D.若函数有3个零点,则6.设随机变量,随机变量,则下列结论正确的是A. B. Y 的方差D (X )=430.8245r =0.824570%,30%94%,92%c 3()3f x x x c =-+x ∈R 0c =()f x ()f x (,1)-∞-1x =()f x ()f x 22c -<<)32,3(~B X 12+=X Y 91)1(==X PB. C.的期望 D. 的期望7.已知的展开式中的系数为40,则的值为A. -2B. -1C. 1D. 28. 已知函数在区间上单调递增,则a 的最小值为A. B. eC. D. 二、多项选择题(本大题共3个小题,每小题6分,共18分.在每个给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得3分,有选错的得0分)9.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在相邻的两周,共有240种排法C .课程“御”“书”“数”排在不相邻的三周,共有144种排法D .课程“礼”不排在第一周,课程“数”不排在最后一周,共有480种排法10. 已知,则A. B. 是所有系数中的最大值C. D. 11. 若函数既有极大值也有极小值,则A. B. C. D. 三、填空题(本大题共3个小题,每小题5分,共15分)12. 关于二项式的展开式常数项为_________.13. 已知随机变量X 服从正态分布,即:,若,,则实数________.X 2)(=X E Y 4)(=Y E ()512my x y x ⎛⎫+- ⎪⎝⎭24x y m ()e ln xf x a x =-()1,22e 1e -2e -6260126(32)x a a x a x a x -=+++⋅⋅⋅+0729a =3a 60246512a a a a -+++=6540125622224096a a a a a +++⋅⋅⋅++=()()2ln 0b cf x a x a x x=++≠0bc >0ab >280b ac +>0ac <622x x ⎛⎫- ⎪⎝⎭()2~2,X N σ(1)0.8P X ≥-=(2)0.3P X m ≤≤=m =14. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).四、解答题(77分)15(13分)若函数f (x )=ax 3―bx 2+2 ,当x =2 时,函数f (x ) 有极值―2 .(1) 求函数f (x ) 的解析式;(2) 求函数f (x ) 的极值.16(15分).已知函数,.(1)讨论函数的单调性;(2)求函数在区间上的最小值.17 (15分)溺水、校园欺凌、食品卫生、消防安全、道路交通等与学生安全有关的问题越来越受到社会的关注和重视.学校安全工作事关学生的健康成长,关系到千万个家庭的幸福和安宁,关系到整个社会的和谐稳定.为了普及安全教育,某市准备组织一次安全知识竞赛.某学校为了选拔学生参赛,按性别采用分层抽样的方法抽取200名学生进行安全知识测试,根据200名同学的测试成绩得到如下表格:了解安全知识的程度性别得分不超过85分的人数得分超过85分的人数男生20100女生3050(1)现从得分超过85分的学生中根据性别采用分层随机抽样抽取6名学生进行安全知识培训,再从这6名学生中随机抽取3名学生去市里参加竞赛,记这3名学生中男生的人数为X ,求X 的分布列和数学期望.(2)根据小概率值的独立性检验,能否推断该校高二年级男生和女生在了解安全知识的程度与性别有关?若有关,请结合表中数据分析了解安全知识的程度与性别的差异.附:参考公式,其中.下表是独立性检验中几个常用的小概率值和相应的临界值a 0.10.050.010.0050.0012.7063.8416.6357.87910.82818(17分)某公司对某产品作市场调研,获得了该产品的定价x (单位:万元/吨)和一天销售量y (单位:吨)的一组数据,制作了如下的数据统计表,并作出了散点图。

高二数学第二学期期末复习

高二数学第二学期期末复习

高二数学第二学期期末复习主要内容:概率统计(随机变量的分布列、统计)、立体几何、函数极限与导数、复数概率统计随机变量的分布列归根结底还是要考察概率的计算,高中阶段常见概率主要就是两类:等可能事件的概率和独立重复试验的概率,注意识别概率模型,灵活应用独立事件同时发生和互斥事件有一个发生的概率计算公式.期望与方差是反应随机变量的两个常用的数字特征,需要记住其定义式和二项分布、几何分布的相关结论.1、甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。

假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.(Ⅰ)求随机变量分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).(Ⅰ)解法一:由题意知,的可能取值为0,1,2,3,且所以的分布列为的数学期望为解法二:根据题设可知因此的分布列为(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C+D,且C、D互斥,又由互斥事件的概率公式得解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).=2、随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解析:(1)的所有可能取值有6,2,1,-2;,,故的分布列为(2)(3)设技术革新后的三等品率为,则此时1件产品的平均利润为依题意,,即,解得所以三等品率最多为.立体几何立体几何主要研究了空间的点、线、面的两个问题:位置关系和数量关系.其中位置关系中,要注意特殊位置关系(垂直与平行)的判定和性质,对于数量关系,主要集中在角和距离,需要弄清楚定义和常用解决问题的方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常熟市浒浦高级中学高二数学期末复习(15)
部分选自2011.6期末试卷期末考试倒计时:3天
姓名:____________
1.已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是_________.
2.式子C125+C126=_________(用组合数表示).
3.设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=_________.
4.若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=_________.
5.函数y=x﹣ln(x+1)的单调递减区间为_________.
6.上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节
连上,这个教师的课有_________种不同的排法.
7.设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为_________.
8.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为_________.
9.曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积为= _________.
10.观察下列不等式:≥,≥,
≥,…,由此猜测第n个不等式为____
____ _.(n∈N*)
11.一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有_________种不同的选答方法.
14.已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围_________.
14.已知二项式的展开式中,前三项的系数成等差数列.
(1)求n;
(2)求展开式中的一次项;
(3)求展开式中所有项的二项式系数之和.
15.一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量ξ的概率分布.
16.已知z为虚数,为实数.
(1)若z﹣2为纯虚数,求虚数z;
(2)求|z﹣4|的取值范围.
17.已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.
(1)求a1,a2,a3;
(2)猜想a n的表达式,并用数学归纳法加以证明.
18.已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).
(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;
(2)在(1)的条件下,求函数g(x)的单调递增区间;
(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.
2010-2011学年江苏省苏州市常熟市高二(下)期中数学试卷(理科)
参考答案与试题解析
一、第一卷填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.
1.(5分)已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是(2,3).
2.(5分)式子C125+C126=C136(用组合数表示).
3.(5分)设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=1.
4.(5分)(2009•泰安一模)若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=.
=
故答案为
5.(5分)函数y=x﹣ln(x+1)的单调递减区间为(﹣1,0).
6.(5分)上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有12种不同的排法.
7.(5分)设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为.

∴,,
∵,∴
故答案为
8.(5分)甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为0.2016.
9.(5分)曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积
为=1.
x=
S=)
10.(5分)(2010•镇江模拟)观察下列不等式:≥,≥,
≥,…,由此猜测第n个不等式为
…≥….(n∈N*)
故答案为
11.(5分)一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有200种不同的选答方法.
12.(5分)已知f1(x)=sinx+cosx,且f2(x)=f1′(x),f3(x)=f2′(x),…,f n(x)=f n﹣1′
(x),…(n∈N*,n≥2),则=0.
)(()=cos sin
13.(5分)已知数列{a n}满足a1=1,a n+a n﹣1=()n(n≥2),S n=a1•2+a2•22+…+a n•2n,类比课本中推导等比数列前n项和公式的方法,可求得3S n﹣a n•2n+1=n+1.
)((
14.(5分)已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,
2],在x=0处取得最大值,则正数a的范围.
,所以
<>
<≤时,
∴≤
>时,由于

综上所述,
故答案为:
二、第二卷解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.
15.(14分)已知二项式的展开式中,前三项的系数成等差数列.
(1)求n;
(2)求展开式中的一次项;
(3)求展开式中所有项的二项式系数之和.
)由题意二项式的展开式中,前三项的系数成等差数列,可得出
,解此方程求出n的值;
)由项的展开式整理得
)前三项的系数为

所以展开式中的一次项为
16.(14分)一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量ξ的概率分布.

=

4 5 6 7 8
所以
17.(15分)已知z为虚数,为实数.
(1)若z﹣2为纯虚数,求虚数z;
(2)求|z﹣4|的取值范围.
的值,再由
为实数且
,从而得到
)∵
∴,∵

18.(15分)已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.
(1)求a1,a2,a3;
(2)猜想a n的表达式,并用数学归纳法加以证明.
,∴
,∴
,∴
)猜想:
∴,

19.(16分)已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).
(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;
(2)在(1)的条件下,求函数g(x)的单调递增区间;
(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.

与可转化为
由题意得,∴
,即得
,即,可得

(舍)
20.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;
(2)若{a n}为公比为2的等比数列,求f(n)的解析式;
(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.
用倒序相加法求得

参与本试卷答题和审题的老师有:caoqz;刘长柏;席泽林;wubh2011;wfy814;xintrl;haichuan;wsj1012;俞文刚;lily2011;若尘;wdnah(排名不分先后)
菁优网
2014年6月17日。

相关文档
最新文档