八年级数学下册平行四边形的识别及同步练习(含答案)
华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析
华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.42.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.44.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.86.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.59.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4④S=2S△OEF△OCF其中正确的有()A.1个B.2个C.3个D.4个12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.416.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.517.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;④S=2S△EOF.△DOF其中成立的个数有()A.1个B.2个C.3个D.4个18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.419.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3B.4C.5D.620.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.423.如图,F是▱ABCD的边AD上一点,连接BD,BF,BF的延长线与CD的延长线交于点E.若∠E=∠A,∠BDC=90°,则下列结论中不正确的是()A.2DF=BC B.BE=BCC.∠ADE=∠CBE D.D是CE的中点二.填空题(共4小题)24.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF 与CE交于点Q,若S=20cm2,S△BQC=30cm2,则图中阴影部分的面积为△APDcm2.25.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交边AD于点E,若平行四边形ABCD的周长为20,则△ABE的周长等于.26.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.27.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于.三.解答题(共23小题)28.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?29.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60°,AB=4,求平行四边形ABCD的面积.30.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:DF=AE.31.如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.32.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F.(1)求证:BE=BF;(2)若∠ADC=90°,G是EF的中点,连接AG、CG.求证:AG=CG;AG⊥CG.33.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.34.如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为9,求AB的长;(2)求证:AF=GE.35.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,BE=2,求AB的长.36.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.37.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC 于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.38.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连结CM交DN于点O.(1)求证:△ABN≌△CDM;(2)猜想:四边形CDMN是什么特殊四边形?并证明你的猜想;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.39.已知如图,▱ABCD,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).40.如图所示,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)求证:CG=CD;(2)若CF=2,AE=3,求BE的长.41.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.42.已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.43.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.44.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AD=2AB,连接DE,试判断DE与AF的位置关系,并说明理由.45.如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.46.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.47.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.48.在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.49.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB、DG(如图2),求∠BDG 的度数.50.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.4【分析】想办法证明∠ACB=90°,△BCE是等边三角形即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=DB,∴∠DCA=∠CEB,∵∠DCA=∠BCE,∴∠BCE=∠CEB,∴BC=EC,∵EB=EA=EC,∴∠ACB=90°,EC=BC=EB,∴△BEC是等边三角形,∴∠ABC=60°,∴∠CAB=30°,故①正确,∵OD=DB,AE=EB,∴OE∥AD,故②正确,∵AD∥BC,∴∠DAC=∠ACB=90°,∴AD⊥AC,∴S▱ABCD=AC•AD,故③正确,假设CE⊥BD,则推出四边形ABCD是菱形,显然不可能,故④错误,故选:C.【点评】本题考查平行四边形的性质、直角三角形的判定和性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,故②正确;③∵EF=FM,∴S=S△CFM,△EFC∵MC>BE,∴S△BEC <2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故选:B.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.8【分析】作EN⊥AB,延长DC交EN与M,由S阴影=S四边形FEBA﹣S△EFC﹣S△ABC可求阴影部分面积.【解答】解:如图作EN⊥AB,延长DC交EN与M∵AB∥CD,AN⊥EN∴CM⊥EN∵AB∥CD∴且EC=AD=BC ∴EM=MN∵S阴影=S四边形FEBA﹣S△EFC﹣S△ABC=﹣EF×EM﹣AB×MN∴S阴影=(EF+AB)×EM﹣﹣EF×EM﹣AB×MN=EF×EM+AB×MN=S四边形EFGC +S四边形ABCD且S四边形EFGC=4,S四边形ABCD=10∴S阴影=7故选:C.【点评】本题考查了平行四边形的性质,关键是作出平行四边形的高,用已知面积表示阴影部分面积.6.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.6【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【解答】解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.【点评】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°【分析】求出AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,求出AE=DF可知选项C正确,由∠A=∠BCD=2∠FDC,可知选项A正确,由∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,推出∠GBC+∠GCB=90°,可知D正确;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠A=∠BCD,∴∠AEB=∠EBC,∠BCF=∠DFC,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠CBE,∠BCF=∠DCF,∴∠ABE=∠AEB,∴∠BAD=2∠DFC,故A正确∴AB=AE,同理DF=CD,∴AE=DF,即AE﹣EF=DF﹣EF,∴AF=DE.故C正确∵∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,∴∠GBC+∠GCB=90°,∴∠BGC=90°,故D正确,故选:B.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.5【分析】由四边形ABCD是平行四边形,推出AB=CD,AB∥CD,由AM=BM,推=2S△EBM,S△EBC=2S△EBM,由此即可解决问题;出===,可得S△DEM【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AM=BM,∴===,=2S△EBM,S△EBC=2S△EBM,∴S△DEM=1,∵S△BEM=S△EBC=2,∴S△DEM=2+2=4,∴S阴故选:C.【点评】本题考查平行四边形的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4=2S△OEF④S△OCF其中正确的有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③错误;根据相似三角形的性=2S△OEF;故④正确.质得到=2,求得S△OCF【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③错误;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=2:1,∴S△OCF :S△OEF==2,∴S△OCF=2S△OEF;故④正确.故选:C.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BC=2BF,∵在▱ABCD中,AD=2AB,∴BC=2AB,∴BF=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AFE=S△AFM,∴S△ABF ≤S△AEF,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△MBF≌△ECF.13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M +∠FCD=2∠CFD ;故②正确,∵EF=FM=CF ,∴∠ECM=90°,∵AB ∥CD ,∴∠BEC=∠ECM=90°,∴CE ⊥AB ,故③④正确,故选:D .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.14.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CEF 其中正确的是( )A .①②③B .①②④C .②③④D .①②③④【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF .④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,=S△DEC,∴S△AEC∴S=S△CEF;④正确.△ABE若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.4【分析】根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABF=∠E,∵点F恰好为边AD的中点,∴AF=DF,在△ABF与△DEF中,,∴△ABF≌△DEF,∴BF=EF,BE=2BF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵∠AFB=∠FBC,∵∠ABC的平分线与CD的延长线相交于点E,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵点F为AD边的中点,AG⊥BE.∴BG==,∴BF=2,∴BE=2BF=4.故选:C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.16.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.17.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;=2S△EOF.④S△DOF其中成立的个数有()A.1个B.2个C.3个D.4个【分析】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S=BD•CD;平行四边形ABCD故②正确;③设AB=x,则AD=2x,则BD=x,∴OB=,由勾股定理得:AO==x,故③不正确;④∵AD∥EC,∴=,∴DF=2EF,=2S△EOF.∴S△DOF故④正确;故选:C.【点评】此题考查了平行线分线段成比例定理,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即可判断④.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=C•h BC,又∵S=AB•h AB=BC•h BC平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:B.【点评】本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.19.如图,E 是平行四边形内任一点,若S 平行四边形ABCD =8,则图中阴影部分的面积是( )A .3B .4C .5D .6【分析】根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S 阴影=S 四边形ABCD .【解答】解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD•h 1+CB•h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .【点评】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.20.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF=50°,则∠B=( )A .50°B .40°C .80°D .100°【分析】由平行四边形的性质及角平分线的性质可得∠ADC 的大小,进而可求解∠B 的度数.【解答】解:在Rt △ADF 中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点评】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③错误;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.【点评】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.4【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;因为∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,所以④错误;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,∵∠BDE>∠EBH,∴∠BDG>∠BHD,所以④错误;故选:C.。
人教版八年级下册:18.2特殊的平行四边形同步练习卷 含答案解析
人教版八年级下册:18.2特殊的平行四边形同步练习卷一.选择题(共10小题)1.下列性质中,矩形不一定具有的是()A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角2.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°3.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.4.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 5.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD6.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.157.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.49.已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④10.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A.∠DAN=15°B.∠CMN=45°C.AM=MN D.MN=NC二.填空题(共8小题)11.工人师傅在测量一个门框是否是矩形时,只需要用到一个直角尺,则他用到的判定方法是.12.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.13.矩形ABCD中,要使矩形ABCD成为正方形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.如图,已知菱形ABCD的面积为6cm2,BD的长为4cm,则AC的长为cm.15.如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为.16.如图,Rt△ABC中,∠ACB=90°,∠A=28°,D是AB的中点,则∠DCB=度.17.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B为顶点的四边形是矩形,则点D的坐标为.18.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN,若AB=9,BE=6,则MN 的长为.三.解答题(共8小题)19.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.20.如图,正方形ABCD的对角线AC与BD交于点O,过点C作CE∥BD,过点D作DE ∥AC,CE与DE交于点E.求证:四边形OCED是正方形.21.如图.在平行四边形ABCD中,E、F分别为AB、CD的中点,连结DE、DB、BF.(1)求证:DE=BF;(2)若∠ADB=90°,证明:四边形BFDE是菱形.22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.25.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.26.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.参考答案一.选择题(共10小题)1.【解答】解:∵矩形的对角线互相平分且相等,故选项A、B不合题意;∵矩形的四个角都是直角,故选项C不合题意;∵矩形的一条对角线不一定平分一组对角;故D符合题意;故选:D.2.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.3.【解答】解:如图,在△ABC中,AD是BC边上的中线,则BD=CD=BC,故选项A、B、D不符合题意.若∠BAC=90°时,AD=BC才成立,否则不成立.故选项C符合题意.故选:C.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.6.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.7.【解答】解:∵BE=DB,∴∠BDE=∠E,∵∠DBA=∠BDE+∠BED=45°∴∠BDE=×45°=22.5°.故选:A.8.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.9.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.10.【解答】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB∥MG∥CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°﹣75°=15°,∠CMN=180°﹣75°﹣60°=45°,故A,B,C正确,故选:D.二.填空题(共8小题)11.【解答】解:用直角尺测量门框的三个角是否都是直角,如果都是直角,则四边形是矩形.故答案为:三个角是直角的四边形为矩形12.【解答】解:过点A作AE⊥BC于E,AF⊥CD于F,如图,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;故答案为:菱形.13.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).14.【解答】解:∵菱形ABCD的面积为6cm2,BD的长为4cm,∴×4×AC=6,解得:AC=3,故答案为:3.15.【解答】解:如图,∵四边形ABCD是矩形,AC,BD交于点O,BD=8∴BD=2BO,即2BO=8.∴BO=4.又∵M、N分别为BC、OC的中点,∴MN是△CBO的中位线,∴MN=BO=2.故答案是:2.16.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=AD,∴∠ACD=∠A=28°,∴∠DCB=90°﹣28°=62°,故答案为:62.17.【解答】解:如图,当AB为对角线时,观察图象可知D(5,3).当AB为矩形的边时,观察图象可知D2(﹣3,2),∴直线AD2的解析式为y=x+,∴C1(0,),∵AC1=BD1,∴D1(3,),综上所述,满足条件的点D的坐标为(5,3)或(﹣3,2)或(3,).故答案为(5,3)或(﹣3,2)或(3,).18.【解答】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=9,BE=6,∴GF=GB=6,BC=9,∴GC=GB+BC=6+9=15,∴CF===3.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.三.解答题(共8小题)19.【解答】证明;∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.20.【解答】证明:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵正方形ABCD的对角线AC与BD交于点O,∴OD=OC,∠DOC=90°,∴四边形CODE是正方形.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC=AB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=BE,∴四边形DEFB是平行四边形,∴DE=BF;(2)证明:由(1)得,四边形DEBF是平行四边形,∴DC=AB,CD∥AB,∴DF∥EB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=EB,∴四边形DEBF是平行四边形,∵∠ADB=90°,∴DE=AB,∴DE=EB,∴四边形DEBF是菱形.22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△AOD和△EOC中,,∴△AOD≌△EOC(AAS);(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.23.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.25.【解答】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.26.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.。
2021年人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习(含答案)
人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习一、选择题1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD.从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=AD2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形,若想使四边形ABCD为平行四边形,要添加一个条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.这个条件可以是( )A.①或②B.②或③C.①或③或④D.②或③或④3.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.A.①②B.①③④C.②③D.②③④4.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )A.∠A=∠BB.∠C=∠DC.∠B=∠DD.AB=CD5.下列说法正确的是( )A.对角线相等的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直且相等的四边形是平行四边形6.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC7.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE8.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )A.3种B.4种C.5种D.6种9.已知四边形ABCD是平行四边形,再从:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④10.在如图所示的网格中,以格点A,B,C,D,E,F中的4个点为顶点,你能画出平行四边形的个数为( )A.2B.3C.4D.5二、填空题11.如图,已知AB∥DC,要使四边形ABCD是平行四边形,还需增加条件.(只填写一个条件即可,不再在图形中添加其它线段).12.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有_____(添序列号即可).13.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.14.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).15.如图,AC是□ABCD的对角线,点E、F在AC上,要使四边形BFDE是平行四边形,还需要增加的一个条件是 (只要填写一种情况).三、解答题16.如图,点E,F在□ABCD的边BC,AD上,BC=3BE,AD=3DF,连接BF,DE.求证:四边形BEDF是平行四边形.17.在△ABC中,D是AB边上任意一点,E是BC边的中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若DF=8,BC=6,DB=5,求▱CDBF的面积.参考答案1.答案为:C2.答案为:B3.答案为:C4.答案为:C5.答案为:B6.答案为:C7.答案为:D8.答案为:B9.答案为:B10.答案为:B.11.答案为:AB=DC或AD∥BC12.答案为:①②③.13.答案为:BE=DF或BF=DE或∠BAE=∠DCF14.答案为:AB=CD或AD∥BC15.答案为:AE=CF16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=3BE,AD=3DF,∴BE=FD,∴四边形BEDF是平行四边形.17.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形;(2)解:∵四边形CDBF是平行四边形,∴BE=0.5BC=3,DE=0.5DF=4,∴∠BED=90°,∴BC⊥DE,∴四边形CDBF是菱形,∴S=0.5BC•DF=0.5×6×8=24.。
人教版数学八年级下册18.1.1 平行四边形的性质同步练习(解析版)
第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质基础闯关全练1.如图18-1-1-1,如果AD ∥EF ∥BC ,AB ∥GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有( )A .4个B .5个C .8个D .9个2.在平行四边形ABCD 中,如果∠A=55º,那么∠C 的度数是 ( )A .45ºB .55ºC .125ºD .145º3.如图18-1-1-2,在□ABCD 中,已知AC=4 cm ,若△ACD 的周长为13 cm ,则☐ABCD 的周长为( )A .26 cmB .24 cmC .20 cmD .18 cm4.如图18-1-1-3,在平行四边形ABCD 中,∠ADC 的平分线交BC 于点E .若∠CED=35º,则∠B 的度数为( )A .40ºB .50ºC .60ºD .70。
5.在平行四边形ABCD 中,已知∠A-∠B=60º,则∠C=________.6.如图18-1-1-4,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE.7.如图18-1-1-5,l ₁∥l ₂,AB ⊥l ₂,DC ⊥l ₁,则下列结论:①AB ⊥l ₁;②AB ∥CD ;③AB=CD ;④AC=BD ,其中正确的个数是( )A .4B .3C .2D .18.如图18-1-1-6,在☐ABCD 中,D 是对角线AC ,BD 的交点,若△AOD 的面积是4,则☐ABCD 的面积是( )A .8B .12C .16D .20 能力提升全练1.如图18-1-1-7,在平行四边形ABCD 中,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,且AD=8.EF=2,则AB 的长是( )A .3B .4C .5D .62.如图18-1-1-8,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点M ,N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为_______.3.如图18-1-1-9①,☐ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD 、BC 分别相交于点E 、F ,则OE=OF.若将EF 向两边延长与平行四边形的两对边的延长线分别相交(如图②和图③),OE 与OF 还相等吗?若相等,请你说明理由.三年模拟全练 一、选择题1.(2018黑龙江大庆肇源期末,3,★☆☆)如图18-1-1-10,在平行四边形ABCD 中,不一定成立的是 ( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD.A .①和④B .②和③C .③和④D .②和④2.如图18-1-1-11,☐ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E .AB=3.AC=2.BD=4,则AE 的长为( )A .23 B .23C .721D .7212 二、填空题3.如图18-1-1-12,在☐ABCD 中,∠A=130º,在边AD 上取一点E .使DE=DC ,则∠ECB=_______.三、解答题4.如图18-1-1-13,在平行四边形ABCD 中,∠BAD 的平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF,若BF⊥AE,∠BEA=60º,AB=4,求平行四边形ABCD的面积.五年中考全练一、选择题1.在☐ABCD中,若∠BAD与∠CDA的平分线交于点E,则△AED的形状是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定2.如图18-1-1-14,将☐ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48º,∠CFD=40º,则∠E为( )A.102º B.112º C.122º D.92º3.在☐ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为 ( )A.3 B.5 C.2或3 D.3或5二、填空题4.如图18-1-1-15,☐ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图18-1-1-16,在☐ABCD中,AB=10,AD=6,AC⊥BC,则BD=_______.三、解答题6.如图18-1-1-17,在☐ABCD中,点E,F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,求证:AG=CH.核心素养全练1.如图18-1-1-18,已知□ABCD.(1)试用三种不同的方法用一条直线MN将它分成面积相等的两部分;(保留作图痕迹,不写作法)(2)由上述方法,你能得到什么样的结论?(3)解决问题:兄弟俩分家,原来他们共同承包了一块平行四边形田地ABCD,现要拉一条直线将田地平均划分,在这块地里有一口井P,如图18-1-1-19所示,为了兄弟俩都能方便使用这口井,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)2.我们知道:平行四边形的面积=底边×底边上的高.如图18-1-1-20,四边形ABCD 是平行四边形,AD∥BC,AB∥CD,设它的面积为S:(1)如图①,点肼为AD上任意一点,则△BCM的面积S₁=_______S,△BCD的面积S₂与△BCM的面积S₁的数量关系是_______;(2)如图②,设AC、BD交于点D,则O为AC、BD的中点,试探究△AOB的面积与△COD 的面积之和S₃与平行四边形ABCD的面积S的数量关系,并说明理由:(3)如图③,点P为平行四边形ABCD内任意一点,记△PAB的面积为S′,△PCD的面积为S″,猜想S′、S″的和与S的数量关系:(4)如图④,点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.第十八章 平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 1.D根据平行四边形的定义,可知图中的平行四边形有☐AEOG,☐GOFD ,☐EBHO,☐OHCF,☐AEFD ,☐EBCF,☐ABHG,☐GHCD ,☐ABCD 共9个. 2.B ∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A=55º,∴∠C=55º. 3.D 根据平行四边形的两组对边分别相等,得在☐ABCD 中AB=CD,BC=AD.由C △ACD=AD+AC+CD=13 cm,AC=4 cm ,得AD+CD=9 cm,∴C ☐ABCD =2(AD+CD)=2×9=18 cm ,故选D.4.D 在□ABCD 中,AD ∥BC ,∠B=∠ADC,∴∠A DE =∠C ED=35º.又∵DE 平分∠A DC ,∴∠A DC=2∠A DE=70º,∴∠B =∠A DC=70º. 5.答案 120º解析如图所示,由平行四边形的邻角互补可知∠A +∠B =180º,又∠A -∠B =60º,所以∠A=120º,又因为平行四边形对角相等,所以∠C=∠A =120º.6.证明 ∵四边形ABCD 为平行四边形, ∴AB=CD,AD=BC,∠C=∠A ,∵E 、F 分别是边BC 、AD 的中点,∴CE=21BC,AF=21AD , ∴AF=CE,∴△ABF ≌△CDE(SAS),∴∠A BF=∠C DE. 7.A ①②③④全部正确,故选A .8.C 因为平行四边形对角线互相平分,所以BO=DO ,AO=CO ,则△ABO 与△ADO 是等底同高的三角形,所以面积相等,同理,△ABO 与△CBO 面积相等.因此△ABO ,△ADO ,△CDO ,△CBO 面积都相等,所以S ☐ABCD =4S △ADO =16.1.C ∵BE 是∠A BC 的平分线,∴∠A BE =∠EBC,∵四边形ABCD 是平行四边形,∴AD ∥BC,∴ ∠A EB=∠EBC ,∴∠A EB =∠A BE,∴AB=AE ,同理DF=DC .又平行四边形的对边相等, ∴AB=CD,故AE=DF.∴AE-EF=DF-EF,即AF=DE,∵AF+EF+DE=AD=8,∴ 2AF+EF=8, 又∵EF=2.∴AF=3,AB=AE=AF+EF=5. 2.答案6解析 ∵四边形ABCD 是平行四边形,∴AD ∥BC, OA=OC,OB=OD .∴∠CAD =∠A CB, ∵∠A OM =∠NOC,∴△AOM ≌△CON(ASA),∴S △AOM =S △CON =2,∴S △AOD =S △DOM +S △AOM =4+2=6.又∵△AOB 与△AOD 等底同高,∴S △AOB =S =6. 3.解析题图②中OE=OF.理由:在☐ABCD 中,AB ∥CD,OA=OC, ∴∠E=∠F,叉∵∠A OE=∠COF, ∴△AOF ≌△COF(AAS), ∴OE=OF. 题图③中OE=OF.理由:在☐ABCD 中,AD ∥BC,OA=OC, ∴∠E =∠F, 又∵∠A OE =∠C OF ,∴△AOE ≌△COF(AAS), ∴OE=OF. 一、选择题1.D ∵四边形ABCD 是平行四边形,∴AO=CO ,故①成立;AD ∥BC ,故③成立,利用排除法可得②与④不一定成立.故选D .2.D .∵四边形ABCD 是平行四边形,AC=2,BD=4, ∴AO=21AC=1.BO=21BD=2, ∵AB=3.∴AB ²+AO ²=(3)²+1²=2²=BO ², ∴∠B AC=90º,在Rt △BAC 中,BC=()7232222=+=+AC AB ,∴S △BAC =21•AB •AC=21•BC •AE, ∴3×2=7AE . ∴AE=7212.故选D . 二、填空题 3.答案 65º解析 因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠A +∠D=180º.因为∠A=130º,所以∠D =50º,因为DE=DC ,所以∠D EC =∠D CE 、由AD ∥BC 得∠D EC =∠B CE ,所以∠ECB =∠D EC =∠D CE=21(180º-∠D )=21×(180º-50º)=65º. 三、解答题4.解析(1)证明: ∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D AE =∠E,∵∠B AD 的平分线AE 交CD 于点F ,交BC 的延长线于点E ,∴∠BAE=∠DAE ,∴∠E =∠B AE , ∴AB=BE,又在平行四边形ABCD 中,AB=CD,∴BE=CD.(2)由BE=CD=AB ,∠B EA=60º得△ABE 为等边三角形,∴AE=AB=4,又∵BF ⊥AE,∴AF=EF=2,根据勾股定理得BF=23,易证△ADF ≌△ECF ,∴S △AFD =S △ECF ,又S ☐ABCD =S 四边形ABCF+S △AFD ,S △ABE =S 四边形ABCF +S △CFE ,∴平行四边形ABCD 的面积等于△ABE 的面积,故S ☐ABCD =S△ABE=21AE •BF=21×4×23=43.一、选择题1.B ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B AD+∠A DC=180º,∵∠B AD 与∠C DA 的平分线交于点E ,∴∠EAD=21∠B AD, ∠EDA=21∠C DA ,∴∠EAD+∠EDA=21(∠B AD+∠C DA)=21×180º=90º, ∴∠A ED=90º,故△AED 是直角三角形.2.B 设∠A=∠E=x ,∵∠DBE =∠A BD=48º,∠B FE =∠D FC=40º,∴∠FBD=180º-x-48º=132º-x ,∴∠EBF =∠D BE-∠FBD=48º-(132º-x)=x-84º,又∠E+∠BFE+∠EBF=180º.即∠EBF=180º-∠E-∠BFE=180º-x-40º=140º-x, ∴x-84º=140º-x,∴x=112º.3.D 分两种情况讨论:(1)如图①,在□ABCD 中,BC ∥AD,∴∠D AE =∠A EB,∠A DF =∠D FC .∴AE 平分∠BAD 交BC 于点E,DF 平分∠A DC 交BC 于点F,∴∠BAE=∠D AE,∠A DF=∠C DF, ∴∠BAE=∠A EB, ∠C FD=∠C DF, ∴AB=BE,CF=CD.在□ABCD中 ,AB=CD,∴BC=BE+CF -EF=2AB-EF,即2AB-2=8,∴AB=5.(2)如图②,在☐ABCD中,BC∥AD,∴∠D AE=∠A EB,∠A DF=∠D FC,∵AE平分∠BAD交BC于点E,DF平分∠A DC交BC于点F, ∴∠BAE=∠DAE, ∠A DF=∠CDF,∴∠B AE=∠A EB,∠C FD=∠C DF,∴AB=BE,CF=CD.在☐ABCD中,AB=CD,∴BC=BE+CF+EF=2AB+EF,即2AB+2=8,∴AB=3.综上所述,AB的长为3或5.二、填空题4.答案14解析在☐ABCD中,BC=AD=6,OB=OD=21BD,OA=OC=21AC,且AC+BD=16,∴OB+OC=21(AC+BD)=8,∴△BOC的周长为OB+OC+BC=14.5.答案413解析过点D作DE⊥B C交BC的延长线于点E,∵四边形ABCD为平行四边形,∴AD=BC=6,∴AC⊥BC,∴DE=AC=226-10=8.∵BE=BC+CE=6+6=12,∴BD=22812+=413.三、解答题6.证明∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠A=∠C,∴∠F=∠E,∵BE=DF.∴AD+DF=CB+BE.即AF=CE,在△AGF和△CHE中,⎪⎩⎪⎨⎧E,∠=F∠,CE=AFC,∠=A∠∴△AGF≌△CHE(ASA),∴AG=CH.1.解析(1)作图如下.(2)过对角线交点的任意一条直线都能将平行四边形分成面积相等的两部分. (3)作图如下.2.解析(1)21;S ₁=S ₂,设在☐ABCD 中,BC 边上的高为h ₁, ∵S ☐ABCD =BC •h ₁=S,∴S △BCM =21BC •h ₁=21S,S △BCD =21BC •h ₁=21S, ∴S ₁=21S,S ₂=21S,∴S ₁=S ₂. (2)S ₃=21S .理由:∵O 为AC 、BD 的中点,∴S ₃=S △AOB +S △COD =21S △ABD +21S △BCD =21(S △ABD +S △BCD =21S. (3)S ′+S ″=21S .设在☐ABCD 中,CD 边上的高为h ₂,△ABP 中AB 边上的高为h ₃,△PCD 中CD 边上的高为h ₄,∵AB ∥CD,∴ h ₃+h ₄=h ₂,又AB=CD ,∴S △PAB +S △PCD )=21AB •h ₃+21CD •h ₄=21AB •(h ₃+h ₄)=21AB •h ₂=21S ,即S ′+S ″=21S . (4)易知S △PAB +S △PCD =21S=S △BCD , ∵S △PAB =3,S △PBC =7,∴S △PBD =S 四边形PBCD -S △BCD =S △PBC +S △PCD -S △BCD =7+(21S-3)-21S=7-3=4.。
湘教版八年级数学下册平行四边形的判定定理1,2同步练习题
2.2.2 平行四边形的判定第1课时平行四边形的判定定理1,2要点感知1一组对边平行且__________的四边形是平行四边形.预习练习1-1如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是__________.要点感知2两组对边分别相等的四边形是__________四边形.预习练习2-1如图,在四边形ABCD中,AB=CD,BC=AD,若∠A=110°,则∠C=__________.知识点1 一组对边平行且相等的四边形是平行四边形1.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE第1题图第2题图第3题图2.如图,□ABCD中,点E、F分别为边AB、DC的中点,则图中共有平行四边形的个数是( )A.3B.4C.5D.63.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是__________(只填写一个条件,不使用图形以外的字母和线段).4.如图,已知四边形ABCD中,AB=CD,∠BAC=∠DCA,求证:四边形ABCD 是平行四边形.5.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.知识点2 两组对边分别相等的四边形是平行四边形6.四边形ABCD中,AB=CD,AD=BC,∠B=50°,则∠A=__________.7.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD、CD.若∠B=65°,则∠ADC的大小为__________.8.已知四边形ABCD的四条边长满足(AB-CD)2+(AD-BC)2=0,求证:AB∥CD.9.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD 这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )A.3种B.4种C.5种D.6种10.如图,□ABCD中,∠ABC=60°,点E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是__________.11.如图,已知BE∥DF,∠ADF=∠CBE,AF=CE.求证:四边形DEBF是平行四边形.12.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,点E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.求当运动时间t为多少秒时,以点P、Q、E、D为顶点的四边形是平行四边形?参考答案要点感知1相等预习练习1-1平行四边形要点感知2平行预习练习2-1110°1.D2.B3.答案不唯一,如AB=CD或BC∥AD4.证明:∵∠BAC=∠DCA,∴AB∥CD.又∵AB=CD,∴四边形ABCD是平行四边形.5.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵BO=DO,∴△AOB≌△COD(AAS).∴AB=CD.∴四边形ABCD是平行四边形.6.130°7.65°8.证明:∵(AB-CD)2+(AD-BC)2=0,∴AB-CD=0,AD-BC=0.∴AB=CD,AD=BC.∴四边形ABCD是平行四边形.∴AB∥CD.9.B 10.111.证明:∵BE∥DF,∴∠AFD=∠CEB.又∵∠ADF=∠CBE,AF=CE,∴△ADF≌△CBE(AAS).∴DF=BE.又∵BE∥DF,∴四边形DEBF是平行四边形.12.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD.又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°.∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE.∴△DCF≌△BAE(SAS).∴DF=BE.∴四边形BEDF是平行四边形.13.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC.∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC.∴MNCD是平行四边形;(2)连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN.∵BC=2CD ,∠C=60°, ∴△NCD 是等边三角形. ∴ND=NC ,∠DNC=60°. ∵∠DNC 是△BND 的外角, ∴∠NBD+∠NDB=∠DNC. ∵DN=NC=NB ,∴∠DBN=∠BDN=12∠DNC=30°.∴∠BDC=90°.∴BC=2DC ,BD=22BC CD -=()222CD CD -=3DC.又DC=MN ,∴BD=3MN.14.由题意可知,AP=t ,CQ=2t ,CE=12BC=8.∵AD ∥BC ,∴当PD =EQ 时,以点P 、Q 、E 、D 为顶点的四边形是平行四边形. 当2t <8即t <4时,点Q 在C 、E 之间,如图甲.此时,PD =AD-AP =6-t ,EQ =CE-CQ =8-2t ,由6-t =8-2t 得t =2. 当8<2t<16即4<t<8时,点Q 在B 、E 之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8得t=14 3.∴当运动时间为2或143时,以点P、Q、E、D为顶点的四边形是平行四边形.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C .第二象限D .第一象限10.(葫芦岛中考)已知k 、b 是一元二次方程(2x +1)(3x -1)=0的两个根,且k >b ,则函数y =kx +b 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是 .12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠0 13.B 14.k ≥1。
八年级数学下册平行四边形的性质练习题
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典复习题(含答案解析)
一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠D解析:D【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.如图,M 是ABC 的边BC 的中点AN 平分BAC ∠.且BN AN ⊥,垂足为N 且6AB =,10BC =.2MN =,则ABC 的周长是( )A.24 B.25 C.26 D.28C解析:C【分析】延长BN交AC于D,根据等腰三角形的性质得到AD=AB=6,BN=ND,根据三角形中位线定理得到DC=2MN=4,计算即可.【详解】解:延长BN交AC于D,∵AN平分∠BAC,BN⊥AN,∴AD=AB=6,BN=ND,又M是△ABC的边BC的中点,∴DC=2MN=4,∴AC=AD+DC=10,则△ABC的周长=AB+AC+BC=6+10+10=26,故选C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.3.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.一组对边平行,另一组对边相等的四边形是平行四边形C.对于所有自然数n,237-+的值都是质数n nD.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A进行判断;根据平行四边形的判定对B进行判断;取n=6可对C进行判断;根据三角形全等的知识可对D进行判断.【详解】解:A、钝角三角形的三条高线相交于三角形外一点,所以A选项错误;B、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B选项错误;C、当n=6时,n2-3n+7=25,25不是质数,所以C选项错误;D、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项准确.故选:D.【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题. 5.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE B解析:B【分析】 由折叠的性质和平行线的性质可得∠ADB=∠CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证△ABE ≌△CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键.6.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AD ∥BC ,AB =CD C .OA =OC ,OB =ODD .AB =CD ,AD =BC B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A 、根据两组对边分别平行的四边形是平行四边形,可以判定;B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C 、根据对角线互相平分的四边形是平行四边形,可以判定;D 、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B .【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .10A解析:A【分析】 过A 作AH ⊥BC 于H ,根据已知条件得到AE=CE ,求得DE=12BC ,求得DF=12AH ,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A 作AH ⊥BC 于H ,∵D 是AB 的中点,∴AD=BD ,∵DE ∥BC ,∴AE=CE ,∴DE=12BC , ∵DF ⊥BC , ∴DF ∥AH ,DF ⊥DE ,∴BF=HF ,∴DF=12AH , ∵△DFE 的面积为1,∴12DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE ,∴AB=AE=CE=12AC , ∴AB•2AB=8, ∴AB=2(负值舍去),∴AC=4,∴BC=22222425AB AC +=+=.故选:A .【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.8.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤D解析:D【分析】 根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,根据等腰直角三角形得出BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FBE=90°+α,证△FBE ≌△HAE ≌△HDG ≌△FCG ,推出∠BFE=∠GFC ,EF=EH=HG=GF ,求出∠EFG=90°,根据正方形性质得出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,∵平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,∴BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,∵AB ∥CD ,∴∠BAD=∠BCD=180°-α,∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α, ∴①错误;②正确;∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,∴∠HAE=∠HDG=∠FCG=∠FBE ,在△FBE 、△HAE 、△HDG 、△FCG 中,BF AH DH CF FBE HAE HDG FCG BE AE DG CG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,∴△FBE ≌△HAE ≌△HDG ≌△FCG (SAS ),∴∠BFE=∠GFC ,EF=EH=HG=GF ,③正确;∴四边形EFGH 是菱形,∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE ,∴∠EFG=90°,∴四边形EFGH 是正方形,⑤正确;∴EH ⊥GH ,④正确;故选:D .【点睛】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.9.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.⊥于点10.如图,在Rt ABC中,90∠,30C=∠=,D是AC边的中点,DE ACAD,交AB于点E,若83AC=,则DE的长是()A.8 B.6 C.4 D.2C解析:C【分析】根据直角三角形的性质得到AB=2BC,利用勾股定理求出BC,再根据三角形中位线定理求出DE.【详解】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,设BC=x,则AB=2x,∴(222=+,x x43解得:x=8或-8(舍),∴BC=8,⊥,∵D是AC边的中点,DE AC∴DE=1BC=4,2故选C.【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.二、填空题11.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾AE=,正方形ODCE的边长为1,则BD 股定理,如图所示的图形就用了这种分割方法若5等于___________.【分析】设BD=x 正方形ODCE 的边长为1则CD=CE=1根据全等三角形的性质得到AF=AEBF=BD 根据勾股定理即可得到结论【详解】解:设正方形ODCE 的边长为1则CD=CE=1设BD=x ∵△AF 解析:32 【分析】设BD=x ,正方形ODCE 的边长为1,则CD=CE=1,根据全等三角形的性质得到AF=AE ,BF=BD ,根据勾股定理即可得到结论.【详解】解:设正方形ODCE 的边长为1,则CD=CE=1,设BD=x ,∵△AFO ≌△AEO ,△BDO ≌△BFO ,∴AF=AE=5,BF=BD=x ,∴AB=x+5,AC=5+1=6,BC=x+1,∵在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x+1)2+62=(x+5)2,∴x=32, 故答案为:32. 【点睛】本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.12.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】 解析:103 【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴BD=22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.13.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.【分析】过点P 作PG ⊥CB 交CB 的延长线于点G 过点Q 作QF ⊥CB 运用AAS 定理证明△QBF ≌△BPG 根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形利用勾股定理求得线段BC 的长然后结合全解析:10【分析】过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB ,运用AAS 定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,8∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键14.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.15.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是 10【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,22BD AB AD 8=-=,∵CE 是AB 边上的中线,CD =AE , ∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线, ∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF +=+= 10【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.16.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:2【分析】画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM为等腰直角三角形,又∵HG=3,∴MG=233222=,∴四边形EFGH的面积=MG EH⋅=62,∴平行四边形ABCD的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.17.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于12EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为_______.3【分析】首先结合作图的过程确定BP是∠ABD的平分线然后根据角平分线的性质求得点P到BD的距离即可【详解】结合作图的过程知:BP平分∠ABD∵∠A=90°AP=3∴点P到BD的距离等于AP的长为3解析:3【分析】首先结合作图的过程确定BP是∠ABD的平分线,然后根据角平分线的性质求得点P到BD 的距离即可.【详解】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.【点睛】考查了尺规作图的知识及角平分线的性质、矩形的性质等知识,解题的关键是根据图形确定BP平分∠ABD.18.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A',折痕为DE.若将∠B沿EA'向内翻折,点B恰好落在DE上,记为B',则AB=_______.【分析】利用矩形和折叠的性质证明∠ADE=∠ADE=∠ADC=30°∠C=∠ABD=90°推出△DBA≌△DCA那么DC=DB设AB=DC=x在Rt△ADE中通过勾股定理可求出AB的长度【详解】解:3【分析】利用矩形和折叠的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',那么DC=DB',设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【详解】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=1×180°=60°,3∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,23∴323设AB=DC=x,则∵AE2+AD2=DE2,∴2222323233x x +=+-()() 解得,x 1=−33 (负值舍去),x 2=3 , 故答案为:3.【点睛】 本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.19.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.【分析】连接CE 过点C 作交AB 的延长线于点H设AE=x 则BE=8-xCE=AE=x 在根据勾股定理即可得到x 的值【详解】如图:连接CE 过点C 作交AB 的延长线于点H 平行四边形ABCD 中设AE=x 则BE= 解析:203【分析】连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,设AE=x ,则BE=8-x ,CE=AE=x ,在根据勾股定理,即可得到x 的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==,在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.20.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等解析:8【分析】 过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==, 12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般.三、解答题21.如图所示,小明在测量旗杆AB 的高度时发现,国旗的升降绳自然下垂到地面时,还剩余0.3米,小明走到距离国旗底部6米的C 处,把绳子拉直,绳子末端恰好位于他的头顶D 处,假设小明的身高为1.5米,求旗杆AB 的高度是多少米?解析:旗杆AB 的高度为10.6米【分析】过点D 作DE AB ⊥,垂足为E ,可证四边形BCDE 为长方形,可知 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE x =-米,在Rt ADE △中,由勾股定理,得222AE DE AD +=,222( 1.5)6(0.3)x x -+=+,解方程即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,∵AB ⊥BC ,CD ⊥BC∴∠EBC=∠BCD=∠BED=90°,∴四边形BCDE 为长方形,∴ 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE AB BE x =-=-米, 在Rt ADE △中,由勾股定理,得222AE DE AD +=,∴222( 1.5)6(0.3)x x -+=+,整理得223 2.25360.60.09x x x x -++=++,即3.638.16x =,解得10.6x =.答:旗杆AB 的高度为10.6米.【点睛】本题考查勾股定理,矩形的判定与性质,一元一次方程的解法,掌握勾股定理,矩形的判定与性质,一元一次方程的解法,利用勾股定理结合旗杆与绳长的关系构造方程是解题关键.22.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长;(2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.解析:(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP =AD =5,CP =BC =5,进而得出AB 的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB =QB ,再根据BP 平分∠ABQ ,即可得出BP ⊥AQ ,AP =QP ,依据勾股定理得出AP 的长,进而得到△ABQ 的周长.【详解】解:(1)∵在□ABCD 中,AD =5,∴BC =5,∵AB ∥CD ,∴∠BAP =∠DPA ,∵AP 平分∠BAD ,∴∠BAP =∠DAP ,∴∠DAP =∠DPA ,∴DP =AD =5,同理可得,CP =BC =5,∴CD =10,∴AB =10;(2)①如图所示:②∵AD ∥BQ ,∴∠Q =∠DAP ,又∵∠DAP =∠BAP ,∴∠Q =∠BAP ,∴AB =QB =10,又∵BP 平分∠ABQ ,∴BP ⊥AQ ,AP =QP ,∴Rt △ABP 中,22AB BP -, ∴AQ =16,∴△ABQ 的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.23.在ABC 中,AC BC =,点E 在边AB 所在的直线上,过点E 作//DE BC 交直线AC 于点D ,//EF AC 交直线BC 于点F ,构造出平行四边形CDEF .(1)若点E 在线段AB 上时.①求证:FE FB =.②求证:DE EF BC +=.(2)点E 在边AB 所在的直线上,若8BC =,2EF =,请作出简单示意图并直接写出DE 的长度.解析:(1)①见解析;②见解析;(2)10或6【分析】(1)①根据平行线的性质得到∠FEB=∠A,根据等边对等角得到∠B=∠A,可得∠FEB=∠B,从而可证;②证明四边形CDEF是平行四边形,得到CF=DE,结合FE=FB可得结论;(2)点E在边AB所在的直线上,分三种情况讨论,即可得出DE的长度.【详解】解:(1)①∵EF∥AC,∴∠FEB=∠A,又∵AC=BC,∴∠B=∠A,∴∠FEB=∠B,∴FE=FB;②∵EF∥AC,DE∥BC,∴四边形CDEF是平行四边形.∴CF=DE,∵EF=BF,∴DE+EF=CF+BF=BC;(2)如图,同理可得:BF=EF,∴DE=BC+BF=BC+EF=8+2=10.如图,同理可得:BF=EF,DE=CF=BF-BC=EF-BC=2-8=-6(不合题意).如图④,DE=BC-BF=BC-EF=8-2=6.【点睛】本题考查平行四边形的判定与性质以及等腰三角形的判定,等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段. 24.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形.(2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC. 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.25.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-,∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.26.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.解析:(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=.(2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.27.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,AE //CD ,CE //AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若∠B =60°,BC =6,求菱形ADCE 的高.解析:(1)见解析;(2)3√3【分析】(1)先证明四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得出CD=12AB=AD ,即可得出四边形ADCE 为菱形; (2)过点D 作DF ⊥CE ,垂足为点F ;先证明△BCD 是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt △CDF 中,求出DF 即可.【详解】解:(1)证明:∵AE ∥CD ,CE ∥AB ,∴四边形ADCE 是平行四边形,∵∠ACB=90°,D 为AB 的中点,∴CD=12AB=AD , ∴四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵∠B=60°,CD=BD ,∴△BCD 是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE ∥AB ,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt △CDF 中,DF=√CD 2−CF 2=3√3.【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)52或122【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,。
人教版八年级数学下册特殊的平行四边形同步练习(解析版)
人教版八年级数学下册特殊的平行四边形同步练习(解析版)同步练习参考答案与试题解析一.选择题(共10小题)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直选D2.如图,矩形ABCD的对角线AC﹨BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9解:设大正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.4.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD ﹣DF解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).7.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.8.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E﹨F分别是BC﹨CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.9.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.10.如图是由三个边长分别为6﹨9﹨x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,解得x=3,或x=6,故选D.二.填空题(共5小题)11.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为30.解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.12.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.13.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.14.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC 的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6.解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.15.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…﹨则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).三.解答题(共5小题)16.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.17.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC﹨AD分别相交于P﹨Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP﹨△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE﹨CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.如图,已知四边形ABCD是平行四边形,并且∠A=∠D.(1)求证:四边形ABCD为矩形;(2)点E是AB边的中点,F为AD边上一点,∠1=2∠2,若CE=4,CF=5,求DF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,又∠A=∠D,∴∠A=∠D=90°,∴平行四边形ABCD为矩形;(2)解:延长DA,CE交于点G,∵四边形ABCD是矩形,∴∠DAB=∠B=90°,AD∥BC,∴∠GAE=90°,∠G=∠ECB,∵E是AB边的中点,∴AE=BE,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,若CE=4,CF=5,设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,即DF=.20.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE﹨EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:成立.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF;(2)解:结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.。
八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)
八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,DE是△ABC的中位线,且△ADE的周长为20,则△ABC的周长为A.30 B.40C.50 D.无法计算【答案】B2.如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为A.60°B.70°C.80°D.90°【答案】A【解析】∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∵∠D=120°,∴∠C=60°.故选A.3.四边形ABCD中,从∠A,∠B,∠C,∠D的度数之比中,能判定四边形ABCD是平行四边形的是A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶3【答案】B【解析】根据对角相等的四边形是平行四边形,A.1∶2∶3∶4,对角不相等,不能;B.2∶3∶2∶3,对角相等,能;C.2∶2∶3∶3,对角不相等,不能;D.1∶2∶2∶3,对角不相等,不能,故选B.4.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形【答案】A【解析】如图,连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选A.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【答案】C6.如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为A.20 B.16 C.12 D.8【答案】B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE =12BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.7.如图,在ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB【答案】BD选项:∵∠AED=∠CFB,∴∠DEO=∠BFO ,∴DE∥BF,在△DOE和△BOF中,DOE BOF DEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.8.如图,E,F分别是□ABCD的边AB,CD的中点,则图中平行四边形的个数共有A.2个B.3个C.4个D.5个【答案】C【解析】∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵E、F分别是边AB、CD的中点,∴DF=FC=12DC,AE=EB=12AB,∵DC=AB,∴DF=FC=AE=EB,∴四边形DFBE和CFAE都是平行四边形,∴DE∥FB,AF∥CE,∴四边形FHEG是平行四边形,故选C.二、填空题:请将答案填在题中横线上.9.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是__________.【答案】三角形的中位线等于第三边的一半10.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为__________.【答案】4【解析】因为∠F=∠CDE,所以AB∥CD,因为AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD,因为点E是BC边的中点,所以ED=EF,又因为∠F=∠CDE,∠DEC=∠FEB,所以△ECD≌△EBF,所以BF=CD,所以BF=AB,因为AB=4,所以BF=4,故答案为:4.11.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD的延长线于点F,连接CF,BD,请你只添加一个条件:__________,使得四边形BDFC为平行四边形.【答案】DE=EC(答案不唯一)【解析】答案不唯一,比如:BD∥CF,构成两组对边分别平行的四边形是平行四边形;DF=BC,构成一组对边平行且相等的四边形是平行四边形;DE=EC,可以证明BE=EF,构成对角线相互平分的四边形是平行四边形,等等.故答案:DE=EC(答案不唯一).12.如图,在平行四边形ABCD中,对角线交于点O,点E、F在直线AC上(不同于A、C),当E、F的位置满足__________的条件时,四边形DEBF是平行四边形.【答案】AE=CF(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.【解析】∵D、E、F分别是△ABC各边的中点,根据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形,故AE与DF互相平分.14.如图,ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE∥FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE∥FB,∴四边形MENF是平行四边形.15.如图,点M,N在线段AC上,AM=CN,AB∥CD,AB=CD.求证:∠1=∠2.16.如图1,平行四边形ABCD中,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)在旋转过程中,线段AF与CE的数量关系是__________.⊥,当旋转角至少为__________︒时,四边形ABEF是平行四边形,并证明(2)如图2,若AB AC此时的四边形是ABEF是平行四边形.【解析】(1)相等,理由如下: 如图,在ABCD 中,AD ∥BC ,OA =OC ,∴∠1=∠2,在△AOF 和△COE 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ), ∴AF =CE .(2)当旋转角为90︒时,90COE ∠=︒,如图,又∵AB ⊥AC , ∴∠BAO =90°, ∠AOF =90°, ∴∠BAO =∠AOF , ∴AB ∥EF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC , 即:AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.。
北师大版八年级数学下册利用四边形对角线的性质判定平行四边形同步练习题
D A CB 6.2 平行四边形的判定第2课时 平行四边形的判定定理3与两平行线间的距离【学习内容】平行四边形的判定(P143—P145页)【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判 定方法运用【自研课】定向导学 (15分钟)复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别 的四边形是平行四边形. (2)两组对边 的四边形是平行四边形.(3)一组对边 的四边形是平行四边形.探究 活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考:你能说明你得到的四边形是平行四边形吗?已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,点E 、F 在对角线AC 上,并且AE=CF .求证:四边形BFDE 是平行四边形【训练课】(时段:晚自习,时间20分钟)基础题:1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,根据是。
A DOB C2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD 是平行四边形,则还需补充的条件是()A.AC⊥BD B. OA=OB C.OC=OD D.OB=OD3、下列条件中,能判定四边形是平行四边形的是()A.一组对角相等 B. 对角线互相平分C.一组对边相等 D. 对角线互相相等4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.A DE O HF GB C发展题5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种提高题:7、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线
18.1.2平行四边形的判定(4)一一三角形的中位线课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线三边,并且等于2.如图,△43。
的周长为64,E、F、G分别为WA AC.■的中点,』'、6'、C分别为研EG、GF的中点,△/'B'C的周长为.如果及7、4EFG、△』'B'C分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第〃个三角形的周长是•3.中,D、E分别为45、"。
的中点,若座=4,AD=3,AE=2,则■的周长为—二、解答题4.已知:如图,四边形/列中,E、F、G、日分别是/以Ba CD、以的中点.求证:四边形麽诳是平行四边形.5.已知:网的中线初、堡交于点。
F、G分别是缪、%的中点.求证:四边形力碰是平行四边形.综合、运用、诊断6.已知:如图,E为6BCD中庞'边的延长线上的一点,代CE=DC,连结如'分别交应;刃于点尺G,连结4C交初于。
连结必求证:AB=20F.7.已知:如图,在曲时中,£是⑦的中点,尸是/的中点,FC与BE交于G.求证:GF=GC.E CAD.8.已知:如图,在四边形曲%中,AD=BC, E 、尸分别是力C 、/边的中点,死'的延长线分别与如、BC的延长线交于〃、G 点.求证:/AHF=/BGF.拓展、探究、思考9.已知:如图,网中,力是此'边的中点,北'平分ZBAC, BELAE 于E 点,若AB=5, AC=7,求应Z 10.如图在中,D 、E 分别为』弥上的点,巨BD=CE, < "分别是庞、,的中点.过刎的直线交AB 于P,交如于。
线段#、40相等吗?为什么?A参考答案1.(1)中点的线段;(2)平行于三角形的,第三边的一半.2.16,64X(-)71-1.3.18.24.提示:可连结刃(或AC).5.略.6.连结庞CE』ABnUABECnBF=FC.DABCD=>AO=OC,:.AB=20F.7.提示:取座的中点R证明四边形庭烈'是平行四边形.8.提示:连结』G取』C的中点M再分别连结依MF,可得£¥=成9.ED=\,提示:延长冏?,交/C于尸点.10.提示:AP^AQ,取网的中点&连接洌NH.证明zMW是等腰三角形,进而证明/AP4ZAQP.最新人教版八年级数学下册期中综合检测卷考试用时:120分钟,试卷满分:120分一、选择题(每小题3分,共30分)1.若式子后3在实数范围内有意义,则x的取值范围是()A.xN3B.xW3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.l,1,a/2C.6,8,11D.5,12,233.下列各式是最简二次根式的是()A.炯B.V7C.a/20D,V034.下列运算正确的是()A.yfs-=B.=2?C.-'Jl=^2D.』(2一赃V=2-sf55.方程I 4x-8 I +Jx-y-m=O,当y>0时,m 的取值范围是()A.O<m<lB.mN2C.mW2D.m<26.若一个三角形的三边长为6,8, x,则此三角形是直角三角形时,x 的值是()A.8 B.10 C.2a /7 D.10 或 2妗7. 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形8. 能判定四边形ABCD 为平行四边形的题设是( )A.AB〃CD, AD=BCB.AB=CD, AD=BCC.ZA=ZB, ZC=ZDD.AB=AD, CB=CD 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()A.当AB=BC 时,它是菱形C.当ZABC=90°时,它是矩形 B.当ACLBD 时,它是菱形D.当AC=BD 时,它是正方形第9题图 第10题图第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF, AE 、BF 相交于点O, 下列结论:(1)AE=BF ; (2) AE±BF ; (3) AO=OE ; (4)S aaob =S 四边形 deof 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.已知最简二次根式』4a+3b与'刈2a-b+6可以合并,则ab=.12.若直角三角形的两直角边长为a、b,且满足V«2-6a+9+I b-4I=0,则该直角三角形的斜边长为.2513.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=—n,8S2=2n,则S3=.14.四边形ABCD的对角线AC,BD相交于点O,AC±BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,^ABC在正方形网格中,若小方格边长为1,则^ABC的形状是16.已知菱形ABCD中,对角线AC与BD相交于点O,ZBAD=120°,AC=4,则该菱形的面积是•17.AABC中,若AB=15,AC=13,高AD=12,则AABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标■三、解答题(共66分)19.(8分)计算下列各题:(1)(a/48-4J-)-(3J--2^5);(2)(2—迅严比•(2+V3)2016-2X|-^|-(-V3)°.220.(8分)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD±AD,求这块地的面积.21.(8分)已知9+血与9—应的小数部分分别为a,b,试求ab~3a+4b~7的值.22.(10分)如图,在等腰直角三角形ABC中,ZABC=90°,D为AC边上中点,过D点作DEXDF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,^ABC是直角三角形,且ZABC=90°,四边形BCDE是平行四边形, E为AC的中点,BD平分ZABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF±AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402m,ZABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/r^,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向^ABC外作等边AABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)(2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE 和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得ZABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长.最新人教版八年级数学下册期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式而i 、屈、应、Jx + 2、j40f 、J/ +》2中,最简二次根式有()A.1个B.2个C.3个D.4个2.若式子目有意义,则x 的取值范围为()A.xN4B.x 尹 3C.x34 或 x 乂3D.x34 且 x 尹33.下列计算正确的是( )A.a /4 X ^/6=4a /6B 疝+痴=应C.何:屁22 D.J(-15)2=-154.在 RtAABC 中,ZACB=90° , AC=9, BC=12,则点 C 到 AB 的距离是( )A 36「12A,—— B.—5 25厂 9、30C. — D.----4 45.平行四边形ABCD 中,ZB=4ZA,则ZC=()A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm, AC : BD=4 : 3,则菱形的面积是()A.12 cm 2 B.24 cm 2 C.48 cm 2 D.96 cm 2第6题图第8题图第10题图X =-17.若方程组(2工+*=3的解是.贝I直线y=—2x+b与y=x—a\x-y=a的交点坐标是()A.(-l,3)B.(l,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70, 1.65B.1.70, 1.70C.1.65, 1.70D.3,410.如图,在^ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE±AB于E,PF±AC 于F,M为EF中点,则AM的最小值为()二、填空题(每小题3分,共24分)11.当x=时,二次根式x+1有最小值,最小值为12.已知a,b,c是^ABC的三边长,且满足关系式yjc2-a2-b2+\a-b\=O,则Z^ABC的形状为13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数"灯x+bi y2=k2x+b2的图象相交于A(3,2),则不等式(k2—/ci)x+b2 -bi>0的解集为第14题图第16题图第18题图15.在数据一1,0,3,5,8中插入一个数据X,使得该组数据的中位数为3,则x的值为16.如图,3XBCD中,E、F分别在CD和BC的延长线上,ZECF=60°,AE〃BD,EF1BC, EF=2,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF,②ZAEB=75°,③BE+DF=EF,④S正方形ABCD=2+0,其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)12V2-31-+a/18(2)先化简,再求值:"+。
2021-2022学年人教版八年级数学下册《18-1平行四边形》同步练习题(附答案)
2021-2022学年人教版八年级数学下册《18-1平行四边形》同步练习题(附答案)一.选择题1.如图,在△ABC中,点D、E分别是AB、AC的中点,若∠B=40°,则∠BDE的度数为()A.40°B.50°C.140°D.150°2.如图,在△ABC中,D、E分别为AB、AC的中点,CF平分∠ACB,交DE于点F,若AC=4,则EF的长为()A.1B.2C.3D.43.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=4,AF=1,则BC的长是()A.4B.5C.7D.64.如图,将▱ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.70°B.65°C.60°D.55°5.如图,在▱ABCD中,AC与BD相交于O点,E为AD的中点,连接OE.若OE=2,则CD的长度为()A.1B.2C.3D.46.在平行四边形ABCD中,∠BAC=90°,AC=6,BD=12,则AB边的长为()A.3B.4C.6D.87.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,∠A=∠CC.AB∥CD,AD=BC D.∠A=∠B,∠C=∠D8.如图,已知△ABC中AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED ∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④∠DAE=90°.其中正确结论的个数是()A.1B.2C.3D.49.如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是()A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF 二.填空题10.如图,两条宽都为4cm的纸条交叉成45°角重叠在一起,则重叠四边形的面积为cm2.11.△ABC中,D、E分别为AB、AC中点,延长DE到F,使EF=DE,AB=12,BC=10,则四边形BCFD的周长为.12.▱ABCD中,∠BAC=60°,AC、BD相交于点O,且∠BOC=2∠ACB,若AB=4,则BD的长为.13.如图,在平行四边形ABCD中,E,F分别为BC,CD的中点,∠EAF=60°.若AE =3,AF=4,则AB的长为.14.如图,在▱ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,若BE=8,CF=6,EF=2,则AB=.15.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE 的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.三.解答题16.已知:▱ABCD中,E、F是对角线BD上两点,连接AE、CF,若∠BAE=∠DCF.求证:AE=CF.17.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.18.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)若CD=2,求BD的长.19.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)已知:CD=6,∠A=120°,求△DCE的底边CE上的高.20.如图,点A、D、C、B在同一条直线上,AC=BD,AE=BF,AE∥BF.求证:(1)△ADE≌△BCF;(2)四边形DECF是平行四边形.参考答案一.选择题1.解:∵点D、E分别是AB、AC的中点,∴DE∥BC,∴∠B+∠BDE=180°,∵∠B=40°,∴∠BDE=140°,故选:C.2.解:∵D、E分别为AB、AC的中点,∴DE∥BC,AE=EC,∴∠BCF=∠EFC,∵CF平分∠ACB,∴∠BCF=∠ECF,∴∠ECF=∠EFC,∴EF=EC=AC=2,故选:B.3.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB=CD=4,AD=BC,∴∠DFC=∠FCB,又∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=4,∵AF=1,∴AD=4+1=5,∴BC=5.故选:B.4.解:∵平行四边形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°﹣∠BCD=180°﹣110°=70°.故选:A.5.解:∵四边形ABCD是平行四边形,∴AO=CO,∵点E是边CD的中点,∴EO=CD,∵OE,∴CD=2OE=4,故选:D.6.解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,AB=CD,∵∠BAC=90°,AC=6,BD=12,∴BO=6,OA=3,∴AB===3,故选:A.7.解:如图示,∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABCD为平行四边形,根据平行四边形的判定定理可知:只有B符合条件.故选:B.8.解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴∠DAE=90°,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.9.解:如图,取AC的中点G,连接EF,EG,GF,∵E,F分别是边AB,CD的中点,∴EG,GF分别是△ABC和△ACD的中位线,∴EG=BC,GF=AD,在△EGF中,由三角形三边关系得EG+GF>EF,即BC+AD>EF,∴AD+BC>2EF,当AD∥BC时,点E、F、G在同一条直线上,∴AD+BC=2EF,所以四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是AD+BC ≥2EF.故选:B.二.填空题10.解:如图,过点A作AF⊥BC于F,过点C作CE⊥AB于E,由题意可得AB∥CD,AD∥BC,AF=CE=4cm,∴四边形ABCD是平行四边形,∵∠ABC=45°,AF⊥BC,∴AF=BF=4cm,∴AB=4cm,∴重叠四边形的面积=AB×CE=16(cm2),故答案为:16.11.解:∵D、E分别为AB、AC中点,∴DE=BC,∵BC=10,∴DE=5,∵在△ADE和△CFE中,,∴△ADE≌△CFE,∴CF=BD=AB=6,∵DE=FE=5,∴DF=10,∴四边形BCFD的周长为:BD+BC+CF+DF=6+10+6+10=32,故答案为:32.12.解:如图,作BE⊥AC于点E,延长CE到点C′,使EC′=EC,连接BC′,∴BE是CC′的垂直平分线,∴BC=BC′,∴∠C′=∠ACB,∵∠BOC=∠C′BO+∠C′,∴∠BOC=∠C′BO+∠ACB,∵∠BOC=2∠ACB,∴2∠ACB=∠C′BO+∠ACB,∴∠ACB=∠C′BO,∴∠C′=∠C′BO,∴OB=OC′,设OE=x,∴C′E=CE=OE+OC=x+OC,∴CC′=2CE=2(x+OC)=2x+2OC,∵AC=2OC,∴AC′=CC′﹣AC=2x,∴OC′=AC′+OA=2x+OC,∴OB=OC′=2x+OC,在Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=2,BE=2,∴OB=OC′=2+3x,在Rt△OBE中,根据勾股定理,得OB2=OE2+BE2,∴(2+3x)2=x2+(2)2,解得x=或x=﹣2(舍去),∴OB=2+3x=,∴BD=2OB=7.故答案为:7.13.解:延长AE交DC延长线于M点,过M点作MN⊥AF于N点,∵E点为BC中点,∴BE=CE.∵AB∥DM,∴∠B=∠ECM.又∠AEB=∠MEC,∴△ABE≌△MCE(ASA).∴CM=AB,AE=ME=3,在Rt△AMN中,∠MAN=60°,所以∠AMN=30°,∴AN=AM=3,MN===3,∴NF=AF﹣AN=4﹣3=1.在Rt△MNF中,利用勾股定理可得MF===2,∵四边形ABCD是平行四边形,∴CD=AB,又F为CD中点,∴CF=CD=AB.∴MF=MC+CF=AB.所以AB=2,解得AB=.故答案为.14.解:如图,过点E作EG∥FC交BC延长线于点G,∵四边形ABCD是平行四边形,∴AD∥BC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB,同理可证:DC=DF,∵AB∥DC,∴∠ABC+∠DCB=180°,∵BE平分∠ABC,CF平分∠BCD,∴∠EBC+∠FCB=×180°=90°,∴BE⊥CF,∵EG∥FC,∴BE⊥EG,∵EF∥CG,∴四边形EFCG是平行四边形,∴EG=FC,在△BEG中,BE=8,EG=CF=6,根据勾股定理,得BG===10,∵AB=AE=CD=DF,EF=CG=2,AD=BC,∴BG=BC+CG=AE+DE+CG=AE+DF﹣EF+EF=2AB,∴10=2AB,∴AB=5.故答案为:5.15.解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.三.解答题16.证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB∵∠BAE=∠DCF,CD=AB,∠ABD=∠BDC ∴△ABE≌△CDF∴AE=CF17.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,又∵E,F分别是AB,CD的中点,∴AE=BE=AB,CF=DF=CD,∴BE=DF,AE=CF,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS);(2)由(1)知AE=CF,△AFD≌△CEB,∴AF=CE,∴四边形AECF是平行四边形.18.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵四边形MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∴BC=2CD=4,∴BD===2.19.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵F是AD的中点,∴FD=AD,∵CE=BC,∴FD=CE,∵FD∥CE,∴四边形CEDF是平行四边形;(2)过点D作DG⊥CE于点G,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠A+∠ADC=180°,∠DCE=∠ADC,∵∠A=120°,∴∠DCE=∠ADC=180°﹣∠A=60°,在Rt△DGC中,∠DGC=90°,∠DCE=60°,∴∠CDG=30°,∵CD=6,∴CG=CD=3,故△CDE的底边CE上的高DG=.20.证明:(1)∵AC=BD,∴AC﹣CD=BD﹣CD,即AD=BC,∵AE∥BF,∴∠A=∠B,在△ADE与△BCF中,,∴△ADE≌△BCF(SAS);(2)由(1)得:△ADE≌△BCF,∴DE=CF,∠ADE=∠BCF,∴∠EDC=∠FCD,∴DE∥CF,∴四边形DECF是平行四边形.。
人教版八年级下册数学平行四边形同步练习解析版
18.1平行四边形同步练习参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3选D2.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF 的周长是()A.5 B.7 C.9 D.11解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.3.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD 的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.4.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为()A.6 B.4 C.2 D.1解:∵△ABC,D、E分别为AB、AC中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,S△DEC=S△ADE,∴S△ADE=S△ABC=2.∴S△DEC=S△ADE=2.故选:C.5.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.6.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE 解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.7.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.8.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图(三)、图(四)、图(五)的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE,∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC.∴甲=乙图3与图1中,三个三角形相似,所以==,==,∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC∴甲=丙.∴甲=乙=丙.故选A.9.在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有()A.3 B.4 C.5 D.6解:任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有(1)(2);(3)(4);(1)(3);(2)(4)共四种.故选B.10.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③ B.①②④ C.①③④ D.②④解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题(共4小题)11.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是 5 cm.解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.12.如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.13.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.14.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE 中,DE的最小值是 4 .解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.三.解答题(共6小题)15.如图所示,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.16.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.17.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).18.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.19.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.20.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
平行四边形的性质() 分层作业(解析版)
人教版初中数学八年级下册18.1.2平行四边形的性质(2)同步练习夯实基础篇一、单选题:1.下列说法不正确的是()A .平行四边形两组对边分别平行B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的两组对边分别相等【答案】C【分析】根据平行四边形的性质依次分析判断即可.【详解】解:A .平行四边形两组对边分别平行,原说法正确,故该项不符合题意;B .平行四边形的对角线互相平分,原说法正确,故该项不符合题意;C .平行四边形的对角相等,邻角互补,原说法不正确,故该项符合题意;D .平行四边形的两组对边分别相等,原说法正确,故该项不符合题意;故选:C .【点睛】此题考查了平行四边形的性质:平行四边形两组对边分别平行且相等,平行四边形的对角相等,邻角互补,平行四边形的对角线互相平分,熟记性质是解题的关键.2.如图,ABCD Y 的周长为30cm ,ABC 的周长为27cm ,则对角线AC 的长为()A .27cmB .17cmC .12cmD .10cm【答案】C 【分析】因为平行四边形对边相等,所以平行四边形的周长为相邻两边之和的2倍,即 230AB BC ,则15AB BC ,而ABC 的周长27AB BC AC ,即可求出AC 的长.【详解】∵ABCD Y 的周长是30cm ,∴ 230AB BC ∴15AB BC ,∵ABC 的周长是27cm ,∴27AB BC AC ,∴ 27271512cm AC AB BC .故选:C .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AB AC .若4AB ,6AC ,则BD 的长是()A .10B .8C .12D .14【点睛】本题主要考查了平行四边形的性质和勾股定理,属于基本题型,熟练掌握上述知识是关键.Y中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是4.ABCD()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7△的周长比ABEBCD的周长大8,则BE的长有可能为()A.2B.3C.4D.5【分析】依据平行四边形的性质以及线段垂直平分线的性质,即可得到BO 的长,再根据BE BO ,即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC AB CD ,,O 是BD 的中点,又∵OE BD ,∴OE 垂直平分BD ,∴BE DE ,∴AE BE AE DE AD ,∵BCD △的周长比ABE 的周长大8,∴ 8BC CD BD AB AE BE ,即 8BC CD BD AB AD ,∴8BD ,则4BO ,又∵Rt BOE 中,BE BO ,∴4BE ,观察四个选项,BE 的长可能为5,故选:D .【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长等知识,解答本题的关键是判断出OE 是线段BD 的垂直平分线.6.如图,已知平行四边形ABCD 的面积为48,E 为AB 的中点,连接DE ,则ODE 的面积为()A .8B .6C .4D .3已知点A(4,0),E(3,1),则点C的坐标为()A. 2,3B. 1,2C. 2,2D. 3,2【答案】C【分析】由平行四边形的性质得AE=CE,即点E是AC的中点,设C(a,b),利用中点坐标公式,进而求解C点坐标.【详解】解:设C(a,b),∵四边形ABCO为平行四边形,8.在平行四边形中一边长为8cm,它的一条对角线的长12cm,那么它的另一条对角线m的长度的取值范围______.【点睛】本题考查了平行四边形的性质和三角形三边关系定理,关键是把已知数和未知数设法放在一个三角形中,题目比较好,难度适中.9.如图,在ABCD Y 中,点O 是对角线AC BD 、的交点,AC 垂直于BC ,且6cm,8cm AC AD ,则OB ______cm .的周长大1,则ABCD Y 的周长等于__________.【答案】10【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△ADO 的周长比△ABO 的周长大1,则AD 比AB 大1,所以可以求出AD ,进而求出周长.【详解】解:∵四边形ABCD 为平行四边形,∴BO =DO ,AB =CD ,AD =BC ,∵△ADO 的周长比△ABO 的周长大1,∴AD ﹣AB =1,∵AB =2,∴AD =3,∴AB +AD =5,∴平行四边形的周长为 22510AD AB .故答案为:10.【点睛】本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.11.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E ,4AB ,6AC ,10BD ,则AE 的长为______.于点M,N,若∠MDO=∠MOD,BN=2.则MN的长为________.又∵MDO MOD ,∴2O M D M ,∴2ON ,∴224MN OM ON ,故答案为:4.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,证明MDO NBO ≌是解答本题的关键.13.如图,ABCD Y 中,4AB ,5BC ,60ABC ,对角线AC ,BD 交于点O ,过点O 作OE AD ,则OE 等于______.连接CE ,若CED △的周长为6,则四边形ABCD 的周长为___________.【答案】12【分析】由平行四边形的性质得出DC AB ,AD BC ,由线段垂直平分线的性质得出AE CE ,得出CDE 的周长AD DC ,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB ,AD BC ,∵AC 的垂直平分线交AD 于点E ,∴AE CE ,∴CDE 的周长6DE CE DC DE AE DC AD DC ,∴四边形ABCD 的周长2612 ;故答案为:12.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题:15.在▱ABCD 中,AC 、BD 交于点O .过点O 作OE ⊥BD 交BC 于点E ,连接DE .若∠CDE =∠CBD =15°.求∠ABC 的度数.【答案】45【分析】由线段垂直平分线的性质得出BE =ED ,得出15CBD BDE ,求出30ABD ,则可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB =OD ,∵OE ⊥BD ,∴BE =ED ,∴15CBD BDE ,∵15CDE ,∴30BDC ,∵四边形ABCD 是平行四边形,∴AB CD ,∴30ABD BDC ,∴301545ABC ABD CBD .【点睛】本题主要考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.16.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F ,求证:AC ,EF 互相平分.【答案】证明见解析【分析】证出AEO CFO ≌,得出OE =OF 即可得证.【详解】证明:∵四边形ABCD 是平行四边形,∴AO =CO .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°.在△AEO 和△CFO 中,AEO CFO EOA FOC OA OC,∴△AEO ≌△CFO (AAS ),∴OE =OF ,AC ,EF 互相平分.【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,证明△AEO ≌△CFO 是解题的关键.17.已知:如图,在ABCD Y 中,过AC 的中点O 的直线分别交CB ,AD 的延长线于点E ,F .求证:BE DF .【答案】证明见解析.【分析】证明 AOF COE ASA ≌,可得:AF CE ,再利用AD BC ,即可证明BE DF .【详解】证明:∵四边形ABCD 是平行四边形,∴AO OC,AD BC ,DAO BCO ,在AOF 和COE 中,DAO BCO AO OC FOA COE∴ AOF COE ASA ≌,∴AF CE ,∵AD BC ,∴ AF AD CE BC ,即BE DF .【点睛】本题考查平行四边形的性质,全等三角形的判定定理及性质,解题的关键是掌握平行四边形的性质,全等三角形的判定定理及性质,证明 AOF COE ASA ≌.18.如图,ABCD Y 的对角线AC 和BD 相交于点O ,EF 过点O 且与边BC ,AD 分别相交于点E 和点F .(1)求证:OE OF ;(2)若4BC ,3AB ,2OF ,求四边形CDFE 的周长.【答案】(1)见解析(2)四边形CDFE 的周长为11【分析】(1)由四边形ABCD 是平行四边形,可得OA OC ,AD BC ∥,继而可证得 ASA AOE COF ≌△△,则可证得结论;(2)由全等三角形的性质及平行四边形的性质可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC ,AD BC ∥,∴OAF OCE,∵在OAF △和OCE △中OAF OCE OA OC AOF COE,∴ ASA AOE COF ≌△△,∴OF OE .(2)解:∵AOF COE ≌△△,∴AF CE ,∵四边形ABCD 是平行四边形,∴AD BC ,AB CD ,∵4BC ,3AB ,2OE OF ,∴CDFE EF DF CE CDC 四边形2OE DF AF CD2OE AD CD44311 .【点睛】本题主要考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.能力提升篇一、单选题:1.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E .2,4AB AC BD ,则AE 的长为()A B .32C D .72.如图,在▭ABCD 中,对角线AC 、BD 相交于点O ,线段EF 经过点O ,AH ⊥BC 于点H .若AH =2,BC =3,则图中阴影部分的面积为()A .1.5B .2C .3D .4.5①OE OF ;②图中共有4对全等三角形;③若4AB ,6AC ,则214BD ;④ABC ABFE S S 四边形 ;其中正确的结论有()A.①④B.①②④C.①③④D.①②③的边OA在x轴上,对角线OB,AC相交于点E,已知A点坐标为(6,0),4.如图,OABC点E 的坐标为 4.5,2,则OABC 的周长为______.掌握平行四边形的性质,勾股定理是解题的关键.5.如图,在ABCD Y 中,32AO ,30ACB ,AC AB ,点E 在AC 上,1CE ,点P 是BC 边上的一动点,连接PE PA 、,则PE PA 的最小值是________.∵点A 与点F 关于直线BC 对称,∴CA CF ,30ACB FCB ,则∴ACF △是等边三角形,∵在ABCD Y 中,32AO ,∴23CF AC AO ,∴30CEG ,∴1122CG CE ,2213122EG,∴52FG FC CG ,∴2235722EF,∴PE PA 的最小值是7.故答案为:7.【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,含30度的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6.如图,在▱ABCD 中,45DBC DE BC ,于E BF CD ,于F DE ,、BF 交于H BF AD ,,的延长线交于G ,给出下列结论:①2DB BE ;②A BHE ;③AB BH ;④若BG 平分DBC ,则21BE EC ;其中正确的结论有______.(填序号)【答案】①②③④【分析】①由题意可知BDE △是等腰直角三角形,故此可得到2BD BE ;②由HBE CBF HEB CFB ,证明即可;③先证明BHE DEC △≌△,从而得到BH DC ,然后由平行四边形的性质可知AB BH ;④连接CH ,证CEH △是等腰直角三角形,DH CH ,设EH EC a ,得出22DH CH EC a ,进而得出21BE DE EC .【详解】解:DH BC ∵,90DEB ,AB CD∵,,③正确;AB BH7.如图所示,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为点E ,AB ,2AC ,4BD .(1)求证:AB AC ;(2)求AE 的长.(1)如图1,若BD AB 的长;(2)如图2,过点C 作CE ⊥BD 于点E ,连接AE ,过点A 作AF ⊥AE 交BD 于点F ,求证:OF =CE +OE .∴∠FAC =∠OCG ,∠AFO =∠OGC ,∵OA =OC ,∴ AFO CGO AAS ,∴OF=OG,∵AB⊥AC,AF⊥AE,∴∠BAC=∠FAE=90°,∴∠BAC-∠FAO=∠FAE-∠FAO,∴∠BAF=∠CAE,∵CE⊥BD,∴∠CED=∠CEF=90°,∴∠AEC=∠AEF+∠CEF=90°+∠AEF,∵∠AFB是AFE的一个外角,∴∠AFB=∠FAE+∠AEF=90°+∠AEF,∴∠AEC=∠AFB,∵AB=AC,∴∠AFE=∠AEF=45°,∴∠AFE=∠CGO=45°,∴CEG是等腰直角三角形,∴CE=EG,∵OG=OE+EG,∴OF=OE+CE.【点睛】本题主要考查平行四边形的性质、三角形的全等、等腰三角形的性质以及勾股定理,掌握相关知识并灵活应用是解题的关键.。
(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试(包含答案解析)
一、选择题1.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 2.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .103.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行5.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 6.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠; D .OAB OAD ∠=∠.7.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .108.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 9.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S =.其中正确结论的个数是( )A .5个B .4个C .3个D .2个10.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º11.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .412.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+二、填空题13.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .14.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.15.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.16.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______. 17.在平面直角坐标系xOy 中,OABC 的三个顶点的坐标分别为()()()0,0,3,0,4,3O A B ,则其第四个顶点C 的坐标为______.18.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.19.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.20.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.三、解答题21.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 分别为OB ,OD 的中点,连接AM 并延长至点E ,使EM AM =,连接CE ,CN .(1)求证:ABM CDN ≌;(2)当AB 与AC 满足什么数量关系时,四边形MECN 是矩形?请说明理由;(3)连接AN ,EN .当ANE 满足什么条件时,四边形MECN 是正方形?请说明理由.22.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 23.如图,在四边形ABCD 中,,E F 分别是,AD BC 的中点,,G H 分别是对角线,BD AC 的中点,依次连接,,,E G F H 连接,EF GH .(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =时,EF 与GH 有怎样的位置关系?请说明理由;(3)若,20,70AB CD ABD BDC =∠=︒∠=︒,则GEF ∠= ︒.24.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.25.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.26.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .2.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3.D解析:D【分析】由于C 、D 是定点,则CD 是定值,如果△CDE 的周长最小,即DE +CE 有最小值.为此,作点D 关于x 轴的对称点D′,当点E 在线段CD′上时,△CDE 的周长最小.【详解】如图,作点D 关于x 轴的对称点D′,连接CD′与x 轴交于点E ,连接DE .若在边OA 上任取点E′与点E 不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E +CE =DE +CE ,∴△CDE 的周长最小.∵OB =4,D 为边OB 的中点,∴OD =2,∴D (0,2),∵在长方形OACB 中,OA =3,OB =4,D 为OB 的中点,∴BC =3,D′O =DO =2,D′B =6,∵OE ∥BC ,∴Rt △D′OE ∽Rt △D′BC , ∴OE D O BC D B='', 即:623OE =,即:OE =1, ∴点E 的坐标为(1,0)故选:D .【点睛】此题主要考查轴对称−−最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是:两点之间线段最短.4.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A、能用两组对角相等的四边形是平行四边形判定平行四边形;B、不能判定平行四边形,如等腰梯形;C、能用两组对边相等的四边形是平行四边形判定平行四边形;D、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.5.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.6.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.7.A解析:A【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=12BC,求得DF=12AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=12BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=12AH,∵△DFE的面积为1,∴12DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=1AC,2∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴==故选:A.【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.8.C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.9.C解析:C【分析】证明△OFB≌△CFB,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM,故结论④是错误的;证NE∥BM,AN=NO=OM,所以BM=3NE,AO=2OM,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED与AC的交点为N,设AE=OE=2x,则NE=x,BE=4x,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.10.C解析:C【分析】由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.11.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°,∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.12.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.二、填空题13.10【分析】连接对角线BD 交AC 于点O 证四边形BDEG 是平行四边形得EG =BD 利用勾股定理求出OD 的长BD =2OD 即可求出EG 【详解】解:连接BD 交AC 于点O 如图:∵菱形ABCD 的边长为13cm ∴A解析:10【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【详解】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD 的边长为13cm ,∴AB//CD,AB=BC=CD=DA=13cm,∵点E、F分别是边CD、BC的中点,∴ EF//BD,∵AC、BD是菱形的对角线,AC=24cm,∴AC⊥BD,AO=CO=1AC=12cm,OB=OD,2又∵AB//CD,EF//BD,∴DE//BG,BD//EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13cm,CO=12cm,∴OB=OD5=cm,∴BD=2OD=10cm,∴EG=BD=10cm;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.14.30°【分析】根据矩形的性质得到AD∥BC∠DCB=90°根据平行线的性质得到∠F=∠ECB=20°根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°于是得到结论【详解】解解析:30°【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB∵∠ECB=20°,∴∠F=∠ECB=20°,∵∠GAF=∠F,∴∠GAF=∠F=20°,∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∴∠ACB=∠ACG+∠ECB=60°,∴∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.15.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.16.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.17.【分析】由题意得出OA=3由平行四边形的性质得出BC ∥OABC=OA=3即可得出结果【详解】解:∵O (00)A (30)∴OA=3∵四边形OABC 是平行四边形∴BC ∥OABC=OA=3∵B (43)∴点解析:()1,3【分析】由题意得出OA=3,由平行四边形的性质得出BC ∥OA ,BC=OA=3,即可得出结果.【详解】解:∵O (0,0)、A (3,0),∴OA=3,∵四边形OABC 是平行四边形,∴BC ∥OA ,BC=OA=3,∵B (4,3),∴点C 的坐标为(4-3,3),即C (1,3);故答案为:(1,3).【点睛】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.18.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,2222435AB AC BC cm =+=+=,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm . 故答案为:5cm 或245cm 或75cm . 【点睛】 本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.19.2或【分析】分两种情况:①过A′作MN ∥CD 交AD 于M 交BC 于N 则直线MN 是矩形ABCD 的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E 即可;②过A′作PQ ∥AD 交解析:2 【分析】分两种情况:①过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E 即可;②过A′作PQ ∥AD 交AB 于P ,交CD 于Q ;求出∠EBA′=30°,再利用勾股定理求出A′E ,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM=BN=12AD=2, ∵△ABE 沿BE 折叠得到△A′BE , ∴A′E=AE ,A′B=AB=2,∴A′N=22A B BN '-=0,即A′与N 重合,∴A′M=2= A′E ,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:2或33. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.20.【分析】根据题意可知最小时落在线段PD 上利用勾股定理求出PD 即可【详解】如图连接PD 根据题意可知当落在线段PD 上时最小且最小值为PD 长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意 解析:17 【分析】 根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.三、解答题21.(1)见解析;(2)AC=2AB ,理由见解析;(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形.【分析】(1)根据SAS 证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM ,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABM=∠CDN ,∵点M ,N 分别为OB ,OD 的中点,∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵四边形ABCD 是平行四边形,∴AC=2OA ,∵AC=2AB ,∴AB=OA ,∵M 是OB 的中点,∴AM ⊥OB ,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN 是矩形.(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形;理由如下:连接AN 、EN∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵EM AM =,∠ENA=90°∴MN=EM ,∴平行四边形EMNC 是菱形,∵AN=EN ,AM=EM∴∠NME=90°,∴四边形EMNC 是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC . 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a ,∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.23.(1)见解析;(2)GH EF ⊥,见解析;(3)25︒【分析】(1)利用中位线性质得//EG AB ,且12GE AB =,//HF AB ,且12HF AB =,可推出//EG HF ,且EG HF =,可证四边形EGFH 是平行四边形;(2由G F 、分别是BD BC 、的中点,可得12GF CD =,由(1)知12GE AB =,由AB CD =,可证GE GF =,由(1)知四边形EGFH 是平行四边形,可证四边形EGFH 是菱形即可;(3)先证四边形EGFH 是平行四边形;再证四边形EGFH 是菱形,由EG ∥AB ,GF ∥CD ,可求∠EGD=∠ABD=20°,∠BGF=∠BDC=70°利用平角可求∠DGF=180°-∠BGF=110°,利用两角和求∠EGF=130°利用菱形性质求∠GEH=180°-∠EGF=50º,由FE 平分∠GEH ,∠GEF=25︒即可.【详解】证明:(1)E G 、分别是AD BD 、的中点,//EG AB ∴,且12GE AB =, 同理可证://HF AB ,且12HF AB =, //EG HF ∴,且EG HF =,∴四边形EGFH 是平行四边形;(2)GH EF ⊥,理由:G F 、分别是BD BC 、的中点,12GF CD ∴=, 由(1)知12GE AB =, 又AB CD =,GE GF ∴=, 又四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,GH EF ∴⊥;(3)E G 、分别是AD BD 、的中点,F H 、分别是BC AC 、的中点,//EG AB ∴,//HF AB ,12GE AB =, //EG HF ∴,同理可证//EH GF ,12GF CD =, ∴四边形EGFH 是平行四边形,∵AB CD =,GE GF ∴=,∴四边形EGFH 是菱形,20,70ABD BDC ∠=︒∠=︒,EG ∥AB ,GF ∥CD ,∴∠EGD=∠ABD=20°,∠BGF=∠BDC=70°,∴∠DGF=180°-∠BGF=110°,∴∠EGF=∠EGD+∠DGF=20°+110°=130°,∴∠GEH=180°-∠EGF=50º,∵FE 平分∠GEH ,∴∠GEF=11502522GEH ∠=⨯︒=︒.故答案为:25︒.【点睛】本题考查平行四边形,菱形判断与性质,求菱形内角,掌握平行四边形的判定方法,菱形的判定与性质,会利用菱形的性质求角度是解题关键.24.(1)见解析;(2)120°【分析】(1)根据直角三角形斜边上的中线等于斜边的一半求证;(2)根据补角定义和直角三角形性质可得∠MDA+∠MCB=120°,∠MDB+∠MCA=60°,再由等边三角形的性质得到∠BDC+∠ACD=60°,最后由对顶角相等和三角形内角和定理可得∠AOB=120°.【详解】(1)证明:由已知可得:1122MC AB MD AB ==,,∴MC=MD;(2)∵△MCD是等边三角形,∴∠DMC=60°,∴∠AMD+∠BMC=180°-60°=120°,与(1)同理有:MA=MD,MC=MB,∴∠MAD=∠MDA,∠MCB=∠MBC,∴2(∠MDA+∠MCB)=360°-(∠AMD+∠BMC)=360°-120°=240°,∴∠MDA+∠MCB=120°,∵∠ADB+∠BCA=180°,∴∠MDB+∠MCA=(∠ADB+∠BCA)-(∠MDA+∠MCB)=180°-120°=60°,∴∠BDC+∠ACD=(∠MDC+∠MCD)-(∠MDB+∠MCA)=120°-60°=60°,∴∠AOB=∠DOC=180°-(∠BDC+∠ACD)=180°-60°=120°.【点睛】本题考查等边三角形和直角三角形的综合应用,熟练掌握等边三角形和直角三角形的性质、补角定义、三角形内角和定理是解题关键.25.(1)见解析;(2)见解析.【分析】(1)连接GE,根据正方形对边平行,得∠AEG=∠CGE,根据菱形的对边平行,得∠HEG=∠FGE,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG=⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH ,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH 为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.26.(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE = ∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-= ∴2214BC BO == ∴11214224722BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.。
2022-2023学年浙教版八年级数学下册第四章平行四边形同步练习(附简单答案)
第4章 平行四边形一、单选题1.正多边形每一个外角都等于36︒,则从此多边形一个顶点出发可引的对角线的条数是( )A .5条B .6条C .7条D .8条 2.如图,在Rt ABC △中,D 、E 分别是直角边BC 、AC 的中点,若10DE =,则AB 边上的中线CP 的长为( )A .5B .6C .D .10 3.已知点(,2)M a 在第二象限,且||1a =,则点M 关于原点对称的点的坐标是( ) A .(2,1)- B .(1,2)- C .(2,1)- D .(1,2)-4.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌( )A .等边三角形B .正方形C .正五边形D .正六边形 5.如图,在平面直角坐标系中,若ABC 与111A B C △关于E 点成中心对称,点A ,B ,C 的对应点分别为1A ,1B ,1C ,则对称中心E 点的坐标是( )A .()3,1-B .()0,0C .2,1D .()1,3-6.六边形的对角线共有( )条.A .5B .9C .12D .147.如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .78.如图,四边形ABCD 中,∠1=93°,∠2=107°,∠3=110°,则∠D 的度数为( )A .125°B .130°C .135°D .140°9.一个多边形从一个顶点处可以引出10条对角线,这个多边形的边数是( )A .7B .8C .12D .1310.下列判断:(1)各边长相等的多边形是正多边形;(2)各角都相等的多边形是正多边形;(3)等边三角形是正多边形:(4)长方形是正多边形.其中正确的有()A.1个B.2个C.3个D.4个11.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°12.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.6二、填空题13.如图,孔明在驾校练车,他由点A出发向前行驶200米到B处,向左转45︒.继续向前行驶同样的路程到C处,再向左转45︒.按这样的行驶方法,回到点A总共行驶了__.14.如图,在▱ABCD中,AB=10,AD=6,AC∠BC,交BD于点O,则BD的长为_____.15.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在1A、1D处,若12150∠+∠=︒,∠+∠=_____________°.则B C△内一点,连接PA、PB、PC、PD,16.如图,BD为ABCD的对角线,点P为ABD若ABP 和BCP 的面积分别为3和13,则BDP △的面积为_________.三、解答题17.【相关概念】将多边形的内角一边反向延长,与另一条边相夹形成的那个角叫做多边形的外角.如图,将ABC 中ACB ∠的边CB 反向延长,与另一边AC 形成的ACD ∠即为ACB △的一个外角.三角形外角和与三角形内角和对应,为与三个内角分别相邻的三个外角的和.【求解方法】借助一组内角与外角的数量关系,可以求出三角形的外角和. 如图,ABC 的外角和()()()180180180ACB CAB ABC =︒-∠+︒-∠+︒-∠.()540540180360ACB ABC CAB =︒-∠+∠+∠=︒-︒=︒.【自主探究】根据以上提示,完成下列问题:(1)将下列表格补充完整.(2)如果一个八边形的每一个内角都相等,请用两种不同的方法求出这个八边形一个内角的度数.18.小刚从点A出发,前进10米后向右转60°,再前进10米后又向右转60°,按照这样的方式一直走下去,他能回到A点吗?当他第一次回到A点,他走了多少米?19.探究归纳题:(1)试验分析:如图1,经过A点可以作______条对角线;同样,经过B点可以作______条对角线;经过C点可以作_____条对角线;经过D点可以作______条对角线.通过以上分析和总结,图1共有_______条对角线.(2)拓展延伸:运用(1)的分析方法,可得:图2共有_______条对角线;图3共有______条对角线;(3)探索归纳:对于n边形(3n ),共有_________条对角线.(用含n的式子表示)(4)运用结论:九边形共有________条对角线.20.如图,平面直角坐标系中,∠ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐标系中画出与∠ABC关于点P(1,0)成中心对称的∠A'B'C',并分别写出点A',B',C'的坐标;(2)如果点M(a,b)是∠ABC边上(不与A,B,C重合)任意一点,请写出在∠A'B'C'上与点M对应的点M'的坐标.参考答案:1.C2.D3.D4.C5.A6.B7.D8.B9.D10.A11.A12.D13.1600米##1600m14.15.10516.1017.(1)内角和分别为:360°、540°、180°(n-2);外角和分别为:360°、360°、360°(2)135°18.60米19.(1)1,1,1,1,2(2)5,9(3)(3)2n n(4)2720.(1)∠A'B'C'见解析,A′(3,2),B′(4,4),C′(6,1);(2)M′(2−a,−b).。
【同步练习】2019年八年级数学下册 平行四边形性质与判定 同步练习(含答案)
2019年八年级数学下册平行四边形性质与判定同步练习一、选择题:1、下列条件不能判断四边形是平行四边形的是()A.两组对边分别相等B.一组对边平行且相等C.一组对边平行,另一组对边相等D.对角线互相平分2、□ABCD中,∠A:∠B=1:2,则∠C的度数为().A.30°B.45°C.60°D.120°3、如图,EF过□ABCD对角线的交点O,交AD于点E,交BC于点F,若▱ABCD的周长为36,OE=3,则四边形EFCD的周长为( )A.28B.26C.24D.204、已知□ABCD的两条对角线AC=18,BD=8,则BC的长度可能为()A.5B.10C.13D.265、在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形,若想使四边形ABCD为平行四边形,要添加一个条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.这个条件可以是( )A.①或②B.②或③C.①或③或④D.②或③或④6、如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( )A.8B.10C.12D.147、如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.168、如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.229、如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20B.22C.29D.3110、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8B.10C.12D.1411、在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C (6,2),则对角线BD的最小值是()A.3B.2C.5D.612、如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,2AB=BC,连结OE.下列结论:=AB·AC;③OB=AB;④4OE=BC.①∠CAD=30°;②S▱ABCD成立的个数有( )A.1个B.2个C.3个D.4个13、如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )A.4B.6C.8D.1014、如图,在平行四边形ABCD中,AB=8 cm,AD=12 cm.点P在AD边上以每秒1 cm的速度从点A向点D运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P达到点D时停止(同时点Q也停止).在运动以后,以P,D,Q,B四点为顶点组成平行四边形的次数有( )A.4次B.3次C.2次D.1次15、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为( )A.1B.2C.3D.4二、填空题16、▱ABCD中一条对角线分∠A为35°和45°,则∠B= 度.17、如图,□ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.18、在平行四边形ABCD中,∠B+∠D=200°,则∠A=19、如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为10,AB=4,那么对角线AC+BD= .20、在平行四边形ABCD中,BC上的高为4,AB=5 ,AC=,则平行四边形ABCD的周长等于_____________.21、如图,在△ABC中,∠ACB=90°,M,N分别是AB,AC的中点,延长BC至点D,使3CD=BD,连接DM,DN,MN.若AB=6,则DN=22、如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是=___. 23、如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH24、如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△A5B5C5的周长为.25、如图,正方形ABCD的边长为4,点P为正方形内部(含边上)的任意一点,且BP=2,分别连接PC、PD,则PD+PC的最小值为.三、解答题:26、如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点.求证:四边形MFNE是平行四边形.27、如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.28、如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:BE=DF.29、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.30、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD 于点O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AE的长.31、如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=40°,求∠A的度数;(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.32、如图,是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲、乙两人同时从B站乘车到F 站,甲乘1路车,路线是B⇒A⇒E⇒F;乙乘2路车,路线是B⇒D⇒C⇒F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.33、如图,在平行四边形AB CD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.34、如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.35、已知,平行四边形ABCD,E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,求证:BE=AF+3DF;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.参考答案1、C.2、C.3、C.4、B.5、B.6、C.7、D.8、B.9、C.10、B.11、D.12、C.13、B.14、B.15、D.16、答案为:100.17、答案为:1<a<7.18、答案为:80°.19、答案为:12.20、答案为:12或2021、答案为:3_.22、答案为:3.23、答案为:4.24、答案为:125、答案为:5.解:如图,在BC边上取一点E,使得BE=1,连接DE.∵PB=2,BC=4,BE=1,∴==,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PE=PC,∴PD+PC=PD+PE,∵PE+PD≥DE,在Rt△DEC中,∵∠DCE=90°,CD=4,EC=3,∴DE==5,∴PE+PD的最小值为5,∴PD+PC的最小值为5,故答案为:5.26、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.又∵AE=CF,∴AD-AE=BC-CF,即DE=B F.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.∵M,N分别是BE,DF的中点,∴EM=BE=DF=NF.∴四边形MFNE是平行四边形.27、证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.28、证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.29、(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.30、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.又∵∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF,∴BO=DO.(2)∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=EG.∵BD⊥AD,∴∠ADB=∠GDO=90°,∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.31、解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=40°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=40°,∴∠A=180°﹣40°﹣40°=100°(2)∵∠AEB=∠ABE∴AE=AB=10∵四边形ABCD是平行四边形∴AD=BC=16,CD=AB=10,∴DE=AD﹣AE=6,∵CE⊥AD,∴CE=8,∴▱ABCD的面积=AD•CE=16×8=12832、解:可以同时到达.理由如下:连结BE交AD于G,∵BA∥DE,AE∥DB,∴四边形ABDE为平行四边形,∴AB=DE,AE=BD,BG=GE,∵AF∥BC,G是BE的中点,∴F是CE的中点,即EF=FC,∵EC⊥BC,AF∥BC,∴AF⊥CE,即AF垂直平分CE,∴DE=DC,∴AB=DC,∴AB+AE+EF=DC+BD+CF,∴二人同时到达F站33、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF. ∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形34、解:(1)在Rt△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE. ∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能. 理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,又∵AC=BC,BF=EF∴BC=BF,∴∠BCA=45°∵四边形ACFE为平行四边形∴ CF//AD∴∠A=45°∴当∠A=45°时四边形ACFE为平行四边形.35、解:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵□ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°﹣α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°﹣α,∵∠MBC=90°,∴∠MBA=90°﹣2α,∴∠KBA=90°﹣α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,BM==15,∴AD=BC=BM=15,∴AF=AD﹣DF=15﹣8=7,∴BE=AF+3DF=7+3×8=31.。
八年级数学《平行四边形的性质》同步练习题含答案
八年级数学《平行四边形的性质》同步练习题◆基础练习1.已知平行四边形ABCD的周长是30,若AB=10,则BC=________.2.已知平行四边形ABCD的周长是20,△ABC的周长为17,则对角线AC的长是_______.3.如图,平行四边形ABCD中,∠B=60°,AB=6,则BC边上的高等于________.(第3题) (第6题)4.在平行四边形ABCD中,AB=4cm,BC=6cm,则ABCD的周长为______cm.5.平行四边形的周长为24cm,相邻两边长的比为3:1,•那么这个平行四边形中较短的边长为()A.6cm B.3cm C.9cm D.12cm6.如图,在平行四边形ABCD中,∠A的平分线交BC于点E.若AB=3,AD=8,则EC=_______.7.如图,BC为固定的木条,AB,AC为可伸缩的橡皮筋.当点A在与BC•平行的轨道上滑动时,你能说明△ABC的面积将如何变化吗?并说明你的理由.8.如图,在平行四边形ABCD中,点E,F分别是BC,AD的中点,则AE=CF吗?试说明理由.◆综合提高9.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,•则这个平行四边形的周长为________.10.已知点A(3,0),B(-1,0),C(0,2),以A,B,C为顶点画平行四边形,•则第四个顶点D的坐标是_______.11.如图,点A,B,D分别是△EFC中EF,FC,EC边上的三点,若四边形ABCD•是平行四边形,且∠EAD=∠FA B.(1)请找出图中所有的等腰三角形,并说明理由.(2)若CF=5,CE=6,求平行四边形ABCD的周长.答案:1.5 2.7 3.33 4.20 5.B 6.5 7.不变;理由略8.提示:证四边形AECF•是平行四边形或证△ABE=△CDF 9.68cm 10.略11.(1)△DAE,△ABF,△CEF;理由略(2)周长=CB+CD+AB+AD=CB+CD+BF+DE=CF+CE=11。
人教版数学八年级下册:第18章《平行四边形》同步练习含答案
F E D C B A O ED C B A D C B A O D C B A 第十八章 平行四边形 单元练习题一、选择题(每小题5分,共30分)1.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB=DC ,AD=BCB.AB ∥DC ,AD ∥BCC.AB ∥DC ,AD=BCD.AB ∥DC ,AB=DC(第1题) (第2题)2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定成立的是( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OC3.顺次连接矩形四边中点得到的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC=4,则四边形OCED 的周长为( )A.4B.6C.8D.105.如图,将一个边长分别为4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕EF 的长为( )6.如图,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )(第4题) (第5题) (第6题)二、填空题(每小题6分,共24分)7.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O ,若AC=6,则AO 的长度等于________________.8.如图,若将四根木条钉成的矩形木框变形为□ABCD 的形状,并使其面积变为O F E D C B A D CB A DC B A 矩形面积的一半,则□ABCD 的最小内角的大小为______________.(第7题) (第8题)9.如图,将两条宽度都为3的纸片重叠在一起,使∠ABC=600,则四边形ABCD 的面积为__________10.如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.则第n 个正方形的边长为________.(第9题) (第10题)三、解答题(第11题14分,第12,13题各16分,共46分)11.如图,在四边形ABCD 中,AB=CD ,BE=DF ;AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F.(1)求证:△ABE ≌△CDF ;(第11题)(2)若AC 与BD 交于点O ,求证:AO=CO.O D C B AF E D C B A12.如图,在△ABC 中,∠CAB=900,DE ,DF 是△ABC 的中位线,连结EF ,AD.求证:EF=AD.(第12题)∵AE⊥BD,CF ⊥BD,∴∠AEB=∠CFD=90°∵AB =CD,BE=DF ∴ABE≌CDF参考答案:1.C.2.B.3.C.4.C.5.D.6.D7.3. 8.300. 11.(1)证明:(2)提示:证明四边形ABCD 是平行四边形由(1)△ABE ≌△CDF ,可得∠ABE=∠CDF ,AB ∥CD ,可得四边形ABCD 是平行四边形,于是AO=CO.12.提示:由DE ,DF 是△ABC 的中位线,可得四边形EAFD 是平行四边形,又∠CAB=900.可知□EAFD 是矩形,根据矩形对角线相等即可得证.13.提示:(1)证明△AOF ≌△BOE ;(2)结论仍然成立,证明△AOF ≌△BOE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学教学内容:平行四边形的识别学习目标1.掌握平行四边形识别的四种方法.2.能综合运用平行四边形的性质和识别的方法去解决一些实际问题.学法指导1.平行四边形的定义是识别平行四边形的最基本的方法,要把它和四种识别方法加在一起灵活地运用.2.通过定理的证明,使我们逐步学习分别从题设或结论出发,运用综合法和分析法寻找几何证明思路.3.判断一个命题是否正确,可采用反例法,即举出一个符合题设,但不符合结论的例子.基础知识讲解平行四边形的识别方法1.两组对角分别相等的四边形是平行四边形.2.两组对边分别相等的四边形是平行四边形.3.对角线互相平分的四边形是平行四边形.4.一组对边平行且相等的四边形是平行四边形.5.除以上四种识别方法外,还有一种最基本的识别方法,即两组对边分别平行的四边形为平行四边形,这种方法也叫定义法.重点难点重点:利用平行四边形的识别方法来判断一个四边形是否是平行四边形.难点:五种识别方法的选择是本章的难点,综合应用平行四边形的性质和识别方法来解决实际问题也是本章的难点.易错误区分析1.利用本节内容解题时常犯“错用识别方法”的错误.例如:已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE上AD于E,OF ⊥BC于F.求证:四边形AECF是平行四边形错证:在△AOE和△COF中∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE∴四边形AECF是平行四边形错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线.正确证:在△AOE和△COF中∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE又∵AD∥BC,OE⊥AD,OF⊥BC∴E、O、F三点共线∴四边形AECF是平行四边形例如:判断命题“一组对边平行,另一组对边相等的四边形是平行四边形”是否正确错解:这个命题正确分析:错解的原因主要是与一组对边平行且相等的识别方法相混淆.正确解法:这个命题不正确,例如:如图12-1-20,作一个□ABCD(其中∠A是锐角)以C为圆心,以CB为半径画弧交AB的延长线于点E,连结CE,则有CD∥AE,AD=CE,显然四边形AECD虽满足命题的条件,但它不是平形四边形.典型例题例1.已知如图12-1-21所示,在□ABCD中,E、F是对角线AC上的两点,且AE=CF,M、N是AB、CD上的点,且BM=DN.求证:四边形MENF是平行四边形.分析:由平行四边形的识别方法按照已知条件应从边入手,由已知及平行四边形可知△AME≌△CNF,则有ME=NF,同理△AMF≌△CNE,则有MF=NE证明:在□ABCD中,AB CD ∴∠1=∠2又∴BM=DN ∴AM=CN且AE=CF ∴△AME≌△CNF(SAS)∴ME=FN 同理可证△AMF≌△CNE ∴MF=NE∴四边形MENF是平行四边形例2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形.分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线.解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C与点A 重合,再焊接上去最简单.证明:在Rt△ABC中∵AC=BC ∴∠B=45°又∵E、D分别为AC、BC的中点∴EC=DC ∴∠CED=∠CDE=45°∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180°∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45°例3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形,并指出哪种方法最简便.分析:可证两组对边分别相等,也可证对角线互相平分.证明方法(一)在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE.∴△ABF≌△CDE ∴AF=CE同理可证AE=CF,故四边形AECF是平行四边形方法(二)连AC交BD于O在□ABCD中,OA=OC,OB=OD∵BF=DE ∴OE=OF ∴四边形AECF为平行四边形例4.如果一块木板两边是线段,把两把曲尺的一边紧靠木板边缘,再看木板另一边缘对曲尺另一边上的刻度是否相等,就可以判断木板的两个边缘是否平行,这是为什么?分析:这是一道生活实践题,运用数学知识来解决和分析一些生活实践问题,此题就是运用平行四边形的识别方法来判断两边是否平行.解:如果曲尺的刻度相等,则木板的两个边缘就平行,因为,两把曲尺与木板的两个边缘构成一个四边形,当曲尺的刻度相等,则四边形中就有一组对边平行且相等,所以四边形为平行四边形,则木板的两边缘平行.如果曲尺的刻度不相等,则木板的两个边缘就不平行,因为曲尺与木板边缘构成的四边形不是平行四边形.例5.如图12-1-24,在四边形ABCD中,AD∥BC,AD=24cm,AB=8cm,动点P从A开始沿AD边向D以1cm/秒的速度运动,动点Q从C点开始沿CB边以3cm/秒的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒,t为何值时四边形PQCD为平行四边形分析:要使四边形PQCD为平行四边形,因为PD∥QC,只要满足PD=QC即可解:∵AD∥BC ∴只要PD=QC时,四边形PQCD就是平行四边形此时有24-t=3t解得t=6 ∴当t=6时,四边形PQCD为平行四边形.创新思维例1.如图12-1-25,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB交AC,BC于点E、F,作GH∥BC交AB,AC于点G、H,作MN∥AC交AB、BC于M、N,请你猜想EF+GH+MN的值是多少?其值是否随P位置的改变而变化,并证明你的结论分析:把线段EF、MN、GH通过平行四边形或等边三角形,利用相等的线段转移到同一条边AB上.解:EF+GH+MN=2a,EF+GH+MN的值不随P的位置改变而变化.证明:∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵GH∥BC ∴∠AGH=∠B=60°,∠AHG=∠C=60°∵△AGH是等边三角形∴GH=AG=AM+MC……(l)同理可证:△BMN是等边三角形∴MN=MB=MG+GB (2)∵MN∥AC,EF∥AB∴四边形AMPE是平行四边形∴PE=AM同理可证四边形BFPG是平行四边形∴PF=GB∴EF=PE+PF=AM+GB (3)(l)+(2)+(3)得EF+GH+MN=AM+GB+MG+GB+AM+MG=2(AM+MG+GB)=2AB=2a例2.已知如图12-1-26所示,△ABC中,AB=9,AC=10,试求BC边上中线AD的取值范围.分析:求线段的取值范围只有把已知线段和所求线段平移到一个三角形中,由三角形的三边关系来确定线段的取值范围,由题意可知:根据已知三角形ABC求作一个平行四边形即可求得.解:如图所示延长AD至E,使AD=DE,连结BE、CE∵AD=DE BD=DC∴四边形ABEC为平行四边形∴AC=BE=10在△ABE中,AB=9,BE=10∴10-9<AE<1O+9,即1<AE<19∴0.5<AD<9.5例3.如图12-1-27,在□ABCD中MN∥AC且交DA延长线于M,交DC延长线于N,交AB 于P,交BC于Q.(1)请指出图中平行四边形的个数.(2)图中MP与NQ能相等吗?为什么?分析:由AD∥BC可得AM∥QC同理可得PA∥NC解:(1)有3个平行四边形即□AMQC,□APNC,□ABCD(2)MP与NQ能相等因为MQ=AC PN=AC所以MQ=PN因为MP=MQ-PQ QN=PN-PQ所以MP=NQ中考练兵1.不能判定四边形ABCD是平行四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC解:由平行四边形的识别方法可得A、B、D.都能判定四边形ABCD是平行四边形,因为有一组对边相等,另一组对边平行的四边形不一定是平形四边形,所以选C.2.已知四边形ABCD中AC与BD交于点0,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下4种说法,其中说法正确的是()①如果再加上条件“BC=AD”那么四边形ABCD一定是平行四边形.②如果再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③如果再加上条件“AO=CO”那么四边形ABCD一定是平行四边形.④如果再加上条件“∠DBA=∠CA B”,则四边形ABCD一定是平行四边形.A.①和②B.①③和④C.②和③D.②③和④分析:关于①由AB∥CD知∠ABD=∠CDB,如果用AD=BC及DB=BD一般地不能得到△ABD≌△CDB或△ACB≌△CAD关于②由AB∥DC知∠ABD=∠CDB,如果∠BAD=∠BCD,再用BD=DB可得△ABD≌△CDB,于是AB=DC,进而AB DC.关于③由AB∥CD知∠OAB=∠OCD,∠OBA=∠ODC,若AO=OC 则△AOB≌△COD于是AB=DC,即AB DC,故可得□ABCD.关于④由∠DBA=∠CAB知OA=OB,又AB∥CD知∠DBA=∠BDC,同理也会有OC=OD且OA不一定等于OC,如图12-1-28所示就是一个反例解:综合上述知②③正确,故选C随堂演练一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF 是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q 在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C .一组对边平行,一组邻角互补D .一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是( ) A .已知平行四边形的两邻边 B .已知平行四边形的两邻角 C .已知平形四边形的两对角线 D .已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为( ) A .20和18 B .40和50 C .60和30 D .32和504.如图12-1-30所示,已知□ABCD 的对角线的交点是O ,直线EF 过O 点且平行于BC ,直线GH 过O 且平行AB ,则图中有( )个平行四边形.A .5个B .6个C .7个D .10个5.能判定四边形为平行四边形的是( )A .一组对角相等B .两条对角线互相垂直C .两条对角线互相平分D .一对邻角互补 6.以下结论正确的是( )A .对角线相等,且一组对角也相等的四边形是平行四边形.B .一边长为5,两条对角线分别是4和6的四边形是平行四边形.C .一组对边平行,且一组对角相等的四边形是平行四边形.D .对角线相等的四边形是平行四边形.7.在□ABCD 中,点E 、F 分别在边BC 、AD 上,如果点E ,F 分别由下列各种情况得到的,那么四边形AECF 不一定是平行四边形的是( )A .AE 、CF 分别平分∠DAB 、∠BCD B .AE ,CF 使∠BEA =∠CFDC .E 、F 分别是BC 、AD 的中点D .BE =53BC ,AF =52AD 8.□ABCD 对角线交点为O ,△OBC 的周长为59cm ,且AD =28cm ,两对角线之差为14cm ,则对角线长为( )A .12cm 和9cmB .24cm 和38cmC .8.5cm 和22.5cmD .15.5cm 和29.5cm 三、解答题1.如图12-1-31所示,在□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,四边形AECF 是平行四边形吗?2.如图12-1-32所示,四边形ABCD 中∠B =∠D ,∠1=∠2,则四边形ABCD 是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB 上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD∥AB,NE∥AC求证:BD=DE=CE参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B三、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF 是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE=∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE。