《1.1.1集合的含义与表示(2)》同步练习2
人教A版高中数学必修一1.1.1《集合的含义与表示》同步练习题 答案和解析
人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。
湘教版高中数学必修1同步练习 1.1.1集合的含义和表示第2课时 含答案
1.已知集合A={x∈N|x≤≤,则有().A.-1∈A B.0∈AC A D.2∈A2.集合M={x|x2-6x+9=0}的所有元素之和等于().A.3 B.6 C.9 D.03.方程组3,1x yx y+=⎧⎨-=-⎩的解集不可表示为().A.3, (,)1x yx yx y⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭B.1, (,)2xx yy⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭C.{1,2}D.{(1,2)}4.下列集合中为∅的是().A.{0} B.{x|x2-1=0}C.{x|x<0} D.{x|x2+1=0}5.设A={a|a使方程ax2+2x+1=0有唯一实数解},则A用列举法可表示为().A.A={1} B.A={0}C.A={0,1} D.A={0}或{1}6.集合{x|-3≤x≤3,x∈N},用列举法表示为________.7.若集合A={x|2x-5<x-1},B=),用适当的符号填空:①4________A;B;③-2________A;④1________B.8.用描述法表示集合1111,,,234⎧⎫⎨⎬⎩⎭为__________.9.用适当的方法表示下列集合,并且说明它们是有限集还是无限集.(1)方程x2-9=0的解集;(2)大于0且小于10的奇数构成的集合;(3)不等式x-3>2的解集;(4)抛物线y=x2上的点集;(5)方程x2+x+1=0的解集.10.已知集合A={x|x2+2x+m=0}.(1)若2∈A,求实数m的值;(2)若集合A中有两个元素,求m的取值范围;(3)若集合A是空集,求m的取值范围.参考答案1.答案:B解析:A={x∈N|x≤={0,1},因此0∈A.2.答案:A解析:M={x|x2-6x+9=0}={x|(x-3)2=0}={x|x=3}={3},即M中仅有一个元素3.3.答案:C解析:方程组只有一个解,解的形式是数对,而C选项中的集合中含有两个元素,且元素是实数,不是数对,故不可能是方程组的解集.4.答案:D解析:选项D中的集合表示方程x2+1=0的解集,该方程没有实数解,故该集合为∅.5.答案:C解析:当a=0时,方程2x+1=0有唯一解12x=-;当a≠0,且Δ=22-4a=0,即a=1时,方程x2+2x+1=0有唯一解x=-1.6.答案:{0,1,2,3}解析:集合{x|-3≤x≤3,x∈N}表示不小于-3且不大于3的自然数,因此只有0,1,2,3四个元素.7.答案:①∉②∈③∈④∉8.答案:1,4 x x n nn+⎧⎫=∈≤⎨⎬⎩⎭N且解析:观察元素1,12,13,14的特征可设1xn=,n∈N+且n≤4,故用描述法表示为1,4x x n nn+⎧⎫=∈≤⎨⎬⎩⎭N且.9.解:(1)用列举法表示为{3,-3},用描述法表示为{x|x2-9=0},集合中有两个元素,是有限集.(2)用列举法表示为{1,3,5,7,9},用描述法表示为{x|x=2k-1,k∈N+,且1≤k≤5},集合中有五个元素,是有限集.(3)用描述法表示为{x|x>5},集合中有无数个元素,是无限集.(4)用描述法表示为{(x,y)|y=x2},抛物线上的点有无数个,因此该集合是无限集.(5)方程x2+x+1=0无实数解,故该方程的解集为 ,是有限集.10.解:(1)由2∈A知,2是A中的元素,即2是方程x2+2x+m=0的一个根,因此22+2×2+m=0,解得m=-8;(2)集合A中有两个元素,即方程x2+2x+m=0有两个不相等的实数根,因此Δ=4-4m>0,解得m<1;(3)集合A是空集,即方程x2+2x+m=0没有实数根,因此Δ=4-4m<0,解得m>1.。
高中数学必修一全册同步练习含参考答案
高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。
高中数学 1.1.1集合的含义与表示同步练习 新人教A版必修1
1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2)3)方程210x x +-=的实数根4)全国著名的高等院校。
以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( )A 、{(3,2)},{(2,3)}M N ==B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2, 3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是 ( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==,集合{|,}M m m a a b Q ==+∈,则有( ) A 、x M y M ∈∈且 B 、x M y M ∉∈且 C 、x M y M ∈∉且 D 、x M y M ∉∉且 6、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有 ( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个7、下列各式中,正确的是 ( )A 、-2{2}x x ∈≤ B 、{12<>x x x 且} C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。
集合知识点汇总与练习试题
1.1 集合1.1.1 集合的含义与表示一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。
2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
如大于等于2且小于等于8的偶数构成的集合。
(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。
注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。
(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。
人教A版数学必修一《1.1.1集合的含义与表示~1.1.2集合间的基本关系》同步测试题.docx
《1.1.1集合的含义与表示~1.1.2集合间的基本关系》同步测试题一、选择题1.下列对象能构成集合的是( ).①不超过的正整数;②必修一课本中的所有难题;③中国的大城市;④平方后等于自身的数;⑤平面上到点O的距离等于1的所有点.A.①②③B.③④⑤C.①④⑤D.①②④考查目的:考查集合的意义.答案:C.解析:①④⑤中对象的性质明确,能够构成集合;②中的“难题”没有具体的标准,难以确定;③中的“大城市”也没有具体的标准,不能构成集合.本题答案选C.2.若以集合A的四个元素为边长构成一个四边形,那么这个四边形可能是( ).A.梯形B.平行四边形C.菱形D.矩形考查目的:考查集合元素具有互异性这一特征.答案:A.解析:由于集合A中的四个元素互不相等,故它们组成的四边形的四条边互不相等,因此本题选A.3.方程组的解集是( ).A. B. C. D.考查目的:考查集合的表示法.答案:C.解析:解方程组得,用描述法表示为,用列举法表示为,因此本题选C.二、填空题4.已知集合,若,则实数的值为 .考查目的:考查元素与集合的属于关系.答案:,或.解析:依题意得,即,解得,或.5.已知集合,,则B中所含元素的个数为 .考查目的:本题是信息迁移题,主要考查集合与元素的关系,以及对信息的理解和处理能力.答案:10.解析:依题意,在集合B中,当时,1,2,3,4;当时,1,2,3;当时,1,2;当时,1,故B中所含元素共10个.6.将集合用列举法表示为 .考查目的:考查二元一次方程自然数解的意义,以及集合表示法之间的相互转化.答案:.解析:∵,∴是偶数,且,∴当时,;当时,;当时,,故原集合用列举法表示为.三、解答题7.已知含有三个元素的集合,求的值.考查目的:考查集合相等及集合元素的互异性.答案:-1.解析:由题意知且,由两个集合相等得或,解得或.经检验不合题意,∴,∴=.8.已知集合,,若,求实数的所有可能取值的集合.考查目的:考查集合之间的关系,空集的意义及其相关性质.答案:.解析:当时,,符合要求.当时,,或,解得或,∴实数的所有可能取值的集合为.。
人教A版数学第一册第一单元《1.1.1 集合的含义与表示》同步检测(含答案)
《1.1.1 集合的含义与表示》同步检测一、基础达标1.下列各组对象不能构成一个集合的是( )A.不超过20的非负实数B.方程x 2-9=0在实数范围内的解C.√3的近似值的全体D.某校身高超过170厘米的同学的全体2.下列各组中集合P 与Q 表示同一个集合的是( )A.P 是由元素1,√3,π构成的集合,Q 是由元素π,1,|-√3|构成的集合B.P 是由π构成的集合,Q 是由3.141 59构成的集合C.P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D.P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集3.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( )A.√5∈MB.0∉MC.1∈MD.-π2∈M4.已知集合Ω中的三个元素l,m,n 分别是△ABC 的三边边长,则△ABC 一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.(多选)下面几个命题中正确的命题有( )A.集合N *中最小的数是1B.若-a ∉N *,则a∈N *C.若a∈N *,b∈N *,则a+b 的最小值是2D.x 2+4=4x 的解集中有2个元素6.已知a,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M,则下列判断正确的是( )A.0∈MB.-1∈MC.3∉MD.1∈M7.已知集合A是由全体偶数组成的,集合B是由全体奇数组成的,若a∈A,b∈B,则a+b A,ab A(填“∈”或“∉”).8.若集合A中有两个元素-1和2,集合B中有两个元素x,a2,若A与B相等,则x= ,a= .9.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是.10.已知-3是由x-2,2x2+5x,12三个元素构成的集合中的元素,求x的值.二、能力提升11.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是( )A.1∈MB.0∈MC.-1∈MD.-2∈M所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.由实数x,-x,|x|,√x2,-√x33所组成的集合,其元素的个数最多为( )A.2B.3C.4D.513.已知关于x的不等式x-a≥0的解组成的集合为A,若3∉A,则实数a的取值范围是.14.已知集合A含有三个实数,分别为a2,ba,a,若0∈A且1∈A,则a2 020+b2020= .15.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,已知9∈A,且集合B中再没有其他元素属于A,根据上述条件求出实数a的值.三、素养综合16.已知集合M中有两个元素x,2-x,若-1∉M,则下列说法一定错误的是.(填序号)①2∈M;②1∈M;③x≠3.参考答案一、基础达标1.答案 CA项,不超过20的非负实数,元素具有确定性、互异性、无序性,能构成一个集合.B项,方程x2-9=0在实数范围内的解,元素具有确定性、互异性、无序性,能构成一个集合.C项,√3的近似值的全体,元素不具有确定性,不能构成一个集合.D项,某校身高超过170厘米的同学,元素具有确定性、互异性、无序性,能构成一个集合.故选C.2.答案 A3.答案 D√5>1,故A错;-2<0<1,故B错;1不小于1,故C错;-2<-π<1,故D正确.24.答案 D因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.5.答案ACN*是正整数集,最小的正整数是1,故A正确;当a=0时,-a∉N*,且a∉N*,故B错误;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故C正确;x2+4=4x的解集为{2},故D错误.故AC正确.6.答案 B当a,b全为正数时,代数式的值是3;当a,b全是负数时,代数式的值是-1;当a,b 是一正一负时,代数式的值是-1.综上可知B正确.7.答案∉;∈解析∵a是偶数,b是奇数,∴a+b是奇数,ab是偶数,故a+b∉A,ab∈A.8.答案-1;±√2解析由集合相等的概念可知x=-1,a2=2,即a=±√2.9.答案k≠1且k≠-1解析∵1∈A,k2∈A,结合集合中元素的互异性可知k2≠1,解得k≠1且k≠-1.10.解析由题意知x-2=-3或2x2+5x=-3.当x-2=-3,即x=-1时,集合中的三个元素为-3,-3,12,不满足集合中元素的互异性,所以x=-1舍去.当2x2+5x=-3,即x=-32或x=-1(舍去)时,集合中的三个元素为-72,-3,12,满足集合中元素的互异性.综上可知x=-32.二、能力提升11.答案 C由2∈M可知,2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.答案 A当x>0时,x=|x|=√x2,-√x33=-x,此时集合中共有2个元素;当x=0时,x=|x|=√x2=-√x33=-x,此时集合中共有1个元素;当x<0时,√x2=|x|=-√x33=-x,此时集合中共有2个元素.综上,此集合中最多有2个元素,故选A.13.答案a>3解析因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.14.答案 1解析由0∈A,“0不能做分母”可知a≠0,故a2≠0,所以ba=0,即b=0.由1∈A,可知a2=1或a=1.当a=1时,得a2=1,由集合中元素的互异性,知a=1不符合题意; 当a2=1时,解得a=-1或a=1(舍去).故a=-1,b=0,所以a2 020+b2 020的值为1.15.解析∵9∈A,∴2a-1=9或a2=9,①若2a-1=9,则a=5,此时A中的元素为-4,9,25,B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.②若a2=9,则a=±3.当a=3时,A中的元素为-4,5,9,B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去;当a=-3时,A中的元素为-4,-7,9,B中的元素为9,-8,4,符合题意.综上所述,a=-3.三、素养综合16.答案②解析依题意得{x≠-1,2-x≠-1,x≠2-x,解得x≠-1,x≠1且x≠3,当x=2或2-x=2,即x=2或x=0时,集合M中的元素为0,2,故①正确;当x=1或2-x=1,即x=1时,集合M中的元素为1,1,不满足集合中元素的互异性,故②不正确;③显然正确.。
人教A版必修1同步精练:1.1.1集合的含义与表示(含答案)
1.1.1集合的含义与表示1.用适当的方法表示下列集合:(1)由方程2(1)(2)(3)0x x x -+-=的所有实数根组成的集合;(2)大于2且小于7的整数;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)所有正偶数组成的集合;(5)直角坐标系中第三象限的点组成的集合;(6)以A 为圆心,r 为半径的圆上的所有点组成的集合;(7)所有正方形组成的集合.2.(2012(新课标)理)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .103.(1)设a b ∈R ,,集合},,0{},,1{b ab a b a =+,则b a -= ;(2)若2{2,,}{2,2,}a b a b =,求实数,a b 的值.(3)设{,,}A x xy x y =-,{0,||,}B x y =,且A B =,求,x y 的值。
4.(1)已知2{2,25,12}A a a a =-+,且3A -∈,求a 的值。
(2)已知2{0,1,}x x ∈,求实数x 的值。
5.(1)若1{}20x x ax b ∈++=,3{}20x x bx a ∈++=,则______,a =______b =.(2)由代数式,x x -,最多含有多少个元素?6.已知集合A={}2320,x ax x a R -+=∈,(1)若A 是空集,求a 的取值范围;(2)若A 是单元素集,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.7.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .。
2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)
2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( ) A .{x |x =1} B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C[解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( ) A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A [答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.下列命题中,正确的有( ) ①空集是任何集合的真子集;②若A B ,BC ,则A C ;③任何一个集合必有两个或两个以上的真子集;④如果不属于B 的元素也不属于A ,则A ⊆B .A .①②B .②③C .②④D .③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A ={x |x 是三角形},B ={x |x 是等腰三角形},C ={x |x 是等腰直角三角形},D ={x |x 是等边三角形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D[答案] B[解析] ∵正方形必为矩形,∴C ⊆B . 4.下列四个集合中,是空集的是( ) A .{0}B .{x |x >8,且x <5}C .{x ∈N |x 2-1=0} D .{x |x >4}[答案] B[解析] 选项A 、C 、D 都含有元素.而选项B 无元素,故选B.5.若集合A ⊆{1,2,3},且A 中至少含有一个奇数,则这样的集合A 有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围为( )A.a≥2B.a≤1C.a≥1D.a≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B,所以a≥2.二、填空题7.用适当的符号填空:(1){x|x是菱形}________{x|x是平行四边形};{x|x是三角形}________{x|x是斜三角形}.(2)Z________{x∈R|x2+2=0};0________{0};Ø________{0};N________{0}.[答案] (1)(2)∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x∈R|x2+2=0}中,由于实数范围内该方程无解,因此{x∈R|x2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A={1,2,m3},B={1,m},B⊆A,则m=________.[答案] 0或2或-1[解析] 由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m=0或2或-1.三、解答题9.判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤x<3},B={x|x=|y|,y∈A}.[解析] (1)∵A={x|x-3>2}={x|x>5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴BA .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0B .1C .2D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b , 解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. [解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}. (2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴集合A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立, ∴当B =Ø,即m +1>2m -1,得m <2时,符合题意; 当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧m ≥2,m +1>5,或⎩⎪⎨⎪⎧m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C.3 D.4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=( )A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5}D.{x|x≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A ∩B =Ø,应有a <-1. 二、填空题7.若集合A ={2,4,x },B ={2,x 2},且A ∪B ={2,4,x },则x =________. [答案] 0,1或-2[解析] 由已知得B ⊆A ,∴x 2=4或x 2=x ,∴x =0,1,±2,由元素的互异性知x ≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B . ∵a 2+1≠-3,∴①若a -3=-3,则a =0, 此时A ={0,1,-3},B ={-3,-1,1}, 但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾, ∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}. 综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. [解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( ) A .{0,1} B .{-1,0} C .{-1,0,1} D .{-1,1}[答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( ) A .(1,-1) B .{x =1或y =-1} C .{1,-1} D .{(1,-1)}[答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C[答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3}[答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}. 二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧-12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2,所以A ={-1,-2},B ={-1,4}, 所以A ∪B ={-2,-1,4}. 三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围. [解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12.8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A . 当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解, 即Δ=4(a +2)2-4(a 2-4)<0,得a <-2. 当B ={0}或{-8}时,这时方程的判别式Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2.[点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I={1,2,3,4,5},集合A={2,3,5},集合B={1,2},则(∁I B)∩A为( )A.{2} B.{3,5}C.{1,3,4,5} D.{3,4,5}[答案] B[解析] 因为全集I={1,2,3,4,5},集合B={1,2},则∁I B={3,4,5}.所以(∁I B)∩A为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A .a ≥2B .a >2C .a <2D .a ≤2[答案] A[解析] ∁R B ={x |x ≥2},则由A ∪(∁R B )=R 得a ≥2,故选A. 二、填空题7.已知集合A ={3,4,m },集合B ={3,4},若∁A B ={5},则实数m =________. [答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________. [答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4} 三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值. [解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧|a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解. [解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2}, ∴∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. ∴A ∩B ={x |-2<x ≤2}, (∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A.(∁U A)∩B B.(∁U A)∪(∁U B)C.A∩(∁U B) D.A∪(∁U B)[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是________.[答案] a ≥2[解析] M ={x |-2<x <2},∁R P ={x |x <a }. ∵M ⊆∁R P ,∴由数轴知a ≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________. [答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12. 三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁UB )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.① 又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧a =87,b =-127.经检验,符合题意:∴a =87,b =-127.[点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.第一章 1.1 1.1.3第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A={x|-1<x<2},B={x|0<x<3},则A∩B =( )A.{x|-1<x<3} B.{x|-1<x<0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A )∩(∁U B )={x |3<x ≤4},故选C.方法2:A ∪B ={x |x ≤3或x >4},(∁U A )∩(∁U B )=∁U (A ∪B )={x |3<x ≤4}.故选A. 5.已知集合A ={x |-1≤x ≤1},B ={x |-1≤x ≤a },且(A ∪B )⊆(A ∩B ),则实数a =( )A .0B .1C .2D .3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ),由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B )(3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A.3 B.4C.5 D.6[答案] D[解析] S={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D.3.(2015·陕西模拟)已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x =2a,a∈A},则集合∁U(A∪B)中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是________.[答案]112[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞)三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}.(2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33.(3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7 [答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:考试次数x12345。
数学人教版A必修1同步训练:1.1.1集合的含义与表示(附答案)
第一章集合与函数概念1. 1集合1. 1.1集合的含义与表示谋ffii常习二.........1. 下列说法正确的是()A . 2008年北京奥运会的比赛项目组成一个集合B. 某个班年龄较小的学生组成一个集合C. 集合{1,2,3}与{3,1,2}表示不同的集合3 1D. 1,0.5, 3,㊁组成的集合有四个元素2. 已知集合M具有性质:若a€ M,则2a€ M,现已知—1€M ,则下列元素一定是M中的元素的是…()A. 1B. 0C.—2D. 23. 用符号€或?填空.(1) 3.14 ____ Q, 0 ________ N, V2 ________ Z ,(—1)0 _______ N; _ _ _ _(2) 2V3 ______ {x|xv Vii},3 V2 _________ {x|x > 4}, V2 + 75 _______ {x|x w 2+ 3};(3) 3 ______ {x|x = n2+ 1, n € N},5 _______ {x|x = n2+ 1,n€ N};(4) ( —1,1) ____ {y|y = x2} , —1,1) ______ {(x , y)|y = x2}.4. 试选择适当的方法表示下列集合:(1) 直角坐标系中纵坐标与横坐标相等的点的集合;(2) 一年之中的四个季节组成的集合;(3) 方程x2+ x —1 = 0的实数解组成的集合;(4) 满足不等式1V 1 + 2x V 19的素数组成的集合.课堂巩固1若方程X2—5x + 6= 0和方程x2—x—2= 0的所有解构成的集合为M ,则M 中元素的个数为( )A.4 B.3 C.2 D.12. 已知集合S={a , b, c}中的三个元素可构成△ ABC的三条边长,那么△ ABC 一定不是()A .锐角三角形B .直角三角形C.钝角三角形 D .等腰三角形3. 设集合A = {1,2,3} , B = {1,3,5} , x € A,且x?B,贝U x 等于( )A.1 B.2 C.3 D.54.已知集合M={x|x=3n,n€ Z},N={x|x=3n+1,n€ Z},P= {x|x = 3n—1, n€ Z},且a€ M , b € N, c€ P,设d= a—b+ c,则()A.d€ M B.d€ NC.d€ P D.d€ M 且d€ N5. ____________________________________________ 设直线y = 2x+ 3上的点集为P,贝U P= _____________________ ;点(2,7)与点集P的关系为(2,7) __________ P.6.已知集合P={4,5,6} , Q={1,2,3} .定义P?Q={x|x=p —q, p€ P, q€ Q},贝陳合P?Q的所有元素之和为 __________________ .7.下面三个集合:①{x|y = x2+ 1}:②{y|y = x2+ 1}:③{(x , y)|y = x2+ 1}.(1) 它们是不是相同的集合?(2) 它们各自的含义是什么?8. 设S= {x|x = m+ n 2, m、n € Z}.(1) 若a€ Z,则a是否是集合S中的元素?⑵对S中的任意两个X I、X2,则X i+ X2、X i X2是否属于S?Cr课后检叭.1. 已知集合A = {X€ N3W X w 3},则必有( )A . —1€ A B. 0 € AC. ,3€ AD. 2 € A2. 已知集合M = {X€ N|(8—X)€ N},则M中元素的个数是()A . 10B . 9C. 8D.无数个3. (2008江西高考,2)定义集合运算:A*B = {z|z = xy ,x € A, y € B}.设A = {1,2} , B = {0,2},则集合A*B的所有元素之和为()A. 0B. 2C. 3D. 6b4 .设a, b€ R,集合{1 , a+ b, a} = {0 , a,b},贝U b —a 等于()A . 1B . —1C . 2 D. —25 .集合{3, i,3,4,…}可表示为()2n+1 一*A . {x|x = , n € N }6. 填空题: (1) 用列举法表示集合{x € R |(x - 1)2 3 4(x + 1) = 0}为11. 已知 f(x) = X 2 — ax + b(a 、b € R ), A = {x € R |f(x) -x = 0}, B = {x € R |f(x) — ax = 0},若A = {1 , — 3},试用列举法表示集合 B. 2 用列举法表示集合{x € N 反土 € N }为 _______ ;3 用描述法表示集合{2,4,6,8}为 __________ ;一 1114 用描述法表示集合{1, 2,3 4}为 ____________ .7 .已知 x € {1,2 , x 2},贝U x = ______ .a b ab8. 设a , b 是非零实数,则y =商+血+ 的所有值组成的 集合为 ________ .9. 已知集合 A = {x|ax 2 + 2x + 1 = 0, a € R },若 A 中只有一 个元素,求a 的值,并求出这个元素.1 + a10. 数集M 满足条件,若a € M,则 一€ M(a 工±1且a ^ 0),1 — a已知3€ M ,试把由此确定的集合 M 的元素全部求出来.B.C.{x|x{x|x n {x|x n 2n + 1 n €N答案与解析第一章集合与函数概念1. 1集合1. 1.1集合的含义与表示课前预习1. A v A中各比赛项目是确定的且各不相同,二A正确; B中元素是不确定的;C中两集合是相等的;D中有3个元素.2. C •/ —1€ M ,二2X (—1)€ M,即—2€ M.3. (1) € € ? € (2)? € € ⑶?€⑷?€(1) 略.(2) 2 3 = 12> 11, 3 2 = 18> 16 = 4,2+ .5 = ■'( 2+ ;5)2= 7+ 2 :10<「7+ 2 J2=(2+ 3)2= 2+. 3.(3) 令n2+ 1 = 3, n = 土2, n?N.令n2+ 1 = 5, n=±2,取n = 2,贝U n€ N.(4) {y|y = x2}中元素是数,而(—1,1)代表一个点.4. 解:(1){(x , y)|y = x} ;(2){春季,夏季,秋季,冬季};1 45 1 V!(3){ —2- "2,—2+R ;(4){2,3,5,7}.课堂巩固1. B I x2—5x + 6 = 0,二x = 2 或x = 3.又T x2—x — 2 = 0,二x = 2 或x=— 1.由集合中元素的互异性,知M = { —1,2,3}.2. D 由集合元素的互异性,知 ab、c各不相同.3. B 由已知,易知x可能等于1、2、3,且不能等于1、3、5,所以只能等于2.4. B 三个集合都是整数集的子集,集合M中的整数都能被3整除,集合N中的整数被3整除余数是1,集合P中的整数被3整除余数是2•三个集合中的整数n也可用其他字母来表示.于是,d = 3n—3l —1 + 3s —1 = 3(n —l + s)—2= 3(n —l + s—1) + 1 € N.5. {(x , y)|y = 2x + 3} € 点集P= {(x , y)|y = 2x + 3}.当x = 2 时,y = 2X 2+ 3= 7,二(2,7) € P.6. 15 当p = 4, q= 1,2,3 时,p —q= 3,2,1;当p= 5, q= 1,2,3 时,p —q = 4,3,2;当p= 6, q= 1,2,3 时,p —q = 5,4,3.所以P?Q = {1,2,3,4,5},其所有元素之和为 1 + 2+ 3+ 4+ 57. 解:(1)不是相同的集合.(2)集合①是函数y = x2+ 1的自变量x所允许取到的值组成的集合,因为x可以取任意实数,所以{x|y = x2+ 1} = R;集合②是函数y = x2+ 1的所有函数值y所允许取到的值组成的集合,由二次函数图象,知y > 1,所以{y|y = x2+ 1} = {y|y > 1};集合③是函数y= x2+ 1图象上的所有点的坐标组成的集合.如图所示:8. 解:(1)a是集合S的元素,因为a= a+ O X ,2€ S.(2)不妨设X1= m+ n 2, X2= p + q 2, m、n、p、q € Z.则x〔+ X2= (m+ n 2)+ (p+ q 2)= (m + p) + (n + q) .2, m、n、p、q € Z .二X1 + X2 € S; X1 x2= (m+ n 2) (p+ q 2) = (mp + 2nq) + (mq + np) 2, m、n、p、q€ Z.二x1 x2€ S综上,x1+ x2、x1 x2都属于S.课后检测1. B化简集合A = {0,1},显然0€ A.2. B v x € N,且(8 - x) € N ,二x = 0,1,2,3,4,5,6,7,8,共9 个数.3. B v z= x y, x € A, y € B,••• z 的取值有:1X 0= 0,1 X 2 = 2,2X 0= 0,2X 2 = 4,故A*B = {0,2,4}.•••集合A*B 的所有元素之和为0 + 2 + 4 = 6.4. C由题意得,a z 0, b z 0,所以 a + b = 0, a = — b.于是,显然,键要分清起始数并限定范围.6. (1){ — 1,1} (2){0,3,4,5}(3) {x|(x — 2)(x — 4)(x — 6)(x — 8)= 0}或{大于 1 小于 9 的偶数}1 *(4){x|x = n ,n W 4 且 n €N }7. 0或2 当x = 1时,矛盾,故x z 1;当x = 2时,或x = 1(舍去).综上可知x = 0或2. {1,0, a} = {0,— 1,— a}. a =— 1,b = 1, b — a = 2.丄 5 7 9“ 357 由3, ^,3,4可得,5. D9W 2,3,4从中发现规律,关x 2= 1,这与集合中元素的互异性相 x 2 = 4符合题意;当x = x 2时x = 0素一1和3,用列举法表示为{ — 1,3}.9. 解:集合A 为单元素集,即方程ax 2 + 2x + 1 = 0有唯一 解或两个相等的实数解.由于此方程二次项的系数不确定, 所以要对a 分类讨论. a b aby = |a|+ |b| + |ab|=- 1 ;当 ab>0 时,则 a>0, b>0 或 a<0, b<0,"亠 a b ab b>o ,则有 y = G|+ jb|+面=3;b <°,则有 y = |t|+ jb|+琵=-1. 侖+备+聶的所有值组成的集合元素共有两个元8. { - 1,3}当 ab<0 时, 若a>0, 若a<0, 所以y =1① a = 0 时,x = — 2;② a z 0 时,△= 4 一4a = 0, 所以a = 1,此时x =— 1.1+a 1+310.解:T a = 3€ M ,二 ==—2€ M. 1—a 1—311 —2 1 ….1一3 1 …=—三 € M. - - =3 € M.1 +23 1 +1 21 + 31 1 +2 =3 € M.1 — 2再把3代入将重复上面的运算过程,由集合中元素的互异性1 1可知 M = {3 , — 2, — 3,㊁}.点评:集合中的元素是互异的,即同一集合中的元素是互不 相同的.它通常被用作检验所求未知数的值是否符合题意. 只要 构成两个集合的元素是一样的, 这两个集合就是相等的,与两个 集合中元素的排列顺序无关.11. 解:f(x) — x = 0,即卩 x 2— (a + 1)x + b = 0.•-A = {1 , — 3},'+ (— 3) = a + 1, 二由韦达定理,得11X (— 3) = b.2f(x) — ax = 0,亦即 x + 6x — 3= 0.a = — 3,b = — 3.…f(x) = x + 3x — 3.••• B = {x|x2+ 6x —3= 0} = { —3—2 3, —3 + 2 3}.点评:列举法和描述法是表示集合的两种常用方法. 用列举法时要注意:元素间用逗号隔开;元素不重复;可不考虑元素间的顺序;若元素的个数较多需要省略时,必须把元素间的规律显示清楚后方可使用省略号. 用描述法时要注意:写清元素的一般符号及取值范围;明确集合中元素的特征;不能出现未被说明的字母;准确使用“且”与“或”等.。
2019高考数学总复习第一章1.1.1集合的含义与表示(第二课时)同步练习新人教A版必修1
1.1.1 集合的含义与表示(第二课时)一、选择题1.下面给出的四类对象中,能构成集合的是( ) A . 速度特别快的汽车 B . 聪明的人 C .的近似值的全体D . 倒数等于它本身的实数 【答案】D【点睛】本题主要考查了集合的概念,其中解答中熟记集合的概念中构成元素的确定性是解答的关键.2.下列方程的实数解的集合为的个数为 ( )①; ②; ③; ④。
A . 1B . 2C . 3D . 4 【答案】B【解析】 ,集合为;,集合为;,集合为;,集合为;集合为的个数为2,选B.3.设A,B为两个实数集,定义集合A+B={x|x1+x2,x1∈A,x2∈B},若A={1,2,3},B={2,3},则集合A+B中元素的个数为 ( )A. 3 B. 4 C. 5 D. 6【答案】B【解析】当x1=1时,x1+x2=1+2=3或x1+x2=1+3=4;当x1=2时,x1+x2=2+2=4或x1+x2=2+3=5;当x1=3时,x1+x2=3+2=5或x1+x2=3+3=6.∴A+B={3,4,5,6},共4个元素.故选B.4.已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是( )A. 0∉M B. 2∈MC.-4∉M D. 4∈M【答案】D5.下列集合中,不同于另外三个集合的是 ( )A. {x|x=1} B. {x|x2=1}C. {1} D. {y|(y-1)2=0}【答案】B【解析】 {x|x2=1}={-1,1},另外三个集合都是{1},选B.6.方程组的解集是 ( )A. B. {x,y|x=3且y=-7}C. {3,-7} D. {(x,y)|x=3且y=-7}【答案】D【解析】解方程组得,用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选D 7.(2015·山东临沂检测)集合{x∈N*|x-2<3}的另一种表示形式是( )A. {0,1,2,3,4} B. {1,2,3,4}C. {0,1,2,3,4,5} D. {1,2,3,4,5}【答案】B【解析】由x-2<3,得x<5,又x∈N*,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.故选B.8.已知集合A={x|x≤10},a=,则a与集合A的关系是( )A. a∈A B. a∉A C. a=A D.{a}∈A【答案】A【解析】由于+<10,所以a∈A. 故选A.9.下列各组两个集合A和B表示同一集合的是A.B.C.D.【答案】C考点:集合的元素二、填空题10.已知集合A含有三个元素1,0,x,若x2∈A,则实数x=________.【答案】-1【解析】当时,解得,与集合元素的互异性矛盾,故不成立;当时,解得,结合互异性可得;当时,解得或,不满足元素的互异性,舍去。
1.1.1集合的含义与表示同步练习及答案解析.doc
1.1.1 集合的含义与表示 建议用时实际用时 满分 实际得分 45分钟 100分一、选择题(本大题共6小题,每小题6分,共36分)1.下列几组对象可以构成集合的是( )A .充分接近π的实数的全体B .善良的人C .某校高一所有聪明的同学D .某单位所有身高在1.7 m 以上的人2.下列四个说法中正确的个数是( )①集合N 中最小的数为1;②若a ∈N ,则-a N ;③若a ∈N ,b ∈N ,a b ,则a +b 的最小值 为2;④所有小的正数组成一个集合.A .0B .1C .2D .33.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B4.已知集合S 的三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正 确的是( )A .0MB .2∈MC .-4MD .4∈M6. 若集合}044|{2=++=x kx x A 中有且仅有一个元素,则实数k 的值为( )A.{0}k ∈B.{1}k ∈C.{1,0}k ∈D.{1,1}k ∈-二、填空题(本大题共3小题,每小题6分,共18分)7.用“∈”或“”填空.(1)-3 ______N ; (2)3.14 ______Q ;(3)13 ______Z ; (4)-12______R ; (5)1 ______N *; (6)0 _______N .8.定义集合运算A *B ={M |M =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为________.9.由下列对象组成的集体属于集合的是________(填序号).①不超过3的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考数学成绩在90分以上的学生.三、解答题(本大题共3小题,共46分)10.(14分)已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x11.(15分)下面三个集合:A={x|y=x2+1};B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?12.(17分)设A 为实数集,且满足条件:若a ∈A ,则a11∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集一、选择题1. D 解析:A 、B 、C 都不满足元素的确定性,故不能构成集合.2. A 解析:N 是自然数集,最小的自然数是0,故①错;当为0时,也为0,是自然数,故②错;③中最小值应为1,故③错;“所有小的正数”范围不明确,不满足集合元素的确定性,故不能构成集合,故④错.故选A.3.C 解析:集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.4. D 解析:由元素的互异性知a ,b ,c 均不相等,故一定不是等腰三角形.5. D 解析 当x 、y 、z 中三个为正、两个为正、一个为正、全为负时,代数式的值分别为:4,0,0,-4,∴4∈M 正确,故选D.6.C 解析:(1)若0=k,则{1}A =-; (2)若0≠k ,16160k ∆=-=,1k =,∴{1,0}.k ∈ 二、填空题7. (1) (2)∈ (3) (4)∈ (5)∈ (6)∈解析:理解各符号的意义是关键.N 是自然数集,N *是正整数集,Q 是有理数集,Z 是整数集,R 是实数集.8. 6 解析: ∵A *B ={0,2,4},所以集合A *B 的所有元素之和为6.9.①④⑤ 解析:②中“难题”标准不明确,不满足确定性;③中“大城市”标准不明确,不满足确定性.三、解答题10.解:当3x 2+3x -4=2时,3x 2+3x -6=0,x 2+x -2=0,x =-2或x =1.经检验,x =-2,x =1均不合题意.当x 2+x -4=2时,x 2+x -6=0,x =-3或2.经检验,x =-3或x =2均合题意. ∴x =-3或x =2.11.解:(1)在、、三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合的代表元素是x ,满足=2+1,故={|=2+1}=.集合的代表元素是,满足=2+1的≥1,故={|=2+1}={|≥1}.集合的代表元素是(,),满足条件=2+1,即表示满足=2+1的实数对(,);也可认为满足条件=2+1的坐标平面上的点.12.证明:(1)若a ∈A ,则a-11∈A (≠1).又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中必还有另外两个元素,为-1,12. (2)若A 为单元素集,则a =a -11,即a 2-a +1=0,方程无解. ∴a ≠a-11,∴A 不可能为单元素集。
必修一第一章集合与函数概念同步练习(含答案)
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1.1.1集合的含义与表示(2)》同步练习2 1.设集合M={x∈R|x≤33},a=26,则( )
A.a∉M B.a∈M
C.{a}∈M D.{a}∉M
解析(26)2-(33)2=24-27<0,故26<3 3.所以a∈M.
答案B
2.若P={(2,1),(1,2)},则集合P中元素的个数是( )
A.1B.2
C.3D.4
解析(2,1),(1,2)为两个不同元素,共2个.
答案B
3.集合{x∈N*|x-3<2}的另一种表示法是( )
A.{0,1,2,3,4} B.{1,2,3,4}
C.{0,1,2,3,4,5} D.{1,2,3,4,5}
解析∵x-3<2,x∈N*,∴x<5,x∈N*,
∴x=1,2,3,4.故选B.
答案B
4.下列集合中,不同于另外三个集合的是( )
A.{x|x=1} B.{y|(y-1)2=0}
C.{x=1} D.{1}
解析A、B、D选项表示的集合都是{1},
而C选项表示含有一个方程的集合.
答案C
5.集合M={(x,y)|xy<0,x∈R,y∈R}是指( )
A.第一象限内的点集
B.第三象限内的点集
C.第一、三象限内的点集
D.第二、四象限内的点集
解析xy<0表示x>0,且y<0,或x<0,且y>0.因此集合M表示第二、四象限内的点集.答案D
6.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )
A.3B.6
C .8
D .10
解析 ∵x ∈A ,y ∈A ,x -y ∈A ,
∴满足条件的(x ,y )有(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1),共10个.
答案 D
7.{(x ,y )|x +y =6,x ,y ∈N }用列举法表示为________________________________________________________________________________________________________________________________________________.
答案 {(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
8.已知集合A ={(x ,y )|y =2x +1},B ={(x ,y )|y =x +3},a ∈A 且a ∈B ,则a 为________.
解析 ∵a ∈A 且a ∈B ,∴a 是方程组⎩⎪⎨⎪⎧
y =2x +1,y =x +3
的解,解方程组,得⎩⎪⎨⎪
⎧
x =2,y =5,
∴a
为(2,5).
答案 (2,5)
9.设-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________.
解析 ∵-5∈{x |x 2
-ax -5=0}, ∴-5是方程x 2
-ax -5=0的根.
∴(-5)2
+5a -5=0,a =-4.
∴x 2-4x -a =0,即x 2
-4x +4=0.
∴x 1=x 2=2.
又∵集合中的元素是互异的,
∴{x |x 2
-4x -a =0}={2}.
答案 2
10.用另一种方法表示下列集合. (1){绝对值小于2的整数}; (2){能被3整除,且小于10的正数}; (3){x |x =|x |,x <5,且x ∈Z }; (4){-3,-1,1,3,5}. 解 (1)列举法表示为{-1,0,1}. (2)列举法表示为{3,6,9}. (3)列举法表示为{0,1,2,3,4}.
(4)描述法表示为{x |x =2n -1,-1≤n ≤3,n ∈Z }. 11.下面三个集合:
①{x |y =x 2
+1};
②{y |y =x 2
+1}; ③{(x ,y )|y =x 2
+1}.
(1)它们是不是相同的集合? (2)它们的各自含义是什么? 解 (1)是互不相同的集合.
(2)集合①{x |y =x 2
+1}的代表元素是x ,满足条件y =x 2
+1中的x ∈R ,
∴{x |y =x 2
+1}=R ;
集合②{y |y =x 2+1}的代表元素是y ,满足条件y =x 2
+1的y 的取值范围是y ≥1. ∴{y |y =x 2
+1}={y |y ≥1};
集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2
+1的数对(x ,y )的集合;
也可以认为是坐标平面内的点(x ,y ),由于这些点的坐标满足y =x 2
+1,
∴{(x ,y )|y =x 2+1}={抛物线y =x 2
+1上的点}.
12.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .[来源:学+科+网Z +X +X +K ] (1)若1∈A ,用列举法表示A ;
(2)若A 中有且仅有一个元素,求a 的值组成的集合B . 解 (1)∵1∈A ,∴1是方程ax 2
+2x +1=0的根.
∴a ·12
+2×1+1=0,即a =-3. ∴方程为-3x 2
+2x +1=0.
∴x 1=1,x 2=-1
3,此时A =⎩⎨⎧⎭⎬
⎫-13,1.
(2)若a =0,则方程化为2x +1=0,x =-1
2, A 中仅有一个元素;
若a ≠0,A 中仅有一个元素;当且仅当Δ=4-4a =0, 即a =1,方程有两个相等的实根x 1=x 2=-1. ∴所求集合B ={0,1}.。