数学知识点人教A版高中数学必修四 第二章 平面向量 2.5.2向量在物理中的应用举例导学案-总结

合集下载

最新人教版高中数学必修4第二章《第2章平面向量》本章概览

最新人教版高中数学必修4第二章《第2章平面向量》本章概览

第2章平面向量
本章概览
内容提要
向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景.本章中,我们将了解向量概念的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.
向量的概念是学习向量的基础,学好向量这一章首先要理解向量的基本概念和运算法则,特别要注意向量的加、减、数乘运算结果均为向量,而向量的数量积是一个实数,通过向量的数量积可以计算向量的长度、平面内两点间的距离、两个向量的夹角等问题.
另外,学好向量这一章,还要掌握数形结合的思想方法,结合向量的应用问题,在理解向量知识和应用两方面上下功夫.
学法指导
1.结合向量的实际背景理解向量概念.向量的物理背景是力、速度、加速度等概念,几何背景是有向线段,学习过程中应结合这些背景深刻理解向量概念.
2.理解并正确运用向量的有关运算法则和公式.学习向量的运算法则和公式时要注意与实数的运算法则相类比,同时注意它们之间的区别,防止负迁移.
3.注重向量的实际应用.在了解向量实际背景的基础上,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学物理中的一些问题.发展运算能力和解决实际问题的能力.。

高中数学必修(4)第二章平面向量(知识点汇总)

高中数学必修(4)第二章平面向量(知识点汇总)

必修4第二章 平面向量1、向量的有关概念:(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模)。

(2)零向量:长度为0的向量叫做零向量,其方向是任意的。

(3)单位向量:长度等于1个单位长度的向量。

与a 同向且长度为1的向量,叫做a 的单位向量,记作0a ,||0a a a =。

(4)平行向量:方向相同或相反的两非零向量叫做平行向量。

任一组平行向量经过平移都可以移到同一条直线上,平行向量又叫做共线向量。

规定:0 与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2、向量的表示法:(1)字母表示法:如a ,AB 等;(2)几何表示法:用一条有向线段表示向量;(3)代数表示法:在平面直角坐标系中,设向量OA 的起点O 在坐标原点,终点坐标为(x ,y ),则(x ,y )称为OA 的坐标,记为OA =(x ,y );3、向量的线性运算法则:(1)平行四边形法则(2)三角形法则4、向量的线性运算性质: a b b a +=+(交换律))()(c b a c b a ++=++(结合律)a a a =+=+0000 =a 00=⋅a 00 =λ||||||a a λλ=a a)()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(⇔+=)(21OB OA OM M 是线段AB 的中点非零向量a 的单位向量为||a a ± 5、共线向量定理:如果b a λ=,则b a //;反之,如果b a //,且0 ≠b ,则一定存在唯一一个实数λ使b a λ=。

6、两个向量平行的充要条件:若a 与b 不共线且b a μλ=,则0==μλ;若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数μλ、,使0 =+b a μλ。

7、平面向量基本定理:如果21,e e 是同一平面的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21a a 、,使得2211e a e a a += ,我们把不共线的向量21,e e 叫做表示这个平面内所有向量的一组基底。

必修四2-5-1~2平面向量应用举例

必修四2-5-1~2平面向量应用举例

课前探究学习
课堂讲练互动
活页规范训练
→ =a,AD → =b,由 E、F 分别为对应边的三等分点,得 解 设AB 1 1→ → → → FO=FA+AO=- a+ AC 3 2 1 1 1 1 =-3a+2(a+b)=6a+2b. 1→ 1 → 1 1 1 1 → → → OE=OC+CE=2AC+3CD=2(a+b)-3a=6a+2b. → =OE → ,又 O 为其公共点,故 E、O、F 在同一直线上. ∴FO
2.5 平面向量应用举例
2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例
课前探究学习
课堂讲练互动
活页规范训练
【课标要求】 1. 经历用向量方法解决某些简单的平面几何问题、 力学问题及 其他一些实际问题的过程. 2.体会向量是一种处理几何问题、物理问题等的工具,提高运 算能力和解决实际问题的能力. 3. 掌握用向量方法解决实际问题的基本方法; 向量方法解决几 何问题的“三步曲”. 【核心扫描】 1.用向量方法解决简单的几何问题、力学问题等一些实际问 题.(重点) 2.用向量方法解决实际问题的基本方法.(难点)
课前探究学习
课堂讲练互动
活页规范训练
名师点睛 1.用向量解决平面几何问题的步骤及方法 (1)用向量方法解决平面几何问题的“三步曲”:
可简述为:图形到向量→向量的运算→向量和数到图形.
课前探究学习
课堂讲练互动
活页规范训练
(2)一般可选择以下两种方法: ①基底法(基向量法):选择两个不共线的向量作为基底,用基 底表示相关向量,把问题转化为只含有基底向量的运算. ②坐标法:建立适当的坐标系,用坐标表示向量,把问题转化 为向量的坐标运算.
课前探究学习
课堂讲练互动

高中数学必修4知识点总结:第二章-平面向量

高中数学必修4知识点总结:第二章-平面向量

高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+r r rr r r .⑷运算性质:①交换律:a b b a +=+r r r r ;②结合律:()()a b c a b c ++=++r r r r rr ;③00a a a +=+=r r r r r .⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y +=++rr .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y -=--rr . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--u u u r .19、向量数乘运算:⑴实数λ与向量a r 的积是一个向量的运算叫做向量的数乘,记作a λr. ①a a λλ=r r;②当0λ>时,a λr 的方向与a r 的方向相同;当0λ<时,a λr 的方向与a r的方向相反;当0λ=时,0a λ=r r .⑵运算律:①()()a a λμλμ=r r ;②()a a a λμλμ+=+r r r;③()a b a b λλλ+=+r r r r .⑶坐标运算:设(),a x y =r ,则()(),,a x y x y λλλλ==r.20、向量共线定理:向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r .设()11,a x y =r ,()22,b x y =r ,其中0b ≠r r ,则当且仅当12210x y x y -=时,向量a r 、()0b b ≠r r r共线.21、平面向量基本定理:如果1e u r 、2e u u r 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ、2λ,使1122a e e λλ=+u r u u r r.(不共线的向量1e u r 、2e u u r 作为这一平面内所有向量的一组基b ra rCBAa b C C -=A -AB =B u u ur u u u r u u u r r r底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP u u u r u u u r时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。

2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。

3. 平行向量:具有相同或相反的方向的向量。

4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。

5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。

6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。

7. 向量的数量积的性质:具有交换律、结合律和分配律。

8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。

9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。

10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。

11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。

12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。

13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。

14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。

15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。

这些是数学必修四第二章平面向量的核心知识点。

必修4知识点总结:第二章_平面向量

必修4知识点总结:第二章_平面向量

高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

人教版高中数学高一A版必修4 第二章第一节平面向量的实际背景及基本概念

人教版高中数学高一A版必修4 第二章第一节平面向量的实际背景及基本概念

第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题: (1)什么是向量?向量和数量有何不同? (2)向量如何表示?(3)什么是零向量和单位向量? (4)什么是平行向量?待学生阅读完后,老师总结并展示课件: 1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量) 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量? 数量有:质量、身高、面积、体积 向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗? 2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3 注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量?零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的. 向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量?长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________;(2)与向量DF →的模一定相等的向量有________个,分别是______________________;(3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、FA →课堂小结 通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.作业习题2.1A 组2,5设计思路1.首先先对本节课教材内容进行分析2.教材内容的安排和处理根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.3.教法“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.4.学法指导以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.。

最新人教版高中数学必修4第二章《 平面向量)》本章概览

最新人教版高中数学必修4第二章《 平面向量)》本章概览

第二章平面向量
本章概览
三维目标
1.通过力和力的分析等实例,了解向量的实际背景;理解平面向量和向量相等的含义;理解向量的几何表示.改变我们传统上对数学的认识,深化对数学意义的理解,增强应用数学的意识,激发学习数学的兴趣.
2.通过实例,掌握向量加法、减法、数乘等线性运算及其几何意义,理解两个向量共线的含义.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,领悟数学知识来源于实践,服务于实践.
3.了解平面向量基本定理及其推导和应用;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加、减及数乘运算;理解用坐标表示的平面向量共线的条件,使我们开阔眼界,活跃思想,从传统的数学解题思路中解放出来,增加解决问题的思路,增强创新能力.
4.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义;体会平面向量数量积与向量投影的关系;掌握数量积的坐标表达式;会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角;会用数量积判断两个平面向量的垂直关系;体会向量作为一种处理几何、物理等问题的工具性,提高运算能力和解决实际问题的能力.
知识网络。

2020版人教A版高中数学必修四导练课件:2.5.1 平面几何中的向量方法2.5.2 向量在物理中的

2020版人教A版高中数学必修四导练课件:2.5.1 平面几何中的向量方法2.5.2 向量在物理中的

错解二:因为a·b=b·c=c·a,所以a·b=b·c,即(a-c)·b=0,而b≠0,所以a-c=0,得到a=c.同 理由b·c=c·a得到a=b.所以a=b=c,故三角形ABC是等边三角形. 错解三:因为a·b=b·c=c·a,所以a·b=b·c,而b≠0,所以a=c.同理可得a=b.所以 a=b=c,故三角形ABC是等边三角形. 纠错:以上三种解法都犯了推理不严谨的错误.解法一中,只有在a,b同向共线时,才有 a·b=|a||b|成立;解法二错在“即(a-c)·b=0,而b≠0,所以a-c=0,得到a=c”,这里由(ac)·b=0只能得出(a-c)⊥b,而不能得到a=c;解法三错在“a·b=b·c,而b≠0,所以 a=c”,向量具有方向,不能像数量那样,在进行计算时可以约分. 正解:因为a·b=b·c,所以(a-c)·b=0,而由向量加法的三角形法则可知a+b+c=0,所以 b=-a-c,所以(a-c)·(-a-c)=0,即(a-c)·(a+c)=0,得到a2-c2=0,a2=c2,即|a|2=|c|2,也就 是|a|=|c|.同理可得|a|=|b|,所以
[备用例 2] 已知向量 OA =(k,12), OB =(4,5), OC =(10,k),且 A,B,C 三点共
线,当 k<0 时,若 k 为直线的斜率,则过点(2,-1)的直线方程为
.
解析:因为 AB = OB - OA =(4-k,-7), BC = OC - OB =(6,k-5),且 AB ∥ BC , 所以(4-k)(k-5)+6×7=0,
第十二页,编辑于星期日:一点 十四分。
P( 2 λ, 2 λ),E(1, 2 λ),F( 2 λ,0),
2
2
2

人教A版数学必修4 课件 平面向量

人教A版数学必修4 课件 平面向量

始点放在同一点,那么这些向量的终点所构成的图
形是( B )
A.一条线段
B.一条直线
C.圆上一群孤立的点 D.一个半径为 1 的圆
人教A版数学必修4 课件 平面向量(精品课件)
人教A版数学必修4 课件 平面向量(精品课件)
3.判断下列各命题的真假:
(1)向量 AB 的长度与向量 BA 的长度相等;
(2)向量 a 与向量b 平行,则 a 与 b 的方向相同或 相反;
A
D
F
人教A版数学必修4 课件 平面向量(精品课件)
B
C E
人教A版数学必修4 课件 平面向量(精品课件)
A
D
F
B
C E
解:(1) D E E F F C A F D A D B
FDCEEB
( 2 ) D E F C A F F D C E E B
(3)DE∥FC∥AF∥AC FD∥CE∥EB∥CB
A(起点)
(1)几何表示法:有向线段(起点、方向、长度 )
(2)字母表示法: a , b , AB
人教A版数学必修4 课件 平面向量(精品课件)
人教A版数学必修4 课件 平面向量(精品课件)
【即时训练】
下列说法正确的是( D) A、数量可以比较大小,向量也可以比较大小. B、方向不同的向量不能比较大小,但同向的可以 比较大小. C、向量的大小与方向有关. D、向量的模可以比较大小.
人教A版数学必修4 课件 平面向量(精品课件)
人教A版数学必修4 课件 平面向量(精品课件)
【易错点拨】 两个向量是否可以比较大小?
向量不能比较大小,我们知道,长度相等且 方向相同的两个向量表示相等向量,但是两个向 量之间只有相等关系,没有大小之分,对于向

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点数学必修四第二章平面向量知识点在年少学习的日子里,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。

想要一份整理好的知识点吗?以下是店铺帮大家整理的数学必修四第二章平面向量知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

1、平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。

(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e 表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

相反向量:与a长度相等,方向相反的向量,叫做a的.相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

2、平面向量运算加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c (结合律);实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |·| |;(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。

两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。

(2)若=(),b=()则‖b 。

3、平面向量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省海口市第十四中学高中数学必修4:第二章 平面向量导学案
2.5.2向量在物理中的应用举例
【学习目标】
掌握向量理论在相关物理问题中的初步运用,实现学科与学科之间的融合,会用向量知识解决
一些物理问题.
【学习过程】 一、自主学习(预习教材P111—P112)
问题1:向量与力有什么相同点和不同点?
结论:向量是既有大小又有方向的量,它们可以有共同的作用点,也可以没有共同的作用点,但是力却是既有大小,又有方向且作用于同一 的. 用向量知识解决力的问题,往往是把向量 到同一作用点上.
问题2:向量的运算与速度、加速度与位移有什么联系?
结论:速度、加速度与位移的合成与分解,实质上是向量的加减法运算,而运动的叠加也用到向量的合成.
问题3:向量的数量积与功、动量有什么联系? 结论:物理上力作功的实质是力在物体前进方向上的分力与物体位移距离的乘积,它的实质是向量的数量积. ⑴力的做功涉及到两个向量及这两个向量的夹角,即cos ,W F S F S =⋅,功是一个实数,它可正,也可负.
⑵在解决问题时要注意数形结合.
二、合作探究
1、用两条成120角的等长的绳子悬挂一个灯具,已知灯具的重量10N ,则每根绳子的拉力大小是多少?
2、一条河宽为400m ,一船从A 出发航行垂直到达河正对岸的B 处,船速为20/km h .水速为
12/km h ,则船到达B 处所需时间为多少分钟?
3、已知两恒力()13,4F 、()26,5F -作用于同一质点,使之由点()20,15A 移动到点()7,0B ,试求:
⑴12,F F 分别对质点所做的功;
⑵12,F F 的合力F 对质点所做的功.
三、交流展示
1、点P 在平面上作匀速直线运动,速度v =(4,-3),设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(速度单位:m/s ,长度单位:m)( )
A .(-2,4)
B .(-30,25)
C .(10,-5)
D .(5,-10)
2、作用于原点的两个力12(1
,1),(2,3)F F ,为使它们平衡,需要加力3F =_______
3、已知一物体在共点力F 1=(lg2,lg2),F 2=(lg5,lg2)的作用下产生位移S =(2lg5,1),则共点力对物体做的功W 为( )
A .lg2
B .lg5
C .1
D .2
四、达标检测(A 组必做,B 组选做)
A 组:1. 当两人提起重量为G 的书包时,夹角为θ,用力为F ,则三者的关系式为( ) A.F s ⋅ B.cos F s θ⋅ C.sin F s θ⋅ D.cos F s θ⋅ 2. 人骑自行车的速度为1v ,风速为2v ,则逆风行使的速度大小为( ) A.12v v - B. 12v v + C.12v v - D.1
2v v 3. 用两条成60的绳索拉船,每条索上的拉力为12N ,则合力为 .
4. 某人以时速akm 向东行走,此时正刮着时速akm 的南风,那么此人感到的风向为 ,风速为 .
B 组:1. 一物体受到相互垂直的两个力f 1、f 2的作用,两力大小都为53N ,则两个力的合力的大小为( ) A .103N B .0N
C .56N D.562
N 2. 一条宽为3km 的河,水流速度为2km/h ,在河两岸有两个码头A 、B ,已知AB =3km ,船在水中最大航速为4km/h ,问该船从A 码头到B 码头怎样安排航行速度可使它最快到达彼岸B 码头?用时多少?。

相关文档
最新文档