线性代数授课计划2013
线性代数试讲教案
线性代数试讲教案一、教学目标1. 知识与技能:使学生掌握线性代数的基本概念、理论和方法,能够运用线性代数解决实际问题。
2. 过程与方法:通过试讲,培养学生的逻辑思维能力、表达能力和合作能力。
3. 情感态度与价值观:激发学生对线性代数的兴趣,提高学生对数学学科的认识和尊重。
二、教学内容1. 第一章:矩阵及其运算1.1 矩阵的概念与性质1.2 矩阵的运算规则1.3 矩阵的逆2. 第二章:线性方程组2.1 线性方程组的定义2.2 高斯消元法解线性方程组2.3 克莱姆法则3. 第三章:向量空间与线性变换3.1 向量空间的概念与性质3.2 线性变换的概念与性质3.3 线性变换的矩阵表示4. 第四章:特征值与特征向量4.1 特征值与特征向量的定义4.2 特征值与特征向量的求解方法4.3 矩阵的对角化5. 第五章:二次型5.1 二次型的概念与性质5.2 二次型的标准形5.3 二次型的判定定理三、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。
2. 通过举例、解决问题,引导学生理解和掌握线性代数的基本概念和方法。
3. 利用数学软件或板书,展示线性代数运算过程,提高学生的直观理解能力。
四、教学评价1. 课堂表现:观察学生在试讲过程中的表达、思考和合作能力。
2. 作业与练习:检查学生对线性代数概念、方法和应用的掌握程度。
3. 阶段性测试:评估学生在一段时间内对线性代数的总体掌握情况。
五、教学资源1. 教材:线性代数教材,如《线性代数及其应用》等。
2. 课件:制作与教学内容相关的课件,辅助学生理解和记忆。
3. 数学软件:如MATLAB、Mathematica等,用于展示线性代数运算过程。
4. 板书:用于在课堂上展示线性代数运算步骤和关键公式。
六、第六章:线性空间与线性映射6.1 线性空间的概念与性质6.2 线性映射的概念与性质6.3 线性映射的例子与性质七、第七章:内积与正交性7.1 内积的概念与性质7.2 正交性的概念与性质7.3 施密特正交化与格拉姆-施密特正交化八、第八章:特征值与特征向量的应用8.1 特征值与特征向量的应用概述8.2 矩阵的对角化与应用8.3 二次型与应用九、第九章:线性代数在工程与科学中的应用9.1 线性代数在工程中的应用9.2 线性代数在科学研究中的应用9.3 线性代数在其他领域的应用10.2 线性代数在实际问题中的应用案例分析10.3 线性代数的进一步学习与研究建议六、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
论线性代数课程的教学设计
论线性代数课程的教学设计发表时间:2013-06-28T17:17:34.920Z 来源:《中国科技教育·理论版》2013年第3期供稿作者:张海丽[导读] 总之,随着社会在日新月异的发展,并且由于独立学院的生存和发展的需要,消除线性代数传统教学存在的弊端是非常有必要的。
张海丽同济大学浙江学院 31400 摘要在分析线性代数课程教学现状的基础上,提出了线性代数课程教学的设计策略。
克服以往教学过程中存在的一些缺陷,剖析了教学难点,进行以“背景融合、多层训练”为主要内容的线性代数课程设计教学策略,目标以培养学生在理论上的分析能力问题解决的能力和创新能力等。
关键词线性代数教学设计线性代数课程是高校不少理工科专业重要的基础性理论课程。
电子工程,电子设计等许多领域中的许多原理最终归结为线性代数中的知识,线性代数的理论和方法具有很重要很广泛的应用,但基于传统教学过程中存在的缺陷和课程学时限制,尽管相对与师生挺重视,但教学效果不是很理想。
这使得线性代数的教学变得越来越必要。
特别是近些年,随着我国的高等教育的大众化进程与高等教育的教学改革的不断深入,怎样改变原有教学中存在的有关问题,提高教学的效果,就成为不少高等学校线性代数课程教学改革的热点问题之一。
本文结合当前线性代数的教学现状,从几方面对线性代数课程的教学内容,教学的方法和教学手段进行了设计,以达到让学生克服课程的难学,理论性较强以及学习效果不佳的困难。
一. 当前线性代数课程的教学现状的分析1. 难点之多,课程难学线性代数是数学中理论性比较强的基础课程,导致在学习这一门课程是学生遇到不少的困难,使得学生对该课程望而生畏而。
2. 课程难教,设计缺乏该课程的上课老师尽管很努力的备课,上课确保了其基本的教学质量,但由于上面所提到的难道多,课难学的特点,课程的教学质量并不是很令人满意,究其原因,教师在其数学思想,教学的内容,教学的方法及手段有不少的不足之处。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。
2. 适用对象:本教案适用于大学本科生线性代数课程的教学。
3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。
二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。
2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。
3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。
2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。
3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。
五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。
2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。
3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。
4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。
《线性代数》教案
《线性代数》教案一、引言1. 课程目标:使学生理解线性代数的基本概念,掌握线性方程组的求解方法,了解矩阵和行列式的基本性质,培养学生的数学思维能力和解决问题的能力。
2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组的求解方法、矩阵和行列式的基本性质。
3. 教学方法:采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动探究、积极思考。
二、线性方程组1. 教学目标:使学生理解线性方程组的含义,掌握线性方程组的求解方法,能够运用线性方程组解决实际问题。
2. 教学内容:(1)线性方程组的概念及其解的含义;(2)线性方程组的求解方法(高斯消元法、矩阵法等);(3)线性方程组在实际问题中的应用。
3. 教学方法:通过具体案例分析,引导学生理解线性方程组的概念,运用高斯消元法和矩阵法求解线性方程组,并讨论线性方程组在实际问题中的应用。
三、矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算方法,了解矩阵在数学和实际中的应用。
2. 教学内容:(1)矩阵的概念及其表示方法;(2)矩阵的运算(加法、数乘、乘法);(3)矩阵的其他相关概念(逆矩阵、转置矩阵等);(4)矩阵在数学和实际中的应用。
3. 教学方法:通过具体的例子,引导学生理解矩阵的概念,掌握矩阵的运算方法,探讨矩阵在其他相关概念中的应用,并了解矩阵在数学和实际中的重要作用。
四、行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,了解行列式在线性方程组求解中的应用。
2. 教学内容:(1)行列式的概念及其表示方法;(2)行列式的计算方法(按行(列)展开、性质的应用等);(3)行列式在线性方程组求解中的应用。
3. 教学方法:通过具体的例子,引导学生理解行列式的概念,掌握行列式的计算方法,并了解行列式在线性方程组求解中的应用。
五、线性空间与线性变换1. 教学目标:使学生了解线性空间的概念,掌握线性变换的定义和性质,了解线性变换在数学和实际中的应用。
(完整word版)线性代数教案
线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。
2. 知道n 阶行列式的定义。
本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。
先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++。
2. n 阶行列式1212111212122212()12(1)n n n n t p p np p p p n n nna a a a a a D a a a a a a ==-∑其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p 求和。
n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。
3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。
《线性代数》课程教学大纲
《线性代数》课程教学大纲【课程编码】181****0006【课程类别】专业必修课【学时学分】54学时,3学分【适用专业】物流管理一、课程性质和目标课程性质:《线性代数》是高等学校物流管理专业的重要基础课。
由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院物流管理专业培养目标的必备前提。
教学目标:本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。
使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。
从而为学生进一步学习后续课程和进一步提高数学思维能力打下必要的数学基础。
二、教学内容、要求和学时分配(一)第一章行列式10学时(理论讲授)教学内容:1.行列式的定义、性质和运算2.克莱姆法则。
教学要求:1.了解行列式的定义2.熟练掌握行列式的性质,掌握二、三、四阶行列式的计算法,会计算简单的n阶行列式,理解并会应用克莱姆法则。
教学重点:1行列式的概念2.计算及克莱姆法则的结论。
教学难点:1.行列式的性质的证明。
其它教学环节:交流与讨论对行列式本质的理解(二)第二章矩阵及其运算10学时(理论讲授)教学内容:1矩阵的概念,单位矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质2.矩阵的线性运算,矩阵的乘法,方阵的塞,方阵乘积的行列式,矩阵的转置,逆矩阵的概念,矩阵可逆的充分必要条件,伴随矩阵3.矩阵的初等变换和初等矩阵,矩阵的等价,矩阵的秩4.初等变换求矩阵的秩和逆矩阵的方法。
教学要求:1了解矩阵的概念,理解单位矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质2.了解初等矩阵的性质和矩阵等价的概念3.了解方阵的事、方阵乘积的行列式4.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,理解逆矩阵的概念5.掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆6.掌握矩阵的初等变换,理解矩阵的秩的概念7.掌握用初等变换求矩阵的秩和逆矩阵的方法教学重点:1.矩阵的概念及其各种运算和运算规律2.逆矩阵的概念、矩阵可逆的判断及逆矩阵的求法3.矩阵秩的概念、矩阵的初等变换,以及用矩阵的初等变换求矩阵的秩和逆矩阵的方法教学难点:1.矩阵可逆的充分必要条件的证明2.初等矩阵及其性质3.分块矩阵及其运算其它教学环节:交流与讨论对矩阵实际运用的理解(三)第三章矩阵的初等变换与线性方程组10学时(理论讲授)教学内容:1.线性方程组解的性质和解的结构2.线性方程组有解的充分必要条件3.齐次线性方程组的基础解系、通解和解空间的概念4.非齐次线性方程组的通解,用行初等变换求解线性方程组的方法教学要求:1.理解线性方程组有解的充分必要条件教学重点:1线性方程组解的性质和解的结构2.齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
线性代数教案
学习必备欢迎下载教案(2013-2014学年第2学期)课程名称:线性代数任课教师:教师职称:所在院系:教学教案设计(首页)教学教案设计(续页)第一 章 行列式 §1.1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22- b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2-a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1.2)容易验证(1.2)式是方程组(1.1)的解。
称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1.1)的系数行列式,记为D 。
我们若记2221211a b a b D =2211112b a b a D =方程组的解(1.2)式可写成 D D x 11= DDx 22= 对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1.3) 与二元线性方程组类似,用加减消元法可求得它的解:D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1.4)为方程组(1.3)的系数行列式, D j (j =1,2,3)是将D 的第j 列换成常数列而得到的行列式。
线性代数-教案1章
案
2014 ~ 2015 学年第一学学 2013 级化学工程本科班 姜翠翠 助教 李振东 李金林 编《线性代数》
教研室 (实验室 ) 授 课 班 级 主 讲 教 师 职 称
使 用 教 材
六盘水师范学院教务处制
二○一五 年 三月
教
课 名 课 类 任 教 授 对
N ( j1 j2 jn )
a1 j1 a2 j2 anjn
称为行列式的一般项.
当 n=2、3 时,这样定义的二阶、三阶行列式与上面§1.1 中用对 角线法则定义的是一致的.当 n=1 时,一阶行列为|a11|= a11.如
a11 a 21 a31 a12 a 22 a32 a 42 a13 a14 a 23 a 24 a33 a34 a 43 a 44
其中元素 aij 的第一个下标 i 表示这个元素位于第 i 行,称为行 标,第二个下标 j 表示此元素位于第 j 列,称为列标. 我们可以从中发现以下规律: (1) 二阶行列式是 2!项的代数和,三阶行列式是 3!项的代数 和; (2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同 的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也 是取自不同的行和不同的列; (3) 每一项的符号是:当这一项中元素的行标是按自然序排列 时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号. 作为二、三阶行列式的推广我们给出 n 阶行列式的定义. 定义 1 组成的符号
教 学 重 点 及 难 点
重点:要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵的秩的 定义和计算,会利用矩阵的初等变换求解方程组及逆矩阵,向量组的线 性相关性,利用正 交变换化对称矩阵为对角型矩阵等有关知识。
注:课程类别:公共必修课、专业基础课、专业必修课、专业选修课、集中实践环节、实验课、公共选修课
《线性代数》课程授课教案
《线性代数》课程授课教案课程编号:A11013课程名称:线性代数/Linear Algebra课程总学时/学分:40/2.5 (其中理论36学时,实验 4 学时,课程设计0 周)一、课程地位线性代数课程是高等学校工科各专业的一门重要的公共基础课。
由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组,求矩阵的特征值与特征向量等已成为工程技术人员经常遇到的课题。
因此本课程所介绍的方法广泛地应用于各个学科,工科院校的学生必须掌握其基本理论知识,并能熟练地应用其方法。
线性代数是以讨论有限维空间线性理论为主的课程,具有较强的抽象性与逻辑性。
通过本课程的学习,要使学生获得应用科学中常用的行列式计算方法,矩阵方法,线性方程组,二次型等理论及其基本知识,并具有熟练的行列式,矩阵运算能力和用矩阵方法解决一些实际问题的能力,从而为后续课程及进一步扩大数学知识面奠定必要的数学基础。
二、教材及主要参考资料本课程使用教材:同济大学数学教研室主编的《线性代数》(第五版)教学参考书:1、《线性代数辅导》胡金德等编清华大学出版社出版2、《线性代数辅导》石福庆等编铁道出版社出版3、《线性代数解题方法与技巧》毛纲源编湖南大学出版社出版4、《线性代数解题分析》胡海清编湖南科技出版社出版5、《线性代数教学内容、方法与练习》吴声钟编电子工业出版社出版6、《线性代数复习指导》陈文灯等编世界图书出版公司北京公司出版7、《高等代数》北京大学数学系几何与代数教研室前代数小组编,第三版,高等教育出版社8、《线性代数》,王萼芳编著,北京,清华大学出版社。
9、《线性代数及其应用》,同济大学应用数学系编,北京,高等教育出版社。
10、《线性代数及其应用》,谢国瑞编,北京,高等教育出版社。
11、《线性代数简明教程》,俞南雁编,机械工业出版社。
12、《线性代数与解析几何》,俞正光,李永乐,詹汉生编,北京,清华大学出版社。
《线性代数》教案
《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
线性代数课程设计 (2)
线性代数课程设计设计背景线性代数是一门基础的数学课程,也是许多其他理工科学科的基础。
本课程设计旨在通过实际应用,加深学生对线性代数知识的理解和运用。
设计目的1.掌握向量操作的基本技能,包括向量加减、向量点积、向量叉积等。
2.掌握矩阵操作的基本技能,包括矩阵加减、矩阵乘法、矩阵求逆等。
3.熟练掌握矩阵的各种性质和特征值的求法。
4.能够利用线性代数知识解决实际问题。
设计内容本课程设计共分为三个部分,每个部分需要学生利用线性代数知识解决一个实际问题。
第一部分问题描述:求解平面上多边形的面积。
设计要求:首先,学生需要掌握向量的定义、加减、点积和叉积等基本操作;其次,学生需要了解如何将平面上的一个多边形转化为向量的形式,然后可以通过叉积来求解该多边形的面积。
实现步骤:1.将多边形的顶点表示为向量,并将相邻的两个向量相减,得到边向量。
2.对于任意一个边向量,将它与与其相邻的两个边向量做叉积,得到一个向量,将这个向量除以2,即可得到以该边为底的梯形面积,再将所有梯形面积加起来,即可得到多边形的面积。
第二部分问题描述:求解一个由3x3矩阵表示的线性方程组的解。
设计要求:首先,学生需要掌握矩阵的定义、加减、乘法和求逆等基本操作;其次,学生需要学会如何通过将矩阵消元来解决线性方程组。
实现步骤:1.将系数矩阵和常数矩阵组成增广矩阵。
2.对增广矩阵进行初等变换,使其转化为类似于阶梯矩阵的形式,即上三角矩阵。
3.利用上三角矩阵,从最后一行开始,反向求解出线性方程组的解。
第三部分问题描述:求解一个5维向量的主成分。
设计要求:首先,学生需要掌握矩阵的定义、乘法、特征值和特征向量等基本操作;其次,学生需要学会如何通过特征值分解来求解向量的主成分。
实现步骤:1.构建5x5的矩阵,其中第i行为原数据集中第i维的值。
2.计算矩阵的协方差矩阵。
3.对协方差矩阵进行特征值分解,求出特征值和对应的特征向量。
4.将五维向量投影到特征向量上,得到它在该向量上的投影长度即为主成分。
线性代数课程设计
线性代数课程设计一、课程目标知识目标:1. 理解线性代数的基本概念,掌握矩阵、向量、线性方程组等核心知识点的定义及性质;2. 学会运用矩阵运算法则,解决实际问题中的线性方程组,并能解释其几何意义;3. 掌握线性空间、线性变换的基本理论,并能运用到实际问题中。
技能目标:1. 能够运用矩阵运算解决线性方程组问题,提高计算准确性和解题速度;2. 能够运用线性空间和线性变换的理论分析问题,培养空间想象能力和逻辑思维能力;3. 能够运用所学知识解决实际问题,提高数学建模和数学应用能力。
情感态度价值观目标:1. 培养学生对线性代数学科的兴趣,激发学习热情,形成积极向上的学习态度;2. 培养学生的团队协作精神,学会倾听、交流、合作,提高人际沟通能力;3. 培养学生严谨、勤奋、求实的科学态度,形成正确的价值观。
本课程针对高中年级学生,结合线性代数学科特点,注重理论联系实际,培养学生的数学素养和创新能力。
在教学过程中,教师需关注学生的个体差异,因材施教,确保学生能够达到上述课程目标。
通过本课程的学习,使学生能够掌握线性代数的基本知识和技能,为后续学习及相关领域的研究奠定基础。
同时,注重培养学生的情感态度价值观,使其成为具有较高综合素质的人才。
二、教学内容本章节教学内容依据课程目标,结合教材线性代数相关知识,主要包括以下部分:1. 矩阵与向量- 矩阵的定义、性质及运算规则;- 向量的线性运算、线性组合及线性相关;- 教材第一章内容。
2. 线性方程组- 高斯消元法及其应用;- 克莱姆法则及其应用;- 教材第二章内容。
3. 线性空间与线性变换- 线性空间的定义、基、维数及坐标;- 线性变换的定义、性质及矩阵表示;- 教材第三章内容。
4. 实践与应用- 利用矩阵运算解决实际问题;- 线性空间与线性变换在实际问题中的应用;- 结合教材实例及拓展案例。
教学大纲安排如下:第一周:矩阵与向量基本概念及运算规则;第二周:线性方程组的求解方法;第三周:线性空间与线性变换基本理论;第四周:实践与应用,结合实际案例分析。
13-14线性代数48学时授课计划
7
5
2.5矩阵的秩
秩
习题2.5
8
5
2.6矩阵的初等变换
初等变换
习题2.6
9
6
习题课
10
7
3.1高斯消元法一、二
高斯消元法
习题3.1(1)
11
7
3.1高斯消元法三
高斯消元法
习题3.1
12
8
3.2向量的线性相关性(一)
线性相关概念
习题3.2(1-3)
13
9
3.2向量的线性相关性(二)
习题3.2(4、5)
两种方法
习题4.5
22
15
4.6正定二次型
概念
习题4.6
23
15
习题课
24
16
总复习
14
9
3.3线性方程组的解的结构
解的结构
习题3.3
15
10
3.4向量空间
向量空间的概念
习题3.4
16
11
习题课
17
11
4.1向量的内积
概念
习题4.1
18
12
4.2方阵的特征值与特征向量
计算特征值与特征向量
习题4.2
19
13
4.3相似矩阵
概念
习题4.3
20
13
4.4二次型的概念
概念
习题4.4
21
14
4.5化二次型为标准形
序号
周次
章节、内容
教学时数
重点难点
作业
备注
讲课
实验
上机
1
1
1.1行列式的概念1.2行列式的性质
《线性代数》课程教学大纲
《线性代数》课程教学大纲第一篇:《线性代数》课程教学大纲《线性代数》课程教学大纲课程编码:414002(A)课程英文名称:Linear Algebra 先修课程:微积分适用专业:理科本科专业总学分:3.5 总学时:56讲课学时 56 实验学时 0实习学时 0一、课程性质、地位和任务课程名称:线性代数线性代数是我校计算机科学与技术专业的一门重要基础课。
它不但是其它后继专业课程的基础,而且是科技人员从事科学研究和工程设计必备的数学基础。
通过本课程的教学,使学生获得矩阵、行列式、向量、线性方程组、二次型等方面的基本知识,掌握处理离散问题常用的方法,增强学生“用”数学的意识,培养学生“用”数学的能力。
二、课程基本要求1.了解行列式的定义和性质,掌握利用行列式的性质及展开法则,掌握三、四阶行列式的计算法,会计算简单的n阶行列式;理解和掌握克拉默(Cramer)法则。
2.理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,掌握求逆矩阵的方法;掌握对称矩阵的性质;了解分块矩阵及其运算。
3.理解n维向量、向量组线性相关与线性无关的概念;了解有关向量组线性相关、线性无关的重要结论;理解向量组的最大线性无关组与向量组的秩的概念;了解n维向量空间、子空间、基底、维数、坐标等概念;掌握齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件;会求齐次线性方程组的基础解系、通解;掌握非齐次线性方程组的解的结构,会求非齐次线性方程组的通解;了解向量的内积、正交和向量的长度等概念;会利用施密特(Schmidt)方法把线性无关的向量组正交规范化。
4.掌握Gauss消元法;掌握用Gauss消元法求线性方程组通解的方法;掌握用初等变换求齐次线性方程组和非齐次线性方程组解的方法。
5.掌握矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量;理解相似矩阵的概念、性质及矩阵可相似对角化的充要条件。
(完整word版)线性代数教案
二次型是一个二次齐次多项式,其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n}a_{ij}x_ix_j$,其中$a_{ij}$是常数,$x_i$是变量。
标准型表示方法
通过正交变换,二次型可以化为标准型$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$是二次型的特征值。
03 向量空间与线性变换
向量空间概念及性质
向量空间定义
设V是一个非空集合,P是一个数域,若对V中任意两个元素α与β,总有唯一元素γ∈V与之对应,称为α与β的和 ,记为γ=α+β,且在加法运算下V封闭;又对P中任意数与V中任意元素α,总有唯一元素δ∈V与之对应,称为该 数与α的积,记为δ=kα(k∈P),且在数乘运算下V封闭,则称V是数域P上的线性空间,或向量空间。
向量空间维数
设V是数域P上的线性空间,若V中存在一个由n个向量组成的 基,且任意n+1个向量都线性相关,则称n为V的维数,记为 dimV=n。若V中不存在由有限个向量组成的基,则称V为无 限维的。
04 方程组求解与矩阵秩
齐次线性方程组求解方法
01
02
03
高斯消元法
通过消元将系数矩阵化为 上三角矩阵,然后回代求 解未知数。
向量空间性质
向量空间具有8条基本性质,包括加法交换律、加法结合律、零元存在性、负元存在性、数乘分配律、数乘结合 律、数乘单位元存在性以及数乘零元存在性。
线性变换定义及性质
线性变换定义
设V和W是数域P上的两个线性空间,σ是V到W的一个映射,若对V中任意元素α 、β和P中任意数k,都有σ(α+β)=σ(α)+σ(β),σ(kα)=kσ(α),则称σ是V到W的 一个线性映射或线性变换。
《线性代数》课程教学大纲(经济管理类)
《线性代数》课程教学大纲一、课程基本信息二、课程教学目标《线性代数》是学生所必备的基础理论知识和重要的数学工具。
它的主要目的和任务是通过本课程的教学,使学生了解和掌握行列式、矩阵、线性方程组、二次型等基本概念,基本原理理论和基本计算方法,并具有熟练的矩阵运算能力和用矩阵方法解决实际问题的能力,同时使学生的抽象思维能力和数学建模能力受到一定的训练。
本课程主要教学内容包括行列式、矩阵、向量的线性相关性,线性方程组,矩阵的特征值,二次型等。
另外,有关的习题课、应用线性代数知识解决实际问题的数学建模课也是教学的重要部分。
1.学好基础知识。
理解和掌握课程中的基本概念和基本理论,知道它的数学思想方法、意义和用途,以及它与其它概念、规律之间的联系。
2.掌握基本技能。
能够根据性质法则、公式正确地进行运算。
能够根据不同问题的情景,寻求和设计合理简捷的运算途径。
3.培养思维能力。
能够对研究的对象进行观察、比较、抽象和概括。
能运用课程中的概念、定理及性质进行合乎逻辑的推理。
能对计算结果进行合乎实际的分析、归纳和类比。
4.提高解决实际问题的能力。
能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。
能够自觉地运用所学的知识方法理念去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。
三、教学学时分配《线性代数》课程理论教学学时分配表四、教学内容和教学要求第一章行列式(10)(一)教学要求通过本章相关内容的学习,了解行列式的概念;理解克莱姆法则,并且会用克莱姆法则解相应的方程组;掌握行列式的性质和行列式的展开定理,及正确计算行列式。
(二)教学重点与难点教学重点:n阶行列式的性质,行列式按行(列)展开定理教学难点:n阶行列式的计算(三)教学内容第一节排列与逆序数1.n阶排列及奇(偶)排列的定义2.逆序数第二节 n阶行列式1.二阶、三阶行列式的定义2.n阶行列式的定义3. 一些特殊的n阶行列式计算第三节行列式性质1.行列式的性质2.利用行列式性质计算行列式第四节行列式按行(列)展开1. 余子式2. 行列式按行(列)展开法则3. 范德蒙行列式第五节克莱姆法则本章习题要点:1.n阶行列式的计算2.行列式按行(列)展开3.用克莱姆法则解相应方程组第二章矩阵及其运算(8学时)(一)教学要求通过本章内容的学习,使学生了解单位矩阵、对角矩阵、上(下)三角矩阵、对称矩阵与反对称矩阵的概念以及它们的性质,理解矩阵以及逆矩阵的概念。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11(12)
§2-1矩阵§2-2矩阵的运算
§2-3逆矩阵
2
2
习题二3、7、8、9
习题二10(4)、11(4)、12(1)、14、16、17、19、21、22、24
12(13)
§2-4分块矩阵
§3-1矩阵的初等变换
2
2
习题二25、26、28(1)(2)
习题三1(3)、3、4(1)、5(1)、6
17(18)
12.16-12.20
(12.23-12.27)
§5-5§5-6二次型及标准形、用配方法化二次型成标准型
§5-7正定二次型
2
2
习题五28(1)、29
习题五32、33
讲 课
课程设计、课程(课外)作业
章 节 名称
时数
课程设计(作业)名称
9(10)
§1-1 -§1-4行列式定义等
§1-5行列式性质
2
2
习题一2(5)(6)
习题一4(3)(4)、5(1)(2)、6(2)(3)
10(11)
§1-6行列式按行(列)展开
§1-7克拉默法则;习题讨论课
2
2
习题一8(1)(2)、9
13(14)
§3-2矩阵的秩
§3-3线性方程组的解
2
2
习题三9、10(3)、12、13(2)、14(1)(2)(4)
习题三15、16、17、18
14(15)
§4-1向量组及线性组合
§4-2向量组的线性相关性
2
2
习题四1、2、3
习题四5、6、9、10
15(16)
§4-3向量组的秩
§4-4线性方程组的解的结构§4-5向量空间
2
2
习题四12(1)(2)、13、14、16、18、19
习题四20(1)(3)、21、22、26(1)、27
16(17)
§5-1-§5-2向量的内积、正交性及方阵的特征值
§5-3-§5-4相似矩阵、对角矩阵的对角化
2
2
习题五1、2(1)、4、5、6(1)、7、9、10
习题五15、16、19(1)、20、21、22
学期授课计划表
2013—2014学年化、测绘、地下工程等专业
电子商务12-1、2;财政12-1、2;电气类12-1、2、3、4;电气自动化12-1、2;海洋测绘12;地下工程12
课程名称:线性代数填表时间:2013年10月21日
周次
月日