河北省邢台市第二中学高三数学上学期第四次月考试题

合集下载

湖南省株洲市第二中学2022-2023学年高三上学期12月月考数学试题(B)含答案

湖南省株洲市第二中学2022-2023学年高三上学期12月月考数学试题(B)含答案

湖南株洲第二中学2022-2023学年上学期教学质量检测高三数学试题(B )(答案在最后)一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则 ()=C B A A .{1,2,6,5} B .{3,7,8} C .{1,3,7,8}D .{1,3,6,7,8}2.与圆224240x y x y +-++=关于直线30x y -+=成轴对称的圆的方程是 A .22810400x y x y +-++= B .22810200x y x y +-++= C .22810400x y x y ++-+=D .22810200x y x y ++-+=3.已知c 是椭圆()2222:10x y C a b a b+=>>的半焦距,则b c a +的取值范围是( )A .()1,+∞B .)+∞C .(D .(4.已知实数a ,b ,0a >,0b >,则“2a b +<”是( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件5.已知函数()()()2|| 1.00125()e ,log 3,log 8,2x f x x a f b f c f ===-=-,则a ,b ,c 的大小关系为( ) A .a c b >>B .a b c >>C .c b a >>D .c a b >>6.已知A 、B 、C 是半径为3的球O 的球面上的三个点,且120ACB ∠=,AB =2AC BC +=,则三棱锥O ABC -的体积为( )A B C D7.过点22M p ,作抛物线2)20(x py p =的两条切线,切点分别为A ,B ,若线段AB的中点的纵坐标为6,则p 的值是( ) A .1B .2C .1或2D .-1或2 8.已知奇函数()f x 在R 上是减函数.若()2log 4.6a f =,22log 9b f ⎛⎫=- ⎪⎝⎭,()0.92c f =--,则a 、b 、c 的大小关系为( ) A .a b c >> B .c b a >> C .b a c >>D .c a b >>二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件B .“423a <<”是“()()22123a a ---<-”的充要条件 C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件 10.对于函数()sin cos sin cos 2x x x xf x ++-=,下列结论正确的是( )A .()f x 是以2π为周期的函数B .()f x 的单调递减区间为()52,2Z 24k k k ππππ⎡⎤++∈⎢⎥⎣⎦C .()f x 的最小值为-1D .()f x ≥的解集是()32,2Z 44k k k ππππ⎡⎤-++∈⎢⎥⎣⎦ 11.在数列{}n a 中,已知1210,,,a a a ⋯是首项为1,公差为1的等差数列,10101101(),,,n n n a a a ++⋯是公差为n d 的等差数列,其中N*n ∈,则下列说法正确的是( )A .当1d =时,2020a =B .若3070a =,则2d =C .若1220320a a a +++=,则3d =D .当01d <<时,()101101n a d<-+ 12.已知正方体ABCD −A 1B 1C 1D 1的棱长为2,M 为棱CC 1上的动点,AM ⊥平面α,下面说法正确的是( )A.若N 为DD 1中点,当AM +MN 最小时,CM=2B .当点M 与点C 1重合时,若平面α截正方体所得截面图形的面积越大,则其周长就越大C .若点M 为CC 1的中点,平面α过点B ,则平面α截正方体所得截面图形的面积为92D .直线AB 与平面α所成角的余弦值的取值范围为⎣⎦三、填空题;本题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和为n S ,且()2n n a S n ++=∈N ,则{}n a 的通项公式为n a =______.14.下列四个命题中:⊥已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;⊥()00tan 30tan 30-=-=⊥若sin α=则1cos 2;2α=-⊥在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 15.已知定义在[2,2]-上的函数()g x 为奇函数,且在区间[0,2]上单调递增,则满足(1)()g m g m -<的m 的取值范围为______16.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知{}n a 是递增的等差数列,12,a a 是方程2430x x -+=的两根. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.已知函数()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-. (1)求函数()f x 的解析式;并写出函数的单调区间;(2)函数()f x 在区间[3,]a -上的最小值为()g a ,求()g a 的值域.19.在平面直角坐标系xOy 中,已知双曲线221:21C x y -=.(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P ,Q 两点,若l 与圆221x y +=相切,求证:OP OQ ⊥; (3)设椭圆222:41C x y +=,若M ,N 分别是1C ,2C 上的动点,且OM ON ⊥,求证:O 到直线MN 的距离是定值.20.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,已知cos sin b a C A =,点M 是BC 的中点. (⊥)求A 的值;(⊥)若a =AM 的最大值.21.已知椭圆C :()222210x y a b a b +=>>1F ,2F是椭圆的左、右焦点,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)过点2F 的直线l 与椭圆C 交于A ,B 两点,求OAB (O 为坐标原点)的面积的最大值.22.已知函数()2ln bf x ax x x =-+.(1)若()f x 在1x =,12x =处取得极值. ⊥求a 、b 的值;⊥若存在01[,2]4x ∈,使得不等式0()0f x c -≤成立,求c 的最小值;(2)当b a =时,若()f x 在(0,)+∞上是单调函数,求a 的取值范围.参考答案1.C2.C3.D4.C5.D 6.B因为AB =120ACB ∠=,所以,ABC 的外接圆半径为12sin120==r ,所以,三棱锥O ABC -的高为h = 在ABC 中,由余弦定理可得()22222232cos120AB AC BC AC BC AC BC AC BC AC BC AC BC ==+-⋅=++⋅=+-⋅,所以,()231AC BC AC BC ⋅=+-=,所以,13sin12024ABC S AC BC =⋅=△,因为1133O ABC ABC V S h -=⋅=△ 故选:B. 7.C由题意得22x y p=,x y p '=,设切点分别为11(,)A x y ,22(,)B x y ,所以切线方程为别为111()x y y x x p-=-,222()x y y x x p -=-,化简可得11x x y y p =-,22x x y y p =-由于两条切线都过M 点,所以1122x p y p -=-,2222xp y p-=-,所以点11(,)A x y ,22(,)B x y 都在直线220x y p p -+=上, 所以过A ,B 两点的直线方程为220x y p p -+=,联立22+2=0=2x y p p x py-⎧⎪⎨⎪⎩,消去x 得2234840py p y y p --+=,方程2234840py p y y p --+=的判别式2232484464640p p p p由已知2124812p y y p++==,解得1p =或=2p , 故选:C. 8.B解:因为奇函数()f x 在R 上是减函数.若()2log 4.6a f =,222229log log log 992b f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()0.90.922c f f =--=,⊥0.9229log 4.6log 222>>>, ⊥()()0.9229log 4.6log 22f f f ⎛⎫<< ⎪⎝⎭,即c b a >>. 故选:B. 9.ACD解:对于A :21a >,解得1a >或1a <-,所以“1a >”是“21a >”的充分不必要条件,故A 正确;对于B :()()22123a a ---<-,则12310230a a a a ⎧->-⎪-≠⎨⎪-≠⎩解得423a <<且32a ≠,故B 错误;对于C :全称量词命题的否定为存在量词命题,故命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”正确;对于D :因为函数()y f x =的定义域为R ,若函数()y f x =为奇函数,则()00f =,若()00f =得不到()y f x =为奇函数,若()2f x x =,故“()00f =”是“函数()y f x =为奇函数”的必要不充分条件,故D 正确; 故选:ACD 10.AD依题意,()sin(2)cos(2)sin(2)cos(2)2()2x x x x f x f x πππππ+++++-++==,()f x 是以2π为周期的函数,A 正确;5sin ,2244()(Z)3cos ,2244x k x k f x k x k x k ππππππππ⎧+≤≤+⎪⎪=∈⎨⎪-<<+⎪⎩,函数sin y x =在5[2,2]24k k ππππ++()k ∈Z 上单调递减,函数cos y x =在[2,2]4k k πππ+()k ∈Z 上单调递减,B 不正确;函数cos y x =在3[2,2]4k k πππ-()k ∈Z 上单调递增,因此,324x k ππ=-()k ∈Z 时,min 2()f x =C 不正确; 由()2f x ≥得522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩或322(Z)442cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩,解522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩得322(Z)44k x k k ππππ+≤≤+∈,解322(Z)44cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩得22(Z)44k x k k ππππ-≤<+∈,综上得:322(Z)44k x k k ππππ-≤≤+∈,()f x ≥的解集是3[2,2](Z)44k k k ππππ-+∈,D 正确. 故选:AD 11.ACD对于A ,当1d =时,1n d =,可知数列{}n a 是首项为1,公差为1的等差数列,所以201(201)120a =+-⨯=,故A 正确;对于B ,由已知1010a =,101120,,,a a a ⋯是公差为d 的等差数列,则201010a d =+,202130,,,a a a ⋯是公差为2d 的等差数列,则23010101070a d d =++=,即260d d +-=,解得:2d =或3d =-,故B 错误;对于C ,1220110101010101032022d da a a ++++=⨯+⨯+=++,解得:3d =,故C 正确; 对于D ,210(1)110101010101011n nn d a d d d d d+-=++++=<--,故D 正确;故选:ACD 12.AC对于A ,由展开图如下,当AM MN +最小时,2CM AC DN AD ===得2CM =A 正确对于B ,如图,取各边中点连接成六边形EFGHIJ , 由立体几何知1CC ⊥平面1A BD ,1CC ⊥平面EFGHIJ , 截面1A BD周长为3=8= 截面EFGHIJ6=62=对于C ,取1111,A D A B 中点分别为EF ,以D 为原点,1,,DA DC DD 所在直线分别为,,x y z 轴, 建立空间直角坐标系如图所示,(2,2,1)AM =--,(2,2,0)DB =,(1,0,2)DE =,由数量积可知,AM BD AM DE ⊥⊥,而BD DE D ⋂=, 故AM ⊥平面BDEF ,截面BDEF 为等腰梯形,2,2,5EF DB ED FB ====面积为19932222⨯=,故C 正确对于D ,设(0,2,)M t(0,2,0)AB =,平面α的一个法向量为(2,2,)AM t =-故直线AB 与平面α所成角的正弦值2232sin []2448t t θ==⨯+++ 则26cos [θ∈,故D 错误13.112n -⎛⎫ ⎪⎝⎭当1n =时,112a S +=,得11a =,当2n ≥时,由()2n n a S n ++=∈N ,得112n n a S --+=, 所以110n n n n a S a S --+--=, 所以120n n a a --=,所以112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列,所以112n n a -⎛⎫= ⎪⎝⎭,故答案为:112n -⎛⎫⎪⎝⎭14.⊥⊥对于⊥:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故⊥不正确;对于⊥:因为()()()000sin 30sin 30tan 30tan 30cos30cos 30---===-=-故⊥正确; 对于⊥:因为sin α=所以221cos 212sin 122αα⎛=-=-⨯=- ⎝⎭,故⊥正确; 对于⊥:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ===所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故⊥不正确, 故答案为:⊥⊥. 15.1(,2]2⊥()g x 为奇函数,且在[0,2]上为增函数, ⊥()g x 在[2,2]-上为增函数.⊥(1)()g m g m -<,⊥1-212-22m m m m -<⎧⎪≤-≤⎨⎪≤≤⎩,解得122m <≤.故答案为1(,2]2.16815解:设顶角为θ,由余弦定理可得:2236121221212cos θ=+-⨯⨯⨯,解得:7cos 8θ=, 15sin θ∴ 再由正弦定理可得62sin R θ=, 215R ∴=, 815R ∴=81517.(1)221,n n a n S n =-=;(2)21n nT n =+ (1)⊥{}n a 是递增的等差数列, ⊥12a a <,又12,a a 是方程2430x x -+=的两根,⊥121,3a a ==, ⊥21312d a a =-=-=, ⊥1(1)221n a n n =+-⨯=-. (2)111111()(21)(21)22121n n a a n n n n +==--+-+, ⊥11111111(1...)(1)2335212122121n nS n n n n =-+-++-=-=-+++.18.(1)()224,04,0x x x f x x x x ⎧->=⎨--≤⎩,单调递增区间为(],2-∞-,[)2,∞+;单调递减区间为[]22-,;(2)[]4,3-(1)当0x <时,0x -> ()()()2244f x x x x x ∴-=---=+()f x 为奇函数 ()()24f x f x x x ∴=--=--()f x 为R 上的奇函数 ()00f ∴=,满足()24f x x x =--()224,04,0x x x f x x x x ⎧->∴=⎨--≤⎩f x 的单调递增区间为(],2-∞-,[)2,∞+;单调递减区间为[]22-,(2)当31a -<<-时,()()min 39123f x f =-=-+=,即()3g a =当10a -≤≤时,()()2min 4f x f a a a ==--,即()24g a a a =-- ()[]0,3g a ∴∈ 当02a <<时,()()2min 4f x f a a a ==-,即()24g a a a =- ()()4,0g a ∴∈-当2a ≥时,()()min 2484f x f ==-=-,即()4g a =- 综上所述:()g a 的值域为[]4,3- 19.(1)根据题意可得1C的左顶点为(,设直线方程为y x =,与另一条渐近线y =联立求得交点坐标为1()2,所以对应三角形的面积为112228S =⨯=; (2)设直线PQ 的方程是y x b =+,因直线与已知圆相切,1=,即b =由2221y x b x y =+⎧⎨-=⎩得()22210x bx b --+=, 设()11,P x y ,()22,Q x y ,则122x x b +=,212(1)x x b ⋅=-+,则()()2222212121212221220OP OQ x x y y x x b x x b b b b b ⋅=+=+++=--++=-=,故OP OQ ⊥;(3)当直线ON 垂直于x 轴时,1ON =,OM =MN =则O 到直线MN的距离为1d ==当直线ON 不垂直于x 轴时,设直线ON 的方程为y kx =(显然22k >), 则直线OM 的方程为1=-y x k.由y kx =与椭圆方程联立,得2214x k =+,2224k y k =+,所以22214k ON k+=+. 同理222121k OM k +=-. 设O 到直线MN 的距离为d , 则由221122OM ON OM d ON ⋅=+,得2221113d OMON=+=.综上,O 到直线MN 3 20.(⊥)3A π=; (⊥)32. (⊥)由已知及正弦定理得3sin sin cos sin B A C C A =. 又()sin sin sin cos cos sin B A C A C A C =+=+, 且sin 0C ≠,⊥tan 3,0A A π=<<,即3A π=.(⊥)方法一:在ABC ∆中,由余弦定理得223b c bc +-=, ⊥222b c bc +≤,当且仅当b c =时取等号,⊥226b c +≤.⊥AM 是BC 边上的中线,⊥在ABM ∆和ACM ∆中, 由余弦定理得,22332cos 4c AM AM AMB =+-∠,⊥22332cos 4b AM AM AMC =+-∠.⊥ 由⊥⊥,得22239244b c AM +=-≤, 当且仅当3b c ==AM 取最大值32.方法二:在ABC ∆中,由余弦定理得223b c bc +-=, ⊥222b c bc +≤,当且仅当b c =时取等号,⊥226b c +≤.⊥AM 是BC 边上的中线,⊥2AB ACAM +=,两边平方得 ()22214AM b c bc =++,⊥22239244b c AM +=-≤,当且仅当b c ==AM 取最大值32.21.(1)2214x y +=;(2)1. (1)椭圆C 的半焦距为c,离心率c e a ==,因过1F 且垂直于x 轴的直线被椭圆C 截得的弦长为1,将x c =-代入椭圆C 方程得:2b y a =±,即221b a =,则有222221c e a b a a b c ⎧==⎪⎪⎪⎨=⎪⎪=+⎪⎩,解得21a b =⎧⎨=⎩, 所以椭圆C 的方程为2214x y +=.(2)由(1)知,2F ,依题意,直线l 的斜率不为0,则设直线l的方程为x my =+()11,A x y ,()22,B x y ,由2244x y x my ⎧+=⎪⎨=+⎪⎩x 并整理得:()22410m y ++-=,12y y +=,12214y y m =-+, OAB的面积2122121122S OF y OF y y =+=-,12y y -==设)1t t =≥,221m t =-,1224433t y y t t t-===++,3t t+≥,当且仅当t =,22m =时取得“=”,于是得1243y y t t-=≤+12312S y =-≤, 所以OAB 面积的最大值为1.22.(1)11,33--,7126n -+;(2)[2(0),,-∞⋃+∞ 试题分析:(1)⊥先求()f x ' ,根据函数在11,2x x ==处取得极值,则()110,()02f f ''==,代入可求得,a b 的值;⊥转化为()min c f x ≥,从而求函数()f x 在区间1[,2]4上的最小值,从而求得c 的值;(2)当a b =时,()2ln af x ax x x=-+,⊥当0a =时,符合题意; ⊥当0a ≠时,分0,0a a ><讨论()f x 在(0,)+∞上正负,以确定函数的单调性的条件,进而求出a 的取值范围. 试题解析:(1)⊥⊥()21b f x ax nx x =-+,⊥()21'2b f x a x x=++,⊥()f x 在1x =,12x =处取得极值,⊥()10f '=,102f ⎛⎫= ⎪⎭'⎝, 即2102420a b a b ++=⎧⎨++=⎩解得1313a b ⎧=-⎪⎪⎨⎪=-⎪⎩,⊥所求a 、b 的值分别为11,33--.⊥在1,24⎡⎤⎢⎥⎣⎦存在0x ,使得不等式()00f x c -≤成立,只需[]min c f x ≥(),由()()()2222211211231'3333x x x x f x x x x x x ---+=--+=-=-,⊥当1142x ⎡⎤∈⎢⎥⎣⎦,时,()0f x '<,故()f x 在1142⎡⎤⎢⎥⎣⎦,是单调递减;当112x ⎡⎤∈⎢⎥⎣⎦,时,()0f x '>,故()f x 在1,12⎡⎤⎢⎥⎣⎦是单调递增;当[]12x ∈,时,()0f x '<,故()f x 在[]12,是单调递减;⊥12f ⎛⎫⎪⎝⎭是()f x 在1,24⎡⎤⎢⎥⎣⎦上的极小值,()1111711221223236f n n f n ⎛⎫=+=-=-+ ⎪⎝⎭,且()321321411422f f n ne n ⎛⎫-=-=- ⎪⎝⎭,又3160e ->,⊥321140ne n >-,⊥[]2min f x f =()(),⊥()7126min c f x m ⎡⎤≥=-+⎣⎦,⊥c 的取值范围为7126n ,⎡⎫-++∞⎪⎢⎣⎭,所以c 的最小值为7126n -+.(2)当a b =时,222ax x a f x x ()++=', ⊥当0a =时,()1f x nx =,则()f x 在()0,+∞上单调递增;⊥当0a >时,⊥0x >,⊥220ax x a ++>,⊥()0f x '>,则()f x 在()0,+∞上单调递增;⊥当0a <时,设()22g x ax x a =++,只需0≤,从而得a ≤()f x 在()0,+∞上单调递减;综上得,a 的取值范围是[0⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭,, 点睛:本题主要考查了导数在函数中的综合应用问题,其中(1)⊥考查了函数取得极值的性质,若函数在0x 处取得极值,则0()0f x =,但0()0f x '=,0x 不一定是函数的极值点,即某点的导数为0是该点为极值的必要不充分条件;⊥注意是“存在14x ∈[,2],使得0()c f x ≥成立,等价于()min c f x ≥”(2)结合极值考查了函数的额单调性,需要分类讨论思想在解题中的应用,着重考查了分析问题和解答问题的能力.。

长治市第二中学校2023届高三上学期第四次月考生物试题及答案

长治市第二中学校2023届高三上学期第四次月考生物试题及答案

2022—2023学年第一学期高三第四次练考生物试题【本试卷分为选择题和非选择题两部分,共100分。

考试时间90分钟】第Ⅰ卷(选择题共50分)一、选择题(每小题2分,共50分。

每小题只有一个正确选项,将正确答案填在答题卡上)1.奥密克戎是一种发生了大量突变的新冠病毒(单链RNA病毒)新型变异毒株,借助其表面蛋白与宿主细胞膜上的相应受体结合后侵入人体组织细胞。

下列叙述正确的是()A.该表面蛋白与受体结合体现了细胞膜进行细胞间信息交流的功能B.奥密克戎进入宿主细胞需要载体蛋白协助和消耗化学反应释放的能量C.奥密克戎在宿主细胞内增殖过程中需要宿主细胞提供模板、原料、酶等D.奥密克戎毒株的遗传信息储存在核糖核苷酸的排列顺序中2.2022 年端午节,家住渭南市患糖尿病的林奶奶,因食用“无糖粽子”而被“甜晕”,还好抢救及时,脱离危险。

目前很多广告语存在科学性错误,下列你认为正确的是()A.无糖饼干没有甜味,属于无糖食品B.“XX 牌”鱼肝油,含有丰富的维生素D,有助于宝宝骨骼健康发育C.某地大棚蔬菜,天然种植,不含任何化学元素,是真正的绿色食品D.“XX 牌”口服液含有丰富的N、P、Zn 等微量元素3.某雪奶茶近年来已经成为街头巷尾的热门饮料,奶茶中既含有糖分如葡萄糖、麦芽糖和蔗糖,也含有一定量的脂质等物质。

下列有关叙述错误的是()A.奶茶中的葡萄糖是人体细胞的能源物质B.可用斐林试剂在水浴加热条件下区分葡萄糖和麦芽糖C.在对奶茶提取物之一的脂肪进行检测时可以不使用显微镜D.脂肪在人体细胞中氧化分解时释放的能量比同质量糖类多4.下列与生物体的元素和化合物相关的叙述,正确的是()A.医用生理盐水是质量分数为9%的氯化钠溶液B.将作物秸秆充分晒干后,其体内剩余的物质主要是无机盐C.构成细胞的任何一种元素都能在无机自然界中找到D.水稻从外界吸收的硝酸盐和磷酸盐可用于细胞内合成纤维素5.为了将细胞内的废物清除,细胞膜塑形蛋白会促进囊泡“分子垃圾袋”形成,将来自细胞区室表面旧的或受损的蛋白质带到了内部回收利用工厂,在那里将废物降解,使组件获得重新利用。

2023届河北省邢台市第二中学高三上学期第一次月考数学试题(解析版)

2023届河北省邢台市第二中学高三上学期第一次月考数学试题(解析版)

2023届河北省邢台市第二中学高三上学期第一次月考数学试题一、单选题1.设集合{}{}{}0,1,2,3,4,(3)0,24,U A x x x B x x x *==-==≤≤∈N ,则()U A B =( ) A .{2,4} B .{2,3,4} C .{2} D .{1,2,3,4}【答案】A【分析】解出集合A ,再进行补集交集运算即可. 【详解】12(3)00,3x x x x -=⇒==,则{}{}0,3,1,2,4UA A ==,又{}2,3,4B =,所以(){}24UA B =,.故选:A. 2.已知复数21iz =-,复数z 是复数z 的共轭复数,则z z ⋅=( )A .1BC .2D .【答案】C【分析】根据复数的运算性质,得到2z z z ⋅=,即可求解.【详解】根据复数的运算性质,可得2222221i 1i z z z ⎛⎫⋅==== ⎪ ⎪--⎝⎭. 故选;C .3.设1z 、2z 是复数,则下列说法中正确的是( ) A .若120z z +=,则12z z = B .若12z z +∈R ,则1z 、2z 互为共轭复数C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】C【分析】求出12z z =-可判断A 选项;利用共轭复数的定义可判断B 选项;利用复数的乘法可判断C 选项;利用特殊值法可判断D 选项.【详解】对于A 选项,若120z z +=,则120z z +=,可得12z z =-,A 错; 对于B 选项,设111i z a b =+,()2221212i ,,,z a b a a b b =+∈R ,则()()121212i z z a a b b +=+++,由题意可得120b b +=,则12b b =-, 但1a 、2a 不一定相等,故1z 、2z 不一定互为共轭复数,B 错;对于C 选项,设()i ,z a b a b =+∈R ,则i z a b =-,222z z a b z ∴⋅=+=,若12=z z ,22111222z z z z z z ⋅===⋅,C 对;对于D 选项,取11i z =+,21i z =-,则12z z =但()2211i 2i z =+=,()2221i 2i z =-=-,则2212z z ≠,D 错. 故选:C. 4.记函数2log 2xy x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( )A .()2,+∞B .[)2,+∞C .()0,2D .(]0,2【答案】B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案.【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x <<, 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<,因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B ,所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B .5.已知定义在R 上的函数()f x 满足()()2f x f x +=-,且在区间()1,+∞上单调递增,则满足()()13f x f x ->+的x 的取值范围为( ) A .()1,-+∞ B .(),1-∞- C .()1,1- D .(),1-∞【答案】B【分析】先求出函数()f x 的对称轴,再根据单调性和对称性可知,自变量离对称轴越远,其函数值越大,由此结论列式可解得结果.【详解】因为函数()f x 满足()()2f x f x +=-,所以()f x 的图象关于直线1x =对称, 又()f x 在区间()1,+∞上单调递增,所以在(,1)-∞上单调递减, 因为()()13f x f x ->+,()()|11||31|x x -->+-, 即2x x ->+,平方后解得1x <-. 所以x 的取值范围为(,1)-∞-. 故选:B.6.如图,在△ABC 中,D 是AB 的中点,O 是CD 上一点,且2CO OD =,则下列说法中正确的个数是( )①0OA OB OC ++=;②过点O 作一条直线与边,AC BC 分别相交于点,E F ,若34CE CA =,CF CB μ=(01)μ≤≤,则34μ=; ③若△ABC 是边长为1的正三角形,M 是边AC 上的动点,则BM MD ⋅的取值范围是323,464⎡⎤--⎢⎥⎣⎦A .0个B .1个C .2个D .3个【答案】C【分析】由1122CD CA CB =+,2,3OC CD OA OD DA =-=+,OB OD DA =-,结合向量的运算判断①;由,,E O F 三点共线结合向量的数乘运算判断②;建立坐标系,利用坐标运算结合二次函数的性质判断③.【详解】对于①:1122CD CA CB =+,2,3OC CD OA OD DA =-=+,OB OD DB =+OD DA =-,故22220333OA OB OC CD OD CD CD ++=-+=-+=,故①正确;对于②:1351()34123OE OC CE CA CB CA CA CB =+=-++=-,111()333OF OC CF CA CB CB CA CB μμ⎛⎫=+=-++=-+- ⎪⎝⎭,因为,,E O F 三点共线,所以OF OEλ=,即511231133λμλ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得4,355λμ=-=,故②错误;对于③:以点D 作为坐标原点,建立如下图所示的直角坐标系,113,0,,0,0,,(0,0)222A B C D ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,13,,(1,0)22AC AB ⎛⎫== ⎪ ⎪⎝⎭,设,[0,1]AM t AC t =∈,因为1313,(1,0)1,2222BM AM AB t t t t ⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,113113,0,,222222MD AD AM t t t t ⎛⎫⎛⎫⎛⎫=-=-=-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以221113311222442BM MD t t t t t ⎛⎫⎛⎫⋅=---=-+- ⎪⎪⎝⎭⎝⎭,当1t =时,43BM MD ⋅=-,当38t =时,2364BM MD ⋅=-,即BM MD ⋅的取值范围是323,464⎡⎤--⎢⎥⎣⎦,故③正确;故选:C7.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[ 3.7]4,[2.3]2-=-=.已知()[ln ]f x x x =,当()0f x =时,x 的取值集合为A ,则下列选项为x A ∈的充分不必要条件的是( ) A .(0,1)x ∈ B .e)x ∈C .(1,2)x ∈D .()2,e x ∈【答案】B【分析】令()ln g x x x =,根据高斯函数知()0f x =时,0()1g x ≤<,利用导数分析不等式的解集,即可得解.【详解】令()ln ,0g x x x x =>, 由题意()0f x =时,0()1g x ≤<,()ln 1g x x '=+,1e x ∴<时,()0g x '<,1e x >时,()0g x '>,所以()g x 在1(0,)e上单调递减,在1(,)e +∞上单调递增,显然1(0,)ex ∈时,()0g x <,又(1)0g =,所以0()1g x ≤<的解为0[1,)x x ∈,其中0()1g x =,因为(2)2ln 2ln 41g ==>,1g ==<,(e)eln e e 1g ==>,所以 0[1,)x ,故选:B8.设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3C .[]0,2D .[]2,3【答案】A【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解.【详解】当1x >时,221688333123x a x a a a x x x +-=++-≥=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -, 当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.二、多选题9.下列命题正确的是( )A .函数2()ln f x mx x =-在(1,2)上单调递增的一个必要不充分条件是1|4m m ⎧⎫>⎨⎬⎩⎭B .“2a b +>”是“2a b +>”充分不必要条件C .“1a > ”是“11a<”的必要不充分条件 D .命题“[]22,3,10x mx mx ∃∈-+≥”是假命题,则实数m 的取值范围为1{|}6m m ≤-【答案】AB【分析】求得1()2f x mx x '=-,转化为212mx x≥在(1,2)x ∈上恒成立,可判定A 正确;由绝对值三角不等式,结合充要条件的判定,可判定B 正确;由分式不等式的解法,结合充要条件的判定,可判定C 不正确;转化为命题“[]22,3,10x mx mx ∀∈-+<””是真命题,结合分离参数法,可判断D 错误.【详解】对于A 中,由函数2()ln f x mx x =-,可得1()2f x mx x'=-,若函数()f x 在(1,2)上单调递增,即当(1,2)x ∈时,1()20f x mx x'=-≥恒成立, 即212mx x ≥在(1,2)x ∈上恒成立, 又由当(1,2)x ∈时,max 211()22x <,即12m ≥, 函数()f x 在(1,2)上单调递增的一个必要不充分条件是1|4m m ⎧⎫>⎨⎬⎩⎭,所以A 正确;对于B 中,由绝对值三角不等式,可得2a b a b +≥+>,所以充分性成立; 反之:例如:当1,3a b ==-时,满足2a b +>,此时2a b +=,即必要性不成立, 所以“2a b +>”是“2a b +>”充分不必要条件,所以B 正确; 对于C 中,由1110aa a--=<,解得1a >或0a <, 所以“1a > ”是“11a<”的充分不必要条件,所以C 不正确; 对于D 中,由命题“[]22,3,10x mx mx ∃∈-+≥”是假命题,可得命题“[]22,3,10x mx mx ∀∈-+<””是真命题,当[]2,3x ∈时,20x x ->恒成立,所以只需21m x x<--在[]2,3x ∈上恒成立, 当2x =时,min 211()3x x -=--,所以13m <-,所以D 错误. 故选:AB.10.用()C A 表示非空集合A 中元素的个数,定义()()*A B C A C B =-,已知集合()()2222,,,2x y y x a A x y B x y x y y x ⎧⎧+==+⎧⎫⎧⎫⎪==⎨⎨⎬⎨⎨⎬+==⎩⎭⎩⎭⎪⎩⎩∣∣,若*1A B =,则实数a 的取值可能为( ) A .14-B .21-C .1003D .2021【答案】BCD【分析】先求出()1C A =,从而得到()0C B =或()2C B =,利用()1C B =即方程有一个根得到14a =-,那么排除掉A 选项,其他三个选项为正确结果.【详解】由(){}1,1A =,可得()1C A =,若*1A B =,有()0C B =或()2C B =.当()1C B =时,方程组2,y x a y x=+⎧⎨=⎩中消去y 有:20x x a --=,则Δ140a =+=,解得:14a =-,可得若*1A B =,则实数a 的取值范围为14aa ⎧⎫≠-⎨⎬⎩⎭∣,可知选项为:BCD . 故选:BCD11.下列说法中错误的有( ) A .两个非零向量,a b ,若||||||a b a b ,则a 与b 共线且反向B .已知13(2,3),(,)24a b =-=-不能作为平面内所有向量的一个基底C .已知向量(2,1),(3,1)a b ==-,向量b 在向量a 上的投影向量是D .若非零向量a ,b 满足||||||a b a b ==-,则a 与a b +的夹角是60 【答案】CD【分析】由||||||a b a b 计算判断A ;由共线向量的坐标表示判断B ;求出向量b 在向量a 上的投影向量判断C ;求出向量a 与a b +的夹角判断D 作答. 【详解】对于A ,由||||||a b a b 两边平方得:||||a b a b -⋅=,而,a b 是非零向量,则a 与b 共线且反向,A 正确;对于B ,13(2,3),(,)24a b =-=-,且有312()(3)042⨯---⨯=,则//a b ,,a b 不能作为平面内所有向量的一个基底,B 正确;对于C ,向量(2,1),(3,1)a b ==-,向量b 在向量a 上的投影向量是2||a ba a a ⋅=-,C 错误; 对于D ,a ,b 是非零向量,作,OA a OB b ==,因||||||a b a b ==-,则OAB 是正三角形,如图,取线段AB 中点D ,则30DOA ∠=,有2+=a b OD ,即a 与a b +的夹角是30,D 错误. 故选:CD12.设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【分析】首先根据题意画出图象,根据二次函数的性质得到1210x x +=-,根据对数函数的性质得到431x x =,从而得到()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭,再根据函数单调性求解即可.【详解】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<, 所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-.因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x=.因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭,因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC三、填空题13.已知向量a ,b ,c 满足,0a b c ++=,2a =,3b =,5c =,则⋅=a b _________. 【答案】6【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为235a b c ===,,, 所以42925a b +⋅+=,得·6a b =. 故答案为:6.14.若函数()f x 与()g x 同在一个区间内取同一个自变量时,同时取得相同的最小值,则称这两个函数为“兄弟函数”,已知函数()()2,f x x bx c b c =++∈R 与()21x x g x x-+=是定义在区间1,22⎡⎤⎢⎥⎣⎦上的“兄弟函数”,那么()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是___________. 【答案】2【分析】利用基本不等式求出()g x 的最小值及对应的x 的值,根据“兄弟函数”的定义可知()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最小值为()11f =,根据二次函数的性质求出b 、c 的值,即可得到()f x 的解析式,最后根据二次函数的性质计算可得;【详解】解:211()111x x g x x x x -+==+-≥=,当且仅当1x x=即1x =时取等号, ∴当1x =时,()g x 取最小值()11g =.函数()f x 与()g x 同在一个区间内取同一个自变量时,同时取得相同的最小值,则称这两个函数为“兄弟函数”,∴函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最小值为()11f =.∴点()1,1为抛物线2()f x x bx c =++的顶点.∴212414b c b ⎧-=⎪⎪⎨-⎪=⎪⎩,∴22b c =-⎧⎨=⎩. 2()22f x x x ∴=-+.()y f x∴=在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,在区间[]1,2上单调递增.1524f ⎛⎫= ⎪⎝⎭,()22f =, ()f x ∴在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是2.故答案为:2.15.已知0a >,0b >,下面四个结论:①22ab a b a b +≤+;②若0a b >>,则241()ab b b a b ++-的最小值为4;③若a b >,则22c c a b≤;④若11111a b +=++,则2+a b 的最小值为 其中正确结论的序号是______.(把你认为正确的结论的序号都填上) 【答案】①③④【分析】对于①,由222a b ab +≥,得2224a b ab ab ++≥,然后变形后判断,对于②,变形后利用基本不等式判断,对于③,由不等式的性质判断,对于④,将11(122)11a b a b ⎛⎫++++ ⎪++⎝⎭展开由基本不等式可推导出结果【详解】对于①,因为222a b ab +≥,所以2224a b ab ab ++≥,即2()4a b ab +≥,因为0a >,0b >,所以22ab a ba b +≤+,所以①正确, 对于②,因为0a b >>,所以0a b ->, 所以2224141()()()ab b b a b b b a b b b a b ⎛⎫++=++-+ ⎪--⎝⎭ 6≥=,当且仅当224b b =,1()()b a b b a b -=-,即a b ==②错误, 对于③,因为0a b >>,所以110a b <<,因为2c ≥0,所以22c c a b≤,所以③正确,对于④,因为112(1)1(122)3331111b a a b a b a b ++⎛⎫++++=++≥+=+ ⎪++++⎝⎭当且仅当2(1)111b a a b ++=++,即a b ==因为11111a b +=++,所以1223a b +++≥+2a b +≥,当且仅当a b ==④正确, 故答案为:①③④16.已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()1g x f x mx =--,当实数m 的取值范围为________时,()g x 的零点最多. 【答案】210m e <<【分析】作出函数()f x 的图象,由()0g x =得() +1f x mx =,设+1y mx =,分0m =,0m <,>0m 分别讨论+1y mx =与()f x 的交点个数,当>0m 时,求得+1y mx =与xy e =相切时切线的斜率,+1y mx =与ln y x =相切时切线的斜率,由此可求得实数m 的取值范围.【详解】解:作出函数()f x 的图象如图: 由()0g x =得() +1f x mx =,设+1y mx =, 当0m =时,+1y mx =与()f x 有2个交点; 当0m <时,+1y mx =与()f x 有2个交点;. 当>0m 时,设+1y mx =与x y e =相切,切点为()11,x x e ,则'e x y =,所以切线的斜率为11x k e =,其切线方程为:()111x xy e e x x -=-,又因切线恒过点()01,,所以()11110x x e e x -=-,解得10x =,所以切线的斜率为011k e ==,当>0m 时,设+1y mx =与ln y x =相切,切点为()22,ln x x ,则'1y x=,所以切线的斜率为221k x =, 其切线方程为:()2221ln y x x x x -=-, 又因切线恒过点()01,,所以()22211ln 0x x x -=-,解得22x e =,所以切线的斜率为221k e =, 所以当m 1≥时,+1y mx =与()f x 有1个交点; 当211m e <<时,+1y mx =与()f x 有2个交点; 当21m e=时,+1y mx =与()f x 有3个交点; 当210m e <<时,+1y mx =与()f x 有4个交点; 所以实数m 的取值范围为210m e <<时,()g x 的零点最多, 故答案为:210m e <<.四、解答题17.已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围.【答案】(1)()2221f x x x =--;(2)()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩;(3)1t >.【分析】(1)根据f (x )图像过点()1,1-,且满足()()23f f -=列出关于m 和n 的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值; (3)由题可知方程x =g (x )有两个正根,根据韦达定理即可求出t 的范围. 【详解】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+, 当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min221f x f a a a ⎡⎤==--⎣⎦. 综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 18.在①323n n b T =+,②{}n b 为等比数列,且13b =,23143T T T =+这两组条件中任选一组,补充在下面横线处,并解答下列问题.已知数列21n a n =-,数列{}n b 的前n 项和是n T ,______. (1)求数列{}n b 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n M ,证明:对任意n *∈N 均有1n M ≤恒成立.【答案】(1)3nn b =(2)证明见解析【分析】(1)若选①,利用退一相减法可得通项公式;若选②,直接可得数列的首项及公比,进而可得通项公式;(2)利用错位相减法可得n M ,进而得证.【详解】(1)解:若选①,当1n =时,11132323b T b =+=+,即13b =; 当2n ≥时,323n n b T =+,11323n n b T --=+, 作差可得1332n n n b b b --=,即13n n b b -=,所以数列{}n b 为等比数列,其首项为13b =,公比3q =,所以1333n nn b -=⨯=;若选②,23143T T T =+,则121231443b b b b b b +=+++,即323b b =, 又数列{}n b 为等比数列,所以3q =,且13b =,所以1333n nn b -=⨯=;(2)证明:由(1)得3nn b =,所以()2112133nn n n a n n b -⎛⎫==-⋅ ⎪⎝⎭,所以()()23111111135232133333n nn M n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111113523213333313n n n n n M +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,则()2311111111122222133333233n nn n M n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯+⨯-- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()211112133112113313n n n -+⎡⎤⎛⎫⎛⎫⨯⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+--⨯ ⎪⎝⎭- ()121121333n n n +⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭()1212233n n +⎛⎫=-+ ⎪⎝⎭,所以()1113nn M n ⎛⎫=-+⋅ ⎪⎝⎭,又n *∈N ,所以()11113nn M n ⎛⎫=-+⋅< ⎪⎝⎭恒成立.19.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会有4000多项新产品、新技术、新服务.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,生产x 千台空调,需另投入资金R 万元,且2210,040901945010000,40x ax x R x x x x ⎧+≤<⎪=⎨-+≥⎪⎩.经测算,当生产10千台空调时需另投入的资金R =4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完. (1)求2022年该企业年利润W (万元)关于年产量x (千台)的函数关系式; (2)2022年产量为多少时,该企业所获年利润最大?最大年利润为多少?注:利润=销售额-成本.【答案】(1)2210600260,040919010000,40x x x W x x x x ⎧-+-≤<⎪=⎨-+-≥⎪⎩(2)当2022年产量为100千台时,该企业的年利润最大,最大年利润为8990万元【分析】(1)由题意可知10x =时,R =4000,代入函数中可求出a ,然后由年利润等于销售总额减去投入资金,再减去固定成本,可求出年利润W (万元)关于年产量x (千台)的函数关系式,(2)分别当040x ≤<和40x ≥求出函数的最大值,比较即可得答案【详解】(1)由题意知,当10x =时,()21010104000R x a =⨯+=,所以a =300. 当040x ≤<时,()229001030026010600260W x x x x x =-+-=-+-;当40x ≥时,22901945010000919010000900260x x x x W x x x-+-+-=--=. 所以2210600260,040919010000,40x x x W x x x x ⎧-+-≤<⎪=⎨-+-≥⎪⎩,(2)当040x ≤<时,()210308740W x =--+,所以当30x =时,W 有最大值,最大值为8740;当40x ≥时,10000100009190291908990W x x x x ⎛⎫=-++≤-⋅+= ⎪⎝⎭, 当且仅当10000x x=,即x =100时,W 有最大值,最大值为8990. 因为87408990<,所以当2022年产量为100千台时,该企业的年利润最大,最大年利润为8990万元. 20.为了使更多人参与到冰雪运动中,某校组织了一次简易冰壶比赛.每场比赛由两支队伍对抗进行,每队由2名成员组成,共进行3局.每局比赛时,两队成员交替发球,每名成员只能从发球区(MN 左侧)掷冰壶一次.当所有成员全部掷完冰壶后,开始计分.若冰壶未到达营垒区,计1-分;若冰壶能准确到达营垒区,计2分,整场比赛累计得分多者获得比赛胜利.已知A 队两名成员甲、乙每次将冰壶投掷到营垒区的概率分别为12和13,B 队两名成员丙、丁每次将冰壶投掷到营垒区的概率均为12.假设两队投掷的冰壶在运动过程中无碰撞,每名成员投掷冰壶相互独立,每局比赛互不影响.(1)求A 队每局得分X 的分布列及期望;(2)若第一局比赛结束后,A 队得1分,B 队得4分,求A 队最终获得本场比赛胜利且总积分比B 队高3分的概率.【答案】(1)分布列见解析,期望为12;(2)43576.【分析】(1)根据题设写出X 的所有可能取值及对应概率,即可得到分布列,再根据分布列求期望即可;(2)同(1)写出B 的分布列,根据题设写出A 队获胜且总积分比B 队高3分所有可能情况,再求出各情况的概率,最后加总即可得结果.【详解】(1)由题设,X 的所有可能取值为2-,1,4,且X 的分布列如下:所以()21413262E X =-++=.(2)设B 队每局得分为Y ,同理Y 的分布列为记A 队、B 队在后两局总得分分别为x 、y ,则所包含的情况如下:()111111132,42362244576P x y ⎛⎫==-=⨯⨯+⨯⨯⨯= ⎪⎝⎭,()111115,122264224P x y ==-=⨯⨯⨯⨯⨯=, ()11111168,22662244576P x y ⎛⎫===⨯⨯⨯+⨯⨯= ⎪⎝⎭,故A 队最终获得本场比赛胜利且总积分比B 队高3分的概率为13164357624576576++=.21.如图所示:已知椭圆E :()222210x y a b a b +=>>的长轴长为4,离心率e =A 是椭圆的右顶点,直线l 过点()1,0M -交椭圆于C ,D 两点,交y 轴于点P ,PC CM λ=,PD DM μ=.记ACD △的面积为S .(1)求椭圆E 的标准方程; (2)求S 的取值范围; (3)求证:λμ+为定值. 【答案】(1)2214x y +=;(2)33; (3)证明见解析.【分析】(1)根据给定条件,求出半焦距c 及b 即可作答.(2)设出直线l 的方程,与椭圆E 的方程联立,结合韦达定理求出面积S 的表达式即可求解作答.(3)由(2)中信息,用点C ,D 的坐标表示出,λμ即可计算作答. 【详解】(1)令椭圆E 的半焦距为c ,依题意,2a =,3c e a ==3c =2221b a c =-=,所以椭圆E 的标准方程为2214x y +=.(2)依题意,直线l 不垂直于坐标轴,设直线l :1x ty =-,0t ≠,设1122(,),(,)C x y D x y ,由22144x ty x y =-⎧⎨+=⎩消去x 并整理得:22(4)230t y ty +--=,则12224t y y t +=+,12234y y t =-+, 2222121212122221243||()()4()44t t y y y y y y y y t t +--=+-+=++由(1)知(2,0)A,则有1216||||12S AM y y =⋅-==,令u >1y u u =+在)+∞则0S <<所以S的取值范围是. (3)由(2)知,1(0,)P t ,由PC CM λ=得111()y y tλ-=-,即111ty λ=-+,而PD DM μ=,同理211u ty =-+,因此,2121212221184222334t y y t t ty ty ty y t λμ+++=-++=-+=-+=--+, 所以83λμ+=-为定值.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答. 22.已知函数2()ln f x ax x x =--. (1)当1a =时,求()f x 的单调区间;(2)若函数()f x 在定义域内有两个不相等的零点12,x x . ①求实数a 的取值范围;②证明:()()12122ln +>-+f x x x x .【答案】(1)单调递减区间为(0,1),单调递增区间为(1,)+∞ (2)① 01a <<;②证明见解析【分析】(1)求导得(21)(1)()x x f x x+-'=,判断导函数符号确定原函数单调性,注意函数定义域;(2)①利用参变分离得2ln x x a x +=,即y a =与2ln x x y x +=有两个交点,判断函数单调性理解计算;②()()12122ln +>-+f x x x x 等价于()()212122+-+>a x x x x ,借助于函数零点整理得()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,即证1ln 21t t t +⋅>-,构建函数结合导数证明.【详解】(1)当1a =时,函数2()ln f x x x x =--,定义域为(0,)+∞.2121(21)(1)()21x x x x f x x x x x--+-'=--==. 由()0f x '=,得1x =.当01x <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. (2)①若函数()f x 在定义域内有两个不相等的零点12,x x , 则方程2ln 0ax x x --=有两个不等的实根. 即方程2ln x xa x +=有两个不等的实根. 记2ln ()(0)+=>x x g x x x ,则32(n )l 1x x xg x --'=,记()12ln (0)=-->m x x x x ,则()m x 在(0,)+∞上单减,且(1)0m =, ∴当01x <<时,()0,()0'>>m x g x ;当1x >时,()0,()0'<<m x g x , ∴()g x 在(0,1)上单调递增,在(1,)+∞单调递减. ∴max ()(1)1g x g ==.又∵10g e ⎛⎫< ⎪⎝⎭且当1x >时,()0>g x ,∴方程为()g x a =有两个不等的实根时,01a <<.∴当01a <<时函数()f x 在定义域内有两个不相等的零点12,x x . ②要证()()12122ln +>-+f x x x x ,只需证()()()()212121212ln 2ln +-+-+>-+a x x x x x x x x , 只需证()()212122+-+>a x x x x ,因为22111222ln 0,ln 0--=--=ax x x ax x x ,两式相减得: ()()()22121212ln ln 0-----=a x x x x x x .整理得()121212ln ln 1-+=+-x x a x x x x .所以只需证()()12121212ln ln 12⎛⎫-++-+> ⎪-⎝⎭x x x x x x x x ,即证()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,即1121221ln 21+⋅>-x x x xx x ,不妨设120x x <<,令12(01)x t t x =<<,第 21 页 共 21 页 只需证1ln 21t t t +⋅>-, 只需证(1)ln 2(1)0+--<t t t ,设()(1)ln 2(1)=+--n t t t t ,只需证当01t <<时,()0<n t 即可. ∵221111()ln 1,()0(01)-=+-='''-=<<<t n t t n t t t t t t, ∴()n t '在((0,1)单调递减,∴当01t <<时,()(1)0''>=n t n ,∴()n t 在(0,1)单调递增,当01t <<时()(1)0n t n <=, ∴原不等式得证.【点睛】在证明()()212122+-+>a x x x x ,利用函数零点得()121212ln ln 1-+=+-x x a x x x x ,代入消去a 得()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,进一步处理得1121221ln 21+⋅>-x x x x x x 换元分析.。

河北省邢台市部分学校2023-2024学年高一上学期期中考试 数学含解析

河北省邢台市部分学校2023-2024学年高一上学期期中考试 数学含解析

2023~2024学年高一(上)质检联盟期中考试数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其他答案标号.问答非选择题时.将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册第一章至第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.英文单词excellent 的所有字母组成的集合共有()A.6个元素B.7个元素C.8个元素D.9个元素2.命题“R x ∃∈,100020x +>”的否定是()A.R x ∃∉,100020x +≤B.R x ∃∈,100020x +≤C.R x ∀∈,100020x +≤D.R x ∀∉,100020x +≤3.若a c >,b c >,则()A.2ab c > B.2ab c < C.2a b c+> D.2a b c+<4.函数2(21)31f x x x +=-+,则(3)f =()A.1- B.1C.2-D.25.函数()f x =的部分图象大致为()A. B. C. D.6.设等腰三角形ABC 的腰长为x ,底边长为y ,且1y x =+,则“ABC 其中一条边长为6”是“ABC 的周长为16”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若关于x 的不等式22340ax ax a ++-<对x ∈R 恒成立,则a 的取值集合为()A.{}20a a -<< B.{}20a a -<≤ C.{}0a a < D.{}0a a ≤8.定义域为R 的函数()f x 满足()()33f x f x -=+,且当213x x >>时,()()21210f x f x x x ->-恒成立,设()225a f x x =-+,52b f ⎛⎫= ⎪⎝⎭,()24c f x =+,则()A.c a b>> B.c b a >> C.a c b>> D.b c a>>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中的两个函数是同一个函数的是()A.()2f x x =,()g x =B.()f x =,()g x=C .()9f x x=,()29x g x x = D.()1f x x =+,()211x g x x -=-10.已知幂函数()f x 满足f =,则()A.()3f x x= B.()2f x =C.()f x 的图象经过原点D.()f x 的图象不经过第二象限11.“集合(){}22,2,N,N A x y xy a x y =+<∈∈只有3个真子集”的一个充分不必要条件可以是()A.312a <<B.724a <≤ C.23a ≤< D.3724a <<12.函数()()||4f x x x =--在[]ab ,上的最大值为4,最小值为10b -,则b a -的值可能为()A. B.C.8D.9三、填空题:本题共4小题,每小题5分,共20分.13.某停车场的收费规则:停车1小时以内(含1小时整)收费5元;停车超过1小时,超出部分按每小时2元收费,不足1小时按1小时收费.王先生某日上午10:00进入该停车场停车,当日下午2:35驶出该停车场,则王先生应付的停车费为______元.14.已知109x <<__________.15.已知()3221x bx f x x +=+是定义在[]2,3a a +上的奇函数,则=a ______,b =______.16.已知()f x 是定义在()0,∞+上的单调函数,且()0,x ∀∈+∞,()(6ff x =,则()100f =______.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知集合{}22240A x x x =--≤,{}632B x m x m =-≤≤+.(1)若3m =,求A B ⋂;(2)若A B A ⋃=,求m 的取值范围.18.已知幂函数22()(44)m f x m m x +=++在(0,)+∞上单调递减.(1)求m 的值;(2)若(21)(3)m m a a ---<+,求a 的取值范围.19.已知函数()221422f x x x +=++.(1)求()f x 的解析式;(2)试判断函数()()f x g x x=在)+∞上的单调性,并用单调性的定义证明.20.已知某污水处理厂的月处理成本y (万元)与月处理量x (万吨)之间的函数关系可近似地表示为()212580210400y x mx x =-+≤≤.当月处理量为120万吨时,月处理成本为49万元.该厂处理1万吨污水所收费用为0.9万元.(1)该厂每月污水处理量为多少万吨时,才能使每万吨的处理成本最低?(2)请写出该厂每月获利z (万元)与月处理量x (万吨)之间的函数关系式,并求出每月获利的最大值,21.已知定义在[]22-,上的函数()f x 满足[],1,1m n ∀∈-,()()()()222f m f n f m n f m n +=+⋅-,()00f ≠.(1)试判断()f x 的奇偶性,并说明理由.(2)证明:()2928f x x x +≥-.22.已知关于x 的不等式()22320bx ab b x a b ab --+-<.(1)当1b =,1a >时,求原不等式的解集;(2)当()1b a a =≤时,求原不等式的解集;(3)在(1)的条件下,若不等式恰有1000个整数解,求a的取值集合.2023~2024学年高一(上)质检联盟期中考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其他答案标号.问答非选择题时.将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册第一章至第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.英文单词excellent 的所有字母组成的集合共有()A.6个元素 B.7个元素C.8个元素D.9个元素【答案】A 【解析】【分析】根据集合中元素的互异性判断即可.【详解】excellent 的所有字母组成的集合为{}e,x,c,l,n,t ,共有6个元素.故选:A.2.命题“R x ∃∈,100020x +>”的否定是()A.R x ∃∉,100020x +≤B.R x ∃∈,100020x +≤C.R x ∀∈,100020x +≤D.R x ∀∉,100020x +≤【答案】C 【解析】【分析】根据存在量词命题的否定判断.【详解】存在量词命题的否定为全称命题,所以命题“R x ∃∈,100020x +>”的否定是R x ∀∈,100020x +≤.故选:C.3.若a c >,b c >,则()A.2ab c > B.2ab c < C.2a b c+> D.2a b c+<【答案】C 【解析】【分析】通过举反例和不等式性质即可得答案.【详解】取1a b ==,1c =-,有2ab c =,A ,B 均错误.因为a c >,b c >,所以2a b c +>,C 正确,D 错误.故选:C.4.函数2(21)31f x x x +=-+,则(3)f =()A.1- B.1C.2- D.2【答案】A 【解析】【分析】由解析式代入计算函数值即可.【详解】设213x +=,得1x =,则(3)1311f =-+=-.故选:A.5.函数()f x =的部分图象大致为()A. B. C. D.【答案】B 【解析】【分析】先判断函数的奇偶性,由函数图象的对称性排除选项C ,再由函数在(0,)+∞的单调性或值域可得出正确答案.【详解】由已知()f x =,(,0)(0,)x ∈-∞⋃+∞,则()()f x f x -==--,故()f x 是奇函数,图象关于原点对称,故C 项错误;当,()0x ∈+∞时,0x >,则()0f x >,故AD 项错误,应选B.又设12,(0,)x x ∀∈+∞,且12x x <,则33120,0x x <<<,故120xx<<0>>,即()12()f x f x >,故()f x 在(0,)+∞上单调递减.综上,函数()f x =图象的性质与选项B 中图象表示函数的性质基本一致.故选:B.6.设等腰三角形ABC 的腰长为x ,底边长为y ,且1y x =+,则“ABC 其中一条边长为6”是“ABC 的周长为16”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用充分条件、必要条件的定义直接判断即可.【详解】当ABC 的一条边长为6时,若6x =,则17=+=y x ,得ABC 的周长为212719+=+=x y ,若6y =,则5x =,得ABC 的周长为216x y +=,当ABC 的周长为16时,由216x y +=,且1y x =+,得5x =,6y =,则ABC 的一条边长为6,所以“ABC 其中一条边长为6”是“ABC 的周长为16”的必要不充分条件.故选:B7.若关于x 的不等式22340ax ax a ++-<对x ∈R 恒成立,则a 的取值集合为()A.{}20a a -<< B.{}20a a -<≤ C.{}0a a < D.{}0a a ≤【答案】D 【解析】【分析】根据含参一元不等式恒成立对a 分类讨论即可得a 的取值集合.【详解】当0a =时,不等式22340ax ax a ++-<化为4<0-对x ∈R 恒成立;当0a ≠,要使得不等式22340ax ax a ++-<对x ∈R 恒成立,则()2Δ44340a a a a <⎧⎨=--<⎩,解得a<0综上,a 的取值集合为{}0a a ≤.故选:D .8.定义域为R 的函数()f x 满足()()33f x f x -=+,且当213x x >>时,()()21210f x f x x x ->-恒成立,设()225a f x x =-+,52b f ⎛⎫= ⎪⎝⎭,()24c f x =+,则()A.c a b >>B.c b a >>C.a c b>> D.b c a>>【答案】C 【解析】【分析】根据函数的对称性、单调性确定正确答案.【详解】依题意,定义域为R 的函数()f x 满足()()33f x f x -=+,所以()f x 的图象关于直线3x =对称,而213x x >>时,()()21210f x f x x x ->-恒成立,所以()f x 在区间()3,+∞上单调递增,5117332222b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,2213939252488x x x ⎛⎫-+=-+≥ ⎪⎝⎭,244x +≥,()2222132541024x x x x x x ⎛⎫-+-+=-+=-+> ⎪⎝⎭,所以22725442x x x -+>+≥>,所以a c b >>.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中的两个函数是同一个函数的是()A.()2f x x =,()g x =B.()f x =,()g x=C.()9f x x=,()29x g x x = D.()1f x x =+,()211x g x x -=-【答案】AC 【解析】【分析】由两函数的定义域与对应法则是否相同判断即可.【详解】选项A ,因为()2()g x x f x ===,且两函数定义域都是R ,故两函数是同一个函数,所以A 正确;选项B ,因为()f x =[)0,∞+,而()g x=(0,)+∞,故两函数不是同一个函数,所以B 错误;选项C ,()()299x g x f x x x===,且定义域都为{}0x x ≠,故两函数是同一个函数,所以C 正确;选项D ,()1f x x =+的定义域为R ,()211x g x x -=-的定义域为{}1x x ≠,故两函数不是同一个函数,所以D 错误.故选:AC.10.已知幂函数()f x 满足f =,则()A.()3f x x= B.()2f x =C.()f x 的图象经过原点D.()f x 的图象不经过第二象限【答案】ACD 【解析】【分析】根据幂函数的概念与指数幂的运算得()3f x x =,结合图象逐项判断即可得答案.【详解】设幂函数()af x x =,根据题意可得a=,解得3a =,则()3f x x =,()f x 的图象如图所示:则()f x 的图象经过原点,不经过第二象限.故选:ACD.11.“集合(){}22,2,N,N A x y xy a x y =+<∈∈只有3个真子集”的一个充分不必要条件可以是()A.312a <<B.724a <≤ C.23a ≤< D.3724a <<【答案】ABD 【解析】【分析】由集合A 中只有2个元素,求a 的取值范围,再通过包含关系验证结论成立的充分不必要条件.【详解】集合(){}22,2,N,N A x y xy a x y =+<∈∈只有3个真子集,即集合A 中只有2个元素,因为N,N x y ∈∈,则有:当0,0x y ==时,2220x y +=;当1,0x y ==时,2221x y +=;当0,1x y ==时,2222x y +=;则a 的取值范围为(]1,2,由31,2⎛⎫⎪⎝⎭(]1,2,7,24⎛⎤⎥⎝⎦(]1,2,37,24⎛⎫⎪⎝⎭(]1,2,可知选项ABD 中的范围符合充分不必要条件;又因为(]1,2与[)2,3之间没有包含关系,可知(]1,2是[)2,3的既不充分也不必要条件;故选:ABD.12.函数()()||4f x x x =--在[]a b ,上的最大值为4,最小值为10b -,则b a -的值可能为()A. B. C.8 D.9【答案】BCD【解析】【分析】分类讨论x 得到()f x 的图象,然后分2b ≤、22b <≤+2>+b 可.【详解】当0x ≥时,22()4(2)44f x x x x =-+=--+≤;当0x <时,22()4(2)44f x x x x =+=+-≥-.作出()f x 的图象,如图所示.当0x <时,由2()44f x x x =+=,即2440x x +-=,解得2=--x 当2x =-时,(2)4f -=-.当0x ≥时,由2()44f x x x =-+=-,即2440x x -++=,解得2x =+.当2x =时,(2)4f =.根据()f x 在[]a b ,上的最大值为4,最小值为10b -,可对b 作如下讨论:若2b ≤,则1084b -≤-<-,不合题意;若22b <≤+81084b -<-≤-<-,不合题意;若2>+b 8104b -<-<-,令2410b b b -+=-,解得2b =-(舍去)或5.综上可得5b =,22a --≤≤,22a -≤-≤+37b a ≤-≤+故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.某停车场的收费规则:停车1小时以内(含1小时整)收费5元;停车超过1小时,超出部分按每小时2元收费,不足1小时按1小时收费.王先生某日上午10:00进入该停车场停车,当日下午2:35驶出该停车场,则王先生应付的停车费为______元.【答案】13【解析】【分析】根据题意得到王先生的停车时长,然后求停车费即可.【详解】依题意得,王先生的停车时长为4小时35分,则按5小时计费,王先生应付的停车费为54213+⨯=元.故答案为:13.14.已知109x <<__________.【答案】16【解析】【分析】利用基本不等式的变形公式求解可得答案.【详解】因为109x <<,所以190x ->19191326x x +-=≤⨯=,当且仅当919x x =-,即118x =16.故答案为:16.15.已知()3221x bx f x x +=+是定义在[]2,3a a +上的奇函数,则=a ______,b =______.【答案】①.1-②.0【解析】【分析】由定义区间的对称性可解得a ,再由奇函数定义求解参数b 即可.【详解】因为()f x 是定义在[2],3a a +上的奇函数,所以230a a ++=,解得1a =-,又因为322()1x bx f x x +=+是奇函数,则()()()323232222()()111x b x x bx x bx f x f x x x x -+--++-===-=-++-+恒成立,即32322211x bx x bx x x -+--=++恒成立,化简得220bx =,因为该等式对[2,2]x ∀∈-恒成立,所以0b =.故答案为:1-;0.16.已知()f x 是定义在()0,∞+上的单调函数,且()0,x ∀∈+∞,()(6ff x =,则()100f =______.【答案】14【解析】【分析】由单调函数的性质,可得()f x 为定值,可以设()t f x =,则()f x t =又由()6f t =,可得()f x 的解析式求()100f .【详解】()0,x ∀∈+∞,()(6ff x =,()f x 是定义在()0,∞+上的单调函数,则()f x -为定值,设()t f x =()f x t =()6f t t ==,解得4t =,得()4f x =+所以()100414f =+=.故答案为:14.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知集合{}22240A x x x =--≤,{}632B x m x m =-≤≤+.(1)若3m =,求A B ⋂;(2)若A B A ⋃=,求m 的取值范围.【答案】(1)[]3,6(2)4,3⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)解不等式得到集合A ,然后求交集即可;(2)根据A B A ⋃=得到B A ⊆,然后分B =∅和B ≠∅两种情况求解即可.【小问1详解】当3m =时,{}311B x x =≤≤,因为{}{}2224046A x x x x x =--≤=-≤≤,所以[]3,6A B ⋂=.【小问2详解】因为A B A ⋃=,所以B A ⊆.当B =∅时,632m m ->+,解得1m <.当B ≠∅时,63264326m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得413m ≤≤.综上,m 的取值范围为4,3⎛⎤-∞ ⎥⎝⎦.18.已知幂函数22()(44)m f x m m x +=++在(0,)+∞上单调递减.(1)求m 的值;(2)若(21)(3)m m a a ---<+,求a 的取值范围.【答案】(1)3m =-(2)(,4)-∞【解析】【分析】(1)由幂函数的定义以及单调性得出m 的值;(2)由3()g x x =解不等式得出a 的取值范围.【小问1详解】解:由幂函数的定义可得2441m m ++=,即2430m m ++=,解得1m =-或3m =-.因为()f x 在(0,)+∞上单调递减,所以20m +<,即2m <-,则3m =-.【小问2详解】设3()g x x =,()g x 是R 上的增函数.由(1)可知(21)(3)m m a a ---<+,即33(21)(3)a a -<+,则213a a -<+,解得4a <,即a 的取值范围为(,4)-∞.19.已知函数()221422f x x x +=++.(1)求()f x 的解析式;(2)试判断函数()()f xg x x =在)+∞上的单调性,并用单调性的定义证明.【答案】(1)()22f x x x =-+(2)单调递增,证明详见解析【解析】【分析】(1)利用凑配法求得()f x 的解析式.(2)先求得()g x 的解析式并判断出单调性,然后利用单调性的定义进行证明.【小问1详解】()221422f x x x +=++()()221212x x =+-++,所以()22f x x x =-+.【小问2详解】()()21f x g x x x x ==+-,()g x在)+∞上单调递增,证明如下:12x x <<,()()1212122211g x g x x x x x ⎛⎫-=+--+- ⎪⎝⎭()()12122112121212222x x x x x x x x x x x x x x --=-+-=+()()1212122x x x x x x --=,其中1212120,20,0x x x x x x -<->>,所以()()120g x g x -<,所以()()12g x g x <,所以()g x在)+∞上单调递增.20.已知某污水处理厂的月处理成本y (万元)与月处理量x (万吨)之间的函数关系可近似地表示为()212580210400y x mx x =-+≤≤.当月处理量为120万吨时,月处理成本为49万元.该厂处理1万吨污水所收费用为0.9万元.(1)该厂每月污水处理量为多少万吨时,才能使每万吨的处理成本最低?(2)请写出该厂每月获利z (万元)与月处理量x (万吨)之间的函数关系式,并求出每月获利的最大值,【答案】(1)当每月污水处理量为100万吨时,每万吨的处理成本最低(2)()225802140100x z x x =-+-≤≤,最大值为75万元【解析】【分析】(1)先求得m ,利用基本不等式求得正确答案.(2)先求得z 的解析式,然后根据二次函数的性质求得正确答案.【小问1详解】依题意,214912012025400m =⨯-⨯+,解得110m =,所以()211258021040010y x x x =-+≤≤,2511240010105y x x x =+-≥-=,当且仅当25,100400x x x==时等号成立,所以当每月污水处理量为100万吨时,每万吨的处理成本最低.【小问2详解】依题意,()22110.1250.92580214004000z x x x x x x ⎛⎫=-=-+-≤≤ ⎪⎝-+⎭,当12001200x =-=-万吨时,z 取得最大值为212002002575400-+-=⋅万元.21.已知定义在[]22-,上的函数()f x 满足[],1,1m n ∀∈-,()()()()222f m f n f m n f m n +=+⋅-,()00f ≠.(1)试判断()f x 的奇偶性,并说明理由.(2)证明:()2928f x x x +≥-.【答案】(1)偶函数,证明见详解(2)证明详解【解析】【分析】(1)令0m n ==,可得(0)1f =,再令n m =-,结合偶函数的定义即可判定;(2)令0n =,可得()1f x ≥-,又229122()1184y x x x =-+-=---≤-,即可证明原不等式成立.【小问1详解】()f x 为偶函数,理由如下:令0m n ==,由()()()()222f m f n f m n f m n +=+⋅-,得22(0)2(0)f f =,又()00f ≠,所以(0)1f =,令n m =-,则(2)(2)2(0)(2)f m f m f f m +-=,所以(2)(2)f m f m -=,即()()f x f x -=,[2,2]x ∈-,故()f x 为偶函数.【小问2详解】令0n =及(0)1f =,可得2(2)12()f m f m +=,所以2(2)2()11f m f m =-≥-,即()1f x ≥-,又229122()1184y x x x =-+-=---≤-,当1[2,2]4x =∈-时,等号成立,故29()28≥-+-f x x x ,即()2928f x x x +≥-,故原不等式得证.22.已知关于x 的不等式()22320bx ab b x a b ab --+-<.(1)当1b =,1a >时,求原不等式的解集;(2)当()1b a a =≤时,求原不等式的解集;(3)在(1)的条件下,若不等式恰有1000个整数解,求a 的取值集合.【答案】(1){}21x a x a <<-(2)答案见解析(3)200110012a a ⎧<<⎨⎩或200310012a <≤或}1002a =【解析】【分析】(1)代入数据直接解不等式即可.(2)变换得到()()()2101a x a x a a --+<≤,考虑1a =,01a <<,0a =,a<0四种情况,解不等式得到答案.(3)根据解集确定999211001a a <--≤,考虑最小值分别为1001,1002,1003三种情况,计算得到答案.【小问1详解】当1b =时,原不等式即为()223120x a x a a --+-<,即()()210x a x a --+<.因为1a >,所以21a a <-,所以原不等式的解集为{}21x a x a <<-.【小问2详解】当()1b a a =≤时,原不等式可化为()()()2101a x a x a a --+<≤.当1a =时,原不等式即为()210x -<,此时,原不等式的解集为∅;当01a <<时,21a a >-,原不等式的解集为{}21x a x a -<<;当0a =时,原不等式即为00<,此时,原不等式的解集为∅;当a<0时,原不等式可化为()()210x a x a --+>,此时21a a >-,原不等式的解集为{21x x a <-或}x a >.综上所述:当0a =或1a =时,原不等式的解集为∅;当01a <<时,原不等式的解集为{}21x a x a -<<;当a<0时,原不等式的解集为{21x x a <-或}x a >.【小问3详解】原不等式的解集为{}21x a x a <<-.要使得原不等式恰有1000个整数解,则a 需满足999211001a a <--≤,解得10001002a <≤.若1000个整数解的最小值为1001,则最大值为2000,则100010012000212001a a ≤<⎧⎨<-≤⎩,解得200110012a <<,此时,原不等式恰有1000个整数解.若1000个整数解的最小值为1002,则最大值为2001,则100110022001212002a a ≤<⎧⎨<-≤⎩,解得200310012a <≤,此时,原不等式恰有1000个整数解.若1000个整数解的最小值为1003,则最大值为2002,则100210032002212003a a ≤<⎧⎨<-≤⎩,解得1002a =,此时,原不等式恰有1000个整数解.综上所述:200110012a a ⎧<<⎨⎩或200310012a <≤或}1002a =。

河北省衡水中学2022-2023学年高三上学期四调考试数学试卷及答案

河北省衡水中学2022-2023学年高三上学期四调考试数学试卷及答案

河北省衡水中学2023届上学期高三年级四调考试数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共4页,总分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知z =i(3−i)2+i,则z 在复平面内对应的点位于A .实轴上B .虚轴上C .第一、三象限的角平分线上D .第二、四象限的角平分线上2.已知向量a ,b 满足|a |=2,b =(1,1),|a +b |=10,则向量a 在向量b 上的投影向量的坐标为A .(22,22)B .(1,1)C .(−1,−1)D .(−22,22)3.在Rt ΔABC 中,A =90∘,B =60∘,AB =2,则AB ⋅BC =A .−4B .4C .−8D .84.已知A ,B ,C 为平面内任意三点,则“AB 与AC 的夹角为钝角”是“|AB +AC |<|BC |”的 A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件5.2 000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割,所谓黄金分割点,指的是把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,黄金分割比为5−12.如图,在矩形ABCD 中,AC 与BD 相交于点O ,BF ⊥AC ,DH ⊥AC ,AE ⊥BD ,CG ⊥BD ,且点E 为线段BO 的黄金分割点,则BF =A +B +C +D 6.已知复数z 满足z ⋅z +4i ⋅z =5+ai ,则实数a 的取值范围是A .[−4,4]B .[−6,6]C .[−8,8]D .[−12,12]7.已知点P 是ΔABC 所在平面内一点,有下列四个等式:①PA +PB +PC =0;②PA ⋅(PA −PB)=PC ⋅(PA −PB);③|PA|=|PB|=|PC|;④PA ⋅PB =PB ⋅PC =PC ⋅PA 如果只有一个等式不成立,则该等式为A .①B .②C .③D .④8.对于给定的正整数n ,设集合X n ={1,2,3,⋯,n },A ⊆X n ,且A ≠∅.记I (A )为集合A 中的最大元素,当A 取遍X n 的所有非空子集时,对应的所有I (A )的和记为S (n ),则S (2023)=A .2023×22023+1 B .2023×22022+1 C .2022×22022+1D .2022×22023+1二、选择题:本题共4小题,每小题5分,共20分。

精品解析:【全国百强校首发】河北省衡水中学2023届高三上学期第四次调研考试理数试题解析(原卷版)

精品解析:【全国百强校首发】河北省衡水中学2023届高三上学期第四次调研考试理数试题解析(原卷版)

河北省衡水中学2016届高三上学期四调考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知全集{}U 08x x =∈Z <<,{}2,3,5M =,{}28120x x x N =-+=,则集合{}1,4,7为( )A .()U M N ðB .()U M N ðC .()U M N ðD .()U M Nð2.下列命题中正确地是( )A .若p q ∨为真命题,则p q ∧为真命题B ."0a >,0b >"是"2b aa b+≥"地充分必要条件C .命题"若2320x x -+=,则1x =或2x ="地逆否命题为"若1x ≠或2x ≠,则2320x x -+≠"D .命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥3.函数cos tan y x x =(22x ππ-<<)地大致图象是( )A .B .C .D .4.已知等差数列{}n a 地公差0d ≠,且1a ,3a ,13a 成等比数列,若11a =,n S 为数列{}n a 地前n 项和,则2163n n S a ++地最小值为( )A .4B .3C.2D .925.如图1,已知正方体1111CD C D AB -A B 地棱长为a ,动点M 、N 、Q 分别在线段1D A ,1C B ,11C D 上.当三棱锥Q -BMN 地俯视图如图2所示时,三棱锥Q -BMN 地正视图面积等于( )A .212a B .214a C2D26.设x ,y 满足约束条件3200x y x y x y --≤⎧⎪-≥⎪⎨≥⎪⎪≥⎩,若目标函数2m z x y =+(0m >)地最大值为2,则sin 3y mx π⎛⎫=+ ⎪⎝⎭地图象向右平移6π后地表达式为( )A .sin 26y x π⎛⎫=+⎪⎝⎭B .sin 6y x π⎛⎫=+⎪⎝⎭C .sin 2y x =D .2sin 23y x π⎛⎫=+⎪⎝⎭7.已知A ,B ,C ,D 是函数()sin y x ωϕ=+(0ω>,02πϕ<<)一个周期内地图象上地四个点,如下图所示,,06π⎛⎫A -⎪⎝⎭,B 为y 轴上地点,C 为图象上地最低点,E 为该函数图象地一个对称中心,B 与D 关于点E 对称,CD 在x 轴上地投影为12π,则ω,ϕ地值为( )A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ= D .12ω=,6πϕ=8.已知不等式422xx ay y +-≤+对任意实数x ,y 都成立,则常数a 地最小值为( )A .1B .2C .3D .49.如图,正方体1111CD C D AB -A B 地棱线长为1,线段11D B 上有两个动点E ,F ,且F E =,则下列结论中错误地是( )A .C A ⊥BEB .F//E 平面CDAB C .三棱锥F A -BE 地体积为定值D .异面直线AE ,F B 所成地角为定值10.已知三棱锥C A -B O ,OA ,OB ,C O 两两垂直且长度均为6,长为2地线段MN 地一个端点M 在棱OA 上运动,另一个端点N 在C ∆B O 内运动(含边界),则MN 地中点P 地轨迹与三棱锥地面所围成地几何体地体积为()A .6πB .6π或366π+C .366π-D .6π或366π-11.设过曲线()xf x e x =--(e 为自然对数地底数)上任意一点处地切线为1l ,总存在过曲线()2cos g x ax x =+上一点处地切线2l ,使得12l l ⊥,则实数a 地取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1-12.设函数()f x 满足()()22x e x f x xf x x '+=,()228e f =,则0x >时()f x ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值第Ⅱ卷(共90分)二、填空题(每题4分,满分20分,将解析填在答题纸上)13.已知数列{}n a 对于任意p ,q *∈N ,有p q p q a a a ++=,若119a =,则36a = .14.利用一个球体毛坯切削后得到一个四棱锥CD P -AB ,其中底面四边形CD AB 是边长为1地正方形,1PA =,且PA ⊥平面CD AB ,则球体毛坯体积地最小值应为.15.若C ∆AB 地内角A ,B 满足()sin 2cos sin B=A +B A,则当B 取最大值时,角C 大小为 .16.定义函数()y f x =,x ∈I ,若存在常数M ,对于任意1x ∈I ,存在唯一地2x ∈I ,使得()()122f x f x +=M ,则称函数()f x 在I 上地"均值"为M ,已知()2log f x x =,20141,2x ⎡⎤∈⎣⎦,则函数()2log f x x =在20141,2⎡⎤⎣⎦上地"均值"为.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在C ∆AB 中,角A ,B ,C 所对地边为a ,b ,c ,且满足cos 2cos 22cos cos 66ππ⎛⎫⎛⎫A -B =-A +A ⎪ ⎪⎝⎭⎝⎭.(1)求角B 地值;(2)若b =且b a ≤,求12a c -地取值范围.18.(本小题满分12分)已知四棱锥CD P -AB 地底面是菱形,CD 60∠B =,D 2AB =PB =P =,C P =,C A 与D B 交于O 点,E ,H 分别为PA ,C O 地中点.(1)求证:PH ⊥平面CD AB ;(2)求直线C E 与平面PAB 所成角地正弦值.19.(本小题满分12分)已知等差数列{}n a 地公差为1-,前n 项和为n S ,且27126a a a ++=-.(1)求数列{}n a 地通项公式n a 与前n 项和n S ;(2)将数列{}n a 地前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列{}n b 地前三项,记数列{}n n a b 地前n 项和为n T ,若存在m *∈N ,使得对任意n *∈N ,总有n m S λ<T +成立,求实数λ地取值范围.20.(本题小满分12分)如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角DE -M -A 地大小为6π?若存在,求出C M 地长;若不存在,说明理由.21.(本小题满分12分)已知函数()32f x x x b =-++,()lng x a x =.(1)若()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上地最大值为38,求实数b 地值;(2)若对任意[]1,x e ∈,都有()()22g x x a x ≥-++恒成立,求实数a 地取值范围;(3)在(1)地条件下,设()()(),1F ,1f x x xg x x <⎧⎪=⎨≥⎪⎩,对任意给定地正实数a ,曲线()F y x =上是否存在两点P 、Q ,使得Q ∆PO 是以O (O 为坐标原点)为直角顶点地直角三角形,且此三角形斜边中点在y 轴上?请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做地第一题计分.22.(本小题满分10分)如图,已知圆O 是C ∆AB 地外接圆,C AB =B ,D A 是C B 边上地高,AE 是圆O 地直径.过点C 作圆O 地切线交BA 地延长线于点F .(1)求证:C C D A ⋅B =A ⋅AE;(2)若F 2A =,CF =求AE 地长.23.(本小题满分10分)已知函数()21f x x =-,()1g x a x =-.(1)若关于x 地方程()()f x g x =只有一个实数解,求实数a 地取值范围;(2)若当R x ∈时,不等式()()f x g x ≥恒成立,求实数a 地取值范围.。

2024-2025学年河北省省级联测高三(上)月考数学试卷(含答案)

2024-2025学年河北省省级联测高三(上)月考数学试卷(含答案)

2024-2025学年河北省省级联测高三(上)月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={−1,2,3,4},B ={x ∈Z|y =ln (9−x 2)},则A ∩B =( )A. {1,2,3}B. {−1,2}C. {2,3}D. {0,1,2,3,4}2.已知复数z 1=a 2−3a +3i ,z 2=2+(a 2−4a)i ,a ∈R ,若z 1+z 2为纯虚数,则a =( )A. 1或2B. 1C. 2D. 33.已知向量a ,b 满足|a |=2,b =(2,0),且|a +b |=2,则a 在b 上的投影向量的坐标为( )A. (−1,0)B. (1,0)C. (−2,0)D. (2,0)4.已知cos (α+π2)=2cos(α+3π),则sin 2α+12sin2αcos 2α=( )A. −14 B. 34 C. 2D. 65.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为( )A. 16π3B. 16πC. 64π3D. 72π6.设S n 为正项等比数列{a n }的前n 项和,3S 2=a 1+2a 3,a 3=8,则数列{a n +2n−1}的前5项和为( )A. 55B. 57C. 87D. 897.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,将函数f(x)的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,若关于x 的方程g(x)−m =0在x ∈[−π12,π6]上有两个不等实根,则实数m 的取值范围为( )A. (−2,2]B. (−2,− 3]C. [ 3,2]D. (− 3, 3]8.已知定义域为R的函数f(x)不是常函数,且满足f(x+y)+f(x−y)=f(x)f(y),f(1)=0,则∑2026i=1f (i)=( )A. −2B. 2C. −2026D. 2026二、多选题:本题共3小题,共18分。

XX省长治市第二中学2023届高三上学期第四次月考化学试题附解析答案完整版

XX省长治市第二中学2023届高三上学期第四次月考化学试题附解析答案完整版

2022—2023学年第一学期高三第四次练考化学试题【本试卷分为选择题和非选择题两部分,共100分。

考试时间90分钟】可能用到的相对原子质量:H-1 C-12 B-11 O-16 P-31 S-32 Ce-140第Ⅰ卷(选择题 共42分)一、选择题(每小题3分,共42分。

每小题只有一个正确选项,将正确答案填涂在答题卡上)1.化学是一门以实验为基础的学科,下列与实验相关的说法中,错误的是A .滴定管的“0”刻度线在上端,量筒的“0”刻度线在下端 B .球形冷凝管用于冷凝回流时,应竖着使用C .实验时,若不慎将浓碱沾到皮肤上,应立即用大量水冲洗,然后涂上1%的硼酸D .应将未用完的钠、钾、白磷等放回原试剂瓶2.下列物质不能通过化合反应制备的是A .B .NaHCC .SiD .FeCl 2O 3H 2O 3Cu 2(OH)2CO 33.下列叙述正确的是A .甲醇既可发生取代反应也可发生加成反应B .仅根据碳原子数的多少,即可判断出烷烃的沸点高低C .用饱和碳酸氢钠溶液可以鉴别乙酸和乙醇D .戊二烯与环戊烷互为同分异构体4.假设是阿伏伽德罗常数的值,下列说法一定正确的是N A A .常温常压下,8g 与的混合物中,含有4个电子O 2O 3N A B .将1mol 溶于稀醋酸中使溶液呈中性,溶液中数目小于 CH 3COONa CH 3COO −N A C .33.6L 氯化氢中含有氯原子的数目为1.5,则其处于标准状况下N A D .1L pH=4的0.1mol/L 溶液中离子数为0.1 K 2Cr 2O 7C r 2O 2−7N A 5.某无色溶液含有下列离子中的若干种:、、、、、、、、,向该溶液中加入铝粉,只放出H 2,则H +NH +4Fe 3+Ba 2+Al 3+CO 2−3Cl −OH −NO −3该溶液中能大量存在的离子最多有A .4种B .5种C .6种D .7种6.离子方程式可以表示2Ca 2++3HCO −3+3OH −=2CaCO 3↓+CO 2−3+3H 2O A .与氨水溶液反应 B .NaHC 与澄清石灰水反应Ca(HCO 3)2O 3C .与澄清石灰水反应 D .N HC 与澄清石灰水反应Ca(HCO 3)2H 4O 37.已知:,则该反应中被氧化的与被2FeSO 4+6Na 2O 2≜2Na 2FeO 4+2Na 2O +2Na 2SO 4+O 2↑Na 2O 2还原的的物质的量之比为FeSO 4Na 2O 2A .2:3B .1:4C .5:1D .1:58.对乙酰氨基酚paracetamol (扑热息痛),可用于缓解普通感冒或流行性感冒引起的高热以及缓解轻至中度的疼痛症状。

河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题人教A版

河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题人教A版

高二上学期第三次月考数学(文)试题一、选择题(每题5分,共60分,将正确选项涂在答题卡上) 1、抛物线212y x =的焦点为( )A .()6,0B .()0,6C .()3,0D .()0,32、双曲线13222=-y x 的离心率为 ( )A B C D 3、命题“00,20x x R ∃∈≤”的否定为( )A .00,20x x R ∀∈≤B .00,20x x R ∀∈≥C .00,20x x R ∀∈<D .00,20x x R ∀∈> 4. 已知1:1,:1p x q x><,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也非必要条件 5. 若A x f =')(0,则xx f x x f x ∆-∆-→∆)()(lim000等于( )A .AB .A -C .A 21 D .以上都不是6.已知双曲线()2222:10,0x y C a b a b -=>>,则C 的渐近线方程为( )111....432A y x B y x C y x D y x =±=±=±=±7.已知对k R ∈直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是()A .(0,1)B . (0,5)C .),5()5,1[+∞⋃D .[1,5)8.曲线1323+-=x xy 在点)1,1(-处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y9.如图是'()f x 的图像,则正确的判断个数是( )(1))(x f 在)3,5(--上是减函数;(2)4=x 是极大值点; (3)2=x 是极值点;(4))(x f 在)2,2(-上先减后增; A.0 B .1 C .2 D. 310、已知函数()3sin 34(,)f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数,则()()2014(2014)2015(2015)f f f f ''+-+--=( ) A .8 B .2014 C .2015 D .011. 函数a ax x y +-=23在)1,0(内有极小值,则实数a 的取值范围为( ) A. )3,0( B. )3,(-∞ C. ),0(+∞ D. )23,0(12.已知双曲线()2222:10,0x y E a b a b-=>>的右焦点为()3,0F ,过点F 的直线交双曲线于,A B 两点,若AB 的中点坐标为()12,15N --,则E 的方程为( ) 22222222.1.1.1.136634554x y x y x y x y A B C D -=-=-=-=二 、填空题(每题5分,共20分,将正确答案写在答题纸上)13.方程22113x y m m+=--表示焦点在y 轴上的椭圆,则m 的取值范围是_ _____.14.已知定义在R 上的可导函数y =f (x )的图象在点1M (,f(1))处的切线方程为122y x =-+,则f (1)+f ′(1)=_ _____.15.已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为_ _____.16、已知函数223)(a bx ax x x f +++=在1=x 处有极值10,则)2(f =_ _____.三、解答题:(第17题10分,其它各12分,共70分,将规范的答题过程写在答题纸上.) 17.(本题满分10分)设命题12:,6:2>≥-xq x x p ,已知“”“”p q q ∧⌝与同时为假命题,. (1)分别判断p 和q 的真假; (2)求满足条件的x 的取值集合.18.(本题满分12分)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据:(1)求回归直线方程;(2)试预测广告费支出为10万元时,销售额多大? (参考数据:521145ii x ==∑ 52113500ii y ==∑511380i ii x y==∑参考公式:线性回归方程系数:1221ni ii ni i x y nx yb x nx==-=-∑∑,ay bx =-)19.(本题满分12分)已知函数321()33f xx x x a =-+++. (1)求()f x 的单调区间;(2)若()f x 在区间[﹣3,3]上的最小值为,求a 的值.20.(本题满分12分)已知中心在原点的双曲线的渐近线方程是y =,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点F 作倾斜角为4π的直线交双曲线于,A B ,求||AB .21.(本题满分12分) 已知函数()ln f x x x =.(Ⅰ)求函数()f x 在[1,3]上的最小值;(Ⅱ)若对1[,e]ex ∀∈,都有不等式22()3f x x ax ≥-+-成立,求实数a 的取值范围.22. (本题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 右焦点)0,1(F ,且21=e (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,都不是顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.2013级高二上学期第三次月考文数参考答案三、解答题17.解:(1) “”“”p q q ∧⌝与同时为假命题,所以q 为真,p 为假------------------4分(2)由(1)知⎩⎨⎧<->62x x x 解得03x <<--------------------------------------8分故x 的取值集合为{}|03x x <<. --------------------------------------10分 18. (1)解:2+4+5+6+825=555x ==,30+40+60+50+70250=5055y == ------3分又已知521145ii x==∑ ,511380i i i x y ==∑于是可得:5152215138055506.51455555i ii i i x y x yb x x==--⨯⨯===-⨯⨯-∑∑, ------------------------5分50 6.5517.5a y bx =-=-⨯=因此,所求回归直线方程为: 6.517.5y x =+ --------------------------------8分 (2)解:根据上面求得的回归直线方程,当广告费支出为10万元时,6.51017.5=82.5y =⨯+ (万元) 即这种产品的销售收入大约为82.5万元. ------12分19.解:(1)∵321()33f x x x x a =-+++,∴2'()23f x x x =-++ --------------------------------------2分 令'()0f x >,得13x -<<;令'()0f x <,得13x x <->或, ∴()f x 的单调减区间为(-∞,-1),(3,+∞),单调增区间为(-1,3). ---------------------------------------6分 (2)当x ∈[-3,-1]时,'()0f x <;当x ∈[-1,3]时,'()0f x > ∴min 17()(1)1333f x f a =-=+-+=∴4a =.------------------------------------------------------------12分 20.解:(1)设所求双曲线方程为:223(0)x y λλ-=≠,点代入得:3λ=,故所求双曲线方程为:2213y x -= --------------------------------------4分 (2)直线AB 的方程为:2y x =-,设1122(,),(,)A x y B x y ,由22233y x x y =-⎧⎨-=⎩ 得:22470x x +-=,则1212272x x x x +=-⎧⎪⎨=-⎪⎩-----------------9分∴12||6AB x x -==弦长 ------------12分22.解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:21=e 且1c =, ∴2a =,∴2223b a c =-=. ∴椭圆的标准方程为22143x y +=.---------------------------------------4分 (Ⅱ)设11()A x y ,,22()B x y ,,联立221.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=, 22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, ------------8分 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 因为以AB 为直径的圆过椭圆的右顶点(20)D ,,∴1AD BD k k =-,即1222211-=-⋅-x y x y ,---------------------------------10分 ∴1212122()40y y x x x x +-++=,∴2222223(4)4(3)1640343434m k m mk k k k --+++=+++,∴0416722=++k mk m .解得:027=+k m 或02=+k m∴直线l 过点)0,72(或点)0,2((舍)--------------------------------------12分。

河北省邢台市第二中学2014-2015学年高一上学期第三次月考化学试题(无答案)

河北省邢台市第二中学2014-2015学年高一上学期第三次月考化学试题(无答案)

河北省邢台市第二中学2014-2015学年高一上学期第三次月考用到的相对原子质量:Na-23 Mg-24 Al-27 O-16 C -12 N-14 Cl-35.5 H-1第I卷 (客观题共54分)一、选择题(本题包括18小题,每小题3分。

每小题只有一个选项符合题意)1.进行化学实验必须注意安全,下列说法正确的是( )A.实验室金属钠不慎着火时,应立即用水来灭火。

B.不慎将浓碱溶液沾到皮肤上,要立即用大量水冲洗,然后涂上硼酸溶液。

C.酒精在实验台上燃烧时,用水扑灭火焰。

D.配制硫酸溶液时,可先在量筒中加入一定体积的水,再在搅拌下慢慢加入浓硫酸。

2.A L硫酸铝溶液中,含有B mol铝离子,则此溶液的物质的量浓度是( )A. B/Amol/LB. 2A/B mol/LC. B/2Amol/LD. A/2B mol/L3.下列关于胶体的说法中正确的是( )A.胶体外观不均匀B.胶体粒子能通过半透膜C.胶体微粒做不停的无秩序运动D.胶体不稳定,静置后容易产生沉淀4.用容量瓶配制一定物质的量浓度的溶液,该容量瓶必须是( )A.干燥的 B.瓶塞不漏水的C.用欲配制的溶液润洗过的 D.以上三项均须要求的5.在实验室中,通常将金属钠保存在( )A.水中B.煤油中C.四氯化碳中D.汽油中6.下列物质既能跟硫酸反应,又能跟氢氧化钠溶液反应的化合物是( )① NaHCO3② Al2O3③ Al(OH)3④ AlA.①②③④ B.③和④ C.①②③ D.①和④7.下列叙述中,属于金属化学性质的是()A.铝在空气中易与氧气反应生成致密的氧化膜 B.纯铁是银白色固体C.铜容易传热、导电 D.钨有很高的熔点8.下列物质的鉴别方法不正确的是( )A.利用丁达尔效应鉴别Fe(OH)3胶体与FeCl3溶液B.用氢氧化钠溶液鉴别MgCl2溶液、AlCl3溶液C.用焰色反应鉴别NaCl、KCl和Na2SO4D.用氯化钙溶液鉴别Na2CO3和NaHCO3两种溶液9.下列离子方程式正确的是( )A.钠与水反应:2Na+2H2O=2Na++2OH-+H2↑B.硫酸铝溶液中加入过量氨水:Al3++4OH-=AlO2—+2H2OC.铜投入硝酸银溶液:Cu+Ag+=Ag+Cu2+D.金属铝溶于氢氧化钠溶液:Al+2OH-=AlO2—+H2↑10.相同物质的量的Na2O2和Na2O的比较中,不正确的是( )A.两种物质所含原子个数之比为4∶3B.两种物质中阴离子的物质的量之比为2∶1C.两种物质与足量的CO2反应,消耗气体的质量比为1∶1D.两种物质中阳离子的物质的量之比为1∶111.下列各组物质的稀溶液相互反应,把前者逐滴滴入后者与把后者逐滴滴入前者,所产生的现象不相同的是( )A.AlCl3和NH3·H2O B.NaHCO3和HClC.AlCl3 和NaOH D.NaCl和AgNO312.设N A为阿伏加德罗常数,下列说法中正确的是( )A.1g氢气中所含有的分子数为N AB.0.5mol/L的AlCl3溶液中含有氯离子数为1.5N AC. 27g铝与足量NaOH反应消耗OH-的数目为4N AD.7.8g的Na2O2与水完全反应转移的电子数目为0.1N A13.关于Na2CO3和NaHCO3性质的有关叙述正确的是( )A.在水中的溶解性:Na2CO3<NaHCO3B .热稳定性:Na 2CO 3<NaHCO 3C .与酸反应的快慢:Na 2CO 3<NaHCO 3D .Na 2CO 3不能转化成NaHCO 3,而NaHCO 3能转化为Na 2CO 314.将铁的化合物溶于盐酸,滴加KSCN 溶液不发生颜色变化,再加入适量氯水,溶液立即呈红色的是( )A .Fe 2O 3B .FeCl 3C .Fe 2(SO 4)3D .FeO15.实验室制备Al(OH)3最好用( )A .Al 2O 3和稀盐酸B .Al 2O 3和水C .Al 2(SO 4)3和KOHD .AlCl 3和氨水16.实验室制取少量N 2常利用的反应是NaNO 2+NH 4Cl=====△NaCl +N 2↑+2H 2O ,关于该反应的说法正确的是( )A .NaNO 2是氧化剂B .生成1molN 2时转移的电子为6molC .NH 4Cl 中的N 元素被还原D .N 2既是氧化剂又是还原剂17.下列物质放在空气中,不会发生变质的物质是( )A .NaB .NaClC .NaOHD .Na 2O 218.有MgSO 4、AlCl 3的混合溶液,向其中不断加入NaOH 溶液,得到沉淀的物质的量与加入NaOH 溶液体积的关系如图所示,则溶液中Cl -与SO 42-的物质的量浓度之比为( )A .1:1B .2:3C .3:1D .2:1第Ⅱ卷 (客观题共46分)二.填空题19.(2分)下列物质属于电解质的有_______________________①Cu ②H 2SO 4 ③NaOH ④NaCl ⑤CaO ⑥CO 2 ⑦CaCO 3 ⑧H 220.(12分)(1) 除去NaHCO 3溶液中的Na 2CO 3杂质用 试剂化学方程式.....为 . (2) 除去Fe 2O 3粉末中混入的Al 2O 3杂质用 试剂化学方程式.....为 . (3) 除去NH 4Cl 粉末中混入的AlCl 3杂质用 试剂离子方程式.....为 . (4) 除去CO 2气体中混入的HCl 气体用 试剂离子方程式.....为 . 21.(12分)立足教材实验是掌握高中化学实验的基础,是理解化学科学的实验原理、实验方法和实验思路,提高学生实验能力的基本途径。

河北省邢台市第二中学2015届高三上学期第四次月考地理试题 Word版含答案

河北省邢台市第二中学2015届高三上学期第四次月考地理试题 Word版含答案

高三上学期第四次月考地理试题一、选择题“回南天”是天气返潮现象,一般说来,回南天的形成需要两个条件:①有长时间的低温,日平均气象低于12℃至少要持续3天以上。

②有天气突变,长时间低温后要突然变得暖湿。

下表是“某市2013年3月份部分天气数据”,据表回答1~2题1.18日至20日期间该市经历的降水类型是A.锋面雨 B.对流雨 C. 台风雨 D.地形雨2.判断下列叙述正确的是A.相对湿度与平均气温呈正相关 B.18日至21日期间,该市可能有冷锋过境C.21日比20日夜晚大气逆辐射更强 D.21日该市最有可能出现“回南天”现象 L湖是新疆最大淡水湖,近年演变成微咸水湖,下图为L湖及周边地区示意图。

读图回答3~4题。

3.关于甲、乙两河与L湖相互关系,叙述正确的是A.甲河冬季输入L湖泥沙最多 B.甲河流量变化深受L湖影响C.乙河对L湖具有排盐作用 D.乙河是L湖重要补给水源4.L湖沿岸有芦苇分布,图中四地面积最广的是A.①地 B.②地 C.③地 D.④地“海底黑烟囱”是指海水从地壳裂缝渗入地下,遇到熔岩被加热,溶解了周围岩层中的金银等金属后又从地下喷出,这些金属经过化学反应形成硫化物沉积在附近的海底,像“烟囱”形状一样堆积而成。

右图为海底黑烟囱形成过程示意图,据此回答第5题。

5.形成海底黑烟囱的主要地质作用有A.变质作用和火山活动 B.岩浆活动和地壳运动C.岩浆活动和外力作用 D.地壳运动和外力作用2014年冬奥会在俄罗斯索契圆满结束,这是历史上俄罗斯首次承办冬奥会。

索契是俄罗斯著名度假胜地,城区在沿海地带呈狭长分布。

右图为“大高加索地区地形图”。

读图,回答第6~7题。

6.在2014年冬奥会举行期间,索契比阿尔马维尔A.日照时间短 B.气温高,日较差大C.正午太阳高度角小 D.日出晚,昼较短7.索契的河流特征是A.流量小 B.河床比降大C.流域面积大 D.结冰期长按照年龄可将老年人口分为年轻老年人(60~69岁)、中年老年人(70~79岁)和高龄老年人(80岁及以上)。

2025届江门市高三数学上学期第二次月考试卷及答案解析

2025届江门市高三数学上学期第二次月考试卷及答案解析

2024--2025学年新会华侨中学高三第一学期第二次月考数学试题本试卷共4页,19小题,满分150分.考试用时120分钟.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5}U =,集合M 满足{}2,4U M =ð,则( )A. 1M ÍB. 4MÍ C. 5MÎ D. 3MÏ【答案】C 【解析】【分析】由补集运算得出集合M ,再由元素与集合的关系判断.【详解】因为全集{}{}1,2,3,4,5,2,4U U M ==ð,所以{1,3,5}M =,根据元素与集合的关系可知,ABD 错误,C 正确.故选:C .2 已知()()10()sin π0x x f x x x -ì-<ï=í³ïî,则()()3f f -=( )A. B. 0 C.12D.【答案】D 【解析】【分析】先求()133f -=,再求()()1π3sin 33f f f æö-==ç÷èø,即可求解.【详解】根据已知()()11333f --=--=,所以()()1π3sin 33ff f æö-===ç÷èø故选:D .3. 若“x a >”是“1x >”的必要不充分条件,则实数a 的取值范围为( )A. (),1-¥ B. (],1-¥ C. ()1,+¥ D. [)1,+¥【答案】A 【解析】【分析】由题意可得{}1x x >⫋{}x x a >,再根据集合的包含关系求参即可..【详解】因为“x a >”是“1x >”的必要不充分条件,所有{}1x x >⫋{}x x a >,所以1a <,即实数a 的取值范围为(),1-¥.故选:A .4. 已知πcos 4a æö+=ç÷èøsin 2a =( )A. 56- B. 23-C.23D.56【答案】C 【解析】【分析】代入二倍角公式,以及诱导公式,即可求解.【详解】由条件可知,22ππ2cos 22cos 121243a a æöæö+=+-=´-=-ç÷ç÷èøèø,而π2sin 2cos 223a a æö=-+=ç÷èø.故选:C5. 若1nx æöç÷èø的二项展开式中,当且仅当第5项是二项式系数最大的项,则其展开式中51x 的系数为( )A. 8 B. 28 C. 70 D. 252【答案】D 【解析】【分析】先确定n 值,再由二项展开式的通项求解5x -项的系数即可.【详解】因为二项展开式中当且仅当第5项是二项式系数最大的项,即二项式系数01C ,C ,,C nn n n L 中第5个即4C n 最大,所以由二项式系数的性质可知,展开式中共9项,8n =,又811213nx x x -æöæö-=-ç÷ç÷èøèø,则81123x x -æö-ç÷èø二项展开式的通项公式()81831822188C 3C (1)3rrr r r r rr T x x x ----+æö=-=-ç÷èø,0,1,2,,r n =L .令835,62r r -=-=,所以51x 的系数为62288C 39C 252×==.故选:D .6. 心形代表浪漫的爱情,人们用它来向所爱之人表达爱意.一心形作为建筑立面造型,呈现出优雅的弧度,心形木屋融入山川,河流,森林,草原,营造出一个精神和自然聚合的空间.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为( )A. yB. y =C. y =D. y =【答案】C 【解析】【分析】根据奇偶性和最值排除错误答案即可.【详解】A 选项:1|1x y ==>,故A 错误;B 选项:记()f x =()()f x f x -=-=-,故()f x 为奇函数,不符合题意,故B 错误;C 选项:记()h x =()()h x h x -=,故y =当0x ³时,y ==,此函数在()0,1上单调递增,在()1,2上单调递减,且()()()00,11,20h h h ===,故C 正确;D 选项:记()g x =()()g x g x -=¹-,故()g x 既不是奇函数也不是偶函数,不符合题意,故D 错误.故选:C.7. 已知函数221(2)()15(2)24x ax x x f x x ì+->ï=íæö-£ïç÷èøî是R 上的减函数,则实数a 的取值范围是( )A. (,1]-¥-B. 1,2æù-¥-çúèûC. (,0]-¥D. (,1]-¥【答案】A 【解析】【分析】首先由题意有(2)1f =-,若()f x 是R 上的减函数,故只需当2x >时,()221f x ax x =+-单调递减,从而列出不等式组,解不等式组即可.【详解】当2x £时,15()24xf x æö=-ç÷èø单调递减,a ÎR ,且()f x 最小值(2)1f =-,当2x >时,当0a =时,()21f x x =-单调递增,不符题意,又注意到()f x 是R 上的减函数,故只能抛物线()221f x ax x =+-的开口向下即0a <,其对称轴为1x a=-,则由题意有201222211a a a <ìïï-£íï´+´-£-ïî,解得1a £-.故选:A.8. 已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当121x x <<时,()()()21210f x f x x x -->éùëû恒成立,设1ln 2a f æö=ç÷èø,()2log 3b f =,32c f æö=ç÷èø,则a ,b ,c 的大小关系为( )A. c a b >> B. c b a>> C. a c b>> D. b a c>>【答案】C 【解析】为【分析】先结合条件判断函数()f x 的对称性质和单调性,再分别界定三个自变量的值或者范围,利用函数对称性和单调性即得.【详解】依题可知函数()f x 的图象关于直线1x =对称,且在区间(,1)-¥上单调递增,则在区间(1,)+¥上单调递减.因2ln 213=<<,则131ln 22<<,23log 322<<,故213()()(log 3)2ln 2f f f >>,即a c b >>.故选:C.【点睛】关键点点睛:解题的关键在于,得知了函数在(1,+)¥上的单调性之后,如何判断三个自变量的大小范围,考虑到三个都是大于1的,且有一个是32,故对于2log 3和1ln 2,就必然先考虑它们与32的大小,而这需要利用对数函数的单调性得到.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布(100,100)N ,其中90分为及格线,120分为优秀线,下列说法正确的是( )附:随机变量x 服从正态分布2~(,)N m s ,则()0.6826P m s x m s -<<+=,(22)0.9544P m s x m s -<<+=,(33)0.9974P m s x m s -<<+=.A. 该市学生数学成绩的标准差为100B. 该市学生数学成绩的期望为100C. 该市学生数学成绩的及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等【答案】BC 【解析】【分析】根据正态分布网线的对称性,正态分布的概念判断.【详解】X 服从正态分布(100,100)N ,则标准差为10,期望为100,A 错,B 正确,100,10m s ==,11(90)()(1())(10.6826)0.158722P X P X P X m s m s m s £=£-=--<<+=´-=,(90)1(90)10.15870.84130.8P X P X ³=-<=-=>,C 正确;及格线m s -,而优秀线是2m s +,1(120)(2)(10.9544)0.02282P X P X m s ³=>+=´-=,这优秀率,优秀率与及格率相差很大,人数相差也很大,D 错.故选:BC .10. 下列命题正确的是( )A. 命题“1x ">,20x x ->”的否定是“01x $£,2000x x -£”;B. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的必要不充分条件C. 函数()21f x ax x =++的图象恒在()2g x x ax =+的图象上方,则a 的范围是()1,5D. 已知111222,,,,,a b c a b c 均不为零,不等式不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,则“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件【答案】BD 【解析】【分析】借助全称命题的否定的定义可得A ;借助充分条件与必要条件的关系推导可得 B ;借助作差法结合二次函数的性质计算可得C ;结合充分条件与必要条件的定义,举出相应反例可得D.【详解】对A :命题“1x ">,20x x ->”的否定是“01x $>,2000x x -£”,故A 错误;对B :由A 是B 的必要不充分条件,B 是C 的充分必要条件,可得A 是C 的必要不充分条件,由D 是C 的充分不必要条件,则A 是D 的必要不充分条件,故B 正确;对C :由题意可得()()2201f g x x x x a a x x ---++>=恒成立,即()()20111a x a x -++>-恒成立,则当1a =时,有10>恒成立,符合要求,当1a >时,()()()()2141150a a a a D =---=--<,解得()1,5a Î,当1a <时,()()20111a x a x -++>-不恒成立,故舍去,综上所述,a 的范围是[)1,5,故C 错误;对D :若“1112220a b c a b c ==<”,则“M N =”不成立,是若“M N ==Æ”,则“111222a b c a b c ==”不恒成立,故“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件,故D 正确.故选:BD .11. 已知函数()sin cos f x a x x =+的图象关于π3x =对称,下列结论中正确的是( )A. π6f x æö-ç÷èø是奇函数B. π4f æö=ç÷èøC. 若()f x 在[,]m m -上单调递增,则π03m <£D. ()f x 的图象与直线π23y x =+有三个交点【答案】AC 【解析】【分析】先函数对称性求解a ,得到()f x 的解析式.A 项,化简π2sin 6f x x æö-=ç÷èø可知为奇函数;B 项,代入解析式求值即可;C 项,利用整体角求()f x 的单调递增区间,由2ππ33m m -£-<£可得m 范围;D 项,利用导数可知直线恰为曲线在π,06æö-ç÷èø处的切线,进而可得公共点个数.【详解】因为()f x 的图象关于直线π3x =对称,所以2π(0)3f f æö=ç÷èø112-=,解得a =所以π()cos 2sin 6f x x x x æö=+=+ç÷èø,验证:当π3x =时,π23f æö=ç÷èø,()f x 取最大值,故()f x 的图象关于直线π3x =对称,满足题意;A 项,π2sin 6f x x æö-=ç÷èø,x ∈R ,由2sin()2sin x x -=-,则π6f x æö-ç÷èø是奇函数,故A 正确;B 项,由)πππcos 1444f æö=+=+=ç÷èøB 错误;C 项,π()2sin 6f x x æö=+ç÷èø,由πππ2π2π,262k x k k -+£+£+ÎZ ,解得2ππ2π2π,33k x k k -+££+ÎZ ,当0k =时,32π3π-££x ,由()f x 在[,]m m -上单调递增,则2ππ33m m -£-<£,解得π03m <£,故C 正确;D 项,π()2sin 6f x x æö=+ç÷èø的图象与直线π23y x =+均过点π,06æö-ç÷èø,由π()2cos 6f x x æö=+ç÷èø¢,则π2cos 026f æö-==ç÷èø¢,故直线π26y x æö=+ç÷èø即π23y x =+与曲线π()2sin 6f x x æö=+ç÷èø相切,如图可知()f x 的图象与直线π23y x =+有且仅有一个公共点,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知x ,y 之间的一组数据:若y ˆˆy a =+,则此曲线必过点_____________.x 14916y12.98 5.017.01【答案】(6.25,4)【解析】【分析】设t =ˆˆˆybt a =+,根据回归方程性质可得回归直线所过定点.【详解】由已知ˆˆya =,设t =ˆˆˆybt a =+,由回归直线性质可得(),t y 在直线ˆˆˆybt a =+上,又1234 2.54t +++==,1 2.98 5.017.0144y +++==,所以点()2.5,4在直线ˆˆˆybt a =+上,故点(6.25,4)在曲线ˆˆy a =上.故答案为:(6.25,4).13. 诗词是中国的传统文化遗产之一,是中华文化的重要组成部分.某校为了弘扬我国优秀的诗词文化,举办了校园诗词大赛,大赛以抢答形式进行.若某题被甲、乙两队回答正确的概率分别为11,43,且甲、乙两队抢到该题的可能性相等,则该题被答对的概率为___________.【答案】724【解析】【分析】分甲抢到题且答对和乙抢到题且答对两种情况计算即可.【详解】解:由题意,甲、乙两队抢到该题的概率均为12,该题被答对的概率为11117242324´+´=.故答案:724.14. 函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,若(1)3f =,则(1)(2)(50)f f f +++=L __________.【答案】3【解析】【分析】首先由函数的奇偶性和对称性,分析函数的周期性,再求值.【详解】()(2)f x f x =-Q ,(2)()f x f x \+=-,又()f x 奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x \+=-=-+=-+=()f x \是周期为4的周期函数,为为()f x Q 是定义在R 上的奇函数,(0)0,(4)(0)0f f f \=\==,(2)(0)0,(3)(1)(1)3f f f f f ===-=-=-(1)(2)(3)(4)0f f f f \+++=,()()()()()12...50012123f f f f f \+++=´++=.故答案为:3.【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,属于中档题型,本题关键是能够通过对称性与周期性的关系确定函数的周期,进而确定函数值的变化特点.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数2111222f x x x æö-=--ç÷èø.(1)求函数()f x 的解析式;(2)对任意的实数1,22x éùÎêúëû,都有()113222f x x ax ³+-恒成立,求实数a 的取值范围.【答案】(1) ()()2471f x x x x R =++Î;(2) (],7a Î-¥.【解析】【详解】试题分析:()1用换元法令112t x =-来求函数()f x 的解析式(2)由(1)得()f x 的解析式代入,分离含参量123a x x æö£++ç÷èø,求出实数a 的取值范围解析:(1)令11222t x x t =-Þ=+∴()()()21222222f t t t =+-+- 2471t t =++即:∴()()2471f x x x x R =++Î.(2)由()11312222f x x ax ³+-Þ ()21347122x x x ax ++³+-即:2232ax x x £++又因为:1,22x éùÎêúëû,∴123a x x æö£++ç÷èø令()123g x x x æö=++ç÷èø,则:()min a g x £又()g x 在1,12x éùÎêúëû为减函数,在[]1,2x Î为增函数.∴()()min 17g x g ==∴7a £,即:(],7a Î-¥.点睛:在解答含有参量的恒成立问题时,可以运用分离含参量的方法,求解不等式,注意分类讨论其符号,最后求解结果.16. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知)()()sin sin sin a A b c B C -=+-.(1)求角C ;(2)若ABC V 外接圆的半径为2,求ABC V 面积的最大值.【答案】(1)π6C =(2)2+【解析】【分析】(1)运用正弦定理实现边角转化,结合余弦定理进行求解即可;(2)根据正弦定理,结合外接圆的半径可以求出2c =,根据三角形面积公式、利用重要不等式进行求解即可.【小问1详解】由已知及正弦定理可得)()()a a b c b c -=+-,整理得222a b c +-=,222cos 2a b c C ab +-\==,()π0,π,6C C Î\=Q .【小问2详解】ABC QV 外接圆的半径为2,4sin cC\=,得222,4c a b =\+=,又(222,42a b ab ab +³\£,当且仅当a b ==时,等号成立,(111sin 422222ABC S ab C \=£´+´=+V ,V面积的最大值为2+.即ABC17. 为响应国家使用新能源的号召,促进“碳达峰碳中和”的目标实现,某汽车生产企业在积极上市四款新能源汽车后,对它们进行了市场调研.该企业研发部门从购买这四款车的车主中随机抽取了50人,让车主对所购汽车的性能进行评分,每款车的性能都有1分、2分、3分、4分、5分五个等级,各评分及相应人数的统计结果如下表.汽车款式合计汽车性能基础版豪华版一般优秀合计性能评分12345汽车款式基础版122310基础版基础版244531豪华版113541豪华版豪华版200353(1)求所抽车主对这四款车性能评分的平均数和第90百分位数;(2)当评分不小于4时,认为该款车性能优秀,否则认为性能一般.根据上述样本数据,完成上面列联a=的独立性检验,能否认为汽车的性能与款式有关?表,并依据0.05(3)为提高这四款新车的性能,现从样本评分不大于2的基础版车主中,随机抽取3人征求意见,记X 为其中基础版1车主的人数,求X的分布列及数学期望.附:()()()()()22n ad bca b c d a c b dc-=++++.a0.100.050.010.005xa2.7063.841 6.6357.879【答案】(1)3,4.5(2)列联表见解析,依据0.05a=的独立性检验,能认为汽车的性能与款式有关;(3)分布列见解析,1【解析】【分析】(1)根据平均数公式求平均数,根据百分位数定义求第90百分位数;(2)由条件数据填写列联表,提出零假设,计算2c,比较2c与临界值的大小,确定结论;(3)由条件可得X服从超几何分布,确定其取值,求取各值的概率,可得分布列,再由期望公式求期望.【小问1详解】由题意得这四款车性能评分的平均数为1 (172931641355)350´+´+´+´+´´=;509045´%=,所以第90百分位数为50数从小到大排列的45和第46个数的平均数,由已知50数从小到大排列后的第45个数为4,第46个数为5,故第90百分位数为454.5 2+=;【小问2详解】由题意得汽车款式汽车性能基础版豪华版合计一般201232优秀51318合计252550零假设为0H :汽车性能与款式无关,根据列联表中的数据,经计算得到220.0550(2013125)505.556 3.841321825259x c ´´-´==»>=´´´.根据小概率值0.05a =的独立性检验,推断0H 不成立,即认为汽车性能与款式有关,此推断犯错误的概率不超过0.05;【小问3详解】由题意可得X 服从超几何分布,且12N =,4M =,3n =,由题意知,X 的所有可能取值为0,1,2,3,则38312C 14(0)C 55P X ===,1482123C C (1)C 2855P X ===,824312112C C (2)C 55P X ===,34312C 1(3)C 55P X === 所以X 的分布列为X123P1455285512551551428121()0123155555555E X =´+´+´+´=.18. 已知锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos a c c B -=.(1)证明:2B C =;(2)若2a =,求cos 1C b c+的取值范围.【答案】(1)证明见解析 (2)33,42æöç÷èø【解析】【分析】(1)由正弦定理、两角和差的正弦公式化简得sin()sin B C C -=,进一步即可证明;(2)由题意首先求得cos C 的取值范围,进一步将目标式子cos 1C b c+转换为只含有cos C 的式子即可求解.【小问1详解】因为2cos a c c B -=,由正弦定理得sin sin 2sin cos A C C B -=,所以sin cos sin cos sin 2sin cos B C C B C C B +-=,所以()sin cos sin cos sin sin sin B C C B C B C C -=Û-=,而0π,0C πB <<<<,则B C C -=或πB C C -+=,即2B C =或B π=(舍去),故2B C =.【小问2详解】因为ABC V 是锐角三角形,所以π02π022π0π32C C C ì<<ïïï<<íïï<-<ïî,解得ππ64C <<,所以cos Ccos C <<,由正弦定理可得:sin sin b B c C =,则sin sin 22cos sin sin B C b c c C c C C=×=×=×,所以cos 12C b c =,所以cos 132C b c c+=,因为2cos a c c B -=,所以22cos 2c c C -=,所以22cos 21c C =+,所以()()234cos 132cos 21cos 13342442cos 21C C C b c c C -++====+,因为cos CÎ,所以24cos 1C -Î()1,2,所以()234cos 1cos 14C C b c -+=的取值范围是33,42æöç÷èø.19. 已知()x x a b f x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =.设()()()2f x F x f x =.(1)求a ,b 的值,并求()F x 的值域;(2)把区间()0,2等分成2n 份,记等分点的横坐标依次为i x ,1,2,3,,21i n =-L ,设()142321x g x -=-+,记()()()()()()*12321g g g g n H n x x x x n -=++++ÎN L ,是否存在正整数n ,使不等式()()F x H n ≥有解?若存在,求出所有n 的值,若不存在,说明理由.【答案】(1)答案见解析(2)存在,n =1,2或3【解析】【分析】(1)由()f x 是R 上的奇函数,且()325f =求出,a b 可得()f x 及()F x ,利用分离常量求出()F x 的值域;(2)()()113g x f x =-+得出()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,利用对称性求出()H n 可得答案.【小问1详解】因为()x x a bf x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =,所以()()002200325a bf a b a b f a b ì+==ïï-í+ï==ï-î,解得21a b =ìí=-î,则()2121x x f x -=+,因为定义域为R ,()()21212121x x x x f x f x -----==-=-++,所以()f x 是R 上的奇函数,故2,1a b ==-,()()()2222221212221212121x x x x x x x f x F x f x -++×+==´=+-+()22212221012122x x xx x x ++×==+¹++,因为20x >,所以()221121222x xF x =+£+=+,当且仅当122xx=,即x =0时等号成立,所以()2F x <又x R Î时,()211122xxF x =+>+,所以()12F x <<,即()F x 的值域为()1,2;【小问2详解】把区间()0,2等分成2n 份,则等分点的横坐标为i ix n=,1,2,3,,21i n =-L ,()()1142211113212133x x g x f x --=-=-+=-+++,()f x 为奇函数,所以()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,1,2,3,,21i n =-L ,所以()122221g g g g n n H n n n n n --æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL 12122211n n n n n g g g g g g g n n n n n n n éùéùéù---+æöæöæöæöæöæöæö=+++++++ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúêúêúèøèøèøèøèøèøèøëûëûëûL 122212133333n n --=++++=L 1442443项所以()2123n H n -=<,即72n <.故存在正整数1,2n =或3,使不等式()()f x H n ³有解.【点睛】关键点点睛:第二问的解题的关键点是判断出()()113g x f x =-+,()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=.。

河北省邢台市第二中学2014-2015学年高二上学期第二次月考化学试题

河北省邢台市第二中学2014-2015学年高二上学期第二次月考化学试题

河北省邢台市第二中学2014-2015学年高二上学期第二次月考化学试题考生注意:本卷总分为100分时间为90分钟一、选择题(本大题共15小题,每小题2分,共30分,只有一项是符合题意)1.下列方程式书写正确的是()A.NaHCO 3在水溶液中的电离方程式:NaHCO3 Na++HCO3-B.HS-的水解方程式:HS-+H 2O H2S+OH-C.CO 32-的水解方程式:CO32-+2H2O H2CO3+2OH-D.H 2SO3的电离方程式H2SO3 2H++SO32-2.某学生的实验报告所列出的下列数据中合理的是()A.用10mL量筒量取7.13mL稀盐酸B.用托盘天平称量25.20g NaClC.用广泛pH试纸测得某溶液的pH为2.3D.用25mL滴定管做中和滴定时,用去某浓度的碱溶液21.70mL3.下列各组离子能在指定的环境下可以大量共存的是()A.在pH=0的溶液中:Na+、Fe2+、Cl-、NO3-B.由水电离出的c(H+)=1×10-14 mol·L-1的溶液:K+、NH4+、Cl-、CO32-C.c(H+)<c(OH-)溶液:Na+、K+、SO32-、AlO2-D.某无色透明溶液:Na+、Al3+、SO42-、HCO3-4.有关AgCl沉淀的溶解平衡的说法正确的是()A. AgCl沉淀的生成和溶解在达到平衡时就不再进行B. AgCl不溶于水,溶液中没有Cl-和Ag+C. 升高温度,AgCl的溶解度增大,K sp增大D. 向AgCl饱和溶液中加入NaCl固体,AgCl的溶解度和K sp都不变5.下列叙述中与盐类的水解有关的是( )①明矾和FeCl3可作净水剂,②为保存FeCl3溶液,要在溶液中加少量盐酸,③实验室配制AlCl3溶液时,应先把它溶在较浓的盐酸中,然后加水稀释,④NH4Cl与ZnCl2溶液可作焊接中的除锈剂,⑤实验室盛放Na2CO3溶液的试剂瓶应用橡皮塞,而不用玻璃塞,⑥用NaHCO3与Al2(SO4)3两种溶液可作泡沫灭火剂,⑦长期使用硫酸铵,土壤酸性增强;草木灰与铵态氮肥不能混合施用A.①④⑦B.②⑤⑦ C.③⑥⑦ D.全有关6.下列说法正确的是()A.草酸氢钾溶液呈酸性,在0.1mol·L-1KHC2O4溶液中:c(C2O-24)>c(H2C2O4)B.在小苏打水溶液中:c(Na+)+c(H+)=c(HCO-3)+c(CO-23)+c(OH-)C.相同温度下,1 mol·L—1氨水溶液与0.5mol·L—1氨水溶液中,c(OH-)之比是2:1)>c(Cl-)>c(H+)>c(OH-)D.当氨水与盐酸恰好完全反应时,c(NH+47.把下列物质的水溶液加热蒸干灼烧后,能得到原溶质的是()A.NaHCO3 B. FeCl3 C. Mg (NO3)2 D.Al2(SO4)38.用铜片、银片、Cu (NO3)2溶液、AgNO3溶液、导线和盐桥(装有琼脂-KNO3的U型管)构成一个原电池。

2024—2025学年河北省唐山市第二中学高三上学期第一次月考物理试卷

2024—2025学年河北省唐山市第二中学高三上学期第一次月考物理试卷

2024—2025学年河北省唐山市第二中学高三上学期第一次月考物理试卷一、单选题(★★) 1. 如图所示,一个原子核X经图中所示的一系列、衰变后,生成稳定的原子核Y。

下列说法正确的是()A.此过程发生了6次衰变B.此过程发生了8次衰变C.原子核X发生衰变的半衰期与温度有关D.原子核X的比结合能比原子核Y的比结合能小(★★) 2. 1885年,瑞士科学家巴尔末对当时已知的氢原子在可见光区的4条谱线(记作、、和)作了分析,发现这些谱线的波长满足一个简单的公式,称为巴尔末公式。

这4条特征谱线是玻尔理论的实验基础。

如图所示,这4条特征谱线分别对应氢原子从、、、能级向能级的跃迁,下面4幅是跃迁时辐射光子的能量,合理的是()A.B.C.D.(★★★★) 3. 如图所示,A、B两声源相距,它们同相位地发出频率为的声音,取声速。

下列说法中正确的是()A.A、B连线上(不包含A、B点)有10个干涉极小点B.A、B连线上(不包含A、B点)有13个干涉极大点C.C、D连线上有5个干涉极大点D.A、D连线上(不包含A点)有7个干涉极大点(★★★) 4. 人字梯是生活中常用的工具,如图所示,人字梯置于水平地面上,重为G的人静止在其顶部水平横杆中点处,限位轻绳松弛,水平横杆与四根相同的斜杆垂直,左右斜杆夹角,不计人字梯的重力。

则每根斜杆受到地面的()A.支持力大小为B.作用力大小为C.摩擦力大小为D.摩擦力大小为(★★★) 5. 2019年12月16日,中国篮球公开赛南区大区赛在醴陵举行。

若某次投篮直接入网(如图所示),已知篮球出手时距地面高度为h1,出手过程中对篮球做功为W,篮筐距地面高度为h2,篮球的质量为m,不计空气阻力,篮球可看作质点,则篮球()A.出手时的速率为B.进筐时的动能为W+mgh1-mgh2C.从静止到进筐的过程中,机械能的增量为W+mgh2-mgh1D.从出手到进筐的过程中,运动总时间为(★★★) 6. 庄老师、王老师喜欢比赛打水漂。

河北省邢台市第二中学2014-2015学年高二上学期第二次月考物理试题word版含答案

河北省邢台市第二中学2014-2015学年高二上学期第二次月考物理试题word版含答案

河北省邢台市第二中学2014-2015学年高二上学期第二次月考物理试题一、选择题(1-8题为单选题,9-12题为多选题,每题4分,共48分,选对选不全给2分)1.关于磁场和磁感线的描述,正确的说法是( )A.磁感线从磁体的N极出发,终止于S极B.磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C.沿磁感线方向,磁场逐渐减弱D.在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小2.关于通电直导线所受的安培力F、磁感应强度B和电流I三者方向之间的关系,下列说法中正确的是:A. F、B、I的三者必定均相互垂直B. F必定垂直于B、I,但B不一定垂直于IC. B必定垂直于F、I,但F不一定垂直于ID. I必定垂直于F、B,但F不一定垂直于B3.如图所示,在一匀强电场区域中,有A、B、C、D四点恰好位于一平行四边形的四个顶点上,已知A、B、C三点电势分别为φA=1 V,φB=4 V,φC=0,则D点电势φD 的大小为()A.-3 V B.0 C.2 V D.1 V4.在磁感应强度为B的磁场中,一面积为S的矩形线圈abcd如图所示竖直放置,此线圈平面向右以OO′为轴转动θ角,则磁通量的变化量为( )A.0 B.BSC.BSsinθ-BS D.BScosθ-BS5.一电流表的满偏电流I g=1mA,内阻为200Ω。

要把它改装成一个量程为0.5A的电流表,则应在电流表上()A.并联一个200Ω的电阻B.并联一个0.4Ω的电阻C.串联一个0.4Ω的电阻D.串联一个200Ω的电阻6.如图所示为将不同电压加在一段金属导体两端,在温度不变的情况下所测得的I -U图线.试根据图线回答:若将这段金属导体在保持长度不变的前提下增大其横截面积,则这段导体的电阻( )A.等于4.0 ΩB.大于2.0 ΩC.小于2.0 ΩD.等于2.0 Ω7.如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,下极板接地.一带电油滴位于电容器中的P点且恰好处于平衡状态.现将平行板电容器的上极板竖直向上移动一小段距离()A.带电油滴将沿竖直方向向上运动B.P点的电势将降低C .带电油滴的电势能将减小D .则电容器的电容减小,极板带电量将增大8. 如图所示,U -I 图线上,a 、b 、c 各点均表示该电路中有一个确定的工作状态,b 点α=β=45°,则下列说法中正确的是 ( )A .在b 点时,电源有最小输出功率B .在b 点时,电源的总功率最大C .从a→b 时,β增大,电源的总功率和输出功率都将增大D .从b→c 时,β增大,电源的总功率和输出功率都将减小9.关于库仑定律的公式F =k Q 1Q 2r 2,下列说法中正确的是( ) A .当真空中的两个点电荷间的距离r →∞时,它们之间的静电力F →0B .当真空中的两个点电荷间的距离r →0时,它们之间的静电力F →∞C .当两个点电荷之间的距离r →∞时,库仑定律的公式就不适用了D .当两个点电荷之间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用10.把一小段通电直导线垂直磁场方向放入一匀强磁场中,图中能够正确反映各量之间关系的是( )11.带电粒子以初速度v 0垂直电场方向进入平行金属板形成的匀强电场中,它离开时偏离原方向偏移距离为y ,偏角为φ,下列说法正确的是( )A .粒子在电场中做类平抛运动B .偏角φ与粒子的电荷量和质量无关C .粒子飞过电场的时间,决定于极板长和粒子进入电场时的初速度D .粒子的偏移距离y ,可用加在两极板上的电压控制12.如图所示,电源内阻不可忽略,R 1为半导体热敏电阻,它的电阻随温度的升高而减小,R 2为锰铜合金制成的可变电阻.当发现灯泡L 的亮度逐渐变暗时,可能的原因是( )A .R 1的温度逐渐降低B .R 1的温度逐渐升高C .R 2的阻值逐渐增大D .R 2的阻值逐渐减小二.实验题:(13题每空3分,14题每空3分,连线题4分,有一处连错不给分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档