分式测试题26.doc

合集下载

分式单元测试题(含答案)

分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

分式混合运算练习题(50题)

分式混合运算练习题(50题)

分式混合运算练习题(50题) 分式混合运算练50题(5月25、26、27日完成)1.计算:$\frac{3}{4}+\frac{1}{6}-\frac{1}{8}$。

2.计算:$\frac{5}{6}-\frac{1}{4}+\frac{1}{3}$。

3.化简:$\frac{6x+2}{2x}$。

4.化简:$\frac{5x^2-15}{10}$。

5.计算:$\frac{2}{3}+\frac{1}{4}-\frac{1}{6}$。

6.化简:$\frac{3}{4}+\frac{2}{5}-\frac{1}{10}$。

7.计算:$\frac{2}{3}+\frac{3}{4}-\frac{5}{6}$。

8.计算:$\frac{3}{4}+\frac{1}{2}\div\frac{2}{5}$。

9.计算:$\frac{1}{2}+\frac{1}{3}\times\frac{3}{4}$。

10.化简:$\frac{3x^2-12}{6x}$。

11.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{4}-\frac{3}{5}$。

12.计算:$-\frac{1}{a+1}$。

13.计算:$\frac{2a-1}{a^2-1}$。

14.计算:$\frac{1}{a^2}+\frac{1}{a^3}$。

15.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{5}$。

16.化简:$\frac{x^2-2x+1}{x^2-1}$,$x\neq-1,1$。

17.已知$ab=1$,试求$\frac{a^2+b^2}{a^2-b^2}$的值。

18.计算:$-\frac{a}{a^2-1}$。

19.计算:$\frac{1}{a}+\frac{1}{b}-\frac{a+b}{ab}$。

20.化简:$\frac{2x^2-8}{4x}$。

21.计算:$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)解方程:16.(2011•大连)解方程:.17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=1 27.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

数学八年级上册《分式》单元测试卷含答案

数学八年级上册《分式》单元测试卷含答案

八年级上册数学《分式》单元测试卷(考试时间:90分钟 试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21352πx y x a +-,,,,属于分式的有A .1个B .2个C .3个D .4个2.若分式12x x +-有意义,则x 的取值范围是A .2x ≠B .2x =C .1x =-D .0x =3.计算1a a a÷⨯的结果是 A .a B .2a C .1aD .3a4.下列化简过程正确的是A .22b b a a=B .222()a b a b a b a b -+=++ C .22y yx y x y=++D .0.20.3230.4410x y x yx y x y++=--5.如果把分式52xx y-中的x y 、都扩大3倍,那么分式的值一定A .扩大3倍B .扩大5倍C .扩大15倍D .不变6.下列各式是最简分式的是A .48aB .2a b aC .22a b a b++D .22b ab a --7.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为 A .8.23×10-6 B .8.23×10-7 C .8.23×106D .8.23×1078.若分式29(3)(1)x x x ---的值为零,则x 的值为A .0B .-3C .3D .3或-39.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 A .-1或5 B .-1或5或-13C .5或-13 D .-1310.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 A .4848944x x +=+- B .4848944x x +=+- C .48x+4=9 D .9696944x x +=+- 第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分) 11.化简3213(2)()a bc ---=__________.12.分式2111245x y xy -,,的最简公分母是__________. 13.计算22111m m m ---的结果是__________. 14.方程3x x -–2=43x -的解为__________.15.计算:221642·44244a a a a a a a --+÷++++=__________. 16.当A =__________时,方程2111ax a x -=--的解与方程43x x-=的解相同. 17.甲、乙二人加工某种零件,若单独工作,则乙比甲多用12天才能完成,若两人合作,则8天可以完成,设甲单独工作x 天完成,列方程得__________.18.用四则运算的加法与除法定义一种新运算记为☆.若对于任意有理数A ,B ,A ☆B =a ba b+-,则方程1☆x =5的解是__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)已知分式x nx m-+,当x =-3时,该分式没有意义;当x =-4时,该分式的值为0.试求(m +n )2019的值.20.(本小题满分6分)计算:(1)2222510369x y yy x x⋅÷;(2)2492332x x x +--; (3)24()22a a a a a a--⋅-+. 21.(本小题满分8分)解分式方程:(1)23x x x ++=1; (2)22411x x =--. 22.(本小题满分8分)先化简:22121()11a a a a a a ++-÷-++,再从–1,0,1中选取一个数并代入求值. 23.(本小题满分9分)某服装制造厂要在开学前赶制2400套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原来多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?24.(本小题满分9分)若关于x 的分式方程2111x mx x +---=1的解是负数,求m 的取值范围. 25.(本小题满分10分)有一道题“先化简,再求值:22241244x x x x x -+÷+--()+x 2–3,其中x =小玲做题时把“x =x ,但她的计算结果也是正确的,请你解释这是怎么回事?26.(本小题满分10分)商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一”儿童节促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案11.12.2013.14.x =215.–216.17.18.x =19.[解析]∵x +m =0时,分式无意义,∴x ≠–m , ∴m =3,(3分)又因为x –n =0,分式的值为0,∴x =n ,即n =–4,则(m +n )2019=[3+(-4)]2019=(–1)2019=-1.(6分)20.[解析](1).(2分) (2).(4分)(3).(6分) 21.[解析](1)=1,两边都乘以x (x +3),得2(x +3)+x 2=x (x +3), 解得x=6,(2分)经检验x=6是原方程的解.(4分) (2), 两边都乘以(x +1)(x –1),得2(x +1)=4, 解得x =1,(6分)检验:当x =1时,(x +1)(x –1)=0,∴x =1是分式方程的增根,原方程无解.(8分) 22.[解析]原式==,(4分) 其中A ≠1且A ≠–1, ∴A 只能取0.(6分)当A =0时,原式=1.(8分)23.[解析]设原计划每天能完成x 套校服,则实际每天能完成(1+20%)x 套校服,根据题意得:, 解得:x =100,经检验,x =100是原方程的解且符合题意. 答:原计划每天能完成100套校服. 24.[解析]由=1,得(x+1)2–m=x 2–1,解得x =–1+.(4分) 由已知可得–1+<0,–1+≠1且–1+≠–1,(7分)解得m<2且m ≠0.(9分)25.[解析]+–3 =(–4)+–3 =+4+–3 =2+1.(6分)因为化简原式的结果是2+1,不论xxx 2的值均为3,原式的计算结果都是7,所以把“x =−x ,计算结果也是正确的.(10分)26.[解析](1)设4月份的销售单价为x 元.由题意得-=50,(2分) 解得x =200.经检验,x =200是原方程的解,且符合题意. 所以4月份的销售单价为200元.(5分)(2)4月份的销量为20000÷200=100(件),则每件衣服的成本为(20000-8000)÷100=120(元). 6月份的售价为200×0.8=160(元),(7分) 设销量为y 件,由题意得160y -120y ≥8000×(1+25%), 解得y ≥250,所以销量至少为250件,才能保证6月的利润比4月的利润至少增长25%.(10分)6334a b c2xy 11m -1788112x x +=+232232225936102x y x x y x y y⋅⋅=249(23)(23)23232323x x x x x x x +--==+---(2)(2)()2(2)422a a a a a a a a a+--⋅=+--=-+23xx x ++22411x x =--2222121(1)1·111(1)a a a a a a a a a a a +---+--+÷=+++-11a --24002400 4(120%)x x-=+2111x m x x +---2m2m 2m 2m22241244x x x x x -+÷+--()2x 224444x x xx -++⋅-2x 2x 2x 2x 2x 2x 2000070000.9x +20000x。

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。

分式有关练习题

分式有关练习题

分式有关练习题一、选择题1.下列分数中,质数是:A. 1/4B. 2/3C. 5/6D. 9/82. 下列分式的值最大的是:A. 1/2B. 2/3C. 3/4D. 4/53. 下列各分式中,正确的是:A. 3/5 < 4/7B. 1/4 > 2/7C. 5/6 = 4/7D. 3/8 = 5/64. 分数5/8的倒数是:A. 5/8B. 8/5C. 3/8D. 8/35. 分数9/16的约分结果是:A. 3/4B. 2/3C. 6/9D. 9/16二、填空题1. 将3/4化成分数的百分比形式,填写分数部分和百分号部分分别为____和____。

答:3/4 和 752. 将0.6化成分数形式,填写分子和分母分别为____和____。

答:3 和 53. 2/5除以1/3的结果为____。

答:6/5 或 1 1/54. 将3 1/4化成假分数形式,填写分子和分母分别为____和____。

答:13 和 45. 2/3乘以2/5的结果为____。

答:4/15三、计算题1. 计算:2/3 + 1/4 = ____。

答:11/122. 计算:3/4 - 1/3 = ____。

答:5/123. 计算:3/5 × 2/3 = ____。

答:2/54. 计算:1/2 ÷ 2/3 = ____。

答:3/45. 计算:5/8 + 3/4 - 1/2 = ____。

答:13/8 或 1 5/8四、应用题1. 爸爸煮了8只鸡蛋,妈妈说要给每个孩子分三分之一个鸡蛋,家里一共有4个孩子。

问每个孩子可以分到几个鸡蛋?答:每个孩子可以分到2个鸡蛋。

2. 小明学习了1/2小时,又学习了3/4小时,他一共学习了多长时间?答:小明学习了1 1/4小时。

3. 一桶果汁有5/6升,小明喝了2/3升后,还剩下多少升?答:还剩下1/6升。

4. 小华家种了9/12亩的水稻,小明家种了5/6亩的水稻,他们家一共种了多少亩的水稻?答:他们家一共种了11/12亩的水稻。

分式练习计算练习题(超全)

分式练习计算练习题(超全)

分式练习题一 填空题 1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; |(4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②() 1422=-+a a 。

、5.约分:①=ba ab 2205__________,②=+--96922x x x __________。

分式单元测试(含答案)

分式单元测试(含答案)

分式单元测试(含答案)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.分式3xx -有意义,则x 的取值范围是 A .x ≠3B .x ≠0C .x >3D .x >02.花粉的质量很小,一粒某种花粉的质量约为0.000103毫克,那么0.000103可用科学记数法表示为 A .10.3×10-5B .1.03×10-4C .0.103×10-3D .1.03×10-33.化简21x x -+1x x-的结果是A .-xB .xC .x -1D .x +14.已知18x x -=,则2216x x+-的值是 A .60B .64C .66D .725.计算11a b a b ab+--的结果是 A .0 B .2b-C .2a- D .16.化简1()x y y x x y x y -÷-⋅+-的结果是 A .221x y -B .y xx y-+ C .221y x -D .x yx y-+ 7.分式方程233x x=-的解为 A .x =0B .x =3C .x =5D .x =98.下来运算中正确的是A .a c ac b d bd÷=B .(2a a b -)2=2224a a b- C .x y y xx y y x--=++D .4453·m n m n m n=9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为A .50008000600x x =- B .50008000600x x =+ C .50008000600x x =+ D .50008000600x x =- 10.若关于x 的分式方程222x mx x=---的解为正数,则满足条件的正整数m 的值为A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共10小题,每小题3分,共30分)11.约分:2222444m mn n m n -+-=__________.12.计算:2389()32x y y x⋅-=__________.13.计算:22111m m m ---的结果是__________. 14.计算:223()23m p mnn n p-÷=__________. 15.若x =3是分式方程210a x x--=的根,则a 的值是__________. 16.关于x 的方程1(1)(1)m x x -+--11x -=0无解,则m 的值是__________. 17.某人在解方程21132x x a-+=-去分母时,方程右边的1-忘记乘以6,算得方程的解为2x =,则a 的值为__________. 18.已知关于x 的分式方程211a x x+--=1的解是非负数,则a 的取值范围是__________. 19.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果用一台插秧机工作,要比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的__________倍.20n 个分式是__________. 三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.解方程:(1)2101x x -=+; (2)2216124x x x --=+-.22.(1)先化简,再求值:2224(1)442x x x x x -+÷-+-,其中x =1; (2)先化简,再求值:211()(3)31x x x x +-⋅---,从不大于4的正整数中,选择一个合适的值代入x 求值.23.在创建文明城市的进程中,我市为美化城市环境,计划种值树木60万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,求原计划每天植树多少万棵?24.已知关于x 的方程4433x mm x x---=--无解,求m 的值.25.解不等式组36451102x xx x-≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321xx x+-+·(3xx+-239xx--),从上述整数解中选择一个合适的数,求此代数式的值.26.已知方程111ax x=-+的解为x=2,先化简22144(1)11a aa a-+-÷--,再求它的值.27.探索发现:111122=-⨯;1112323=-⨯;1113434=-⨯,…根据你发现的规律,回答下列问题:(1)145=⨯__________,1(1)n n=⨯+__________;(2)利用你发现的规律计算:1111 122334(1)n n++++⨯⨯⨯⨯+;(3)灵活利用规律解方程:1111 (2)(2)(4)(98)(100)100x x x x x x x+++= ++++++.28.某商品经销店欲购进A、B两种纪念品,用320元购进的A种纪念品与用400元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少?(2)若该商店A种纪念品每件售价45元,B种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A种纪念品最多购进多少件.1.【答案】A 【解析】因为分式3xx -有意义,所以x -3≠0,即x ≠3 .故选A . 2.【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000103=1.03×10-4,故选B .6.【答案】C 【解析】原式11x y x y y x x y -=⋅⋅+--11x y y x =⋅+-221y x =-.故选C . 7.【答案】D【解析】方程两边同乘以x (x -3)可得2x =3(x -3),解得x =9,经检验x =9是分式方程的解,故选D . 8.【答案】D【解析】选项A ,a c a d adb d bc bc ÷=⨯=;选项B ,222222244()()2a a a a b a b a ab b==---+;选项C ,x y y x x y y x --=-++;选项D ,4453·m n m n m n=,只有选项D 正确,故选D .9.【答案】B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x +600)千克,由题意得:50008000600x x =+,故选B . 10.【答案】C【解析】等式的两边都乘以(x -2),得:x =2(x -2)+m ,解得x =4-m ,x =4-m ≠2,由关于x 的分式方程222x m x x=---的解为正数,得:m =1,m =3,故选C . 11.【答案】22m nm n-+【解析】原式=222224(2)(2)2(2)(2)2(2)m mn n m n m n m n m n m n m n -+--==+-+-.故答案为:22m nm n-+. 12.【答案】-212yx【解析】原式=-(83x y ·2392y x )=-212y x .故答案为:-212yx.∴a -3=0,∴a =3,即a 的值是3.故答案为:3. 16.【答案】1或3【解析】方程两边都乘(x +1)(x -1)得,m -1-(x +1)=0,解得,x =m -2, (x +1)(x -1)=0,即x =±1时最简公分母为0,分式方程无解. ①x =-1时,m =1,②x =1时,m =3,所以m =1或3时,原方程无解.故答案为:1或3. 17.【答案】13【解析】∵在解方程21132x x a-+=-去分母时,方程右边的–1忘记乘以6,算得方程的解为x =2, ∴把x =2代入方程2(21)3()1x x a -=+-,得:2(41)3(2)1a ⨯-=⨯+-,解得:13a =.故答案为:13. 18.【答案】a ≥1且a ≠2【解析】分式方程去分母得:a -2=x -1,解得:x =a -1,由方程的解为非负数,得到a -1≥0,且a -1≠1,解得:a ≥1且a ≠2.故答案为:a ≥1且a ≠2. 19.【答案】103mm -20211n n x ++【解析】分析题干中的式子的分母为:x 2,x 3,x 4,x 5,x 6,则第n 项的分母应为x n +1,分子根号内的数为:12+1,22+1,32+1,则第n 项的分子应为:21n +,第n 211n n x ++.故答案为:211n n x++.21.【解析】(1)2101x x-=+, 2(1)0x x -+=,1x =,经检验:x =1是原方程的解. (2)2216124x x x --=+-, 22(2)164x x --=-,2x =-,经检验:x =-2是增根, 所以原方程无解. 22.【解析】(1)原式=2222222(1)22x x x x x x x x x+--+⋅=⋅=--, 当x =1时,原式=2. (2)原式=(11)31x x ---·(x -3)=13(1)(3)x x x x --+--·(x -3)=21x -,要使原分式有意义,则x ≠±1,3,故可取x =4,原式=23. 23.【解析】设原计划每天植树x 万棵,则实际每天植树1.2x 万棵,24.【解析】原方程可化为(m +3)x =4m +8,由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3; (2)若整式方程的根是原方程的增根,则483m m ++=3,解得m =1, 经检验,m =1是方程483m m ++=3的解. 综上所述,m 的值为-3或1. 25.【解析】解不等式3x -6≤x ,得:x ≤3,解不等式4510x +<12x +,得:x >0, 则不等式组的解集为0<x ≤3, 所以不等式组的整数解为1、2、3,原式=23(1)x x +-·[233(3)(3)(3)(3)x x x x x x x ---+-+-] =23(1)x x +-·(1)(3)(3)(3)x x x x --+- =11x -, ∵x ≠±3、1, ∴x =2,则原式=1. 26.【解析】把x =2代入111a x x =-+中,解得:a =3, 原式=22(1)(1)1(2)a a a a a -+-⋅-- =12a a +-, 当a =3时,原式=4.27.【解析】(1)1114545=-⨯,111(1)1n n n n =-⨯++.(2)原式111111111122334111nn n n n =-+-+-++-=-=+++. (3)11111111()222498100100x x x x x x x -+-++-=++++++,1111()2100100x x x -=++, 112100100x x x -=++, 13100x x =+, 解得50x =,经检验,50x =为原方程的根.28.【解析】(1)设A 种纪念品每件的进价为x 元,则B 种纪念品每件的进价为(10)x +元.。

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)46.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠110.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

(完整版)分式的约分练习题.docx

(完整版)分式的约分练习题.docx

分式的约分练习题 姓名一、选择题1. 已知分式(x1)( x3)有意义,则x 的取值为 ( )(x 1)( x 3)A. x ≠- 1B. x ≠ 3C.x ≠- 1 且 x ≠ 3D. x ≠- 1 或 x ≠ 32. 下列分式,对于任意的x 值总有意义的是 ()A.x5B.x1 x 21 x 21 C. x 21D.2x 8x3x 23. 若分式| m |1的值为零,则 m 取值为 ( )m 2 mA. m =± 1B. m =- 1C.m =1D. m 的值不存在4. 当 x =2 时,下列分式中,值为零的是 ( )A.x 2 x 2B.2x43x 2 x9C.1 2D.x2xx15. 每千克 m 元的糖果 x 千克与每千克 n 元的糖果 y 千克混合成杂拌糖, 这样混合后的杂拌糖果每千克的价格为 ( )A.nxmy 元B.mxmy 元x yx yC.m n元D. 1 (x y) 元x y2 m n6. 下列约分正确的是 ( )A.2(b c) 2 B.( ab) 21a 3(b c) a 3(ba) 2C. a b2 D.x yy 21a 2b 2a b2xy x 2y x8. 等式aa(b 1)成立的条件是 ()a 1(a 1)(b 1)A. a ≠ 0 且 b ≠ 0B. a ≠ 1 且 b ≠1C. a≠- 1 且 b ≠- 1D. 、 b 为任意数a9. 如果把分式x2 y中的 x 和 y 都扩大 10 倍,那么分式的值 ()x yA. 扩大 10 倍B. 缩小 10 倍C.是原来的3D. 不变210. 不改变分式的值,使1 2 x 的分子、分母中最高次项的系数都是正数,则此分式可x 23x 化为 ( )3A. 2x 12x 13x 3B.3x 3x 2 x 2 C.2x 12x 13x3D.3x 3x 2x 211、分式 4y 3x , x 2 1 , x 2 xy y 2 , a 2 2ab 中,最简分式有( )4a x 4 1 x y ab 2b 2 A .1 个 B. 2 个 C . 3 个 D. 4 个12、下列分式运算,结果正确的是()A . m 4 g n 4B . a g c2D . 3x3m ad C .2a 4a 2 3x 3n 5 m 3n b dbca ba 2b 2 4y4 y 3二. 完成下列习题1.根据分数的约分,把下列分式化为最简分式:8a 2 =_____;125a 2 bc 326 a b 226a b12a 45ab 2 c =_______=__________ 13a 2 =________13 a bb 2基础训练:1 、分式4y 3x , x 2 1 , x 2 xy y 2, a 2 2ab 中是最简分式的有()4ax 4 1x yab 2b 2A .1 个B . 2 个C . 3 个 D. 4 个2、x1? , ? x 1则?处应填上 _________,其中条件是 __________ .x 1x 2 1 x 2 1 x 13、下列约分正确的是()Ax y 1B2 x y Cx a a m33xy2 xx bbDym4、约分⑴3a 3b 3c⑵x y y⑶x 2 xy⑷x 2y 2 12ac 2xy 2x y 2xy 2三 . 当 x 取何值时,下列分式的值为零?① 2x3 2x 1 ②x 4 ③22x 33x5x 2x四 . 不改变下列分式的值,使分式的分子、分母首相字母都不含负号。

分式加减法专项练习60题(有答案)ok

分式加减法专项练习60题(有答案)ok

分式加减法专项练习60题(有谜底)之勘阻及广创作时间:二O二一年七月二十九日1.2.a(a﹣1)+3.4..5. +.6..7.= _________ .8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+19.﹣+20.21.+.22.23..24., 25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34.. 35.计算:﹣.36.计算:. 37.计算:.38.. 39.计算化简:.40.计算:+++. 41.计算.42.计算:. 43.化简:.44.. 45.计算:.zuoguo46.. 55.化简:.47.化简:.48.. 49..50.计算:﹣. 51.计算:.52.计算:1﹣•. 53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++= _________ (n 为正整数);(2)化简:+…+.57.化简:﹣. 60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始呈现毛病:_________ .(2)从B到C是否正确,若不正确,毛病的原因是_________ .(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= _________ ;(2)证明你猜想的结论;(3)求和:+++…+.参考谜底:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12. 原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣233.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣=== 35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣====40.原式=+++=++=++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===, ===45.=﹣===46.=====47.原式=, =﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣==== 54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式 ===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.时间:二O二一年七月二十九日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学第十六章检测题
(时间:90分钟,满分:100分)
姓名 成绩
一、精心选一选(每小题3分,共30分)
1、分式x a ,22y x y x -+,22b
a b a --,y x y x -+中最简分式有( ) A 、1个 B 、2个
C 、3个
D 、4个
2、下列计算正确的是( )
A 、()725a a
= B 、8a ÷4
2a a = C 、()435101-=-+⎪⎭⎫ ⎝⎛-- D 、1=x x 3、若()()201232-+-+x x 有意义,则x 的取值范围是( )
A 、2-≠x
B 、21-
≠x C 、2-≠x 或21-≠x D 、2-≠x 且2
1-≠x 4、将方程1
32142+-=+-x x x 去分母,整理后得到的方程是( ) A 、0322=--x x B 、0522=--x x C 、032=-x D 、052=-x
5、化简x x x x ---23
1
的结果是( ) A 、1
B 、1-x
C 、1-x x
D 、x x -1
6、若分式方程
2113++=+x m x x 无解,则m 的值为( ) A 、-1
B 、-3
C 、0
D 、-2
7、若分式
2312+--x x x 的值为0,则x 等于( ) A 、-1
B 、1
C 、-1或1
D 、1或2
8、方程
4421212-=-++x x x 的解是( ) A 、2=x B 、2-=x C 、无解 D 、以上都不对
9、若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍
10、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。

A 、b a 11+
B 、ab 1
C 、b a +1
D 、b a ab +
二、细心填一填(每小题3分,共30分)
11、用科学记数法表示-0.0003097≈ 。

(保留两个有效数字)
12、分式
x 1,422-x x ,x y -23的最简公分母是 。

13、已知32+-=
y y x ,试用含x 的代数式表示y ,则y = 。

14、当x 时,分式
92-x x 有意义。

15、计算:
x x 1-÷⎪⎭⎫ ⎝⎛-x 11= 。

16、方程
x x x 1312=-+的解是 。

17、已知
432c b a ==,则c b a +的值是 。

18、若关于x 的方程
x k x --=-1113有增根,则k = 。

19、若034=-x y ,则y
y x += 。

20、某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,则可列方程
三、耐心做一做,相信你一定能够完成!
21、计算(每小题4分,共8分)
(1)()30
22514-+⎪⎪⎭
⎫ ⎝⎛+-÷13- (2)423--x x ÷⎪⎭⎫ ⎝⎛--+252x x
22、解下列方程(每小题5分,共10分)
(1)32121---=-x x x (2)x x x x x ---+-=-+413412169652
23、化简求值:(每小题5分,共10分)
(1) ⎪⎭

⎝⎛-++-44222x x x x ÷412-x 其中3-=x
(2)⎪⎭
⎫ ⎝⎛+-----x x x x 26196312÷62962++-x x x 其中4=x
24、列方程解应用题:(本小题5分)
轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度是多少?
25、先观察下列等式,然后用你发现的规律解答下列问题:(本小题7分) 由
211121211-==⨯,312161321-==⨯,4
131121431-==⨯…… (1)计算211⨯+321⨯+431⨯+541⨯+651⨯+761⨯+8
71⨯= (n 为正整数); (2)化简:()()()()()32121111+++++++x x x x x x +……+()()200920081++x x。

相关文档
最新文档