(学生版)华杯初赛考辅班---小高
第十九届“华杯赛”初赛小高组试题B
第十九届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级B 组)(时间:2014年3月15日8:00~9:00)一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在答题卡相应题处.)1.平面上的四条直线将平面分割成八个部分, 则这四条直线中至多有( )条直线互相平行.(A )0 (B )2 (C )3 (D )42. 在下列四个算式中:2AB CD ÷=,0E F ⨯=,1G H -=,4I J +=A ~J 代表0~9中的不同数字,那么两位数AB 不可能...是( ). (A )54 (B )58 (C )92 (D )963.淘气用一张正方形纸剪下了一个最大的圆(如图甲),笑笑用一张圆形纸剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是( ).(A )淘气的剪法利用率高(B )笑笑的剪法利用率高 (C )两种剪法利用率一样 (D )无法判断 4.小华下午2点要到少年宫参加活动,但他的手表每个小时快了4分钟,他特意在上午10点时对好了表.当小华按照自己的表于下午2点到少年宫时,实际早到了( )分钟.(A )14 (B )15 (C )16 (D )175.甲乙丙丁四个人今年的年龄之和是72岁.几年前(至少一年)甲是22岁时,乙是16岁.又知道,当甲是19岁的时候,丙的年龄是丁的3倍(此时丁至少1岁).如果甲乙丙丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况.(A )4 (B )6 (C )8 (D )10甲 乙甲6.有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数2014315.将这七张卡片全部分给甲、乙、丙、丁四人,每人至多分2张.他们各说了一句话:甲:“如果交换我卡片上的2个数字在七位数中的位置,那么新的七位数就是8的倍数”乙:“如果交换我卡片上的2个数字在七位数中的位置,那么新的七位数仍不是9的倍数”丙:“如果交换我卡片上的2个数字在七位数中的位置,那么新的七位数就是10的倍数”丁:“如果交换我卡片上的2个数字在七位数中的位置,那么新的七位数就是11的倍数”已知四人中恰有一个人说了谎,那么说谎的人是().(A)甲(B)乙(C)丙(D)丁二、填空题(每小题10分,满分40分.)7.算式33111324443100719(12345)522÷+÷+⨯÷++++⨯-的计算结果是________.(请将答数填入答题卡中第7-1题处)8.海滩上有一堆栗子,这是四只猴子的财产,它们想要平均分配.第一只猴子来了,它左等右等别的猴子都不来,便把栗子分成四堆,每堆一样多,还剩下一个,它把剩下的一个顺手扔到海里,自己拿走了四堆中的一堆.第二只猴子来了,它也没有等别的猴子,于是它把剩下的栗子等分成四堆,还剩下一个,它又扔掉一个,自己拿走一堆.第三只猴子也是如此,等分成四堆后,把剩下的一个扔掉,自己拿走一堆;而最后一只猴子来,也将剩下的栗子等分成了四堆后,扔掉多余的一个,取走一堆.那么这堆栗子原来至少有________个.(请将答数填入答题卡中第8-1题处)9.甲、乙二人同时从A地出发匀速走向B地,与此同时丙从B地出发匀速走向A地.出发后20分钟甲与丙相遇,相遇后甲立即调头;甲调头后10分钟与乙相遇,然后甲再次调头走向B地.结果当甲走到B地时,乙恰走过A、B 两地中点105米,而丙离A地还有315米.甲的速度是乙的速度的________倍,A、B两地间的路程是________米.(请将答数依次填入答题卡中第9-1题、第9-2题处)10.从1,2,3,…,2014中取出315个不同的数(不计顺序)组成等差数列,其中组成的等差数列中包含1的有________种取法;总共有________种取法.(请将答数依次填入答题卡中第10-1题、第10-2题处)。
华杯赛小高近 真题 附详解 C
2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
(学生版)华杯初赛考辅班---小中
)
(A)56 (B)44 (C)32 (D)78 (2014 年 19 届)
练习5.
如图 1 所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形
ABCD.取 AB 的中点 M 和 BC 的中点 N,减掉△MBN 得五边形 AMNCD.则将折叠的五边形 AMNCD 纸片展开铺平后的图形是_______. (2006 年 11 届)
中年级组
1 A 2 B C长为 32 cm 的相同的长方形拼成一个大
正方形,那么大正方形的面积是______ cm2 .
第4页
华杯赛初赛考辅班
第二讲 应用题精讲
考点概述
应用题考点 一、常考应用题类型 1. 2. 画线段图帮助解题 列方程解应用题
中年级组
二、行程问题: 1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇 与追及问题等) 2. 3. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件) 方程与比例解行程问题
课后练习
1. 魔法学校运来很多魔法球,总重量多达 5 吨,一颗魔法球重 4 千克,现在有 10 名学员使用魔法给这 些魔法球涂色,每人每 6 分钟可以给 5 颗魔法球涂色,那么他们涂完所有魔法球最少要用________分 钟.
2.
四个海盗杰克、吉米、汤姆和桑吉共分 280 个金币.杰克说: “我分到的金币比吉米少 11 个,比汤姆 多 15 个,比桑吉少 20 个. ”那么,桑吉分到了________个金币.
华杯赛初赛考辅班
第一讲 几何精讲
中年级组
考点概述
几何考点 一、基本面积公式; (长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积; 三、等积变换; 四、周长的计算; (基本公式、平移法、标向法) 五、角度的计算; (多边形内角和、外角和、角度的综合计算) 六、勾股定理与弦图; 七、立体几何认知. (展开图、三视图)
第十九届“华杯赛”初赛小高组试题a
第十九届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级A组)一、选择题(每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.平面上的四条直线将平面分割成八个部分, 则这四条直线中至多有()条直线互相平行.(A)0(B)2(C)3(D)42.某次考试有50道试题, 答对一道题得3分, 答错一道题扣1分, 不答题不得分.小龙得分120分, 那么小龙最多答对了()道试题.(A)40(B)42(C)48(D)503.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形. 若在右下图的16个方格分别填入1, 3, 5, 7(每个方格填一个数), 使得每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复, 那么A, B, C, D四个方格中数的平均数是()..(A)4(B)5(C)6(D)74.小明所在班级的人数不足40人, 但比30人多, 那么这个班男、女生人数的比不可能是().(A)2:3(B)3:4(C)4:5(D)3:7第 1 页共2页5. 某学校组织一次远足活动, 计划 10 点 10 分从甲地出发, 13 点 10 分到达乙地, 但出发晚了 5 分钟, 却早到达了 4 分钟. 甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(A )11 点 40 分(B )11 点 50 分 (C )12 点(D )12 点 10 分6. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1 cm. 若正方形 ABCD 内的四边形 EFGH 的面积为 78 cm 2, 则正方形的 边长为()cm.(A )10(B )11(C )12(D )13二、填空题 (每小题 10 分, 满分 40 分)7. 五名选手 A, B, C, D, E 参加“好声音”比赛, 五个人站成一排集体亮相. 他们胸前有每人的选手编号牌, 5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是_____.8. 甲乙同时出发, 他们的速度如下图所示, 30 分钟后, 乙比甲一共多行走了 ________米.米/分米/分1001008080606040402020分分5 10 15 20 25 30 5 10 15 20 25 30甲乙9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________ 种不同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况).10. 在一个圆周上有 70 个点, 任选其中一个点标上 1, 按顺时针方向隔一个点的点上标 2, 隔两个点的点上标 3, 再隔三个点的点上标 4, 继续这个操作, 直到 1, 2,3, …, 2014 都被标记在点上.每个点可能不只标有一个数, 那么标记了 2014 的点上标记的最小整数是________.第 2 页 共 2 页。
小高组即5、6年级华杯赛初赛模拟试卷小高组模拟题2答案
第二十一届全国“华罗庚金杯”初赛模拟试题(二)(小高组)(此题初赛必考)再一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,那么这个七位数最大是()A、9981733 B、9884737 C、9978137 D、9871773 A、B、C、D四项前三个数字组成的三位数分别为998、988、997、987,而7×11×13=10011001-998=3,1001-988=13,1001-997=4,1001-987=14∴只有第二项能被11或13整除∴答案为B模拟题1.如图所示,将一张正方形纸片先由上向下对折压平,再由右翻起向左对折压平,得到小正方形ABCD。
取AB的中点M和BC的中点N,减掉AMBN得到五边形AMNCD。
则将折叠的五边形AMNCD纸片展开铺平后的图形是()。
根据题目所示的,操作可得到答案为D2.2008006共有()个质因数。
A、4B、5C、6D、72008006=2×7×11×13×17×59∴有6个质因数则答案为C3.奶奶告诉小明:“2006年共有53个星期日”,聪明的小明立刻告诉奶奶:2007年的元旦一定是()。
A、星期一B、星期二C、星期六D、星期日2006年有365天,365÷7=52……1,而2006年有53个星期日∴2006年的元旦和12月31日均为星期日∴2007年元旦一定为星期一则答案为A4.如图,长方形ABCD小AB:BC=5:4,位于A点的第一只蚂蚁按A B C D A的方向,位于C点的第二只蚂蚁按C B AD C的方向同时出发,分别沿着长方形的边爬行。
如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上。
A、ABB、BCC、CDD、DA两只蚂蚁相遇是C点的蚂蚁走了4份,A点的蚂蚁走了5份,共走了9份当他们第二次相遇时,两只蚂蚁从B点到第二次相遇点共走了18份则此时C点出发的蚂蚁走了8份(从B点开始算起),8-5=3,3<4 ∴第二次相遇点应该在DA段则答案为D5.如图,ABCD是一个直角梯形(∠DAB=∠ABC=90°)。
第20届华杯赛小高组答案详解
第二十届华罗庚金杯少年数学邀请赛初赛 A 卷解析(小学高年级组)总分:100 分时间:60分钟一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是().(A)甲、乙(B)乙、丙(C)甲、丙(D)乙、丁【答案】B 【题型】逻辑推理、逆否命题【解析】在逻辑推理中,原命题成立,则逆否命题也成立.(1)甲去则乙去,逆否命题:乙不去则甲也不去(2)丙不去则乙不去,逆否命题:乙去则丙去(3)丙去则丁不愿意去,逆否命题:丁去则丙不去从(2)出发可以看出答案为 B.题目要求有两个人去,可以使用假设法,若甲去,则乙去,乙去则丙也去.三个人去,矛盾,所以甲不去.若丙不去则乙不去,那么只有丁去,矛盾,所以丙去.丙去则丁不去,由两个人去得到结论,乙要去.所以答案是 B,丙和乙去.2.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.(A)5(B)2(C)4(D)3【答案】C【题型】最值、构造【解析】4 个点,最多可以构造C434个三角形.如图所示,共有图中四个三角形均为钝角三角形.3.桌上有编号 1 至 20 的 20 张卡片,小明每次取出 2 张卡片,要求一张卡片的编号是另一张卡片的 2 倍多 2,则小明最多取出(片.(A)12(B)14(C)16(D)18【答案】A【题型】倍数、枚举【解析】由于有 2 倍多 2 的关系,所以 1、4、10 只能取其中两个,2、6、14 只能取其中两个,3、8、18 只能取其中两个.即这里至少有 3 个数取不到,而 11、13、15、17、19 不满足 2 倍多 2 的关系,也无法取到.合计至少有8 个数取不到,取12 个数为最多的情况.列举最多的一种情况:1、4;2、6;3、8;5,12;7,16;9,20.取到了最多的 12 个数的情况.4.足球友谊比赛的票价是50 元,赛前一小时还有余票,于是决定降价.结果售出的票增加了三分之一,而票房收入增加了四分之一,那么每张票售价降了()元.(A)10 (B)25(C)50(D)25 2 3【答案】B【题型】方程【解析】设共有 x 张票,赛前一小时的余票降价 y 元.由题意得:14 (x 50)13 [x (50 -y)], y2525.一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分.那么,这只旧钟的24 小时比标准时间的 24 小时().(A)快 12 分(B)快 6 分(C)慢 6 分(D)慢 12 分【答案】D【题型】时钟问题【解析】时针速度为每分钟 0.5 度,分针速度为每分钟 6 度.分钟每比时针多跑一圈,即多跑 360 度,360720时针分针重合一次.经过6-0.511 分钟,旧钟时针分针重合一次,需要经过标准时间66分钟;则(2460)66 1452旧钟的 24 小时,相当于标准时间的720 分钟,所以比标准时间24小时对应的 1124 60 1440 分钟多了1452-1440=12分钟,即慢了12分钟6.在右图的 6×6 方格内, 每个方格中只能填A, B , C , D , E , F 中的某个字母,要求每行、每列、每个标有粗线的 2×3 长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是().()E, C, D, F ()E, D , C , F (C )A B【答案】C【考察知识点】数阵图:数独【分析】每行每列每个 3*2 的粗线方格均必有 A、B、 C、D、E、F 各一个,选择一个合适的位置,尝试即可快速得出答案。
历年华杯赛初赛真题合集(12年至17年)(小高组)
第二十二届华罗庚金杯少年数学邀请赛............................................................................................................................ 1 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 3 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 5 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 7 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 9 第十九届华罗庚金杯少年数学邀请赛 ............................................................................................................................... 11 第十九届华罗庚金杯少年数学邀请赛 ..............................................................................................................................13 第十八届华罗庚金杯少年数学邀请赛 ..............................................................................................................................15 第十八届华罗庚金杯少年数学邀请赛 .............................................................................................................................. 17 第十七届华罗庚金杯少年数学邀请赛............................................................................................................................. 19 第十七届华罗庚金杯少年数学邀请赛 ..............................................................................................................................21 第二十二届华罗庚金杯少年数学邀请赛答案............................................................................................................... 23 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 24 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 25 第二十届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 26 第二十届华罗庚金杯少年数学邀请赛答案 ....................................................................................................................27 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 28 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 29
第17届华杯赛初赛小高组A卷试题解答
第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19[(0.8)24]7.6(___) 514+⨯+-=(A)30 (B)40 (C)50 (D)60【答案】B【解析】2、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
(A)3 (B)4 (C)6 (D)8【答案】D【解析】几何计数注意看清题目,是以4个点为端点连接线段,构成的图形最多可以有多少个三角形;而不是以这4个点位端点,最多可以有多少三角形,所以如图可知,有8个。
选D3、一个奇怪的动物庄园里住着猫和狗, 狗比猫多180只. 有20% 的狗错认为自己是猫;有20% 的猫错认为自己是狗. 在所有的猫和狗中, 有32% 认为自己是猫, 那么狗有( )只.(A )240 (B )248 (C )420 (D )842【答案】A【解析】这是一道典型的比例应用题。
方法一、方程法这个是最直接最快的。
假设狗有x 只,有:20%(180)80%(180)32%x x x x ⨯+-⨯=+-⨯;148(180)(2180)5525x x x +-=- (25)⇒两边同乘以5+20(180)8(2180)x x x -=-253600161440x x -=-92160x =240x =所以狗的数量就是240只。
(也可以假设猫为x 只,这样计算值会小很多。
)方法二、存在比例的题目都可以考虑十字交叉来做:由以上可以发现狗和猫的数量之比是4:1;相差3份,相差180只,即1份为60只。
狗是4份,所以狗是240只。
4、老师在黑板上写了从1开始的若干个连续自然数,1,2,3……,后来擦掉其中一个数,剩下数的平均数是112524,擦掉的自然数是()A 、12B 、17C 、20D 、3【答案】D 【解析】1+n 123...n ,,,一直到的平均数可以表示为2 现在擦掉一个数之后,剩下的数,平均值为112524,估算有1+n =252,n 的值在50左右。
第二十届华杯初赛小学高级组C卷(含解析)
第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)(时间:2014 年 3 月 14 日 10:00〜11:00)一、选择题(每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内 )『9 11 13 1517 )1 11120 一30 42 5672 丿 3 43.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、 下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁: “你们3人中至多有2人捐了款” 己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这 4位同学是()A .甲、乙 B.丙、丁 C.甲、丙D.乙、丁4.六位同学数学考试的平均成绩是 92.5分,他们的成绩是互不相同的整数,最高的那么按分数从高到低居第三位的同学的分数至少是().A. 94 B . 95 C. 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线 AC 上一点;如果 DEH 、•汨EH 、厶BCH 的面积 依次为56、50、40,那么 CEH 的面积是(). A. 32B . 34C. 35D. 366.—个由边长为1的小正方形n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4个用上的小正方形不全同色,那么正整数的最大值是(). A . 3 B. 4 C. 5D. 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯 是 __________ .&整数n —共有10个约数,这些约数从小到大排列.笫 8个是-.那么整数的最大值是=(20 A. 42B. 43C.2.如图, 有一排间距相同但高度不等的小树,1 2 15— D. 1633这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6 B. 2.4 C. 2.2 D. 2.0丙、丁 4位同学有如99分,最低的76分,39.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是 _____________ 厘米.(二取3.14)10. A 地、B 地、C 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向D 地行进.当甲在 C 地追上乙时,甲的速度减少 40% ;当甲追上丙时,甲的速度再次减少 40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少 25% ;如乙追上丙后再行 50米,三人同时到 D地•已知乙出发时的速度是每分钟 60米,那么甲出发时的速度是每分钟 _______ 米,A 、D 两地间的路程是 ___________ 米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)参考答案参考解析【考点】速算巧算【考点】等差数列 【难度】☆☆ 【答案】C【解析】如右图,AB =2.8-1.4 =1.4 (米),AC =1.4'7 3=0.6 (米)因此,第四高的小树为 2.8-0.6=2.2 (米).3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、下的对话:甲:“丙、丁之中至少有1人捐了款”一、选择题 (每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案 的英文字母写在每题的圆括号内『9 Il L 131 ———-—20 30 42d 卫56 72120一3 =(A. 42B. 43C.115 3D. 163【答案】Af 1【解析】原式=寸2.如图,有一排间距相同但高度不等的小树,IL 8 9树根成一条直线, 120 3 4 1竺=42 .3树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6B. 2.4C. 2.2D. 2.0丙、丁 4位同学有如乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是()•A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是().A. 94B. 95C. 96D. 97【考点】最值问题【难度】☆☆☆【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.5 6 -99 -76 -98)十3 = 282 “ 3 = 94 (分),故第三位同学的得分至少是94 •仁95 .5.如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点;如果DEH、•汨EH、厶BCH的面积依次为56、50、40,那么CEH的面积是().A. 32B. 34C. 35D. 36【考点】几何【难度】☆☆☆【答案】B【解析】因为S DEH ' S.AEH =S ABCD ' 2 = S ABC ~ S.BCE ' S AEB 所以S~ S DEH =56 ;所以,S .CEH = S BEH S BCH _ S BCE = 50 40- 56 = 34 .6.—个由边长为1的小正方形n n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是().A. 3B. 4C. 5D. 6【考点】最值问题【难度】☆☆☆☆【答案】B【解析】假设n =5 ,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的3 1的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的3 1的长方形中,每个至多1个黑格.假设这4个横着的3 1的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而3 1的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格•矛盾!所以n <5.而图6给出了n =4的一种构造•所以,正整数n的最大值是4 .二、填空题(每小题10分,满分40分.)7•在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是___________ .【考点】数阵图【难度】☆☆☆☆【答案】4123【解析】如下左图,因为A 3为质数且A =4 ,所以A =2 ;因为“月”1为质数且“月”-2、4 ,所以“月” =6 ;从而C=5 ;因为“杯”4为质数且“杯”-1 ,所以“杯” =3 ;从而C =5 ;因为D 3为合数且D =2或6 ,所以D =6 ;从而“华” =2 ;因为“相”3为质数且“相”-2 ,所以“相” -4 ;因为B 4为合数且D =1或5 ,所以B =5 ;从而“约”=1 ;所以,相约华杯=4123(如下中图)•实际上其它格子中的数也能唯一确定(如下右图)&整数n—共有10个约数,这些约数从小到大排列•笫8个是-•那么整数的最大值是3 ----------【考点】数论【难度】☆☆☆【答案】162【解析】n有10个约数,由于第8个是-,而第10个必然是n ,所以第9个只能是-•所以n有质因子2和3 23 •所以n可能是24 3或者34 2 •而最大是34 2 =162 .9•在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是_ 平方厘米,两块阴影部分的周长差是_____________ 厘米.(二取3.14)【考点】几何基本概念【难度】☆☆☆【答案】①15975 :②485 .【解析】①QS阴影ABE -S l影CDE =S扇形ABD S扇形ABC —SE方形ABCD —S半圆AB②因为ABE为等边三角形,所以∙EAB =. E B A=60 ,从而∙DAE =. CBE=30 ;阴影CDE的周长=弧CE 弧DE CD =2二300^12 2 300 =100二300 ;阴影ABE的周长二弧AE •弧BE •弧AB =2二300-:-6 2 • 300-:-2 = 350二;所以,的周长差=350二_(100二300)=250二_300 : 485 .10. A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40% ;当甲追上丙时,甲的速度再次减少40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25% ;如乙追上丙后再行50米,三人同时到D地•已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟________ 米,A、D两地间的路程是 __________ 米.【考点】行程问题【难度】☆☆☆☆【答案】①125 :②1880 .【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;所以丙速为60 (1 -25%)=45(米/分);甲减速一次后的速度为45 “(1 - 40%)=75 (米/分),甲出发时的速度为75 “(1 -40%)=125(米/分).②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:60 =25:12 , 所以AB:BC =25:12 ;设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60: 45=4:3 ,所以BF :CF =4:3 ,从而CF 为12“(4-3) 3=36 份,AF 为25 *36=61 份.因为甲减速一次后与丙的速度比为75: 45 = 5:3 ,而甲原速行AC这25份时,相当于以75米/分行25 60% =15份;所以CE=15"(5-3) 3=22.5 份,从而EF =36-22.5 =13.5 份;而EF是丙9分钟所行的路程,为45 9 =405(米),所以每份405 "13.5 =30(米),从而AF =30 61 H 1830 (米),所以AD =1830 50 -1880 (米).。
第23届华杯赛初赛小高组集训班讲义第一讲(计算与数字谜专题精讲)
第一讲计算与数字谜专题精讲
【例题1】计算(0.5+0.25+0.125)÷(0.5×0.25×0.125)×
7
18
×
9
2
+
1
6
13
1
3
-
15
4
×
16
5
(华
的数是几?(华杯赛第1届)
【例题3】下图中的30个格子中各有一个数字,最上面一横行和最左面一竖列的数字已经填好,其余每个格子中的数字等于同一横行最左面数字与同一竖到最上面数字之和(例如a=14+17=31)。
问这30个数字的总和等于多少?(华杯赛第2届)
【例题5】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为()。
(华杯赛第18届)
【练习5】4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少? (华杯赛第1届)
【例题6】.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方。
那么原来这个两位数是多少? (华杯赛第13届)
【练习6】三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立。
那么共有多少种不同的填法?(华杯赛第4届)
【例题7】互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l不是互为反序的数.
(华杯赛第4届)
…+
2017。
详解第二十三届“华杯赛”小学高年级组初赛试题
第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。
(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。
这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。
如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。
如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。
所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。
2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。
(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。
总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。
华杯赛初赛备考讲义含解析(小学高年级组)
, , , , 华杯赛初赛备考讲义含解析(小学高年级组)第一节 计算、几何精讲考点概述计算考点 一、整数、小数、分数的基本计算; 二、整数、小数、分数的常见巧算方法;(凑整、抵消、约分、提取公因数、裂项) 三、分数比较大小;(通分子、通分母、通分差、取倒数) 四、分数与循环小数.(纯循环小数化分数、混循环小数化分数)几何考点 一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积;三、等积变换; 四、各类几何模型;(等高模型、蝴蝶模型、共角模型、一半模型、沙漏模型、金字塔模型、燕尾模型等) 五、勾股定理与弦图; 六、立体几何.(基本公式、展开图、三视图)真题精讲例题1. 将 5.425 ⨯ 0.63 的积写成小数形式是.(2007 年 12 届)【答案】 3.4180 .【解答】 5.425=5425 = 5420 ,所以 5.425 ⨯ 0.63= 5420 ⨯ 63 = 34146 =34176 ,999 999 999 100 9990 9990而 4176 =1 ⨯ 4176 =1 ⨯ 4 180 =1⨯ 4.180 = 0.4180 ,所以 5.425 ⨯ 0.63 = 3.4180 . 9990 10 999 10 999 10例题2. 从 1 1 1 1 1中去掉两个数,使得剩下的三个数之和与 6最接近,去掉的两个数是 ().2 3 4 5 67(A ) 1 , 1 (B ) 1 , 1 (C ) 1 , 1 (D ) 1 , 1(2010 年 15 届)25263534【答案】D . 【解答】通分1 = 210 , 1 = 140 , 1 = 105 , 1 = 84 , 1 = 70 , 6 = 360 .2 4203 4204 4205 4206 4207 420显然,210+84+70=364 最接近 360.练习1. 2012.25 ⨯ 2013.75-2010.25 ⨯ 2015.75=.(2013 年 18 届)2 , 2 , 2 , 2 , 2 , 2 ,…,而 1 = 2,所以从23 5 7 9 11 13 1000 20002001 【答案】7.【解答】记 x =2010.25,y = 2013.75,则原式= (x + 2) y - x ( y + 2) = 2( y - x ) = 7 .练习2. 两数之和与两数之商都为 6,那么这两数之积减这两数之差(大减小)等于()(2011 年 16 届)(A ) 26 4 (B ) 5 1 (C ) 6 (D ) 67 7 7 49 【答案】D .【解答】设两数分别为 x 与 6x ,那么 7x =6,x = 6 ,所以这两个数分别为 6 与 36 ,两数之积为216 ,7两数之差为 30,216 - 30 = 6 .7749749 7 49练习3. 若 a =2005 ⨯ 2006 , b = 2006 ⨯ 2007 , c = 2007 ⨯ 2008,则有().2007 ⨯ 2008 2008 ⨯ 2009 2009 ⨯ 2010(A ) a > b > c (B ) a > c > b (C ) a < c < b (D ) a < b < c (2008 年 13 届) 【答案】D .【解答】比较 a 与 b ,两边同时可以约掉2006,而2005<2007,所以 a < b , 20082007 2009比较 b 与 c ,两边同时可以约掉 2007 ,而 2006 < 2008,所以 b < c ,故选D . 2009 2008 2010练习4. 在 1 , 3 , 5 , 7 , 9 , 11,…中,从开始,1 与每个数之差都小于 1 .3 5 7 9 11 131000(2004 年 9 届)【答案】 1999 .2001【解答】这一排分数与 1 的差分别为开始,就开始小于 11000,所以答案为 1999 .2001例题3. 如图所示,AB 是半圆的直径,O 是圆心,AC = CD = DB ,M 是 CD 的中点,H 是弦 CD 的中点.若N 是OB 上一点,半圆的面积等于12 平方厘米,则图中阴影部分的面积是平方厘米.(2009 年14 届)MC DHA O N B【答案】2.【解答】如下图,可以利用等积变换变成一个扇形:MC DHA O B因为AC = CD = DB ,M 是CD 的中点,所以CM 是半圆弧的1,所以阴影扇形面积为半圆面积的1,6 6为2.例题4. 大正方形格板是由81 个1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中标出一点A,使得△ABC 的面积恰好等于3 平方厘米,则这样的A 点共有个.(2010 年15 届)CB(A)6 (B)5 (C)8 (D)10【答案】C.【解答】方法一:从最上面的水平线开始将水平线分别记为第1、第2、…、第10 条水平线,每条水平线均由左至右判断哪个格点符合题目要求.以此穷举法可以得到:第1 条水平线上没有格点符合要求,第2 条水平线上仅有A7 符合要求.如右图所示,类似可以得到格点A2,A1,A6符合要求,对称地,可以得到A ,A ,A ,A 符合要求.故答案是C.5 4 3 8方法二:先通过尝试找到A ,然后找到经过A ,而且平行于BC 的线,画出来,那么这条线经过的格1 1点都是符合要求的(等积变换),这样可以得到A ,A ,A ,A ,然后利用对称性,可以得到A ,A ,A 3 ,A8.故答案是C.2 1 6 7 5 4练习5. 正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米.如图所示,边BC 落在EH 上.已知三角形ACG 的面积为6.75 平方厘米,则三角形ABE 的面积为平方厘米.(2012 年17 届)【答案】2.25.【解答】如图:连接EG,由于AC 和EG 都是对角线,因此相互平行,所以三角形ACG 的面积等于三角形ACE 的面积,所以S△ABE =S△ACE-S△ABC=6.75 -4.5=2.25 .练习6. 右图ABCD 是平行四边形,M 是DC 的中点,E 和F 分别位于AB 和AD 上,且EF 平行于BD.若三角形MDF 的面积等于5 平方厘米,则三角形CEB 的面积等于()平方厘米.(2013 年18 届)(A)5 (B)10 (C)15 (D)20【答案】B【解答】如右图,连接FC,BF,DE.因为M 是DC 的中点,三角形MDF 的面积等于5 平方厘米,所以由三角形面积公式可知:三角形CDF的面积等于10 平方厘米.两个三角形,同底等高,面积则相等.由此可知:由DC / / AB ,得△CEB 的面积=△BDE 的面积;由EF / /B D ,得△BDE 的面积=△BDF 的面积;由AD / /B C ,得△BDF 的面积=△C DF 的面积,所以三角形CEB 的面积等于10 平方厘米.练习7. 如右图所示,梯形ABCD 的面积为117 平方厘米.AD∥BC,EF = 13 厘米,MN = 4 厘米,又已知EF⊥MN 于O,那么阴影部分的总面积为平方厘米.(2011 年16 届)【答案】65.【解答】四边形 EMFN 的面积= 1⨯ EF ⨯ MN =26 .(对角线相互垂直的四边形面积为对角线相乘再除2以 2),又根据蝴蝶模型, S △ABM =S △EFM , S △DCN =S △EFN ,所以空白部分总面积为四边形 EMFN 的面积 的 2 倍,为 52,所以阴影部分总面积=117-52=65.练习8. 右图由 4 个正六边形组成,每个面积是 6,以这 4 个正六边形的顶点为顶点,可以连接面积为 4 的等边三角形有 个.(2011 年 16 届) 【答案】8.【解答】如图,将原图按三角形格线分割,于是我们要找的其实是由 4 个小正三 角形组成的正三角形,注意顶点必须六边形顶点,箭头朝上的有四个(如图), 根据对称性,箭头朝下的也有 4 个,共 8 个.例题5. 如图,大小两个半圆,它们的直径在同一直线上,弦 AB 与小圆相切,且与直径平行,弦 AB 长12 厘米.图中阴影部分的面积是 平方厘米.(圆周率取 3.14)(2004 年 9 届)AB【答案】56.52.【解答】设大圆半径为 R ,小圆半径为 r ,那么阴影部分面积为 1 π R 2 - 1 π r 2 = 1π ( R 2 - r 2 ),所以关 2 2 2 键是求出半径的平方差.如图,过大圆圆心作 AB 的垂线,连接圆心与 B 点,由勾股定理可得,62 + r 2 = R 2 ,所以 R 2 - r 2 = 36 .A6 BrR那么阴影部分面积= 1⨯ 3.14 ⨯ 36=56.52 .2例题6. 一个长方体的长、宽、高恰好是 3 个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的 2 倍,那么这个长方体的表面积是 .(2007 年 12 届)(A )74(B )148(C )150(D )154【答案】B.【解答】设这三个连续的自然数分别为x-1,x,x+1,那么可以列出方程:(x-1)x(x+1)=2(x-1+x +x +1)⨯ 4 ,化简后为:x(x2 -1)= 24x ,由于x 肯定不是0,所以两边同时约掉x 后,可得方程:x2 -1= 24 ,所以x = 5 ,这三个连续的自然数分别为4、5、6,那么表面积为:(4⨯5 +5⨯ 6 +4⨯6)⨯ 2=148 .练习9. 如图所示,是一个直圆柱形状的玻璃杯,一个长为12 厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2 厘米,最多能露出4 厘米.则这个玻璃杯的容积为立方厘米.(取π= 3.14 )(提示:直角三角形中“勾6、股8、弦10”)(2006 年11 届)CA B【答案】226.08.【解答】沿AC 放置时,另一端沿吸管露出最少,为2 厘米,说明AC=12-2=10 厘米,沿BC 放置时,另一端沿吸管露出最多,为4 厘米,说明BC=12-4=8 厘米,根据勾股定理,AB2 = 102 - 82 = 36 ,所=9π⨯8=72π=226.08 .以AB=6,底面半径为3,所以V杯练习10. 右图中,AB 是圆O 的直径,长6 厘米,正方形BCDE 的一个顶点E 在圆周上,∠ABE = 45︒.那么圆O 中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于平方厘米(取π= 3.14 ).(2013 年18 届)【答案】10.26【解答】因为∠ABE = 45︒,∠EAB 所对的圆弧和∠ABE 所对的圆弧弧度相等,且圆弧的直径相同,故∠EAB = 45︒,三角形ABE 是直角三角形.由勾股定理:2BE2 =AB2 = 62 = 36 (平方厘米),正方形BCDE 的面积=BE2 =18 (平方厘米).圆O 的面积-正方形BCDE 的面积=(圆非阴影部分的面积+圆和正方形相交部分的面积)-(正方形BCDE 中非阴影部分面积+圆和正方形相交部分的面积)=圆非阴影部分面积-正方形非阴影部分面积=32 ⨯π-18 = 28.26 -18 =10.26 (平方厘米).练习11. 图中的方格纸中有五个编号为1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是().(A)1,2 (B)2,3 (C)3,4 (D)4,5(2012 年17 届)【答案】D【解答】注意到展开图中不能出现“田”字结构,因此排除掉ABC,选D.练习12. 如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD 纸片展开铺平后的图形是.(2006 年11 届)D C D CNNA MB A M【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.课后作业:1. 计算:⎡⎛0.8 +1 ⎫⨯ 24 + 6.6⎤÷9- 7.6 =().(2012 年17 届)⎢ 5 ⎪ ⎥14⎣⎝ ⎭ ⎦(A)30 (B)40 (C)50 (D)60【答案】B.【解答】原式= [1⨯ 24 +6.6]⨯14 - 7.6 = 30.6 ⨯14 - 7.6=47.6 - 7.6=40 .9 92. 算式1 -27+ 2 ⨯ 0.3的值为.(2010 年15 届)0.25 + 3 ⨯1 1.3 - 0.44【答案】1 8.211 -2 5 3【解答】7 +2 ⨯ 0.3= 7 + 5 =5+2=18.0.25 + 3 ⨯1 1.3 - 0.441+39 7 3 214 4 103. 下面有四个算式:①0.6 + 0.133=0.733 ;②0.625= 5 ;8③ 5+3=5 + 3=8=1;14 2 14 + 2 16 2④3 3 ⨯ 4 1 =14 2 .7 5 5其中正确的算式是()(2009 年14 届)(A)①和②(B)②和④(C)②和③(D)①和④【答案】B.【解答】①式错,因为0.6 并不循环,②式对,③式错,不符合分数加法规则,④式对,因此选B.4. 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C 处填的数各是、、.(2004 年9 届)提示:注意相对两个面展开后的位置.C 2B 1A 4【答案】6、5、3.【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,所以在原图中,A 和1 相对,B 和2 相对,C 和4 相对,所以A=6,B=5,C=3.5. 如图,ABCD 是个直角梯形(∠DAB=∠ABC=90o).以AD 为一边向外作长方形ADEF,其面积为6.36 平方厘米,连接BE 交AD 于P,再连接PC.则图中阴影部分的面积是平方厘米.(2006年11 届)提示:等积变换.(A)6.36 (B) 3.18 (C)2.12 (D)1.59 【答案】B.【解答】连接BD、AE,利用等积变换,S△PDC =S△PDB,所以S阴=S△EDB,再次利用等积变换,可以得到S△EDB =S△EDA,而三角形EDA 面积是长方形ADEF 的一半,为3.18,所以以S阴=S△EDB=S△EDA=3.18 .6. 一块长方形的木板,长为90 厘米,宽为40 厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?请画出分割线.(2004 年9 届)提示:阶梯形.【答案】如图,沿粗线剪开即可..【解答】图形面积为90×40=3600 平方厘米,因此拼成的正方形边长为60 厘米,我们把这个图形画出来与原图形进行比较:3020两条边的差分别为30 和20,因此把90 厘米那边30 厘米一截,40 厘米那边20 厘米一截,分成6 块之后,稍作尝试即可.7. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行.(A)0 (B)2(C)3 (D)4(2014 年19 届)【答案】C.【解答】当4 条直线都互相平行时,平面被分成5 个部分,不满足要求,因此最多只能3 条直线互相平行.构造:有3 条直线互相平行,另外一条直线与它们都互相垂直,此时平面被分成8 个部分.8. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1c m.若正方形ABCD内的四边形EFGH 的面积为78 cm2,则正方形的边长为()cm.(A)10 (B)11 (C)12 (D)13(2014 年19 届)提示:类比弦图.【答案】C.【解答】用竖直线和水平线将正方形ABCD 分割为如右图所示的5 个长方形,中间长方形的面积是4⨯ 3=12 ,所以,正方形的面积= (78-12)⨯ 2 +12=144 ,正方形的边长是12.9. 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的( ).提示:分割图形.(A)1 (B)2 (C)2 (D)52 3 5 12(2010 年15 届)【答案】A.【解答】由图可知,左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积,因此阴影部分的面积占平行四边形面积的1 . 2第二节数论、应用题精讲考点概述数论考点五、数的整除性相关知识六、质数合数七、约数与倍数八、余数问题应用题考点一、常考应用题类型(和差倍应用题,比例应用题,经济问题,浓度问题等)1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.在一个圆周上有70 个点,任选其中一个点标上1,按顺时针方向隔一个点的点上标2,隔两个点的点上标3,再隔三个点的点上标4,继续这个操作,直到1,2,3,…,2014 都被标记在点上.每个点可能不只标有一个数,那么标记了2014 的点上标记的最小整数是.(2014 年19 届)【答案】5【解析】将70 个点中某个点为起始点,然后按顺时针方向依次将这70 个点记为第1 个,第2 个,第3 个,…,第70 个,用a 表示第a 个点上标记的数字是i.i i依题意a1= 1 ,a2 = 3 ,a3 = 6 ,a4 = 10 ,…,且按规律得:a 2014 =1+ 2 + 3 + + 2014 =2014 ⨯ 2015=202910522029105 = 28987 ⨯ 70 +15 ,而a5 = 15 ,因此第15 个点上标记的最小整数为5.例2.若a = 1515 15 ⨯ 333 3 ,则整数a 的所有数位上的数字和等于.(2008 年13 届)1004个15 2008个3(A)18063 (B)18072 (C)18079 (D)18054【答案】B【解析】a = 505 05 ⨯ 999 9 ,利用结论A⨯ 999 9 的数字和为9n ,可知a 的数字和为18072,选B.1004个5 2008个9 n个9练习1.恰有20 个因数的最小自然数是().(2010 年15 届)(A)120 (B)240 (C)360 (D)432【答案】B.【解析】因为20=2×10=4×5=2×2×5,因此,具有20 个因数的自然数的质因数分解形式只有19 ,⨯9 ,3 ⨯4 ,⨯⨯ 4 这4 种,对应类型的最小自然数分别为219 ,3⨯ 29 ,33 ⨯ 24 ,3⨯5⨯ 24 ,其中最小的是240,选B.练习2.在19、197、2009 这三个数中,质数的个数是().(2009 年14 届)(A)0 (B)1 (C)2 (D)3【答案】C【解析】质数判定,检验所有平方小于2009 的质数即可.练习3.若连续的四个自然数都为合数,那么这四个数之和的最小值为().(2011 年16 届)(A)100 (B)101 (C)102 (D)103【答案】C【解析】最小连续4 个合数为24,25,26,27,它们之和为102.例3.一个奇怪的动物庄园里住着猫和狗,狗比猫多180 只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.(2012 年17 届)(A)240 (B)248 (C)420 (D)842【答案】A【解析】设猫有x 只,狗有y 只,则认为自己是猫的动物共有80%x + 20% y 只,从而80%x + 20%y = 32%(x +y) ,可以得到4x =y ,再结合狗比猫多少180 只,可得x = 60 ,y = 240 ,从而狗有240 只,选A.例4.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.(2013 年18 届)(A)22 (B)20 (C)17 (D)16【答案】A【解析】记青蛙每向上爬行1 米,所用时间为t 分钟,则下滑1 米的时间是向上爬3 米所用时间的三分之一,也为t 分钟.当青蛙刚爬至离井口3 米时,离井底9 米,所用时间是17 分钟.将2 米分为1 段,则一段所需时间为4t,第一次离井口3 米的时候是,向上爬了3 段之后再向上爬了3 米,第二次离井口3 米的时候是,向上爬了4 段之后再向上爬了1 米,此时总共花了17t 的时间,此时为8 点17,过了17 分钟,所以t=1,即每分钟1 米.向上爬出井口的时候,总共是向上爬了5 段,然后向上爬了2 米,总共花了22 分钟.练习5.两条纸带,较长的一条为23cm,较短的一条为15cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )cm.(2010 年15 届)(A)6 (B)7 (C)8 (D)9【答案】B.【解析】设剪下的长度为x cm,那么有:23 -x ≥ 2(15 -x) ,解得x ≥ 7 ,因此剪下的长度至少为7cm,选B.练习6.某次考试有50 道试题,答对一道题得3 分,答错一道题扣1 分,不答题不得分.小龙得分120 分,那么小龙最多答对了()道试题.(2014 年19 届)(A)40 (B)42 (C)48 (D)50【答案】B【解析】得分120 分,说明至少需要答对40 道题,其余10 道题不答,满足题意.若答对41 道题,答错3 道题,其余题不答,此时得分也是120 分.若答对42 道题,答错6 道题,其余题不答,此时得分也是120 分.若答对43 道题,得分依然为120 分,需要再答错9 道题,此时至少需要有52 道题,52>50,因此不满足题意.解法二:设作对x 题,做错y 题,未答z 题,则有:3x - y =120, x +y +z = 50,合并两个等式,得到:4x =170 - z, x = 42 +2- z ,x 是非负整数,尽可能大,故z = 2, x = 42 ,即小4龙最多答对42 道试题.练习7.两个水池内有金鱼若干条,数目相同.亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33 条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条.(2010 年15 届)(A)112 (B)168 (C)224 (D)336【答案】B【解析】这是一道工程问题的变形,每个水池内有金鱼33 ÷ ( 5-3) =168 (条).5 + 3 4 + 3解法2:可以认为是比例应用题,设亮亮第一次捞到3n 条,则红红第一次捞到4n 条,依题意,有3n + 33=5,解得n=24,因此水池内共有金鱼7n=168 条.4n - 33 3练习8.用若干台计算机同时录入一部书稿,计划若干小时完成.如果增加3 台计算机,则只需原定时间的75%;如果减少3 台计算机,则比原定时间多用5小时.那么原定完成录入这部书稿的时间是()6小时.(2011 年16 届)(A)5 3【答案】A (B)103(C)56(D)116【解析】增加3 台计算机,则只需原定时间的75%,所以原先有9 台计算机;如果减少3 台计算机,则所需时间为原定时间的9=3,比原定时间多用了5小时,所以原定要5÷⎛3-1⎫=5小时.9 -32 6 6 2 ⎪ 32⎝ ⎭例6. 图中是一个玩具火车轨道,A 点有个变轨开关,可以连接 B 或者 C .小圈轨道的周长是 1.5 米,大圈轨道的周长是 3 米.开始时, A 连接 C ,火车从 A 点出发,按照顺时针方向在轨道上移动,同时 变轨开关每隔 1 分钟变换一次轨道连接.若火车的速度是每分钟 10 米,则火车第 10 次回到 A 点时用了 分钟.(2010 年 15 届)【答案】2.1【解析】根据条件,在小圈火车行驶一圈用时1.5 ÷10 = 0.15 分钟,在大圈火车行驶一圈用时3 ÷10 = 0.3 分钟.设回到 A 点时用时为 t 分钟,这样我们有下表:回到 A 的次数 1 2 3 4 5 6 7 8 910到 A 点用时 0.3 0.6 0.9 1.2 1.35 1.5 1.65 1.8 1.95 2.1经过的轨道ACACACABABABABABABAC下面我们给出一个一般的解答:设玩具火车绕小圈轨道 m 圈,绕大圈轨道 n 圈,则玩具火车运动路程是 S = 1.5m + 3n ,时间是1.5m + 3n .如果 ⎡1.5m + 3n ⎤ 是偶数,则变轨开关 AC 连通,如果 ⎡1.5m + 3n ⎤是奇数,则变轨开关 AC 10 ⎢ 10⎥ ⎢ 10⎥⎣⎦⎣⎦连通.我们寻找最小的 m + n ,使1.5m + 3n是偶数.无妨设 101.5m + 3n = 10K ,或 3m + 6n = 20K ,这里 K 是偶数,并且有 3 为约数,是玩具火车运动的时间,因此最小的 K 是 6.即求 m 和 n 使m + 2n = 40 .12 当 n =3,S AA C = 2S ABC = 12 ,故开始玩具火车绕大圈轨道 4 圈之后进入小圈,时间是 10= 1.2(分钟);当 n =4, m =5 时,⎡ 7.5 + 12 ⎤ = 1 , ⎡ 9 + 12 ⎤= 2 ,故玩具火车绕小圈轨道 6 之后再次进入大圈轨道, ⎢ 10 ⎥ ⎢ 10 ⎥3⎣⎦ ⎣ ⎦此时1.5m + 3n=1.5 ⨯ 6 + 3 ⨯ 4= 2.1 (分钟)(可以称为一个拟循环)1010将玩具火车再次进入大圈运行,运行圈数记为 n . n =3 时, 1.5 ⨯ 6 + 3 ⨯ 7= 3 (分钟),玩具火车应2210当再次进入小圈运行,运行圈数记为 m ,既然1.5 ⨯ 7> 1 > 1.5 ⨯ 6,故玩具火车绕小圈运行 7 圈后,应 210 10再次进入大圈运行,此时 1.5m + 3n = 1.5 ⨯13 + 3 ⨯ 7= 4.05 (分钟).10 10 将玩具火车再次进入大圈运行, 运行圈数记为 n .既然1.5 ⨯13 + 3 ⨯11 > 5 > 1.5 ⨯13 + 3 ⨯10 ,10 10故玩具火车绕大圈运行 4 圈后,应再次进入小圈运行,此时1.5m + 3n = 1.5 ⨯13 + 3 ⨯11 = 5.25 (分钟), 10 10则玩具火车绕大圈运行 5 圈后,1.5m + 3n = 1.5 ⨯18 + 3 ⨯11= 6 (分钟). 10 10结论玩具火车第 29 次回到 A 时, 变轨开关 AC 连通,即回到原始状态.练习9. 4 个整数中任意选出 3 个,求出它们的平均值,然后再求这个平均值和余下 1 个数的和,这样可以得到 4 个数:4、6、 5 1 和 4 2,则原来给定的 4 个整数的和为.(2009 年 14 届)3 3 【答案】10【解析】设 4 个整数分别为 a 、b 、c 、d ,则有a +b +c +d = 4 、 a + b + d + c = 6 、a + c + d + b = 5 1、 3 3 3 3b +c +d + a = 4 2,四式相加可得 2(a + b + c + d ) = 20 ,从而 a + b + c + d = 10 .3 3练习10. A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A →C ,B →E ,C →A ,D →B ,E →D .开始时 A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5 轮时,拿着福娃的小朋友是().(2009 年14 届)(A)C 与D (B)A 与D (C)C 与E (D)A 与B【答案】A【解析】A 和C 之间的传递以2 为周期,B、E、D 之间的传递以3 为周期,所以5 轮之后,A 和C 之间的福娃最后在C 手中,B、E、D 之间的福娃最后在D 手中,所以最后拿着福娃的是C 与D.练习11. 某学校组织一次远足活动,计划10 点10 分从甲地出发,13 点10 分到达乙地,但出发晚了5 分钟,却早到达了 4 分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(2014 年19 届)(A)11 点40 分(B)11 点50 分(C)12 点(D)12 点10 分【答案】B【解析】从10 点10 分到13 点10 分共有3 个小时,比计划时间少用9 分钟,即每小时少用3 分钟,少用5 分钟的时候即是到达B 点的时间.此时需要5÷(3÷60)=100 分钟,即1 小时40 分钟,所以到达B 点的时间是11 点50 分.练习12. 甲、乙两车分别从A,B 两地同时出发,且在A,B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶4 小时到达B,而乙车只行驶了1 小时就到达A,则两车第15 次(在A,B 两地相遇次数不计)相遇时,它们行驶了小时.(2012 年17 届)【答案】B【解析】设甲、乙的速度分别为V甲、V乙,则甲、乙相遇时,他们行驶的路程比为V甲:V乙;另一方面,第一次相遇后,甲车继续行驶4 小时到达B,乙车继续行驶了1 小时到达A,所以这两段的路程比也为V乙: 4V甲,从而V甲:V乙=V乙: 4V甲,进而有V甲:V乙= 1: 2 ,进而可以得到甲从A 到B 需要6 小时,乙需要3 小时,一个周期为12 小时且周期内相遇两次,7 个周期后,甲、乙相遇14 次,且分别回到A 和B,2 小时后,甲、乙第15 次相遇,总共用时7 ⨯12 + 2 = 86 小时.课后练习1. 任意写一个两位数,再将它依次重复3 遍成一个8 位数.将此8 位数除以该两位数所得到的商再除以9,问:得到的余数是.(2004 年9 届)【答案】4【解析】abababab ÷ab =1010101,1010101 除以9 的余数为4.2. 2008006 共有个质因数.(2006 年11 届)(A)4 (B)5 (C)6 (D)7【答案】C【解析】2008006 = 2 ⨯ 7 ⨯11⨯13⨯17 ⨯ 59 .3. 小明所在班级的人数不足40 人,但比30 人多,那么这个班男、女生人数的比不可能是().(2014 年19 届)(A)2:3 (B)3:4 (C)4:5 (D)3:7【答案】D【解析】如果男、女生人数的比是2:3,那么全班人数一定是5 的倍数,男生14 人,女生21 人,满足题意.如果男、女生人数的比是3:4,那么全班人数一定是7 的倍数,男生15 人,女生20 人,满足题意.如果男、女生人数的比是4:5,那么全班人数一定是9 的倍数,男生16 人,女生20 人,满足题意.如果男、女生人数的比是3:7,那么全班人数一定是10 的倍数,但本班人数不足40 人,但比30 人多,所以男、女生人数的比不可能是3:7.4. 开学前6 天,小明还没做寒假数学作业,而小强已完成了60 道题,开学时,两人都完成了数学作业.在这6 天中,小明做的题的数目是小强的3 倍,他平均每天做()道题.(2009 年14 届)y 7 ⎩(A )6 (B )9 (C )12 (D )15【答案】D【解析】这 6 天小明比小强多做了 60 道,平均每天多做 10 道,小明每天做题量是小强的 3 倍,所以 小强每天做 5 道,小明每天做 15 道.5. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7:5,那么盒子里原有的黑子数比白子数 多( )个.(2013 年 18 届)(A )5 (B )6(C )7(D )8【答案】C【解析】设原有黑子数为 x ,白子数为 y ,得方程⎧ x - 1 = 9⎧7 x - 9y = 7⎪ ⎪ ⎪ ⎨x 7 即 ⎨⎪ = ⎪⎩ y - 1 5⎪5x - 7y = - 7由此解得x = 28 , y = 21 .故 x - y = 7 .解法二:前后两次均取出一枚棋子,剩下棋子的总数不变,而 9 + 7 = 16 ,7 + 5 = 12 ,16 与 12 的最小 公倍数为 48 ,因此设取出一枚棋子后,剩下棋子的总数为 48 份.第一次余下的黑子数为 48 ÷ (9 + 7) ⨯ 9 = 27 份;第二次余下的黑子数为 48 ÷ (7 + 5) ⨯ 7 = 28 份;两次相差 1 份.而前后两次余 下的黑子数相差 1,因此 1 份对应 1 枚棋子.原有黑子 28 个,原有的白子数为 28 ÷ 7 ⨯ 5 + 1 = 21个, 黑子比白子多 28 - 21 = 7 个6. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和 2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.(2013 年 18 届) 【答案】D【解析】由已知, 1 号阀门每分钟注入 1 18池水,而 2 号阀门放出 1 24池水.到A 池深 0.4 米时,正好在 A 池中留存了 1池水,31 ÷ ⎡ 1 -1 ⎤ = 24 (分钟).⎣ ⎦3 ⎢18 24 ⎥故此时恰好放了24 分钟,正好把B 池放满,进而B 水池中有水3⨯ 2 ⨯1.2 = 7.2 (立方米).7. “低碳生活”从现在做起,从我做起.据测算,1 公顷落叶阔叶林每年可吸收二氧化碳14 吨.如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21 千克.某市仅此项减排就相当于25000 公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3 台空调计,该市家庭约有万户.(保留整数)(2010 年15 届)【答案】556【解析】25000⨯14⨯1000÷(21⨯3)≈5555555.6.8. 甲乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.(2014 年19 届)10080604020米/分5分10 15 20 25 30甲10080604020米/分分5 10 15 20 25 30乙【答案】300【解析】由图所示,前10 分钟,甲和乙速度相同;第10 分钟至第20 分钟,乙速度是100 米/分,甲的速度是80 米/分,故乙多走了200 米;第20 分钟至第25 分钟,甲乙速度相同;第25 分钟至30 分钟,乙的速度是80 米/分,甲的速度是60 米/分,故乙多走了100 米;乙共计多走了300 米.9. 甲、乙两车分别从A,B 两地同时出发,相向而行,3 小时相遇后,甲掉头返回A 地,乙继续前行.甲到达A 地后掉头往B 行驶,半小时后和乙相遇.那么乙从A 到B 共需小时.(2011 年16 届)【答案】7.2【解析】甲、乙相遇后,同时向B 行驶,甲先是花了3 小时到达A 地,然后甲掉头行驶了半小时和乙相遇,从而甲乙相遇后,乙行驶了3.5 小时,且这段路甲只需要2.5 小时,所以甲、乙的速度比为7:5,从而甲花了3 小时的这段路,乙需要3⨯ 7 ÷ 5 = 4.2 小时,所以乙从A 到B 共需3 + 4.2 = 7.2 小时.第三节数字谜、计数、组合精讲考点概述数字谜考点:竖式问题常用方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和之和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.(3)与整除相关的问题,注意运用以前学过的整除知识.计数问题考点:1. 枚举法(有序、分类)2. 加乘原理(分类,加法;分步,乘法)3. 排列组合(排列,有序;组合,无序;常用方法,插空、捆绑、插板、排除等)4. 综合运用(结合几何、数论等知识)组合问题考点:1. 最值问题:(1)满足题目条件的情况不多时,可以用枚举法把可能的情况一一列举出来,再找出最大值或最小值.(2)两个数的和一定,当它们越接近时乘积越大.(3)极端思考与局部调整也是解决最值问题的常用方法.2. 逻辑推理、统筹对策、抽屉原理等.真题精讲。
(学生版)华杯初赛考辅班---小高
N 是 OB 上一点,半圆的面积等于 12 平方厘米,则图中阴影部分的面积是_______平方厘米. (2009 年 14 届) M C H D
A
O
N
B
第2页
华杯赛初赛考辅班
例题4. (2010 年 15 届)
高年级组
大正方形格板是由 81 个 1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中
BC, EF 13 厘米, MN 4 厘米,又已知 EF⊥MN 于 O, 那么阴影部分的总面积为________平方厘米. (2011 年 16 届) 第3页
华杯赛初赛考辅班
高年级组
练习8.
右图由 4 个正六边形组成, 每个面积是 6, 以这 4 个正六边形的顶点为顶点,
可以连接面积为 4 的等边三角形有________个. (2011 年 16 届)
例题5.
如图,大小两个半圆,它们的直径在同一直线上,弦 AB 与小圆相切,且与直径平行,弦 AB 长
12 厘米.图中阴影部分的面积是_______平方厘米. (圆周率取 3.14) (2004 年 9 届)
A
B
例题6.
一个长方体的长、宽、高恰好是 3 个连续的自然数,并且它的体积的数值等于它的所有棱长之和
其中正确的算式是(
) (2009 年 14 届)
(A)①和②(B)②和④(C)②和③(D)①和④
4.
下面的表情图片中,
没有对称轴的个数为(
).
(A)3(B)4(C)5(D)6
第6页
华杯赛初赛考辅班
5.
高年级组
题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为 7,则 A、B、C 处填的数各是___、___、___. (2004 年 9 届)提示:注意相对两个面展开后的位置.
华杯复赛考辅班小中(学生版)
计数考点: 1. 2. 枚举法(分类、有序) 加乘原理(加法,分类;乘法,分步)
组合考点: 1. 各种与数字计算有关的最值问题.在枚举试算的过程中,注意寻找出大小变化的规律,并尝试分析其 内在原因;学会用比较、调整的方法寻找最值情况. 2. 逻辑推理: (1)一句话不是真话,就是假话.这在逻辑学中被称为排中律. (2)在应用假设法分析问 题时,要考虑全面.既要考虑到所假设的条件成立的情况,还要考虑到条件不成立的情况. (3)对于 条件复杂的逻辑推理问题,通常状况下都可以通过列表法分析.
当前恰好播放到第 30 分钟 28 秒处) . (2014 年 19 届)
练习8. 某校学生总人数比四年级人数的 6 倍少 78 人,并且除了四年级外其他各年级的学生人数总和为 2222 人,那么该校共有学生________人.
第8页
华杯赛复赛考辅班
课后练习
1.
中年级组
宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家.他们约定:共同乘坐的部分所产生的车费由乘坐者 平均分摊;单独乘坐的部分所产生的车费,由乘坐者单独承担.结果,三人承担的车费分别为 10 元、 25 元、85 元.宁宁家距离学校 12 公里,凡凡家距离学校_______公里. 学校 宁宁家 蕾蕾家 凡凡家
真题精讲
例题1. 计算: (2014 2014 2012) 2013 2013 ________. (2013 年 18 届)
练习1.
计算: 10 9 8 7 6 5 6 5 4 3 2 1 9 8 7 8 7 6 5 4 3 4 3 2 ________.
真题精讲
例1. 四年级一班用班费购买单价分别为 3 元、2 元、1 元的甲、乙、丙三种文具. 要求购买乙种文具的 件数比购买甲种文具的件数多 2 件, 且购买甲种文具的费用不超过总费用的一半. 若购买的文具恰好 用了 66 元, 则甲种文具最多可买 件.(2012 年 17 届)
(完整版)第十八届华杯赛初赛试卷_小高B及答案
第十八届华罗庚金杯少年数学邀请赛初赛试卷 B ( 小学高年级组)总分第十八届华罗庚金杯少年数学邀请赛初赛试卷 B(小学高年级组)(时间 : 2013 年 3 月 23 日 10:00 ~ 11:00)装一、选择题 ( 每题 10 分, 满分 60 分. 以下每题的四个选项中, 仅有一个是正确的 , 请将表示正确答案的英文字母写在每题的圆括号内 .)1.一个四位数 , 各位数字互不相同 , 全部数字之和等于 6, 并且这个数是 11 的倍数 , 则知足这类要求的四位数共有()个.(A)6(B)7(C)8(D)9订 2.22323323 3 3 2 3 3 的个位数字是().9个 3(A)2(B)8(C)4(D)63.在下边的暗影三角形中 , 不可以由右图中的暗影三角形经过旋转、平移获得的是图()中的三角形.( A )( B)(C)( D)线4.某日 , 甲学校买了 56 千克水果糖 , 每千克 8.06元 . 过了几天 , 乙学校也需要买相同的56 千克水果糖 , 可是正好追上促销活动 , 每千克水果糖降价0.56 元, 并且只需买水果糖都会额外赠予5% 相同的水果糖 . 那么乙学校将比甲学校少花()元.(A)20(B)51.36(C)31.36( D)10.365.甲、乙两仓的稻谷数目相同 , 爸爸 , 妈妈和阳阳独自运完一仓稻谷分别需要 10 天 , 12 天和 15 天. 爸爸妈妈同时开始分别运甲、乙两仓的稻谷 , 阳阳先帮妈妈 , 后帮爸爸 ,结果同时运完两仓稻谷 , 那么阳阳帮妈妈运了()天.(A)3(B)4(C)5(D)66.如图, 将长度为9 的线段AB 分红9 等份,那么图中全部线段的长度的总和是().(A)132(B)144(C)156(D)165二、填空题 ( 每题 10 分, 满分 40 分)7.将乘积 0.243 0.325233 化为小数,小数点后第2013位的数字是________.8.一只青蛙 8 点从深为 12 米的井底向上爬 , 它每向上爬 3 米 , 由于井壁打滑 , 就会下滑 1米, 下滑 1 米的时间是向上爬 3 米所用时间的三分之一 . 8 点 17 分时 , 青蛙第二次爬至离井口 3 米之处 , 那么青蛙从井底爬到井口时所花的时间为________分钟 .9.一个水池有三个进水口和一个出水口 . 同时翻开出水口和此中的两个进水口 , 注满整个水池分别需要 6 小时、 5 小时和 4 小时 ; 同时翻开出水口和三个进水口 , 注满整个水池需要 3 小时 . 假如同时翻开三个进水口 , 不翻开出水口 , 那么注满整个水池需要________小时 .10.九个相同的直角三角形卡片 , 用卡片的锐角拼成一圈 , 能够拼成近似右图所示的平面图形 . 这类三角形卡片中的两个锐角中较小的一个的度数有 ________种不一样的可能值 . (右图不过此中一种可能的状况)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N 是 OB 上一点,半圆的面积等于 12 平方厘米,则图中阴影部分的面积是_______平方厘米. (2009 年 14 届) M C H D
A
O
N
B
第2页
华杯赛初赛考辅班
例题4. (2010 年 15 届)
高年级组
大正方形格板是由 81 个 1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中
第9页
华杯赛初赛考辅班
数 a 共有_______位,数 a 除以 9 的余数是_______. (2006 年 11 届)
高年级组
则 9799101103.
练习4. 将从 1 开始的到 103 的连续奇数依次写成一个多位数: a 13579111315171921
例3.
一个奇怪的动物庄园里住着猫和狗,狗比猫多 180 只.有 20%的狗错认为自己是猫;有 20%的猫 )只. (2012 年 17 届)
练习3.
若a
2005 2006 2006 2007 2007 2008 ,则有( , b , c 2007 2008 2008 2009 2009 2010
).
(A) a b c (B) a c b (C) a c b (D) a b c (2008 年 13 届)
)条直线互相平行.
第7页
华杯赛初赛考辅班
9. 如右图所示, AF 7 cm, DH 4 cm, BG 5 cm, AE 1 cm.若正方形 ABCD 内的四边形 EFGH 的面积为 78 cm2,则正方形的边长为()cm. (A)10 (B)11 (C)12 (D)13
高年级组
(2014 年 19 届)提示:类比弦图.
的数值的 2 倍,那么这个长方体的表面积是_______. (2007 年 12 届) (A)74 (B)148 (C)150 (D)154
练习9.
如图所示,是一个直圆柱形状的玻璃杯,一个长为 12 厘米的直棒状细吸管
C
(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸 管最少可露出上底面边缘 2 厘米,最多能露出 4 厘米.则这个玻璃杯的容积为 _______立方厘米. (取 3.14 ) (提示: 直角三角形中 “勾 6、 股 8、 弦 10” ) (2006 年 11 届) A B
D C D N A M B A M C N
第5页
华杯赛初赛考辅班
课后作业:
1.
1 9 计算: 0.8 24 6.6 7.6 ( 5 14
高年级组
) . (2012 年 17 届)
(A)30
(B)40
(C)50
(D)60
1
2. 算式
1 0.25 3 4
高年级组
练习11. 图中的方格纸中有五个编号为 1, 2, 3, 4, 5 的小正方形, 将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图, 这两个正方形的编号可以是( (A)1,2 (B)2,3 ) . (C)3,4 (D)4,5
(2012 年 17 届)
练习12. 如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形 ABCD.取 AB 的中点 M 和 BC 的中点 N,减掉△MBN 得五边形 AMNCD.则将折叠的五边形 AMNCD 纸片展开铺平后的图形是_______. (2006 年 11 届)
华杯赛初赛考辅班
第一讲 计算、几何精讲
高年级组
考点概述
计算考点 一、整数、小数、分数的基本计算; 二、整数、小数、分数的常见巧算方法; (凑整、抵消、约分、提取公因数、裂项) 三、分数比较大小; (通分子、通分母、通分差、取倒数) 四、分数与循环小数. (纯循环小数化分数、混循环小数化分数) 几何考点 一、基本面积公式; (长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积; 三、等积变换; 四、各类几何模型; (等高模型、蝴蝶模型、共角模型、一半模型、沙漏模型、金字塔模型、燕尾模型等) 五、勾股定理与弦图; 六、立体几何. (基本公式、展开图、三视图)
第4页
华杯赛初赛考辅班
练习10. 右图中,AB 是圆 O 的直径,长 6 厘米,正方形 BCDE 的一个顶点 E 在圆周上, ABE 45 .那么圆 O 中非阴影部分的面积与正方形 BCDE 中非阴影部分面积的差等于________平方厘米(取 3.14 ) . (2013 年 18 届)(B) 3.18(C Nhomakorabea 2.12
(D) 1.59
7.
一块长方形的木板,长为 90 厘米,宽为 40 厘米,将它锯成 2 块,然后拼成一个 正方形,你能做到吗?请画出分割线. (2004 年 9 届)提示:阶梯形.
8.
平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( (A)0 (B)2(C)3 (D)4(2014 年 19 届)
例2.
若 a 1515 15 333 3 ,则整数 a 的所有数位上的数字和等于_______.(2008 年 13 届)
1004个15 2008个3
(A)18063
(B)18072
(C)18079
(D)18054
练习1. 恰有 20 个因数的最小自然数是( (A)120 (B)240
) . (2010 年 15 届) (D)432
应用题考点 一、常考应用题类型(和差倍应用题,比例应用题,经济问题,浓度问题等) 1. 2. 画线段图帮助解题 列方程解应用题
二、行程问题: 1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇 与追及问题等) 2. 3. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件) 方程与比例解行程问题 第8页
BC, EF 13 厘米, MN 4 厘米,又已知 EF⊥MN 于 O, 那么阴影部分的总面积为________平方厘米. (2011 年 16 届) 第3页
华杯赛初赛考辅班
高年级组
练习8.
右图由 4 个正六边形组成, 每个面积是 6, 以这 4 个正六边形的顶点为顶点,
可以连接面积为 4 的等边三角形有________个. (2011 年 16 届)
其中正确的算式是(
) (2009 年 14 届)
(A)①和②(B)②和④(C)②和③(D)①和④
4.
下面的表情图片中,
没有对称轴的个数为(
).
(A)3(B)4(C)5(D)6
第6页
华杯赛初赛考辅班
5.
高年级组
题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为 7,则 A、B、C 处填的数各是___、___、___. (2004 年 9 届)提示:注意相对两个面展开后的位置.
华杯赛初赛考辅班
真题精讲
例1.
高年级组
在一个圆周上有 70 个点,任选其中一个点标上 1,按顺时针方向隔一个点的点上标 2,隔两个点
的点上标 3,再隔三个点的点上标 4,继续这个操作,直到 1,2,3,…,2014 都被标记在点上.每 个点可能不只标有一个数,那么标记了 2014 的点上标记的最小整数是________. (2014 年 19 届)
标出一点 A,使得△ABC 的面积恰好等于 3 平方厘米,则这样的 A 点共有_______个.
C B
(A)6
(B)5
(C)8
(D)10
练习5.
正方形 ABCD 的面积为 9 平方厘米, 正方形 EFGH 的面积为 64 平
方厘米. 如图所示, 边 BC 落在 EH 上. 已知三角形 ACG 的面积为 6.75 平方厘米,则三角形 ABE 的面积为________平方厘米. (2012 年 17 届)
错认为自己是狗.在所有的猫和狗中,有 32%认为自己是猫,那么狗有( (A)240 (B)248 (C)420 (D)842
例4.
一只青蛙 8 点从深为 12 米的井底向上爬,它每向上爬 3 米,因为井壁打滑,就会下滑 1 米,下
滑 1 米的时间是向上爬 3 米所用时间的三分之一.8 点 17 分时,青蛙第二次爬至离井口 3 米之处,那 么青蛙从井底爬到井口时所花的时间为( (A)22 (B)20 (C)17 )分钟. (2013 年 18 届)
(D)16
练习5. 两条纸带,较长的一条为 23cm,较短的一条为 15cm.把两条纸带剪下同样长的一段后,剩下的 两条 纸带中,要 求较长的纸 带的长度不 少于较短的 纸带长度的 两倍,那么 剪下的长度 至少是 ( )cm. (2010 年 15 届) (B)7 (C)8 (D)9
(A)6
练习6. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小龙最多答对了( )道试题. (2014 年 19 届) 第 10 页
真题精讲
例题1. 将 5.425 0.63 的积写成小数形式是_______. (2007 年 12 届)
例题2.
从
1 1 1 1 1 6 , , , , 中去掉两个数, 使得剩下的三个数之和与 最接近, 去掉的两个数是 ( 2 3 4 5 6 7
).
(A)
1 1 1 1 1 1 1 1 , (B) , (C) , (D) , (2010 年 15 届) 2 2 6 4 5 3 5 3
练习4.
1 3 5 7 9 11 1 在 , , , , , ,…中,从_______开始,1 与每个数之差都小于 . 7 9 3 5 11 13 1000
(2004 年 9 届)
例题3.
如图所示, AB 是半圆的直径, O 是圆心,AC = CD = DB , M 是 CD 的中点, H 是弦 CD 的中点. 若