验中学2018届高考数学专题复习:立几解几函数(附答案)

合集下载

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质(1)定义:一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【知识拓展】1.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧ a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0. 2.幂函数的图象和性质(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数122y x =是幂函数.( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × )1.(教材改编)若幂函数f (x )的图象经过点(2,22),则f (9)=________. 答案 27解析 设f (x )=x α,则2α=22, ∴α=32,∴f (x )=32x .∴f (9)=329=27.2.(教材改编)设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值和为__________. 答案 4解析 当α=1,3时,函数y =x α的定义域为R ,且为奇函数;当α=-1时,y =1x 的定义域是{x |x ≠0,x ∈R };当α=12时,y =12x =x 的定义域是{x |x ≥0}.∴满足题意的a 值为1和3,其和为4.3.(教材改编)函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=______. 答案 -3解析 f (x )=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8,∴f (1)=2×12-8×1+3=-3.4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 如图,由图象可知m 的取值范围是[1,2].5.(教材改编)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则此函数的解析式为________;在区间________上单调递减. 答案 y =12x- (0,+∞)解析 设f (x )=x a ,则2a =22, ∴a =-12,即幂函数的解析式为y =12x -,单调减区间为(0,+∞).题型一 求二次函数的解析式例1 (1)(2016·南京模拟)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x .(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 解 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2. ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又f (x )的图象过点(4,3), ∴3a =3,a =1,∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.思维升华 求二次函数解析式的方法(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________. 答案 (1)x 2+2x +1 (2)-2x 2+4解析 (1)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a , 由已知f (x )=ax 2+bx +1,∴a =1, 故f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称, ∴-a =-(-2ab),即b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4], ∴2a 2=4,故f (x )=-2x 2+4. 题型二 二次函数的图象和性质 命题点1 二次函数的单调性例2 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是__________. 答案 [-3,0]解析 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知a <0, 又3-a2a=-1,∴a =-3. 命题点2 二次函数的最值例3 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上 且对称轴为x =1a.①当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的对称轴在[0,1]内,∴f (x )在[0,1a ]上单调递减,在[1a ,1]上单调递增.∴f (x )min =f (1a )=1a -2a =-1a.②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,∴f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a ,a ≥1.命题点3 二次函数中的恒成立问题例4 (1)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,12 解析 2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是 ⎝⎛⎭⎫-∞,12. (2)(2016·江苏徐州一中质检改编)若14t 2-kt -1≤0在t ∈[-1,1]上恒成立,求实数k 的取值范围.解 求二次函数f (t )=14t 2-kt -1在给定区间[-1,1]上的最大值M ,二次函数f (t )的图象的对称轴为直线t =2k .①当2k ∈[-1,1],即k ∈[-12,12]时,M =f (-1)或f (1),由M ≤0,得f (-1)≤0且f (1)≤0,解得-34≤k ≤34,又k ∈[-12,12],故-12≤k ≤12;②当2k <-1,即k <-12时,函数f (t )在[-1,1]上单调递增,故M =f (1)=14-k -1,由M ≤0,得k ≥-34,又k <-12,故-34≤k <-12;③当2k >1,即k >12时,函数f (t )在[-1,1]上单调递减,故M =f (-1)=14+k -1,由M ≤0,得k ≤34,又k >12,故12<k ≤34.综上知,实数k 的取值范围为[-34,34].思维升华 (1)二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .(1)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. (2)已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. 解 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内,∴应进行讨论,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1. 综上,当-2<a ≤1时,y min =a 2-2a , 当a >1时,y min =-1. 题型三 幂函数的图象和性质例5 (1)若12(21)m +>122(1)m m +-,则实数m 的取值范围是__________. 答案 ⎣⎢⎡⎭⎪⎫5-12,2解析 因为函数y =12x 的定义域为[0,+∞) 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12;解2m +1>m 2+m -1,得-1<m <2. 综上所述,m 的取值范围是5-12≤m <2. (2)已知函数f (x )=x-m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式. 解 由f (3)<f (5),得3-m +3<5-m +3,所以(35)-m +3<1=(35)0.因为y =(35)x 是减函数,所以-m +3>0.解得m <3. 又因为m ∈N *,所以m =1或2; 当m =2时,f (x )=x -m +3=x 为奇函数,所以m =2舍去. 当m =1时,f (x )=x-m +3=x 2为偶函数,所以m =1,此时f (x )=x 2.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(2016·盐城模拟)幂函数的图象经过点(4,2),若0<a <b <1,则下列各式正确的是________.①f (a )<f (b )<f (1a )<f (1b )②f (1a )<f (1b )<f (b )<f (a )③f (a )<f (b )<f (1b )<f (1a )④f (1a )<f (a )<f (1b )<f (b )答案 ③解析 设幂函数为f (x )=x α,将(4,2)代入得α=12,所以f (x )=12x ,该函数在(0,+∞)上为增函数, 又0<a <b <1,所以1a >1b >1,即a <b <1b <1a,所以f (a )<f (b )<f (1b )<f (1a ).3.分类讨论思想在二次函数最值中的应用典例 (14分)已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 思想方法指导 已知函数f (x )的最值,而f (x )图象的对称轴确定,要讨论a 的符号. 规范解答解 f (x )=a (x +1)2+1-a .[2分] (1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;[4分](2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;[9分](3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.[12分]综上可知,a 的值为38或-3.[14分]1.(教材改编)幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是__________. 答案 [0,+∞)解析 把点(2,4)代入函数解析式得4=2α,所以α=2,故f (x )=x 2,所以函数的单调递增区间为[0,+∞).2.(教材改编)如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么f (-2),f (0),f (2)大小关系为____________. 答案 f (0)<f (2)<f (-2)解析 函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图象的对称轴为x =12,又函数图象开口向上,自变量离对称轴越远函数值越大. 3.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是____________. 答案 [0,4]解析 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图), 若f (a )≥f (0),从图象观察可知0≤a ≤4.4.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是____________.答案 [32,3]解析 二次函数图象的对称轴为x =32且f (32)=-254,f (3)=f (0)=-4,由图得m ∈[32,3].5.若a <0,(12)a 、(0.2)a 、2a 大小关系为__________.答案 (0.2)a >(12)a >2a解析 若a <0,则幂函数y =x a 在(0,+∞)上是单调减函数,又∵0.2<12<2,∴(0.2)a >(12)a >2a .6.已知函数y =x 2-2x +a 的定义域为R ,值域为[0,+∞),则实数a 的取值集合为________. 答案 {1}解析 由定义域为R ,则x 2-2x +a ≥0恒成立.又值域为[0,+∞),则函数y =x 2-2x +a 的图象只能与x 轴有1个交点,所以Δ=4-4a =0,则a =1,所以实数a 的取值集合为{1}. 7.(2016·连云港模拟)已知幂函数f (x )=12x -,若f (a +1)<f (10-2a ),则a 的取值范围为________.答案 (3,5)解析 ∵幂函数f (x )=12x -单调递减,定义域为(0,+∞),∴由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧ a +1>0,10-2a >0,a +1>10-2a ,解得3<a <5. 8.(2016·无锡模拟)已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________________.答案 [1,2]解析 作出已知函数的图象如图所示,当x =1时,y 最小,最小值为2;当x =2时,y =3;当x =0时,y =3.由图象知m 的取值范围是[1,2].*9.若函数f (x )=x 2-a |x -1|在[0,+∞)上单调递增,则实数a 的取值范围是________. 答案 [0,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-ax +a ,x ∈[1,+∞),x 2+ax -a ,x ∈(-∞,1), x ∈[1,+∞)时,f (x )=x 2-ax +a =(x -a 2)2+a -a 24, x ∈(-∞,1)时,f (x )=x 2+ax -a =(x +a 2)2-a -a 24. ①当a 2>1,即a >2时,f (x )在[1,a 2)上单调递减, 在(a 2,+∞)上单调递增,不合题意; ②当0≤a 2≤1,即0≤a ≤2时,符合题意; ③当a 2<0,即a <0时,不符合题意. 综上,a 的取值范围是[0,2].10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ] (b >1),则a +b =________. 答案 92解析 ∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即函数f (x )在[1,b ]上单调递增.∴f (x )min =f (1)=a -12=1,① f (x )max =f (b )=12b 2-b +a =b , ② 又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3,∴a ,b 的值分别为32,3. ∴a +b =92. 11.(2016·江苏赣榆高级中学质检)设函数f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为________.答案 (0,94] 解析 方法一 由f (x )=0,得a =-x 2+3x =-(x -32)2+94. 因为x ∈(1,3),所以-(x -32)2+94∈(0,94], 所以a ∈(0,94]. 方法二 因为f (x )=x 2-3x +a =(x -32)2-94+a , 所以要使函数f (x )在区间(1,3)内有零点,则需f (32)≤0且f (3)>0,解得0<a ≤94. 12.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a 的取值范围是__________.答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f (1)>0,f (2)<0,f (3)>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115, 所以实数a 的取值范围为(2,115). 13.(2016·江苏泰州中学质检)已知a ,t 为正实数,函数f (x )=x 2-2x +a ,且对任意的x ∈[0,t ],都有f (x )∈[-a ,a ].若对每一个正实数a ,记t 的最大值为g (a ),则函数g (a )的值域为__________.答案 (0,1)∪{2}解析 因为f (x )=(x -1)2+a -1,且f (0)=f (2)=a ,当a -1≥-a ,即a ≥12时,此时恒有[a -1,a ]⊆[-a ,a ],故t ∈(0,2],从而它的最大值为2;当a -1<-a ,即0<a <12,此时t ∈(0,1)且t 2-2t +a ≥-a 在0<a <12上恒成立,即t ≥1+1-2a (不成立,舍去)或t ≤1-1-2a ,由于0<a <12,故t ∈(0,1). 综上,g (a )的值域为(0,1)∪{2}.14.已知幂函数f (x )=223mm x --(m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f (x );(2)讨论F (x )=a f (x )-b xf (x )的奇偶性. 解 (1)∵f (x )是偶函数,∴m 2-2m -3应为偶数.又∵f (x )在(0,+∞)上是单调减函数,∴m 2-2m -3<0,-1<m <3.又m ∈Z ,∴m =0,1,2.当m =0或2时,m 2-2m -3=-3不是偶数,舍去;当m =1时,m 2-2m -3=-4,∴m =1,即f (x )=x -4. (2)F (x )=a x 2-bx 3,∴F (-x )=a x 2+bx 3. ①当a ≠0且b ≠0时,函数F (x )为非奇非偶函数;②当a ≠0且b =0时,函数F (x )为偶函数;③当a =0且b ≠0时,函数F (x )为奇函数;④当a =0且b =0时,函数F (x )既是奇函数,又是偶函数.。

2018版高考数学(全国人教B版理)大一轮复习讲义:第四章解三角函数、解三角形第4讲含解析

2018版高考数学(全国人教B版理)大一轮复习讲义:第四章解三角函数、解三角形第4讲含解析

基础巩固题组(建议用时:40分钟)一、选择题1。

(2016·全国Ⅱ卷)若将函数y=2sin 2x的图象向左平移错误!个单位长度,则平移后图象的对称轴为( )A。

x=错误!-错误!(k∈Z)B。

x=错误!+错误!(k∈Z)C。

x=错误!-错误!(k∈Z) D.x=错误!+错误!(k∈Z)解析由题意将函数y=2sin 2x的图象向左平移错误!个单位长度后得到函数的解析式为y=2sin错误!,由2x+错误!=kπ+错误!得函数的对称轴为x=错误!+错误!(k∈Z),故选B.答案B2。

(2017·衡水中学金卷)若函数y=sin(ωx-φ)(ω〉0,|φ |〈错误!)在区间错误!上的图象如图所示,则ω,φ的值分别是( )A。

ω=2,φ=错误! B.ω=2,φ=-错误!C。

ω=错误!,φ=错误!D。

ω=错误!,φ=-错误!解析由图可知,T=2错误!=π,所以ω=错误!=2,又sin错误!=0,所以错误!-φ=kπ(k∈Z),即φ=错误!-kπ(k∈Z),而|φ|〈错误!,所以φ=错误!,故选A.答案A3.(2017·沈阳市两区七校模拟)将函数f(x)=错误!sin x-cos x的图象沿着x轴向右平移a(a>0)个单位后的图象关于y轴对称,则a 的最小值是( )A.错误!B.错误!C。

错误! D.错误!解析依题意得f(x)=2sin错误!,因为函数f(x-a)=2sin错误!的图象关于y轴对称,所以sin错误!=±1,a+错误!=kπ+错误!,k∈Z,即a=kπ+错误!,k∈Z,因此正数a的最小值是错误!,选B。

答案B4。

(2016·长沙模拟)函数f(x)=3sin错误!x-log错误!x的零点的个数是()A.2B.3 C。

4 D.5解析函数y=3sin错误!x的周期T=错误!=4,由log错误!x=3,可得x =错误!。

由log错误!x=-3,可得x=8.在同一平面直角坐标系中,作出函数y=3sin错误!x和y=log错误!x的图象(如图所示),易知有5个交点,故函数f(x)有5个零点。

2018版高考数学理人教大一轮复习讲义教师版文档第九章

2018版高考数学理人教大一轮复习讲义教师版文档第九章

1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( √ ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )1.(教材改编)已知点F (14,0),直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线答案 D解析 由已知|MF |=|MB |,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2017·广州调研)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线答案 D解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南昌模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是( ) A .(x +2)2+y 2=4(y ≠0) B .(x +1)2+y 2=1(y ≠0) C .(x -2)2+y 2=4(y ≠0) D .(x -1)2+y 2=1(y ≠0) 答案 C解析 由角的平分线性质定理得|P A |=2|PB |, 设P (x ,y ),则(x +2)2+y 2=2(x -1)2+y 2,整理得(x -2)2+y 2=4(y ≠0),故选C.4.过椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________________. 答案 x 2a 2+4y 2b2=1解析 设MN 的中点为P (x ,y ), 则点M (x,2y )在椭圆上,∴x 2a 2+(2y )2b 2=1,即x 2a 2+4y 2b2=1(a >b >0). 5.(2016·唐山模拟)设集合A ={(x ,y )|(x -3)2+(y -4)2=45},B ={(x ,y )|(x -3)2+(y -4)2=165},C ={(x ,y )|2|x -3|+|y -4|=λ}.若(A ∪B )∩C ≠∅,则实数λ的取值范围是________. 答案 [255,4]解析 由题意可知,集合A 表示圆(x -3)2+(y -4)2=45上的点的集合,集合B 表示圆(x -3)2+(y -4)2=165上的点的集合,集合C 表示曲线2|x -3|+|y -4|=λ上的点的集合,这三个集合所表示的曲线的中心都在(3,4)处,集合A 、B 表示圆,集合C 则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值范围是[255,4].题型一 定义法求轨迹方程例1 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2. ∴|MO 2|-|MO 1|=3<4=|O 1O 2|.∴点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1 (x ≤-32).题型二 直接法求轨迹方程例2 (2016·广州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解 (1)依题意得,c =5,e =c a =53,因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0, 则由⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,x 29+y 24=1,得x 29+[k (x -x 0)+y 0]24=1, 即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0, Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0,整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0.又所引的两条切线相互垂直, 设两切线的斜率分别为k 1,k 2, 于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧ x 0=-3,y 0=2或⎩⎪⎨⎪⎧ x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2, 经检验知均满足x 20+y 20=13.因此,动点P (x 0,y 0)的轨迹方程是x 2+y 2=13.思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0).由题意,可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c , 整理得2⎝⎛⎭⎫c a 2+c a -1=0, 得c a =-1(舍去)或c a =12.所以e =12. (2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝⎛⎭⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y . 于是AM →=⎝⎛⎭⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2, 即⎝⎛⎭⎫8315y -35x ·x +⎝⎛⎭⎫85y -335x ·3x =-2. 化简得18x 2-163xy -15=0. 将y =18x 2-15163x代入c =x -33y ,得c =10x 2+516x >0.所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 题型三 相关点法求轨迹方程例3 (2016·大连模拟)如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以点A 的坐标为(-1,14),故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上, 所以y 0=-12×(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A (x 1,x 214),B (x 2,x 224),x 1≠x 2.由N 为线段AB 的中点,知 x =x 1+x 22,③y =x 21+x 228.④所以切线MA ,MB 的方程分别为 y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O , AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程是x 2=43y .思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程. 解 设△ABC 的重心为G (x ,y ),点C 的坐标为(x 0,y 0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x -y =4a ,y 2=4ax ,消去y 并整理得 x 2-12ax +16a 2=0. ∴x 1+x 2=12a ,y 1+y 2=(x 1-4a )+(x 2-4a )=(x 1+x 2)-8a =4a .∵G (x ,y )为△ABC 的重心, ∴⎩⎨⎧x =x 0+x 1+x 23=x 0+12a 3,y =y 0+y 1+y 23=y 0+4a3,∴⎩⎪⎨⎪⎧x 0=3x -12a ,y 0=3y -4a . 又点C (x 0,y 0)在抛物线上,∴将点C 的坐标代入抛物线的方程得 (3y -4a )2=4a (3x -12a ), 即(y -4a 3)2=4a3(x -4a ).又点C 与A ,B 不重合,∴x 0≠(6±25)a , ∴△ABC 的重心的轨迹方程为 (y -4a 3)2=4a 3(x -4a )(x ≠(6±253)a ).22.分类讨论思想在曲线方程中的应用典例 (12分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,|OP ||OQ |=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2. 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,故椭圆的方程为 x 24+y 23=1. [3分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 23=1,解得y 20=3-34x 2. 由|OP ||OQ |=λ可得|OP |2|OQ |2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得(λ2-14)x 2+λ2y 2=3,x ∈[-2,2].[6分]当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[8分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴在y 轴上的双曲线满足x ∈[-2,2]的部分;[10分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[12分]1.(2017·宜春质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件|PM 1|+|PM 2|=a +9a (其中a是正常数),则点P 的轨迹是( ) A .椭圆 B .线段 C .椭圆或线段 D .不存在答案 C解析 ∵a 是正常数,∴a +9a≥29=6.当|PM 1|+|PM 2|=6时,点P 的轨迹是线段M 1M 2; 当a +9a >6时,点P 的轨迹是椭圆,故选C.2.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( ) A .x +y =5 B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y答案 B解析 ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,∴Δ>0,满足题意.3.(2016·银川模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 答案 D解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.4.(2016·太原模拟)已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( ) A .4 B .3 C .2 D .1 答案 B解析 ∵e 是方程2x 2-5x +2=0的根, ∴e =2或e =12.mx 2+4y 2=4m 可化为x 24+y 2m=1,当它表示焦点在x 轴上的椭圆时, 有4-m 2=12,∴m =3; 当它表示焦点在y 轴上的椭圆时, 有m -4m=12,∴m =163; 当它表示焦点在x 轴上的双曲线时, 可化为x 24-y 2-m =1,有4-m2=2,∴m =-12. ∴满足条件的圆锥曲线有3个.5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( ) A .y =-2x B .y =2x C .y =2x -8 D .y =2x +4答案 B解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎨⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y . ∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .6.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线 B .椭圆 C .圆 D .双曲线 答案 A解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.7.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,且a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.8.(2017·西安月考)已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________.答案 x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义. 令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3,则轨迹方程为 x 225+y 29=1(x ≠±5). 9.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有(-x 2)2a 2+(-y2)2b 2=1,即x 24a 2+y 24b2=1.10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案 x 24+y 23=1(y ≠0)解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1, 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4>2=|AB |,故F 点的轨迹是以A ,B 为焦点, 长轴长为4的椭圆(去掉长轴两端点).11.已知实数m >1,定点A (-m,0),B (m,0),S 为一动点,点S 与A ,B 两点连线斜率之积为-1m 2. (1)求动点S 的轨迹C 的方程,并指出它是哪一种曲线;(2)若m =2,问t 取何值时,直线l :2x -y +t =0(t >0)与曲线C 有且只有一个交点? 解 (1)设S (x ,y ),则k SA =y -0x +m ,k SB =y -0x -m. 由题意,得y 2x 2-m 2=-1m 2, 即x 2m2+y 2=1(x ≠±m ). ∵m >1,∴轨迹C 是中心在坐标原点,焦点在x 轴上的椭圆(除去x 轴上的两顶点),其中长轴长为2m ,短轴长为2.(2)m =2,则曲线C 的方程为x 22+y 2=1(x ≠±2).由⎩⎪⎨⎪⎧2x -y +t =0,x 22+y 2=1, 消去y ,得9x 2+8tx +2t 2-2=0. 令Δ=64t 2-36×2(t 2-1)=0,得t =±3. ∵t >0,∴t =3.此时直线l 与曲线C 有且只有一个交点.12.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过左焦点且倾斜角为45°的直线被椭圆截得的弦长为423.(1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点M (1,0)作l 的垂线,垂足为Q ,求点Q 的轨迹方程.解 (1)因为椭圆E 的离心率为22, 所以a 2-b 2a =22.解得a 2=2b 2,故椭圆E 的方程可设为 x 22b 2+y 2b 2=1, 则椭圆E 的左焦点坐标为(-b,0),过左焦点且倾斜角为45°的直线方程为l ′:y =x +b . 设直线l ′与椭圆E 的交点为A ,B , 由⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =x +b消去y , 得3x 2+4bx =0,解得x 1=0,x 2=-4b 3.因为|AB |=1+12|x 1-x 2| =42b 3=423, 解得b =1.故椭圆E 的方程为x 22+y 2=1.(2)①当切线l 的斜率存在且不为0时,设l 的方程为y =kx +m ,联立直线l 和椭圆E 的方程, 得⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y 并整理, 得(2k 2+1)x 2+4kmx +2m 2-2=0. 因为直线l 和椭圆E 有且只有一个交点, 所以Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0. 化简并整理,得m 2=2k 2+1.因为直线MQ 与l 垂直,所以直线MQ 的方程为y =-1k (x -1).联立方程组⎩⎪⎨⎪⎧y =-1k (x -1),y =kx +m ,解得⎩⎪⎨⎪⎧x =1-km1+k 2,y =k +m1+k 2,所以x 2+y 2=(1-km )2+(k +m )2(1+k 2)2=k 2m 2+k 2+m 2+1(1+k 2)2=(k 2+1)(m 2+1)(1+k 2)2=m 2+11+k 2, 把m 2=2k 2+1代入上式得x 2+y 2=2.(*) ②当切线l 的斜率为0时,此时Q (1,1)或Q (1,-1),符合(*)式.③当切线l 的斜率不存在时,此时Q (2,0)或Q (-2,0)符合(*)式. 综上所述,点Q 的轨迹方程为x 2+y 2=2.*13.(2016·河北衡水中学三调)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于点Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交于A ,B 两点,直线OA ,l ,OB 的斜率分别为k 1,k ,k 2(其中k >0),△OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为S 1,S 2,若k 1,k ,k 2恰好构成等比数列,求S 1+S 2S 的取值范围.解 (1)连接QF ,根据题意,|QP |=|QF |,则|QE |+|QF |=|QE |+|QP | =4>|EF |=23,故动点Q 的轨迹Γ是以E ,F 为焦点, 长轴长为4的椭圆.设其方程为x 2a 2+y 2b2=1(a >b >0),可知a =2,c =a 2-b 2=3,则b =1, ∴点Q 的轨迹Γ的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m , A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得, (1+4k 2)x 2+8kmx +4m 2-4=0, Δ=16(1+4k 2-m 2)>0,x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2.∵k 1,k ,k 2构成等比数列, ∴k 2=k 1k 2=(kx 1+m )(kx 2+m )x 1x 2,整理得km (x 1+x 2)+m 2=0, ∴-8k 2m 21+4k 2+m 2=0,解得k 2=14. ∵k >0,∴k =12.此时Δ=16(2-m 2)>0, 解得m ∈(-2,2).又由A ,O ,B 三点不共线得m ≠0, 从而m ∈(-2,0)∪(0,2). 故S =12|AB |d =121+k 2|x 1-x 2|·|m |1+k 2=12(x 1+x 2)2-4x 1x 2·|m | =2-m 2|m |.又x 214+y 21=x 224+y 22=1, 则S 1+S 2=π4(x 21+y 21+x 22+y 22)=π4(34x 21+34x 22+2) =3π16[(x 1+x 2)2-2x 1x 2]+π2=5π4为定值. ∴S 1+S 2S =5π4×1(2-m 2)m2≥5π4, 当且仅当m =±1时等号成立. 综上,S 1+S 2S ∈[5π4,+∞).。

2018版高考数学(全国人教B版理)大一轮复习讲义:第四章解三角函数、解三角形第3讲含解析

2018版高考数学(全国人教B版理)大一轮复习讲义:第四章解三角函数、解三角形第3讲含解析

基础巩固题组(建议用时:40分钟)一、选择题1。

在函数①y =cos|2x |,②y =|cos x |,③y =cos 错误!,④y =tan 错误!中,最小正周期为π的所有函数为( )A.①②③B 。

①③④ C.②④ D.①③解析 ①y =cos|2x |=cos 2x ,最小正周期为π;②由图象知y =|cos x |的最小正周期为π;③y =cos 错误!的最小正周期T =错误!=π;④y =tan 错误!的最小正周期T =错误!,因此选A.答案 A2.(2017·石家庄模拟)函数f (x )=tan 错误!的单调递增区间是( )A 。

错误!(k ∈Z )B 。

错误!(k ∈Z )C 。

错误!(k ∈Z )D 。

错误!(k ∈Z )解析 由k π-错误!<2x -错误!<k π+错误!(k ∈Z ),解得错误!-错误!<x <错误!+错误!(k ∈Z ),所以函数y =tan 错误!的单调递增区间是错误!(k ∈Z ),故选B.答案 B3.(2017·青岛调研)函数y =cos 2x -2sin x 的最大值与最小值分别为( )A 。

3,-1 B.3,-2 C.2,-1 D 。

2,-2解析 y =cos 2x -2sin x =1-sin 2x -2sin x=-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以y max =2,y min =-2.答案 D4。

(2016·山东卷)函数f (x )=(错误!sin x +cos x )(错误!cos x -sin x )的最小正周期是( )A.π2 B 。

π C.错误!π D.2π解析 f (x )=4sin 错误!cos 错误!=2sin 错误!,∴f (x )的最小正周期T =π.答案 B5。

(2017·安徽江南十校联考)已知函数f (x )=sin (ωx +φ)错误!的最小正周期为4π,且∀x ∈R ,有f (x )≤f 错误!成立,则f (x )图象的一个对称中心坐标是( )A 。

2018届高考数学理科二轮总复习高考23题逐题特训二函数

2018届高考数学理科二轮总复习高考23题逐题特训二函数

(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3, 所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解, ⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2.。

2018版高考数学理人教大一轮复习讲义教师版文档第四章

2018版高考数学理人教大一轮复习讲义教师版文档第四章

1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线段【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=xr ,tan α=yx (x ≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × ) (4)终边相同的角的同一三角函数值相等.( √ ) (5)若α∈(0,π2),则tan α>α>sin α.( √ )(6)若α为第一象限角,则sin α+cos α>1.( √ )1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限. 2.(教材改编)已知角α的终边与单位圆的交点为M (12,y ),则sin α等于( )A.32 B .±32C.22D .±22答案 B解析 由题意知|r |2=(12)2+y 2=1,所以y =±32.由三角函数定义知sin α=y =±32.3.(2016·潍坊二模)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 4.已知在半径为120 mm 的圆上,有一段弧长是144 mm ,则该弧所对的圆心角的弧度数为________rad. 答案 1.2解析 由题意知α=l r =144120=1.2 rad.5.函数y =2cos x -1的定义域为________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示例1 (1)若α=k ·180°+45°(k ∈Z ),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案 (1)A (2)(2k π+π4,2k π+56π)(k ∈Z )解析 (1)当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1 (n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角. 所以α为第一或第三象限角.故选A.(2)在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎫π4,56π, ∴所求角的集合为⎝⎛⎭⎫2k π+π4,2k π+56π(k ∈Z ). 思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(1)终边在直线y =3x 上的角的集合是__________________.(2)(2017·广州调研)若角θ的终边与6π7角的终边相同,则在[0,2π]内终边与θ3角的终边相同的角的个数为________.答案 (1){α|α=π3+k π,k ∈Z } (2)3解析 (1)在(0,π)内终边在直线y =3x 上的角为π3,∴终边在直线y =3x 上的角的集合为 {α|α=π3+k π,k ∈Z }.(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ), 依题意0≤2π7+2k π3≤2π,k ∈Z ,∴-37≤k ≤187,∴k =0,1,2,即在[0,2π]内与θ3角的终边相同的角为2π7,20π21,34π21共三个.题型二 弧度制例2 (1)(2016·成都模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2. (2)已知扇形的圆心角是α,半径是r ,弧长为l . ①若α=100°,r =2,求扇形的面积;②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数. 解 ①S =12lr =12αr 2=12×59π×4=109π.②由题意知l +2r =20,即l =20-2r , S =12l ·r =12(20-2r )·r =-(r -5)2+25, 当r =5时,S 的最大值为25.当r =5时,l =20-2×5=10,α=lr=2(rad).即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ( )A.π3B.π6 C .-π3D .-π6(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C .3D. 3答案 (1)C (2)D解析 (1)将表的分针拨快应按顺时针方向旋转,为负角,故A 、B 不正确;又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.(2)如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r ,由弧长公式得α=l r =3rr = 3.题型三 三角函数的概念 命题点1 三角函数定义的应用例3 (1)(2016·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________.(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 (1)-64(2)A 解析 (1)由题意知r =3+m 2, ∴sin θ=m 3+m 2=24m , ∵m ≠0,∴m =±5,∴r =3+m 2=22, ∴cos θ=-322=-64.(2)由三角函数定义可知Q 点的坐标(x ,y )满足 x =cos2π3=-12,y =sin 2π3=32. ∴Q 点的坐标为(-12,32).命题点2 三角函数线例4 函数y =lg(2sin x -1)+1-2cos x 的定义域为__________________. 答案 [2k π+π3,2k π+5π6)(k ∈Z )解析 要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2k π+π3,2k π+5π6) (k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3](2)满足cos α≤-12的角α的集合为________.答案 (1)A (2){α|2k π+23π≤α≤2k π+43π,k ∈Z }解析 (1)∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. (2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2k π+23π≤α≤2k π+43π,k ∈Z }.6.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.(2)(2017·合肥调研)函数y =lg(3-4sin 2x )的定义域为________.思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,yP =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2). (2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )1.下列与9π4的终边相同的角的表达式中正确的是 ( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0答案 B解析 α是第三象限角,sin α<0,cos α<0,tan α>0,则可排除A 、C 、D ,故选B. 3.(2016·广州一模)已知α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,则tan α等于( ) A.155B.153C .-155D .-153答案 D解析 ∵P (x ,5),∴y = 5. 又cos α=24x =xr,∴r =22, ∴x 2+(5)2=(22)2,解得x =±3. 由α是第二象限的角,得x =-3, ∴tan α=y x =5-3=-153.4.(2017·九江质检)若390°角的终边上有一点P (a,3),则a 的值是( ) A. 3 B .3 3 C .- 3 D .-3 3答案 B解析 tan 390°=3a,又tan 390°=tan(360°+30°)=tan 30°=33, ∴3a =33,∴a =3 3. 5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°); ③tan(-10);④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .②C .③D .④答案 C 解析 sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0;sin7π10cos πtan 179π=-sin 7π10tan 17π9>0. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3答案 B解析 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.答案 (-1,3)解析 依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).8.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3 解析 设扇形半径为r ,弧长为l ,则⎩⎨⎧ l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2. 9.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 答案 二解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2, ∴cos θ2≤0, 综上知θ2为第二象限角. 10.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.答案 (π4,5π4) 解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22. 根据三角函数线的变化规律标出满足题中条件的角x ∈(π4,5π4). 11.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解 设扇形的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2. ∴圆心角α=l r=2(rad). 如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).∴圆心角的弧度数为2 rad ,弦长AB 为2sin 1 cm.12.已知角α终边上一点P ,P 到x 轴的距离与到y 轴的距离之比为3∶4,且sin α<0,求cos α+2tan α的值.解 设P (x ,y ),则根据题意,可得|y ||x |=34. 又∵sin α<0,∴α的终边只可能在第三、第四象限.①若点P 位于第三象限,可设P (-4k ,-3k )(k >0), 则r =x 2+y 2=5k ,从而cos α=x r =-45,tan α=y x =34, ∴cos α+2tan α=710. ②若点P 位于第四象限,可设P (4k ,-3k )(k >0),则r =x 2+y 2=5k ,从而cos α=x r =45,tan α=y x =-34, ∴cos α+2tan α=-710. 综上所述,若点P 位于第三象限,则cos α+2tan α=710; 若点P 位于第四象限,则cos α+2tan α=-710. *13.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限, 其集合为{α|2k π+π<α<2k π+3π2,k ∈Z }. (2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0, sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号; 当α2在第四象限时,tan α2<0,sin α2<0,cosα2>0,所以tan α2sinα2cosα2也取正号.因此,tan α2sinα2cosα2取正号.。

2018版高考数学(全国人教B版理)大一轮复习讲义:专题探究课一高考中函数与导数问题的热点题型含答案

2018版高考数学(全国人教B版理)大一轮复习讲义:专题探究课一高考中函数与导数问题的热点题型含答案

(建议用时:80分钟)1。

已知函数f(x)=x2-ln x-ax,a∈R。

(1)当a=1时,求f(x)的最小值;(2)若f(x)>x,求a的取值范围.解(1)当a=1时,f(x)=x2-ln x-x,f′(x)=错误!。

当x∈(0,1)时,f′(x)〈0;当x∈(1,+∞)时,f′(x)>0.所以f(x)的最小值为f(1)=0.(2)由f(x)〉x,得f(x)-x=x2-ln x-(a+1)x〉0.由于x〉0,所以f(x)〉x等价于x-错误!>a+1。

令g(x)=x-错误!,则g′(x)=错误!。

当x∈(0,1)时,g′(x)<0;当x∈(1,+∞)时,g′(x)〉0。

故g(x)有最小值g(1)=1。

故a+1〈1,a<0,即a的取值范围是(-∞,0).2。

设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.(1)解由f(x)=e x-2x+2a,x∈R,知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(x单调递增区间是(ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a. (2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R。

由(1)知当a〉ln 2-1时,g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)〉0,所以g(x)在R内单调递增。

于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)〉g(0).而g(0)=0,从而对任意x∈(0,+∞),都有g(x)〉0.即e x-x2+2ax-1〉0,故当a〉ln 2-1且x〉0时,e x〉x2-2ax+1.3.已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2。

2018版高考数学理一轮复习文档:第四章 三角函数、解

2018版高考数学理一轮复习文档:第四章 三角函数、解

1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2016·青岛模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位 y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10).4.(2016·临沂模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.答案 -23解析 由题图知,函数f (x )的周期 T =2(11π12-7π12)=2π3,所以f (-π6)=f (-π6+2π3)=f (π2)=-23.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x+π4-2φ), 又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12 B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT =100π,∴I =10sin(100πt +φ).∵图象过点⎝⎛⎭⎫1300,10, ∴10sin(100π×1300+φ)=10,∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z ,∴φ=2k π+π6,k ∈Z ,又∵0<φ<π2,∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安.11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省肇庆市实验中学2018届高考数学专题复习
立几解几函数
(立几、解几、函数,高考前两各二小一大题,后三小一大)
班别 姓名 2017.9
1、已知()f x 是定义在R 上的奇函数,当0x >时,2()log f x x =,则(8)f -值为( D )
A 、3
B 、1
3 C 、-13
D 、-3 2、已知双曲线22
221(0,0)x y a b a b
-=>>的两条渐近线的夹角为90°,则双曲线的离心率为( C )
A 、43
B
C D
3、右图是一个几何体的正视图和侧视图,其俯视图是面积为体积是( A )
A 、8
B 、
C 、16
D 、163
4、已知双曲线22
221(0,0)x y a b a b
-=>>的一个焦点恰为抛物线28y x =的焦点,且离心率为2,则该双曲线的标准方程为( A )
A 、22
13y x -= B 、221412x y -= C 、2213x y -= D 、22
1124x y -= 5、已知函数322()23(0)3
f x x ax x a =-++>的导数'()f x 的最大值为5,则在函数()f x 图象上的点(1,f (1))处的切线方程是( B )
A 、3x -15y +4=0
B 、15x -3y -2=0
C 、15x -3y +2=0
D 、3x -y +1=0
6、在区间[-3,5]上随机取一个数a ,则使函数2()24f x x ax =++无零点的概率是_1
.2
7、已知一个长方体的长、宽、高分别是5,4,3,则该长方体的外接球的表面积等于__50π
8、设抛物线E :2
2(0)y px p =>的焦点为F ,点M 为抛物线E 上一点,|MF |的最小值为3,若点P 为抛物线E 上任意一点,A (4,1),则|PA |+|PF |的最小值为( B )
(A )4
+2
(B )7 (C )4+
(D )10 9、已知函数1,10()10lg(2),10x
x f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-+>⎩
,若2(8)(2)f m f m -<,则实数m 的取值范围是 (-4,2)
10、曲线C :ln y x x =在点()e,e M 处的切线方程为( C )
A .e y x =-
B .e y x =+
C .2e y x =-
D .2e y x =+ 11、已知函数()()22ln e 11x f x x x =+-+,()2f a =,则()f a -的值为( B )
A .1
B .0
C . 1-
D .2-
12、某一简单几何体的三视图如图2所示,该几何体的外接球的表面积是( C )
A .13π B. 16π C. 25π D. 27π
13、已知1F ,2F 分别是双曲线C :22
221x y a b
-=(0,0a b >>)的左右两个焦点,若在双曲线C 上存在点P 使1290F PF ∠=︒,且满足12212PF F PF F ∠=∠,那么双曲线C 的离心率为( A )
A. 1+
B. 2
C.
D. 14、抛物线C :24y x =上到直线l :y x =
的点的个数为
____3____. 侧视图 俯视图 图2。

相关文档
最新文档