人教版数学新初一上下册全面知识点

合集下载

人教七上数学知识点

人教七上数学知识点

人教七上数学知识点
人教版七年级上册数学知识点有:
1.有理数:包括正数、负数、整数、分数、有理数、数轴、相反数等。

2.
3.代数式:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

4.
5.整式与分式:
① 单项式:由数和字母的乘积组成的代数式叫做单项式。

② 多项式:几个单项式的和,叫做多项式。

③ 升幂排列与降幂排列:把多项式按x的指数从大到小的顺序排列,叫做
降幂排列。

把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

④ 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

⑤合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理

一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。

二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。

三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。

四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。

五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。

六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。

以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。

人教版初一数学重点知识点总结

人教版初一数学重点知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

初一下数学知识点

初一下数学知识点

初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。

学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。

2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。

学生需要学会整式的合并同类项和去括号等基本运算。

3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。

4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。

5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。

以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。

人教版初一数学知识点总结

人教版初一数学知识点总结

千里之行,始于足下。

人教版初一数学知识点总结
人教版初一数学知识点主要包括以下内容:
一、数与式
1. 整数的概念及运算:正整数、零、负整数的概念、整数的加减法、整数的乘法、整数的除法、乘法消去律、除法和零的关系。

2. 小数的概念及运算:小数的定义、小数的加减法、小数的乘法、小数的除法、小数的大小比较、小数和整数进行运算。

3. 分数的概念及运算:分数的定义、分数的相等、分数的大小比较、分数的加减法、分数的乘法、分数的除法。

二、代数表达式
1. 代数表达式的概念及基本运算:代数表达式的定义、代数式的计算、同类项的合并、代数式的加减法、代数式的乘法。

2. 一元一次方程:方程的概念、解一元一次方程的方法、方程与解的关系、应用题。

三、图形与变换
1. 点、直线、线段的概念:点的位置、点的坐标、直线的定义、线段的定义。

第1页/共2页
锲而不舍,金石可镂。

2. 角的概念及度量:角的概念、角的度量、角的比较、角的运算。

3. 二维图形的概念及性质:三角形、四边形、五边形、六边形的概念和性质、正方形、长方形、平行四边形的性质。

4. 图形的位置与方向关系:平移、旋转、翻转的概念及性质。

四、数据与图表
1. 数据的收集与整理:数据的调查、数据的整理与分类、数据的图表表示。

2. 统计指标:平均数、中位数、众数等统计指标的概念及计算。

以上就是人教版初一数学知识点的主要内容总结,希望对你有所帮助。

初一人教版数学上册知识点总结

初一人教版数学上册知识点总结

初一人教版数学上册知识点总结篇1:初一数学知识点上册人教版初一数学知识点上册人教版图形的初步认识一、立体图形与平面图形1、长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

类似的,还有叫的三等分线。

五、余角和补角1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

人教初一数学上册知识点

人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。

比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。

②重要程度:在初一数学里超级重要。

它是学习后面各种计算、方程的基础。

很多数学概念和实际问题的解决都是基于有理数的运算。

③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。

④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。

2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。

单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。

②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。

③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。

④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。

二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。

②关联知识:和后面要学的无理数合起来就是实数了。

有理数的运算规则对整式运算也有启发意义。

③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。

关键点就是得牢记运算规则,多做练习。

④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。

考查方式从单纯的计算,到在应用题中的运算都有。

2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。

②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。

③重难点分析:整式的系数、次数概念容易混淆,这是难点。

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理

新人教版初中数学学问点重难点归纳整理分章节学问点归纳七年级上册第一章 有理数 1 正数和负数 2 有理数 3 有理数的加减法 4 有理数的乘除法 5 有理数的乘方具体内容1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a 不确定是负数,+a 也不确定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 a+b=0 a 、b 互为相反数. 4.确定值:(1)正数的确定值是其本身,0的确定值是0,负数的确定值是它的相反数;留意:确定值的意义是数轴上表示某数的点分开原点的间隔 ;(2) 确定值可表示为:或 ;确定值的问题常常分类探讨; 5.有理数比大小:〔1〕正数的确定值越大,这个数越大;〔2〕正数恒久比0大,负数恒久比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,确定值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;假设 a ≠0,那么a 的倒数是a1;假设ab=1 a 、b 互为倒数;假设ab=-1 a 、b 互为负倒数. 7. 有理数加法法那么:〔1〕同号两数相加,取一样的符号,并把确定值相加;〔2〕异号两数相加,取确定值较大的符号,并用较大的确定值减去较小的确定值; 〔3〕一个数及0相加,仍得这个数. 8.有理数加法的运算律:〔1〕加法的交换律:a+b=b+a ;〔2〕加法的结合律:〔a+b 〕+c=a+〔b+c 〕.9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b 〕. 10 有理数乘法法那么:〔1〕两数相乘,同号为正,异号为负,并把确定值相乘;〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定.11 有理数乘法的运算律:〔1〕乘法的交换律:ab=ba;〔2〕乘法的结合律:〔ab〕c=a〔bc〕;〔3〕乘法的安排律:a〔b+c〕=ab+ac .12.有理数除法法那么:除以一个数等于乘以这个数的倒数;留意:零不能做除数,.13.有理数乘方的法那么:〔1〕正数的任何次幂都是正数;〔2〕负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:〔1〕求一样因式积的运算,叫做乘方;〔2〕乘方中,一样的因式叫做底数,一样因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法那么:先乘方,后乘除,最终加减.第二章整式的加减1整式2整式的加减具体内容1.单项式:在代数式中,假设只含有乘法〔包括乘方〕运算。

人教版【初中数学】知识点总结-全面整理(超全)

人教版【初中数学】知识点总结-全面整理(超全)

人教版初中数学知识点总结目录七年级数学(上)知识点1第一章有理数2第二章整式的加减6第三章一元一次方程8第四章图形的认识初步10七年级数学(下)知识点12第五章相交线与平行线12第六章平面直角坐标系15第七章三角形16第八章二元一次方程组22第九章不等式与不等式组24第十章数据的收集、整理与描述25八年级数学(上)知识点27第十一章全等三角形27第十二章轴对称29第十三章实数31第十四章一次函数32第十五章整式的乘除与分解因式34八年级数学(下)知识点36第十六章分式37第十七章反比例函数39第十八章勾股定理40第十九章四边形41第二十章数据的分析45九年级数学(上)知识点46第二十一章二次根式46第二十二章一元二次根式47第二十三章旋转49第二十四章圆51第二十五章概率54九年级数学(下)知识点58第二十六章二次函数59第二十七章相似62第二十八章锐角三角函数63第二十九章投影与视图65七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释. 1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。

人教版初一数学上下册知识点全版

人教版初一数学上下册知识点全版

初一(七年级)上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

人教版初一数学上册知识点总结

人教版初一数学上册知识点总结

人教版初一数学上册知识点总结
一、数与代数
1. 有理数的加法和减法
- 有理数的定义
- 加法运算规则
- 减法运算规则
- 有理数的加减混合运算
2. 有理数的乘法和除法
- 乘法运算规则
- 除法运算规则
- 有理数的乘除混合运算
- 有理数的乘方
3. 代数表达式
- 字母表示数
- 单项式
- 多项式
- 代数式的简化和变形
4. 一元一次方程
- 方程的概念
- 解方程的基本方法
- 方程的应用问题
二、几何
1. 线段、射线、直线
- 线段的性质
- 射线的定义
- 直线的性质
2. 角
- 角的定义
- 角的分类
- 角的度量
3. 三角形
- 三角形的基本性质
- 等边三角形、等腰三角形的性质 - 三角形的内角和外角
4. 四边形
- 四边形的基本性质
- 平行四边形的性质
- 矩形、菱形、正方形的性质
三、统计与概率
1. 统计
- 数据的收集和整理
- 频数和频率
- 统计图表的绘制和解读
2. 概率
- 随机事件的概率
- 简单事件的概率计算
- 概率的直观理解
四、应用题
1. 利用数学知识解决实际问题
- 列方程解应用题
- 利用几何知识解决实际问题
- 统计与概率在实际问题中的应用
请注意,以上内容仅为人教版初一数学上册知识点的概要总结,具体每个知识点的详细解释和例题解析需要根据教材内容进行深入学习和理解。

教师和学生可以根据这个框架来组织教学和复习计划,确保对每个知识点都有充分的掌握。

新人教版七年级数学知识点归纳(上下册)

新人教版七年级数学知识点归纳(上下册)

一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

初一数学上册、下册重要知识点总结

初一数学上册、下册重要知识点总结

初一数学上册、下册重要知识点总结初一数学上册、下册重要知识点总结:初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。

为帮助大家更好地掌握七年级数学每个章节的重要内容,小编整理了一些知识点以供学习复习参考!七年级数学(上)知识点第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an 或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

(完整版)人教版初一数学知识点总结

(完整版)人教版初一数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初一数学上下册知识点全版

初一数学上下册知识点全版

初一七年级上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程;2.一元一次方程的标准形式:ax+b=0x是未知数,a、b是已知数,且a≠0;3.条件:一元一次方程必须同时满足4个条件:1它是等式;2分母中不含有未知数;3未知数最高次项为1;4含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立;等式的性质二:等式两边同时扩大或缩小相同的倍数0除外,等式仍然成立;等式的性质三:等式两边同时乘方或开方,等式仍然成立;解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立;5.合并同类项1依据:乘法分配律2把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3合并时次数不变,只是系数相加减;6.移项1含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边;2依据:等式的性质3把方程一边某项移到另一边时,一定要变号;7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解;一般解法:1去分母:在方程两边都乘以各分母的最小公倍数;2去括号:先去小括号,再去中括号,最后去大括号;记住如括号外有减号的话一定要变号3移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4合并同类项:把方程化成ax=ba≠0的形式;5系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程;9.方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程;2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程;10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.2画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:12.做一元一次方程应用题的重要方法:1认真审题审题2分析已知和未知量3找一个合适的等量关系4设一个恰当的未知数5列出合理的方程列式6解出方程解题7检验8写出答案作答一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题初一七年级上册数学知识点:有理数本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在;重点利用有理数的运算法则解决实际问题,体验数学发展的一个重要原因是生活实际的需要;一、目标与要求1.了解正数与负数是从实际需要中产生的;2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数;3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;4.了解倒数概念,会求给定有理数的倒数;5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法二、重点正、负数的概念;正确理解数轴的概念和用数轴上的点表示有理数;有理数的加法法则;除法法则和除法运算;三、难点负数的概念、正确区分两种不同意义的量;数轴的概念和用数轴上的点表示有理数;异号两数相加的法则;根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定;四、知识框五、知识点、概念总结1.正数:比0大的数叫正数;2.负数:比0小的数叫负数;3.有理数:1凡能写成q/pp,q为整数且p不等于0形式的数,都是有理数;正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数;注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2有理数的分类:4.数轴:数轴是规定了原点、正方向、单位长度的一条直线;5.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2相反数的和为0等价于a+b=0等价于a、b互为相反数;6.绝对值:1正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2绝对值可表示为:绝对值的问题经常分类讨论;7.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0大,负数永远比0小;3正数大于一切负数;4两个负数比大小,绝对值大的反而小;5数轴上的两个数,右边的数总比左边的数大;6大数-小数>0,小数-大数<08.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b 互为负倒数;9. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数;10.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c;11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b;12.有理数乘法法则:1两数相乘,同号为正,异号为负,并把绝对值相乘;2任何数同零相乘都得零;3几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定;13. 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac ;14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义;15.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:-an=-an或a-bn=-b-an ,当n 为正偶数时:-an =an 或a-bn=b-an ;16.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;17.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法;18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位;19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字;20.混合运算法则:先乘方,后乘除,最后加减;参考教材:初中数学七年级人教版练习:1.若密云水库的水位比标准水位高出3cm记为+3cm,某月的水位记录中显示,1日水位为-5cm,2日水位为-1cm,3日水位为+4cm,则日与2日水位相差6cm 日与3日水位相差1cm 日与3日水位相差5cm D.均不正确2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:最接近标准质量的是_________号篮球;质量最大的篮球比质量最小的篮球重____________克.3.判断:1最小的自然数是1;2最小的整数是1;3一个有理数的倒数等于它本身,则这个数是1; 初一七年级上册数学知识点:整式的加减初一七年级上册数学知识点:整式的加减是由巨人中考网整理的,供大家参考,下面来看一下初一七年级上册数学知识点:整式的加减吧整式是初中数学的重要内容,也是考试常考的知识点;在本章学习中,学生可以通过小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识;一、目标与要求1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系;2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号;在准确判断、正确合并同类项的基础上,进行整式的加减运算;3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立;4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来;二、重点单项式及其相关的概念;多项式及其相关的概念;去括号法则,准确应用法则将整式化简;三、难点区别单项式的系数和次数;区别多项式的次数和单项式的次数;括号前面是“-”号去括号时,括号内各项变号容易产生错误;四、知识框架初一七年级上册数学知识点:整式的加减五、知识点、概念总结1.单项式:在代数式中,若只含有乘法包括乘方运算;或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式单独的一个数字或字母也是单项式;2.系数:单项式中的数字因数叫做这个单项式的系数;所有字母的指数之和叫做这个单项式的次数;任何一个非零数的零次方等于1.3.多项式:几个单项式的和叫多项式;4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.常数项:不含字母的项叫做常数项;6.多项式的排列1把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;2把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列;7.多项式的排列时注意:1由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动;2有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列;b.确定按这个字母向里排列,还是向外排列;3整式:单项式和多项式统称为整式;8. 多项式的加法:多项式的加法,是指多项式的同类项的系数相加即合并同类项;9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项;10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变;11.掌握同类项的概念时注意:1判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同;2同类项与系数无关,与字母排列的顺序也无关;3所有常数项都是同类项;12.合并同类项步骤:1准确的找出同类项;2逆用分配律,把同类项的系数加在一起用小括号,字母和字母的指数不变;3写出合并后的结果;13.在掌握合并同类项时注意:1如果两个同类项的系数互为相反数,合并同类项后,结果为0;2不要漏掉不能合并的项;3只要14.整式的拓展整式的乘除:重点是整式的乘除,尤其是其中的乘法公式;乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号或去括号时,括号中符号的处理是另一个难点;添括号或去括号是对多项式的变形,要根据添括号或去括号的法则进行;在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除;整式四则运算的主要题型有:1单项式的四则运算此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算;2单项式与多项式的运算此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算;参考教材:初中数学七年级人教版练习1、如图1,若D是AB中点,AB=4,则DB=_____________;2、如果∠α=29°35′,那么∠α的余角的度数为______________;3、如图2,从家A上学时要走近路到学校B,最近的路线为填序号,理由是_______________________________________________ ;4、将一个直角三角形绕它的直角边旋转一周得到的几何体是以上“初一七年级上册数学知识点:整式的加减”是由巨人中考网整理的,希望可以帮助大家,更多的精彩内容请查看巨人中考网;不再有同类项,就是结果可能是单项式,也可能是多项式;初一七年级上册数学知识点:几何图形初步初一七年级上册数学知识点:几何图形初步是由巨人中考网整理的,供大家参考,下面来看一下初一七年级上册数学知识点:几何图形初步吧本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形;通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系;在此基础上,认识一些简单的平面图形——直线、射线、线段和角;一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系;2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力;3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性;二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点;四、难点立体图形与平面图形之间的转化是难点;探索点、线、面、体运动变化后形成的图形是难点;画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点;五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形;从实物中抽象出的各种图形统称为几何图形;有些几何图形的各部分不在同一平面内,叫做立体图形;有些几何图形的各部分都在同一平面内,叫做平面图形;虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的;2.几何图形的分类:几何图形一般分为立体图形和平面图形;3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形;求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点;常用直线与X轴正向的夹角叫直线的倾斜角或该角的正切称直线的斜率来表示平面上直线对于X轴的倾斜程度;4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线;5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段;线段有如下性质:两点之间线段最短;6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离;7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a;其中AB表示直线上的任意两点;8.直线、射线、线段区别:直线没有距离;射线也没有距离;因为直线没有端点,射线只有一个端点,可以无限延长;9.角:具有公共端点的两条不重合的射线组成的图形叫做角;这个公共端点叫做角的顶点,这两条射线叫做角的两条边;一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角;所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边;10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角;这个公共端点叫做角的顶点,这两条射线叫做角的两条边;11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角;所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边12.角的符号:角的符号:∠五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形;从实物中抽象出的各种图形统称为几何图形;有些几何图形的各部分不在同一平面内,叫做立体图形;有些几何图形的各部分都在同一平面内,叫做平面图形;虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的;2.几何图形的分类:几何图形一般分为立体图形和平面图形;3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形;求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点;常用直线与X轴正向的夹角叫直线的倾斜角或该角的正切称直线的斜率来表示平面上直线对于X轴的倾斜程度;4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线;5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段;线段有如下性质:两点之间线段最短;6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离;7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点;线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a;其中AB表示直线上的任意两点;8.直线、射线、线段区别:直线没有距离;射线也没有距离;因为直线没有端点,射线只有一个端点,可以无限延长;9.角:具有公共端点的两条不重合的射线组成的图形叫做角;这个公共端点叫做角的顶点,这两条射线叫做角的两条边;一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角;所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边;10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角;这个公共端点叫做角的顶点,这两条射线叫做角的两条边;11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角;所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边12.角的符号:角的符号:∠初一七年级上册数学知识点:几何图形初步13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小;在动态定义中,取决于旋转的方向与角度;角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种;以度、分、秒为单位的角的度量制称为角度制;此外,还有密位制、弧度制等;锐角:大于0°,小于90°的角叫做锐角;直角:等于90°的角叫做直角;钝角:大于90°而小于180°的角叫做钝角;平角:等于180°的角叫做平角;优角:大于180°小于360°叫优角;劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角;周角:等于360°的角叫做周角;负角:按照顺时针方向旋转而成的角叫做负角;正角:逆时针旋转的角为正角;0角:等于零度的角;余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角;等角的余角相等,等角的补角相等;对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角;两条直线相交,构成两对对顶角;互为对顶角的两个角相等;还有许多种角的关系,如内错角,同位角,同旁内角三线八角中,主要用来判断平行14.几何图形分类1立体几何图形可以分为以下几类:第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:球体;此分类只包含球一种几何体,体积公式V=4πR3/3,其他不常用分类:圆台、棱台、球冠等很少接触到;大多几何体都由这些几何体组成;2平面几何图形如何分类a.圆形b.多边形:三角形分为一般三角形,直角三角形,等腰三角形,等边三角形、四边形分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形、五边形、六……注:正方形既是矩形也是菱形参考教材:初中数学七年级人教版初一数学下的知识点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解即公共解.4.二元一次方程组的解法:1代入消元法;2加减消元法;3注意:判断如何解简单是关键.※5.一次方程组的应用:1对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;2对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;3对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式组。

初一数学重点难点总结 人教版知识点归纳

初一数学重点难点总结 人教版知识点归纳

初一数学重点难点总结人教版知识点归纳人教版初一数学重要知识点1.有理数:(1)凡能写成形式的数,都是有理数正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数注意: 0即不是正数,也不是负数;-a不一定是负数, +a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.2.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+ b=0?a、b互为相反数.3.绝对值:(1)正数的绝对值是其本身, 0的绝对值是0 ,负数的绝对值是它的相反数;注意:绝对值的意义是数轴.上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小:(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小(5)数轴上的两个数,右边的数总比左边的数大:(6)大数-小数0 ,小数-大数0.5.互为倒数:乘积为1的两个数互为倒数;注意: 0没有倒数;若a0 ,那么的倒数是;若ab=1?a、b互为倒数;若ab=- 1?a、b互为负倒数.初一数学必备知识一、乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同极运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行二、科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

(完整版)人教版初一数学上册知识点归纳总结

(完整版)人教版初一数学上册知识点归纳总结

第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理人教版七年级数学上下册点大全1.1正数和负数1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、数0既不是正数,也不是负数,0是正数与负数的分界。

4、在同一个问题中,分别用正数与负数表示的量具有相反的意义。

1.2.1有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;?不是有理数;(2)(3)a 1(1(2(31,2,323;4561(1)(2)2示a 和-a ,我们说这两点关于原点对称。

3、a 和-a 互为相反数。

0的相反数是0,正数的相反数是负数,负数的相反数是正数。

相反数是它本身的数只有0。

4、在任意一个数前面添上“-”号,新的数就表示原数的相反数。

5、若两个数a 、b 互为相反数,就可以得到a+b=0;反过来若a+b=0,则a 、b 互为相反数。

6、多重符号的化简由“-”的个数来定:若“-”的个数为偶数,化简结果为正数;若“-“的个数为奇数,化简结果为负数。

1.2.4绝对值1、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

2、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。

0是绝对值最小的数。

3、绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; 4、0a 1a a>⇔=;0a 1a a <⇔-=;5、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0。

6、互为相反数的两个数的绝对值相等。

绝对值相等的两个数可能是互为相反数或者相等。

7(28②1(2(323(1(24②符加。

1、2 1(2)任何数同零相乘都得零;2、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数。

3、乘积为1的两个数互为倒数;(注意:0没有倒数;若ab=1?a 、b 互为倒数。

)等于本身的数汇总:①相反数等于本身的数:0②倒数等于本身的数:1,-1③绝对值等于本身的数:正数和0④平方等于本身的数:0,1⑤立方等于本身的数:0,1,-1.4、有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。

5、几个不是偶的数相乘,积的符号由负因式的个数决定。

负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。

6、几个数相乘,如果其中有因数为0,积等于0。

7、有理数乘法的运算律:(1)一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

乘法的交换律:ab=ba;(2)一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

乘法的结合律:(ab)c=a(bc);(3)一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

乘法的分配律:a(b+c)=ab+ac.1.4.2有理数的除法1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

2、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

3、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法4(31、求n叫做指数。

2、a n345、10678(1(31、10,n21234、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。

5、解题技巧:①近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。

②当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数。

6、a×10n中有效数字是指a的有效数字。

第二章整式的加减2.1.1单项式1、都是数或字母的积的式子叫做单项式。

(单独的一个数或一个字母也是单项式。

)2、单项式中的数字因数叫做这个单项式的系数。

3、研究单项式系数时应注意的问题:(1)单项式表示数字与字母相乘时,通常把数字写在前面;(2)当单项式的系数是带分数时,要把带分数化成假分数;(3)当单项式的系数是1或—1时,“1”通常省略不写;(4)圆周率∏是常数;(5)单项式的系数应包括它前面的“正”、“负”符号。

4、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

(单独的一个数的次数是0.)2.1.2多项式1、几个单项的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

(多项式的每一项都包含它前面的符号。

)2、多项式里次数最高项的次数,叫做这个多项式的次数。

3、单项式与多项式统称整式。

2.2.1整式的加减(合并同类项)1.)23变。

1234123法。

45.6. 3.1.2等式的性质1、用等号“=”表示相等关系的式子叫做等式。

2、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b ,那么a ±c=b ±c.3、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b ,那么ac=bc;如果a=b 且c ≠0,那么cb c a . 4运用等式的性质时要注意三点:①等式两边都要参加运算,并且是作同一种运算;②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;③等式两边不能都除以0,即0不能作除数或分母。

3.2解一元一次方程(一)——合并同类项与移项1、合并同类项的依据:乘法分配律。

合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a(a是常数)的形式。

2、把等式一边的某项变号后移到另一边,叫做移项。

3.移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。

3.3解一元一次方程(二)——去括号与去分母1、方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

2、顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

3、工作总量=工作效率×工作时间。

41234567?123图形。

4567。

8910①“141型”,中间一行4个作侧面,上下两个各作为上下底面,•共有6种基本图形。

②“132型”,中间3个作侧面,共3种基本图形。

③“222型”,两行只能有1个正方形相连。

④、“33型”,两行只能有1个正方形相连。

11、经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

13、射线和线段都是直线的一部分。

14、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

15、两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)16、连接两点间的线段的长度,叫做这两点的距离。

17、一般地,用一个大写字母表示一个点,用两个大写字母(也就是两个点)或者一个小写字母来表示直线。

18、有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

19、把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

20、角的度、分、秒是60进制的。

21、以度、分、秒为单位的角的度量制,叫做角度制。

22、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

23、如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

24、如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

25第五章12(1(23(1(24(1(2(3567最短)8“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。

9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。

这样的两个角叫做内错角。

10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。

这样的两个角叫做同位角。

11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。

这样的两个角叫做同旁内角。

12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。

13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。

14、平行线:(1)定义:在平面内不相交的两条直线,叫做平行线。

(2)表示方法:用符号“∥”表示平行。

(3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。

(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

(5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。

判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。

判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。

判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。

(615(1(2(3(416(一)有序数对:有顺序的两个数a与b组成的数对:1、记作(a,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系:1、构成坐标系的各种名称;2、各种特殊点的坐标特点。

(三)坐标方法的简单应用:1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:按边分等腰三角形:有两条边相等的三角形(腰和底不相等的三角形)有三条边相等的三角形(腰和底相等的三角形)3、三角形的组成:三角形有三个边(组成三角形的线段叫做三角形的边)、三个内角(相邻两边所组成的角叫做三角形的内角)、三个顶点(两边的交点叫做三角形的顶点)、三个外角(三角形的一边与另一边延长线所组成的角叫做三角形的外角)。

相关文档
最新文档