高中数学必修4平面向量知识点总结与典型例题归纳
高中数学必修4平面向量知识点与典型例题总结(生)
《数学》必会基础题型——《平面向量》【基本概念与公式】 【任何时候写向量时都要带箭头】:既有大小又有方向的量。
记作:AB 或a 。
:向量的大小(或长度),记作:||AB 或||a 。
:长度为1的向量。
若e 是单位向量,则||1e =。
:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
:长度和方向都相同的向量。
:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b a b θ⋅=⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
(8)若ma mb =,则a b =。
(9)若ma na =,则m n =。
(10)若a 与b 不共线,则a 与b 都不是零向量。
重点高中数学必修4平面向量知识点总结与典型例题归纳
重点高中数学必修4平面向量知识点总结与典型例题归纳————————————————————————————————作者:————————————————————————————————日期:23平面向量【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB u u u r 或a r。
2.向量的模:向量的大小(或长度),记作:||AB uuu r 或||a r。
3.单位向量:长度为1的向量。
若e r 是单位向量,则||1e =r。
4.零向量:长度为0的向量。
记作:0r 。
【0r方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-u u u r u u u r。
8.三角形法则:AB BC AC +=u u u r u u u r u u u r ;AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r ;AB AC CB -=u u u r u u u r u u u r(指向被减数)9.平行四边形法则:以,a b r r为临边的平行四边形的两条对角线分别为a b +r r ,a b -r r 。
10.共线定理://a b a b λ=⇔r r r r 。
当0λ>时,a b r r 与同向;当0λ<时,a b r r与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =r ,则22||a x y =+r ,22||a a =r r ,2||()a b a b +=+r r r r13.数量积与夹角公式:||||cos a b a b θ⋅=⋅r r r r ; cos ||||a ba b θ⋅=⋅r rrr 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=r r r r ;121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(完整版)高中数学必修4平面向量知识点总结
高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。
完整word版高中数学必修4平面向量知识点总结与典型例题归纳2
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】rruuuaAB。
或1.向量:既有大小又有方向的量。
记作:uuurr|AB||a|。
2.向量的模:向量的大小(或长度),记作:或rre|e|?1。
3.单位向量:长度为1的向量。
若是单位向量,则rr00方向是任意的,且与任意向量平行】【的向量。
记作:。
4.零向量:长度为05.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
uuuruuurAB??BA。
:长度相等,方向相反的向量。
7.相反向量8.三角形法则:uuuruuuruuuruuuruuuruuuruuuruuuruuuruuuruuurAB?BC?ACAB?BC?CD?DE?A EAB?AC?CB(指向被减数);;9.平行四边形法则:rrrrrra?ba?bba,。
以为临边的平行四边形的两条对角线分别为,rrrrrrrr???b//b?aa??0?0a与a与bb反向。
时,同向;当时,10.共线定理:。
当11.基底:任意不共线的两个向量称为一组基底。
rrrrrrr r22222|a?b|?(a?b)),yxa?(yx?|a|?||aa?,则向量的模:若,,12.rr rrrr a?b??rr cos b|?|a|?|a?b?cos数量积与夹角公式:; 13.|a|?|b|rrrrrrrr?b?xy?xya?b?a?b?0?a//b?a?xx?yy?0平行与垂直:14.;21122121题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
uuuruuurAB?CD。
4)四边形ABCD是平行四边形的条件是(3)与已知向量共线的单位向量是唯一的。
(uuuruuurAB?CD,则A、B)若、C、D四点构成平行四边形。
(5rrrrrrrrrrma?mba?bcabcba。
)若(6与共线,与共线,则与共线。
高中数学必修4平面向量知识点总结及常见题型
(5)若 AB CD ,则 A、 B、 C、 D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若 a与 b 共线, b 与 c 共线,则 a 与 c 共线。
(8)若 ma mb,则 a b 。
(9)若 ma na ,则 m n 。
(10)若 a 与 b 不共线,则 a 与 b 都不是零向量。
(iii) 若 a 、 b 是互为相反向量,则 a = b , b = a , a + b = 0
②向量减法: 向量 a 加上 b 的相反向量叫做 a 与 b 的差, 记作: a b a ( b) 求两个向量差的运算,叫做向量的减法
③作图法: a b 可以表示为从 b 的终点指向 a 的终点的向量( a 、b
5.已知 A(1,2), B(3,2) ,向量 a ( x 2, x 3y 2) 与 AB 相等,求 x, y 的值。
6.已知 AB (2,3) , BC (m, n) , CD ( 1,4) ,则 DA
。
7.已知 O 是坐标原点, A(2, 1), B( 4,8) ,且 AB 3BC 0 ,求 OC 的坐标。
及其各运算的坐标表示和性质
运 几何方法
坐标方法
运算性质
算
类
型
向 1 平行四边形法 量则
a b (x1 x2,y1 y2) a b b a (a b) c a (b c)
的 2 三角形法则
AB BC AC
加
法
向 三角形法则 量
a b (x1 x2,y1 y2) a b a ( b ) AB BA
的
OB OA AB
题型 7.判断两个向量能否作为一组基底
1.已知 e1, e2 是平面内的一组基底,判断下列每组向量是否能构成一组基底:
(完整版)高中数学必修4平面向量知识点总结.docx
高中数学必修 4 知识点总结平面向量知点一 .向量的基本概念与基本运算1向量的概念:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不能比大小,但向量的模可以比大小.②零向量:度 0 的向量,0,其方向是任意的,0与任意向量平行零向量 a =0|r ra |=0由于0的方向是任意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚是否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向相同或相反的非零向量任意一平行向量都可以移到同一直上方向相同或相反的向量,称平行向量作a∥ b由于向量可以行任意的平移( 即自由向量 ) ,平行向量可以平移到同一直上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意取,在必区分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向相同的向量相等向量平移后可以重合, a b 大x1x2小相等,方向相同(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特点是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时必须“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量仍是零向量a 的相反向量关于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 可以表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:如果e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等 由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例 1 给出下列命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,其中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不一定相同.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur因此, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向相同;r r r r 又 b = c ,∴ b , c 的长度相等且方向相同,r r r r ∴ a , c 的长度相等且方向相同,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即使 | a |=| b | ,也不能得到 a =b ,故 | a |=| b |r r r r 且 a // b 不是 a =b 的充要条件,而是必要不充分条件.r r⑤ 不正确.考虑 b = 0 这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构, 另一方面要善于与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的任意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向相同的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一向量 r r r rr a 可表示成 a xi yj ,由于 a 与r rr 数对 (x,y)是一一对应的,因此把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),其中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标相同,坐标相同的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法则 r rx,y 21 y)2a bb a量 2 三角形法则a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法则r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 满足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,求实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数量积1 两个向量的数量积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数量积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式成立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数量积的运算律:①交换律成立: rrr r a b b a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)结合律不成立: r r rr r r;a b c a b cr rr r r r (2)消去律不成立 a ba c 不能得到b crr不能得到 r r r r(3) a b =0a = 0 或b =07 两个向量的数量积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:如果a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数量积的性质例 1判断下列各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时成立;r r r r r r r r r(5)( a b )c a(b c ) 对任意 a,b , c 向量都成立;(6)对任意向量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182点评:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按下列条件求实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115点评:此例展示了向量在坐标形式下的基本运算。
平面向量知识点总结(精华)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线. 6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.举例2 如下列命题:(1)若||||a b =,则a b =.(2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若AB DC =,则ABCD 是平行四边形. (4)若ABCD 是平行四边形,则AB DC =. (5)若a b =,b c =,则a c =.(6)若//a b ,//b c 则//a c .其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j 为基底,则平面内的任一向量a 可表示为(,)a xi yj x y =+=,称(,)x y 为向量a 的坐标,(,)a x y =叫做向量a 的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+.(1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成.(3)向量的正交分解:当12,e e 时,就说1122a λe λe =+为对向量a 的正交分解.举例3 (1)若(1,1)a =,(1,1)b =-,(1,2)c =-,则c = . 结果:1322a b -. (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e =D.1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭(3)已知,AD BE 分别是ABC △的边BC ,AC 上的中线,且AD a =,BE b =,则BC可用向量,a b 表示为 . 结果:2433a b +. (4)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则A B B C ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____. (4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30.3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例 5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积.5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=; ||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件.(3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠; (2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭;(3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >).①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b A B B C A C +=+=;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为 .结果:120.2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--. 举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1). (2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1.(5)向量的模:222222||||a a x y a x y ==+⇔=+.举例11 已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +== . 结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+,其中12,e e y 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+;④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b b a a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2.(2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4.(3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若O A O B ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系 (1)P 内分线段12P P ,即点P 在线段12PP 上0λ⇔>; (2)P 外分线段12P P 时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13M P M N =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a =. 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x xh y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=. 说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数s i n 2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+; (3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式 在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++.举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G++=⇔为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||ABAC AB AC λλ⎛⎫+≠ ⎪⎪⎝⎭所在直线过△ABC 的内心. 6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=.7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得P A P B P C αβ=+且1αβ+=. 举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。
(完整word版)高中数学必修四平面向量知识归纳典型题型(经典)
一 , 向量重要结论r r r rr rr rr 2r 2规定0 ,( 1)、向量的数量积定义 : a b| a ||b | cos 0 aa a a| a |rrr r,则 cosa b( 2)、向量夹角公式: a 与 b 的夹角为rrr r| a ||b |rr( 3)、向量共线的充要条件: b 与非零向量 a 共线存在独一的R ,使 ba 。
( 4)、两向量平行的充要条件:向量rr( x 2 , y 2 ) 平行 x 1 y 2 x 2 y 1a(x 1, y 1 ) , b 0( 5)、两向量垂直的充要条件:向量rrrrab a b 0x 1 x 2 y 1 y 2 0rr r rr rr r( 6)、向量不等式: | a | | b | | a b | , | a || b | | a b | r rr r( 7)、向量的坐标运算:向量 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,则 a b x 1 x 2 y 1 y 2r r r r r= a b( 8)、向量的投影: ︱ b ︱cosr ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为 | a |射影( 9)、向量:既有大小又有方向的量。
向量不能够比较大小,但向量的模能够比较大小。
相等向量:长度相等且方向相同的向量。
( 10)、零向量: 长度为 0 的向量,记为 0 ,其方向是任意的, 0 与任意向量平行 零向量 a =rr| a |= 0 由于 0 的方向是任意的, 且规定 0 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚可否有“非零向量”这个条件. (注意与 0 的差异)( 11)、单位向量: 模为 1 个单位长度的向量向量 a 0 为单位向量 | a 0 |= 1( 12)、平行向量(共线向量) :方向相同或相反的非零向量 任意一组平行向量都能够移到同素来线上 方向相同或相反的向量, 称为平行向量 记作 a ∥ b 由于向量能够进行任意的平移 ( 即 自由向量 ) ,平行向量总能够平移到同素来线上,故平行向量也称为共线向量 注:剖析几何与向量综合时可能出现的向量内容: ( 1) 给出直线的方向向量 u 1, k 或 u m, n ,要会求出直线的斜率;( 2)给出 OA OB 与 AB 订交 , 等于已知 OA OB 过 AB 的中点 ; ( 3)给出 PM PN 0, 等于已知 P 是 MN 的中点 ;( 4)给出 AP AQBP BQ , 等于已知 P,Q 与 AB 的中点三点共线 ;( 5 )给出以 下状况之 一: ① AB // AC ; ② 存在 实数rr,使 ABAC ; ③ 若 存在实数且uuur uuur uuurA, B,C, ,使 OAOB ,等于已知 三点共线 .1, OC( 6) 给出 OPOAOB,等于已知 P 是 AB 的定比分点, 为定比,即 APPB1( 7) 给出 MA MB 0 , 等于已知 MAMB , 即 AMB 是直角 , 给出 MA MB m 0 , 等于已知 AMB 是钝角 , 给出 MA MB m 0 , 等于已知AMB 是锐角。
(完整版)高中数学必修四平面向量知识归纳典型题型(经典),推荐文档
一,向量重要结论(1)、向量的数量积定义: 规定, ||||cos a b a b θ⋅= 00a ⋅= 22||a a a a ⋅== (2)、向量夹角公式:与的夹角为,则a b θcos ||||a b a b θ⋅= (3)、向量共线的充要条件:与非零向量共线存在惟一的,使。
b a ⇔R λ∈b a λ= (4)、两向量平行的充要条件:向量,平行11(,)a x y = 22(,)b x y = ⇔12210x y x y -=(5)、两向量垂直的充要条件:向量a b ⊥ 0a b ⇔⋅= ⇔12120x x y y +=(6)、向量不等式:,||||||a b a b +≥+ ||||||a b a b ≥⋅ (7)、向量的坐标运算:向量,,则11(,)a x y = 22(,)b x y = a b ⋅= 1212x x y y +(8)、向量的投影:︱︱cos =∈R,称为向量在方向上的投影投影的绝对值称为b θ||a b a ⋅ b a 射影(9)、向量:既有大小又有方向的量。
向量不能比较大小,但向量的模可以比较大小。
相等向量:长度相等且方向相同的向量。
(10)、零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行零向量=0 0 a ||=0 由于的方向是任意的,且规定平行于任何向量,故在有关向量平行(共0 ⇔a 0 0 线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)(11)、单位向量:模为1个单位长度的向量 向量为单位向量||=1 0a ⇔0a (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作∥由于向量可以进行任意的平移a b (即自由向量)注:解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或,要会求出直线的斜率;()k u ,1= ()n m u ,= (2)给出与相交,等于已知过的中点;+AB OB OA +AB (3)给出,等于已知是的中点;0 =+PN PM P MN (4)给出,等于已知与的中点三点共线;()+=+λQ P ,AB (5)给出以下情形之一:①;②存在实数;③若存在实数AC AB //,AB AC λλ= 且,等于已知三点共线.,,1,OC OA OB αβαβαβ+==+ 且且C B A ,,(6) 给出,等于已知是的定比分点,为定比,即λλ++=1P λPB AP λ=(7) 给出,等于已知,即是直角,给出,等于0=⋅MB MA ⊥AMB∠0<=⋅m 已知是钝角, 给出,等于已知是锐角。
(完整版)必修四平面向量复习基本知识点总结及基础训练
a b a b AB DC AB DC a (1,1), b 1), c c 按向量 =(-1、向量有关概念:平面向量复习基本知识点及经典结论总结(1) 向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
例:已知 A (1,2),B (4,2),则把向量1,3)平移后得到的向量是 AB a。
(2) 零向量:长度为 0 的向量叫零向量,记作: 0 ,注意零向量的方向 ;(3) 单位向量:长度为一个单位长度的向量叫做单位向量(与 AB 共线的单位向量是:);(4) 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有 ;(5) 平行向量(也叫):方向 或的非零向量 a 、b 叫做平行向量,记作:,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点 A 、、B C 共线⇔ AB 、AC 共线;(6) 相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是。
例:命题:(1)若 =,则 =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若 = ,则 ABCD 是平行四边形。
(4)若 ABCD 是平行四边形,则 =。
(5)若 a = b ,b = c ,则 a = c 。
(6)若 a // b ,b // c ,则 a // c 。
其中正确的是 ; 2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如 a , b , c 等;(3)坐标表示法:在 平面内建立直角坐标系,以与 x 轴、 y 轴方向相同的两个单位向量 i , j 为基底,则平面内的任一向量 a 可表示为 a = xi + y j = (x , y ),称(x , y )为向量 a 的坐标, a =叫做向量 a 的坐标表示。
高中数学必修4平面向量知识点与典型例题总结(理).
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度,记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量:方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,a x y =,则2||a x y =+22||a a =,2||(a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a ba b θ⋅=⋅14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+=题型1.基本概念判断正误:(1共线向量就是在同一条直线上的向量。
(2若两个向量不相等,则它们的终点不可能是同一点。
(3与已知向量共线的单位向量是唯一的。
(4四边形ABCD 是平行四边形的条件是AB CD =。
(5若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6因为向量就是有向线段,所以数轴是向量。
(7若a 与b 共线, b 与c 共线,则a 与c 共线。
(8若ma mb =,则a b =。
(9若ma na =,则m n =。
(10若a 与b 不共线,则a 与b 都不是零向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量
【基本概念与公式】 【任何时候写向量时都要带箭头】
1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】
5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:
AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)
9.平行四边形法则:
以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+
13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b a b θ⋅=
⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:
(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)若a 与b 共线, b 与c 共线,则a 与c 共线。
(7)若ma mb =,则a b =。
(8)若ma na =,则m n =。
(9)若a 与b 不共线,则a 与b 都不是零向量。
(10)若||||a b a b ⋅=⋅,则//a b 。
(11)若||||a b a b +=-,则a b ⊥。
题型2.向量的加减运算
1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += 。
2.化简()()AB MB BO BC OM ++++= 。
3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 。
4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD = 。
5.已知点C 在线段AB 上,且35AC AB =
,则AC = BC ,AB = BC 。
题型3.向量的数乘运算
1.计算:2(253)3(232)a b c a b c +---+-=
2.已知(1,4),(3,8)a b =-=-,则132
a b -= 。
题型4.根据图形由已知向量求未知向量
1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,
表示AD 。
2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和。
题型5.向量的坐标运算
1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 。
2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 。
3.若物体受三个力1(1
,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 。
4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -。
5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值。
6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = 。
7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标。
题型6.判断两个向量能否作为一组基底
1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底:
A.1212e e e e +-和
B.1221326e e e e --和4
C.122133e e e e +-和
D.221e e e -和
2.已知(3,4)a =,能与a 构成基底的是( ) A.34(,)55 B.43(,)55 C.34(,)55-- D.4(1,)3--
题型7.结合三角函数求向量坐标
1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标。
2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标。
题型8.求数量积
1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1)a b ⋅,(2)()a a b ⋅+,
(3)1()2
a b b -
⋅,(4)(2)(3)a b a b -⋅+。
2.已知(2,6),(8,10)a b =-=-,求(1)||,||a b ,(2)a b ⋅,(3)(2)a a b ⋅+,
(4)(2)(3)a b a b -⋅+。
题型9.求向量的夹角
1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角。
2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角。
3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠。
题型10.求向量的模
1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1)||a b +,(2)|23|a b -。
2.已知(2,6),(8,10)a b =-=-,求(1)||,||a b ,(5)||a b +,(6)1||2
a b -。
3.已知||1||2a b ==,
,|32|3a b -=,求|3|a b +。
题型11.求单位向量 【与a 平行的单位向量:||
a e a =±】 1.与(12,5)a =平行的单位向量是 2.与1(1,)2
m =-平行的单位向量是 。
题型12.向量的平行与垂直 1.已知(1,2)a =,(3,2)b =-,(1)k 为何值时,向量ka b +与3a b -垂直(2)k 为何值时向量ka b +与3a b -平行
2.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-。
题型13.三点共线问题
1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线。
2.设2(5),28,3()2
AB a b BC a b CD a b =
+=-+=-,求证:A B D 、、三点共线。
3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 。
4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值。
5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立
题型14.判断多边形的形状
1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 。
2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形。
3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形。
4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形。
题型15.平面向量的综合应用
1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行
2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标。
3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标。
4.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b 。
5.已知(,3)a m =,(2,1)b =-,(1)若a 与b 的夹角为钝角,求m 的范围;
(2)若a 与b 的夹角为锐角,求m 的范围。
6.已知(6,2)a =,(3,)b m =-,当m 为何值时,(1)a 与b 的夹角为钝角(2)a 与b 的夹角为锐角
7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标
8.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,
(1)若0AB AC ⋅=,求c 的值;(2)若5c =,求sin A 的值。