【志鸿优化设计】2014届高考数学一轮复习 第11章 概率与统计11.2古典概型练习(含解析)苏教版
【志鸿优化设计】(湖南专用)高考数学一轮复习 第十一章概率与统计11.5二项分布及其应用课时作业 理

课时作业58 二项分布及其应用一、选择题1.某道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条路上行驶时,三处都不停车的概率是( ).A.35192B.25192C.35576D.651922.某人射击一次击中目标的概率为35,经过3次射击,此人至少有两次击中目标的概率为( ).A.81125B.54125C.36125D.271253.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ).A.12B.512C.14D.164.一位国王的铸币大臣在每箱100枚的硬币中各掺入一枚劣币,国王怀疑大臣作弊,他用两种方法来检测,方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚,国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2,则( ).A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能5.电灯泡使用时数在1 000小时以上的概率为0.2,则3只灯泡在使用1 000小时后最多有1只坏了的概率是( ).A .0.401B .0.410C .0.014D .0.1046.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( ).A.110B.210C.810D.9107.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ).A.16625B.96625C.624625D.4625二、填空题8.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________. 9.如图,EFGH 是一个以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内,”则(1)P (A )=__________;(2)P (B |A )=__________. 10.设甲、乙两人每次射击命中目标的概率为34和45,且各次射击相互独立.按甲、乙、甲……的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时甲射击了两次的概率是__________.三、解答题11.(2012天津高考)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X, Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望E(ξ).参考答案一、选择题1.A 解析:三处都不停车的概率是P (ABC )=2560×3560×4560=35192. 2.A3.B 解析:记两个零件中恰有一个一等品的事件为A ,则P (A )=23×14+13×34=512. 4.B 解析:p 1=1-0.9910=1-0.980 15,p 2=1-2992100C C ⎛⎫ ⎪⎝⎭5=1-0.985,∴p 1<p 2.5.D 解析:3只灯泡在1 000小时后最多有1只坏了这个事件,也就是3只灯泡中至少有2只灯泡的使用时数在1 000小时以上,相当于3次独立重复试验有2次或3次发生的概率,故P =23C ×0.22×(1-0.2)+33C ×0.23=0.104. 6.A 解析:设A 为“第一次失败”,B 为“第二次成功”,则P (A )=910, P (B |A )=19, ∴P (AB )=P (A )P (B |A )=110. 7.B 解析:据题意取出两球号码之积是4的倍数的情况为(1,4),(2,4),(3,4),(2,6),(4,6),(4,5)共6种情况,故中奖的概率为266C =25,故4人中有3人中奖的概率为34C ⎝ ⎛⎭⎪⎫253×35=96625. 二、填空题8.35 解析:设该队员每次罚球的命中率为p ,则1-p 2=1625,解得p =35. 9.2π 14解析:该题为几何概型,圆的半径为1,正方形的边长为2, ∴圆的面积为π,正方形面积为2,扇形面积为π4. 故P (A )=2π, P (B |A )=P (A ∩B )P (A )=12π2π=14. 10.19400解析:停止射击时甲射击了两次,分两种情况:①甲未中、乙未中、甲命中的概率是⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-45×34=380; ②甲未中、乙未中、甲未中、乙命中的概率是⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫1-34×45=1100.停止射击时甲射击了两次的概率是380+1100=19400. 三、解答题11.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=4C i⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=24C ⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=34C ⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+44C ⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能取值为0,2,4.由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×27+2×81+4×81=14881.。
【志鸿优化设计】2014届高考数学一轮复习 第11章 概率与统计11.4抽样方法练习(含解析)苏教版

课时作业55 抽样方法一、填空题1.某学校从高三年级学生中随机抽取90人做抽样调查,发现其中有20人在学期初从高三年级学生随机抽取100人的抽样调查中也被抽到过,则该校高三年级学生人数为__________.2.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的抽样方法是__________.3.(2012某某高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生.4.(2012某某某某高三期末)某年级有三个班级,人数分别为45,50,55,为加强班级学生某某化管理,拟就某项决策进行问卷调查,按分层抽样的方法抽取30人,则各个班级被抽取的人数分别为__________.5.(2012某某某某高三一调)用分层抽样的方法从某高中学校学生中抽取一个容量为55的样本参加问卷调查,其中高一年级、高二年级分别抽取10人,25人.若该校高三年级共有学生400人,则该校高一和高二年级的学生总数为__________人.6.某高中在校学生2 000人,高一年级与高二年级人数相同并都比高三年级多1人.为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动.每人都参加而且只参加了.为了了解学生对本次活动其中a∶b∶c=2∶3∶5,全校参加登山的人数占总人数的5的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参加跑步的学生中应抽取__________人.7.最近网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,某校高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为__________.8.某车间新出厂3 000件衣服,为检查质量是否合格,现采用系统抽样的方法从中抽取150件进行检查,若第一组抽出的是11,则第六十一组抽出的为______.9.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若从第5组抽出的为22,则从第8组抽出的应是__________.若用分层抽样方法,则在40岁以下年龄段应抽取__________人.二、解答题10.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线,为检验这批产品的质量,决定采用分层抽样的方法进行抽样,已知在甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列,求乙生产线生产的产品数.11.某公路某某有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.12.某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x (2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率.参考答案一、填空题1.450 解析:设该校高三年级学生人数为x ,因为是随机抽样,所以两次抽取的人数与总人数的比例是相等的,故有2090=100x ,解得x =450. 2.系统抽样法 解析:因为是按一定规则进行抽样,所以是系统抽样法.3.15 解析:由题意可得高二年级应该抽取学生50×33+3+4=15(名). 4.9,10,11 解析:按比例分配得,各个班级被抽取的人数分别为30×45150=9,30×50150=10,30×55150=11. 5.700 解析:由题意知,高一、高二总共抽取了10+25=35(人),从而高三抽取的为55-35=20(人),从而高一、高二年级学生总数为400×3520=700(人). 6.36 解析:∵登山的占总数的25,故跑步的占总数的35,又跑步中高二年级占32+3+5=310, ∴高二年级跑步的占总人数的35×310=950. 设从高二年级参加跑步的学生中应抽取x 人,由950=x 200得x =36. 7.57 解析:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成以3为首项,6为公差的等差数列,故最大编号为3+9×6=57.8.1 211 解析:每组件数:d =3 000150=20,这些组成以11为首项,20为公差的等差数列.故a 61=11+60×20=1 211.9.37 20 解析:由系统抽样知,在第5组抽出的为22而分段间隔为5,则在第6组抽取的应为27,在第7组抽取的应为32,在第8组抽取的应为37.由图知40岁以下的人数为100,则抽取的比例为40200=15, ∴100×15=20为抽取人数. 二、解答题10.解:因为在甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列,则可设三项分别为a -x ,a ,a +x ,故样本容量为3a ,因而每个个体被抽到的概率为3a 16 800=a 5 600.所以乙生产线生产的产品数为a a 5 600=5 600. 11.解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36. 抽取的工程师人数为n 36×6=n 6,技术员的人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为n +1时,总体容量为35人,系统抽样的间隔为35n +1, 因为35n +1必须是整数,所以n 只能取6,即样本容量n =6. 12.解:(1)由x 900=0.16, 解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12. ∴应在第三批次中抽取12名教职工.(3)设第三批次中女教职工比男教职工多为事件A ,第三批次女教职工和男教职工数记为数对(y ,z ),由(2)知y +z =200(y ,z N ,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个,而事件A 包含的基本事件有:(101,99),(102,98),(103,97),(104,96),共4个,∴P (A )=49.。
【志鸿优化设计】(湖北专用)2014届高考数学一轮复习 第十一章概率与统计11.7随机抽样教学案 理

11.7 随机抽样考纲要求1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.1.总体、个体、样本、样本容量的概念统计中所考察对象的全体构成的集合看做总体,构成总体的每个元素作为个体,从总体中抽取的__________所组成的集合叫做样本,样本中个体的____叫做样本容量.2.简单随机抽样一般地,设一个总体含有N个个体,从中逐个______地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的__________,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样的方法有两种:______和________.3.系统抽样当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后________________,从每一部分中抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样.4.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照__________,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( ).A.①用分层抽样法,②用简单随机抽样法B.①用简单随机抽样法,②用系统抽样法C.①用系统抽样法,②用分层抽样法D.①用系统抽样法,②用系统抽样法2.为确保食品安全,质检部门检查一箱装有1 000件包装食品的质量,抽查总量的2%.在这个问题中下列说法正确的是( ).A.总体是指这箱1 000件包装食品B.个体是一件包装食品C.样本是按2%抽取的20件包装食品D.样本容量为203.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的方法是( ).A.分层抽样法 B.抽签法C.随机数法 D.系统抽样法4.(2012湖北襄阳普通高中高三调研)某市有大型超市200家、中型超市400家、小型超市1 400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,则应抽取中型超市__________家.5.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是__________.一、简单随机抽样【例1】某大学为了支援我国西部教育事业,决定从2012年应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数法设计抽样方案.方法提炼1.一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否容易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.2.随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字记起,每三个或每四个作为一个单位,按事先确定的读数方向选取,有超过总体号码或出现重复号码的数字舍去.请做演练巩固提升1二、系统抽样【例2】将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ).A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9方法提炼1.当总体中的个体数较多,并且没有明显的层次差异时,可用系统抽样的方法,把总体分成均衡的几部分,按照预先制定的规则,从每一部分抽取一个个体,得到需要的样本.2.在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.请做演练巩固提升2三、分层抽样【例3-1】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ).A.6 B.8 C.10 D.12【例3-2】为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.方法提炼分层抽样适用于总体是由差异明显的几部分组成的情况,这样更能反映总体的情况,是等可能抽样.当各层抽取的个体数目确定后,每层中的样本抽取可用简单随机抽样或系统抽样的方法.用分层抽样法抽样的关键是确定抽样比,抽样比=样本容量总体中的个体数=每层抽取的个体数该层的个体数.用抽样比乘以该层的个体数等于在该层中抽取的个体数.请做演练巩固提升3,4要重视分层抽样的抽样比【典例】 (2012江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生.解析:根据分层抽样的特点,可得高二年级学生人数占学生总人数的310,因此在样本中,高二年级的学生所占比例也应该为310,故应从高二年级抽取50×310=15(名)学生.答案:15答题指导:1.看清总体是按什么样的标准抽样.2.计算各层的个数和总数的比,按各层个体数占总体数的比确定各层应抽取个体数.1.下面的抽样方法是简单随机抽样的是( ).A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验2.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( ).A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,473.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.4.(2012浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为__________.5.(2012湖北高三高考模拟重组预测试卷)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,……,第十组46~50号.若在第三组中抽得号码为12的学生,则在第八组中抽得号码为__________的学生.参考答案基础梳理自测知识梳理1.一部分个体 数目2.不放回 机会都相等 抽签法 随机数法3.按照预先定出的规则4.(1)一定的比例基础自测1.A 解析:①中具有明显的层次差异,应采用分层抽样,②中总体中的个体数较少,宜采用简单随机抽样.2.D 解析:由从总体中抽取样本的意义知D 是正确的.3.D 解析:由系统抽样的特点可知选D.4.20 解析:∵大型超市有200家、中型超市有400家、小型超市有1 400家, ∴共有超市200+400+1 400=2 000(家).∵按分层抽样方法抽取一个容量为100的样本,∴每个个体被抽到的概率是1002 000=120. ∴中型超市要抽取400×120=20(家). 5.2 解析:由系统抽样特点知应剔除2个.考点探究突破【例1】 解:抽签法:第一步,将18名志愿者编号,编号为1,2,3, (18)第二步,将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签. 第三步,将18个号签放入一个不透明的盒子里,充分搅匀.第四步,从盒子中逐个抽取6个号签,并记录上面的编号.第五步,所得号码对应的志愿者,就是志愿小组的成员.随机数法:第一步,将18名志愿者编号,编号为01,02,03, (18)第二步,在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读.第三步,从数7开始,向右读,每次取两位,凡不在01~18中的数或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步,找出以上号码对应的志愿者,就是志愿小组的成员.【例2】 B 解析:根据系统抽样,将600名学生分成50组,每组12人,因30012=25,故在第Ⅰ营区抽中25人,从301到492含有19212=16组,495为第25+16+1=42组中第三个,故第Ⅱ营区抽取17人,故三个营区抽取的人数依次为25,17,8.【例3-1】 B 解析:设在高二年级的学生中抽取x 人,则有630=x 40,解得x =8. 【例3-2】 解:(1)由题意可得x 18=236=y 54,所以x =1,y =3. (2)记从高校B 抽取的2人为b 1,b 2,从高校C 抽取的3人为c 1,c 2,c 3,则从高校B ,C 抽取的5人中选2人作专题发言的基本事件有(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)共10种.设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有(c 1,c 2),(c 1,c 3),(c 2,c 3)共3种.因此P (X )=310. 故选中的2人都来自高校C 的概率为310. 演练巩固提升1.D 解析:A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次差异;D 是简单随机抽样.2.D 解析:利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10.3.2 解析:抽样比为64+12+8=14,故在丙组中应抽取的城市数为8×14=2. 4.160 解析:根据分层抽样的特点,此样本中男生人数为560560+420×280=160. 5.37 解析:不妨设在第一组中随机抽到的号码为x ,则在第三组中应抽出的号码为10+x =12,即x =2,则第八组应抽出的号码是7×5+2=37.。
近年高考数学一轮复习第十一章概率与统计11.2古典概型与几何概型练习理(2021年整理)

2019高考数学一轮复习第十一章概率与统计11.2 古典概型与几何概型练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第十一章概率与统计11.2 古典概型与几何概型练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第十一章概率与统计11.2 古典概型与几何概型练习理的全部内容。
§11.2古典概型与几何概型考纲解读分析解读 1.掌握在古典概型条件下,能应用任何事件的概率公式解决实际问题。
2。
通过实例,理解几何概型及其概率计算公式,并会运用公式求解一些简单的有关概率的问题.本节在高考中单独命题时,通常以选择题、填空题形式出现,分值约为5分,属中低档题。
随机事件,古典概型与随机变量的分布列,期望与方差等综合在一起考查时一般以解答题形式出现,分值约为12分,属中档题。
五年高考考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A. B. C. D。
答案C2。
(2015广东,4,5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A. B. C。
D.1答案B3.(2014陕西,6,5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为()A。
B. C。
D.答案C4。
(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)==.所以,事件A发生的概率为.(2)随机变量X的所有可能取值为0,1,2。
《志鸿优化设计》2014届高考数学(苏教版)一轮复习教学案:第11章概率与统计11.3几何概型

11.3 几何概型考纲要求了解几何概型的意义,会求与几何概型相交汇的线性规划、圆及其他图形的概率.1.几何概型的概念对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理的随机试验,称为几何概型.2.几何概型的特点(1)无限性:试验中所有可能出现的结果(基本事件)有______个;(2)等可能性:每个基本事件出现的________.3.几何概型的计算公式一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度. 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积.1.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时看见的是红灯的概率是__________.2.(2019江苏泰州期末)已知ABCD 是半径为2的圆的内接正方形,现在圆的内部随机取一点P ,点P 落在正方形ABCD 内部的概率为__________.3.(2019江苏连云港测试卷)设不等式组⎩⎪⎨⎪⎧ 0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是__________.4.已知正方体ABCDA 1B 1C 1D 1内有一个内切球O ,则在正方体ABCDA 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是__________.5.已知直线y =x +b ,b ∈ [-2,3],则直线在y 轴上的截距大于1的概率是__________. 古典概型与几何概型的区别是什么? 提示:古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限个.一、与长度、角度有关的几何概型问题【例1】 (2019江苏南京金陵中学预测卷)设函数f (x )=x 2-3x -4,x ∈ [-3,6],则对任意x 0∈ [-3,6],使f (x 0)≤0的概率为__________.方法提炼解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算.事实上,当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.请做针对训练1二、与面积有关的几何概型【例2】 (2019江苏高考名校名师押题卷)甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人15分钟,过时即可离去.则两人能会面的概率是__________. 方法提炼几何概型的概率计算公式中的“测度”,既包含面积,又包含线段的长度、几何体的体积等,而且这个“测度”只与“大小”有关,而与形状和位置无关.请做针对训练2三、与体积有关的几何概型【例3】在铸铁过程中,经常出现铸件里面混入气泡的情况,但是如果在加工过程中气泡不暴露在表面,对产品就不会造成影响,否则产品就会不合格.在一个棱长为4 cm的正方体铸件中不小心混入一个半径为0.1 cm的球形气泡,在加工这个铸件的过程中,如果将铸件去掉0.5 cm的厚度后产品外皮没有麻眼(即没有露出气泡),产品就合格,问产品合格的概率是多少?方法提炼解决几何概型问题,当考察对象为点,点的活动范围在空间区域内时,常用体积比计算.请做针对训练3从近三年高考试题来看,对几何概型考查较少,属中档题,主要考查基础知识.几何概型的基本事件可以抽象为点,尽管这些点是无限的,但它们占据的区域是有限的,根据等可能性,这些点落在某区域的概率与该区域的测度成正比,而与该区域的位置和形状无关.1.某人欲从某车站乘车出差,已知该站发往各站的客车均为每小时一班,此人等车时间不多于10分钟的概率为________.2.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于__________.3.已知三棱锥SABC,在三棱锥内任取一点P,使得V P ABC<12V SABC的概率是__________.参考答案基础梳理自测知识梳理2.(1)无限 (2)可能性相等基础自测 1.25 解析:以时间的长短进行度量,故P =3075=25. 2.2π 解析:利用几何概型计算公式即得. 3.4-π4D 解析:设事件A :点到坐标原点的距离大于2. 如图,P (A )=S 2S =S -S 1S =4-π4. 4.π6 解析:设正方体棱长为a ,则正方体的体积为a 3,内切球的体积为43π×⎝⎛⎭⎫a 23=π6a 3,故M 在球O 内的概率为π6a 3a 3=π6. 5.25解析:区域D 为区间[-2,3],d 为区间(1,3],而两个区间的长度分别为5,2.故所求概率P =25. 考点探究突破【例1】 59解析:函数f (x )=x 2-3x -4=(x +1)(x -4), 因此当x ∈[-1,4]时,f (x )≤0,所以对任意x 0∈[-3,6],使f (x 0)≤0的概率为4-(-1)6-(-3)=59. 【例2】 716解析:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图所示的平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形区域,而事件A “两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得P (A )=S A S =602-452602=3 600-2 0253 600=716. 所以两人能会面的概率是716. 【例3】 解:记产品合格为事件A ,试验的全部结果所构成的区域是棱长为4 c m 的正方体的体积.由条件可以发现要使产品合格,球心距离正方体表面要0.6 c m ,所以球心必须在正方体内的一个棱长为2.8 c m 的正方体内部才符合题意,所以构成事件A 的区域是棱长为2.8 c m 的正方体的体积,这样产品合格的概率P (A )=2.8343=0.343. 演练巩固提升针对训练1.16解析:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,由几何概型的概率公式,得P (A )=60-5060=16. ∴所求的概率为16. 2.12 解析:这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为S △ABE S 矩形ABCD=12·|AB |·|AD ||AB |·|AD |=12. 3.78 解析:若V P ABC =12V SABC ,则P 点到面ABC 的距离与S 点到面ABC 的距离之比为12. 如图所示,A ′,B ′,C ′分别为SA ,SB ,SC 的中点,若P 点在△A ′B ′C ′内(包括边界),则V P ABC =12V SABC .若P 在三棱台A ′B ′C ′ABC 内,则V P ABC <12V SABC ,因为V SA ′B ′C ′V SABC=18,故所求概率为78.。
【志鸿优化设计】2014届高考数学一轮复习第11章概率与统计11.5总体分布的估计、总体特征数的估计

__________ .
5.(2012 江苏南京高三一模 ) 某校共有 400 名学生参加了一次数学竞赛,竞赛成绩的频
率分布直方图如图所示 ( 成绩分组为 [0,10) , [10 ,20) ,…, [80,90) , [90,100]) .则在本 次竞赛中,得分不低于 80 分的人数为 __________ .
课时作业 56 总体分布的估计、总体特征数的估计
一、填空题
1.从一堆苹果中任取 10 只,称得它们的质量如下 ( 单位:克 ) :
125 120 122 105 130 114 116 95 120 134
则样本数据落在 [114.5,124.5] 内的频率为 __________ .
2. (2012 江苏南京五中第一次月考 ) 某老师从星期一到星期五收到的信件数分别为 10,6,8,5,6 ,则该组数据的方差 s2= __________.
= 6.52 ,
6+ 10+ a+ b+ 4= 50,
解得 a= 15, b= 15.
设“该学校学生的日平均睡眠时间在 7 小时以上”为事件
即该学校学生的日平均睡眠时间在 7 小时以上的概率约为 11.解: (1) 画茎叶图如图所示,中间数为数据的十位数.
15+ 4 A,则 P(A) = 50 = 0.38. 0.38.
80 分的频率为 (0.015 + 0.025 +
0.030) ×10= 0.7 ,故得分不低于 80 分的有 400×(1 - 0.7) = 120( 人 ) .
6.360 解析:设前五个长方形面积的公差为
0.82 d,由 9 个长方形的面积为 1,可得 d= 16 .
中间一组的频数为 1 600 ×(0.02 + 4d) = 360.
【志鸿优化设计】(安徽专用)2014届高考数学一轮复习 第十一章概率与统计11.2古典概型试题 新人教A版

课时作业56 古典概型一、选择题1.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ).A .132B .164C .332D .3642.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( ). A .34 B .56 C .16 D .133.已知A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },则A ∩B =B 的概率是( ).A .29B .13C .89D .1 4.若连续抛掷两次质地均匀的骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ).A .13B .14C .16D .1125.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ).A .45B .35C .25D .156.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ).A .318B .418C .518D .6187.甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( ).A .13B .59C .23D .79二、填空题8.(2013届安徽示范高中摸底)从集合{-1,1,2,3}中随机选取一个数记为m ,从集合{-1,1,2}中随机选取一个数记为n ,则方程x 2m +y 2n=1表示双曲线的概率为__________. 9.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为a ,b ,则log a b =1的概率为__________.10.(2012浙江高考)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是__________. 三、解答题11.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B ,C 三个区中抽取7个工厂进行调查.已知A ,B ,C 区中分别有18,27,18个工厂.(1)求从A ,B ,C 区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.12.(2012江西高考)如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(2)求这3点与原点O共面的概率.参考答案一、选择题1.D 解析:基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364. 2.B 解析:该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是56. 3.C 解析:∵A ∩B =B ,∴B 可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B =∅时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b .当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b .∴A ∩B =B 的概率为83×3=89. 4.D 解析:该试验会出现6×6=36种情况,点(m ,n )在直线x +y =4上的情况有(1,3),(2,2),(3,1)共三种,则所求概率P =336=112. 5.D 解析:基本事件的个数有5×3=15种,其中满足b >a 的有3种,所以b >a 的概率为315=15. 6.C 解析:甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从正方形四个顶点中任意选择两个顶点连成直线,所得的直线共有6×6=36(对),而相互垂直的有10对,故根据古典概型概率公式得P =1036=518. 7.D 解析:甲任想一数字有3种结果,乙猜数字有3种结果,基本事件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79. 二、填空题8.512解析:由题意知基本事件总数为12,表示双曲线的要求为mn <0.当m =-1时,n =1,2;当n =-1时,m =1,2,3.故表示双曲线的概率为512. 9.536解析:所有基本事件的个数是36,满足条件log a b =1的基本事件有:(2,2),(3,3),(4,4),(5,5),(6,6),共5个,所以l og a b =1的概率为536. 10.25 解析:五点中任取两点的不同取法共有10种,而两点之间距离为22的情况有4种,故概率为410=25. 三、解答题11.解:(1)工厂总数为18+27+18=63,样本容量与总体中的个体数之比为763=19,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2,3,2.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂.在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),共有11种.所以这2个工厂中至少有1个来自A 区的概率为P (X )=1121. 12.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种,y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种,z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为p 1=220=110. (2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为p 2=1220=35.。
《志鸿优化设计》2014届高考数学(苏教版)一轮复习教学案:第11章概率与统计11.4抽样方法

11.4 抽样方法考纲要求1.理解随机抽样的必要性和重要性.2.会用简单随机抽样法从总体中抽取样本;了解分层抽样和系统抽样方法,或根据分层抽样比计算总体或样本中的个体数.1.简单随机抽样 (1)定义从个体数为N 的总体中__________取出n (n <N )个个体作为________,如果每个个体都有__________被取到,那么这样的抽样方法称为简单随机抽样.(2)分类简单随机抽样⎩⎪⎨⎪⎧, .2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n (n <N )的样本,系统抽样的步骤为: (1)采用______的方式将总体中的N 个个体编号.(2)将编号按间隔k 分段,当N n 是整数时,k =________;当Nn不是整数时,从总体中__________,使剩下的总体中个体的个数N ′能被n 整除,这时k =__________,并将剩下的总体重新编号.(3)在第一段中用简单随机抽样确定______的个体编号l .(4)按照一定的规则抽取样本,通常将编号为l ,______,______,…,________的个体抽出.3.分层抽样当总体由________的几个部分组成时,为了使______更客观地反映总体情况,我们常常将总体中的个体按________分成__________的几部分,然后按各部分在总体中__________实施抽样,这种抽样方法叫分层抽样.1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的序号是__________.①1 000名学生是总体 ②每个学生是个体③1 000名学生的成绩是一个个体 ④样本的容量是1002.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是__________.3.(2019江苏盐城二模)某校共有学生2 000名,各年级人数如下表所示:年级 高一 高二 高三 人数 800 600 600__________.4.(2019江苏徐州质检)某校高一、高二、高三学生共有3 200名,其中高三800名,如果通过分层抽样的方法从全体学生中抽取一个160人的样本,那么应当从高三的学生中抽取的人数是__________.三种抽样方法有什么异同点?类别 共同点 各自特点 相互联系适用范围 简单随机从总体中逐个抽总体中的个体数抽样 取较少 系统抽样将总体均匀分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样 总体中的个体数较多分层 抽样抽样过程中每个个体被抽取的机会均等将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成一、系统抽样【例1】 将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为_________________.方法提炼解决系统抽样问题要掌握系统抽样的以下特点: (1)元素个数多且均衡的总体; (2)各个个体被抽到的机会均等; (3)起始用简单随机抽样;(4)k =Nn(不能整除的,剔出余数).请做针对训练2二、分层抽样【例2】 某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解职工对政府机构改革的意见,要从中抽取一个容量为20的样本.试确定用何种方法抽取,请具体实施操作.方法提炼分层抽样适用于总体是由差异明显的几部分组成的情况,这样更能反映总体的情况,是等可能抽样.当各层抽取的个体数目确定后,每层中的样本抽取可用简单随机抽样或系统抽样的方法.用分层抽样法抽样的关键是确定抽样比,抽样比=样本容量总体中的个体数=每层抽取的个体数该层的个体数.用抽样比乘以该层的个体数等于在该层中抽取的个体数.请做针对训练3从近三年高考试题来看,本节考查的重点是分层抽样.牢记从各部分抽取的个体数与该部分个体数的比值等于样本容量与总体的个体数的比值,是正确解决此问题的关键,抽样过程为不放回抽样,且必须保证每个个体被抽到的可能性相同.该部分题型多以填空题为主,属于容易题.1.用随机数表从100名学生(其中男生25人)中抽取20人进行评教,某男生被抽到的概率是__________.2.(2019江苏南京金陵中学预测卷)高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为__________.3.某工厂生产了某种产品3 000件,它们来自甲、乙、丙三条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线抽取的个数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则乙生产线生产了__________件产品.参考答案基础梳理自测 知识梳理1.(1)逐个不放回地 样本 相同的机会 (2)抽签法 随机数表法2.(1)随机 (2)Nn 剔除一些个体 N ′n(3)起始 (4)l +k l +2k l +(n -1)k3.差异明显 样本 不同的特点 层次比较分明 所占的比 基础自测1.④ 解析:①中1 000名学生的成绩是总体,②中每个学生的成绩是个体,③中一名学生的成绩是一个个体.2.系统抽样 解析:由所给的数据可以看出这种抽样方法为系统抽样.3.36 解析:按比例分配得120×600800+600+600=36(人).4.40 解析:160×14=40.考点探究突破【例1】 25,17,8 解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.所以第Ⅲ营区被抽中的人数是50-42=8.【例2】解:因机构改革关系到每人的不同利益,故采用分层抽样的方法为妥. ∵10020=5,105=2,705=14,205=4, ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. 因副处级以上干部与工人人数都较少,把他们分别按1~10编号与1~20编号,然后制作号签,采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.演练巩固提升 针对训练 1.15解析:简单随机抽样时每个个体被抽到的可能性相同. 2.20 解析:采用系统抽样,所抽出的样本成等差数列,故另一个同学的学号应是20. 3.1 000 解析:因为a ,b ,c 构成等差数列,根据分层抽样的原理,所以甲、乙、丙三条生产线生产的产品数也成等差数列,其和为3 000件,所以乙生产线生产了1 000件产品.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业53 古典概型 一、填空题
1.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为__________.
2.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是__________.
3.有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是__________.
4.编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,则三位学生的座位号与其编号恰好都不同的概率是__________.
5.(2012江苏南京高三二模)某单位从4名应聘者A ,B ,C ,D 中招聘2人,如果这4名应聘者被录用的机会均等,则A ,B 两人中至少有1人被录用的概率是__________.
6.(2012江苏徐州高三质检)箱中有号码分别为1,2,3,4,5的五张卡片,从中一次随机抽取两张,则两张号码之和为3的倍数的概率为__________.
7.(2012江苏扬州高三期末)先后掷两次正方体骰子(骰子的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为m ,n ,则mn 是奇数的概率是__________.
8.(2012江苏南通高三一调)将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有1个球的概率为__________.
9.一元二次方程x 2+mx +n =0,其中m ,n 分别等于将一枚骰子连掷两次先后出现的点
数,则方程有实根的概率为__________.
二、解答题
10.袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球.
(1)写出所有不同的结果;
(2)求恰好摸出1个黑球和1个红球的概率;
(3)求至少摸出1个黑球的概率.
11.(2011江苏盐城模拟)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,
取到标号是2的小球的概率是12
. (1)求n 的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.
12.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B ,C 三个区中抽取7个工厂进行调查.已知A ,B ,C 区中分别有18,27,18个工厂.
(1)求从A ,B ,C 区中应分别抽取的工厂个数;
(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.
参考答案
一、填空题 1.13 解析:从数字1,2,3中任取两个不同数字组成的两位数有12,21,13,31,23,32共6种,每种结果出现的可能性是相同的,记事件A 为“取出两个不同数字组成两位数大于
23”,则A 中包含31,32两个基本事件,据古典概型概率公式,得P (A )=26=13
. 2.56
解析:该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据
古典概型概率公式,得事件“至少摸出1个黑球”的概率是56
. 3.14
解析:从四条线段中任取三条,基本事件有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4个,能构成三角形的只有(3,5,7)这一个基本事件,故由概率公式,得P (A )=14
. 4.13
解析:编号1,2,3的三位学生随意入座编号为1,2,3的三个座位时,1号学生有3种坐法,2号学生有2种坐法,3号学生只有1种坐法,所以一共有6种坐法,其中座位号
与其编号恰好都不同的坐法只有2种,所以所求概率等于P =26=13
. 5.56
解析:从题目来看,所有的可能性共有6种,但A ,B 都没被录取的情况只有一种,即满足条件的有5种,所以结果为56
. 6.25
解析:从5张卡片中随机抽取两张共有10种取法,其中号码和为3的倍数的有12,15,24,45,共4种,所以所求概率为410=25
. 7.14
解析:先后掷两次骰子产生的基本事件的总数为36,要使mn 是奇数,则m ,n 分别为奇数,故mn 是奇数的基本事件的个数为3×3=9,从而mn 是奇数的概率是936=14
. 8.29
解析:根据题意可知,放球方法共有32=9种,其中在1,2号盒中各有一球的放法有2种,故所求概率P =29
. 9.1936
解析:由方程有实根知:m 2≥4n .又m ,n ∈ [1,6]且m ,n ∈N *.故2≤m ≤6.骰子连掷两次共有6×6=36种情形.其中满足条件的有:①m =2,n 只能取1,计1种情形;②m =3,n 可取1,2,计2种情形;③m =4,n 可取1,2,3,4,计4种情形;④m =5或6,n 均可取1至6的值,共计2×6=12种情形.故满足条件的情形共有1+2+4+12=19种,故
所求概率为1936
. 二、解答题
10.解:(1)ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .
(2)记“恰好摸出1个黑球和1个红球”为事件A ,则事件A 包含的基本事件为ac ,ad ,
ae ,bc ,bd ,be ,共6个基本事件.所以P (A )=6
10
=0.6.
(3)记“至少摸出1个黑球”为事件B ,则事件B 包含的基本事件为ab ,ac ,ad ,ae ,bc ,bd ,be ,共7个基本事件,
所以P (B )=710
=0.7. 11.解:(1)由题意可知:n 1+1+n =12
, 解得n =2.
(2)不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,
事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.
∴P (A )=412=13
. 12.解:(1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为763=19
,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2,3,2.
(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂.在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.
随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),
共有11种.所以这2个工厂中至少有1个来自A 区的概率为P (X )=1121.。