2020-2021南京市南京市第九中学八年级数学上期中模拟试题附答案
人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)
2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。
2020-2021学年八年级上学期期中考试数学试题 (2)(含答案)
一、选择题(本大题12个小题,每小题4分,共48分)1.下列长度的3根小木棒不能搭成三角形的是()A.2 cm,3 cm,4 cmB.1 cm,2 cm,3 cmC.3 cm,4 cm,5 cmD.4 cm,5 cm,6 cm2.下列倡导节约的图案中,是轴对称图形的是()3.如图,在△ABC中,AE⊥BC交BC的延长线于点E,过C 点作CD⊥BC交AB于点D,则下列说法错误的是()A.在△ACE中,AE是EC边上的高B.在△BCD中,BC是CD边上的高C.在△ABC中,CD是BC边上的高D.在△ABE中,BE是AE边上的高4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.∠BCE=∠ACD,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,BC=EC5.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.150°6.如图所示的钢架中,∠A=18°,焊上等长的钢条P1P2,P2P3,P3P4,P4P5来加固钢架,则∠P5P4B的度数是()A.80°B.85°C.90°D.100°7.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,较长直角边的中点为M,绕中点M转动上面的△ABC,直角顶点C恰好落在△A1B1C1的斜边A1B1上.当∠A=30°,B1C=2时,AB的长为()A.6B.8C.9D.108.如图,已知△ABC中,AD平分∠BAC,DE⊥AB于点E.若AC=5 cm,DE=2 cm,则△ACD的面积为()A.2.5 cm2B.5 cm2C.6 cm2D.10 cm29.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=12,CD=5,则ED的长度是()A.8B.7C.6D.510.下图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(6)个图形需要的木棍数量为()A.60根B.63根C.127根D.130根11.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°12.如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE,EF.下列结论:①AB=2BD;②图中有4对全等三角形;③BD=BF;④若将△DEF沿EF折叠,则点D不一定落在AC上;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1B.2C.3D.4二、填空题(本大题6个小题,每小题4分,共24分)13.已知图中的两个三角形全等,则∠α的度数是.14.若一个多边形的内角和是540°,则该多边形的边数是.15.如图,△ABC≌△ADE,点C在边AD上,∠B=35°,∠DAB=60°,若∠DEC=x°,则x=.16.如图,在△ABC中,∠ABC=∠ACB,AB=25 cm,AB的垂直平分线交AB于点D,交AC于点E,若△BCE的周长为43 cm,则底边BC的长为.17.如图,△ABC与△ADE均为等边三角形,B,D,E在同一条直线上.若BE=6,CE=4,则△ADE的周长为.18.如图,在△ABC中,AG=BG,BD=DE=EC,AC=4AF,若四边形DEFG的面积为11,则△ABC的面积为.三、解答题(本大题7个小题,每小题10分,共70分)19.如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.20.(1)已知:如图1,在△ABC中,请你按下列要求画图(“作图”不要求写作法,但要保留作图痕迹并写出结论).①用尺规作图作∠BAC的平分线AD交边BC于D点;②作线段BC的垂直平分线EF,交AC于E点,交BC于F点.(2)如图2,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在网格的格点上,请在网格中作△ABC关于直线l对称的△A1B1C1,并标注相应的字母.图1 图221.如图,在△ABC中,AB=AC,点D,E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.22.如图所示,已知△ABC中,AB=AC,E,D,F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.EF.求证:EG=1223.已知:如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于点E.求证:(1)△DEB≌△DCB;(2)AD+DE=BE.24.【概念学习】在平面中,我们把大于180°且小于360°的角称为优角.如果两个角相加等于360°,那么称这两个角互为组角,简称互组.(1)若∠1,∠2互为组角,且∠1=135°,则∠2=°. 【理解应用】习惯上,我们把有一个内角大于180°的四边形俗称为镖形.(2)如图1,在镖形ABCD中,优角∠BCD与钝角∠BCD互为组角,试探索内角∠A,∠B,∠D与钝角∠BCD之间的数量关系,并说明理由.【拓展延伸】(3)如图2,已知四边形ABCD,延长AD,BC交于点Q,延长AB,DC交于点P,∠APD,∠AQB的平分线交于点M,∠A+∠QCP=180°.①写出图中一对互组的角(两个平角除外);②直接运用(2)中的结论,试说明:PM⊥QM.25.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG 于点I,求证:I是EG的中点.四、解答题(本大题1个小题,共8分)26.如图1,点A,D在y轴正半轴上,点B,C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°-∠BDO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.1.B2.C3.C4.C5.C6.C7.B8.B9.B10.C11.B12.C13.50°14.515.2516.18cm18. 2419. 证明:∵BF=CE ,∴BF-FC=CE-CF ,即BC=EF.∵AB ∥DE ,∴∠E=∠B.在△ABC 和△DEF 中, {∠B =∠E ,∠1=∠2,BC =EF ,∴△ABC ≌△DEF(AAS).20. 略.21. 解:∵AB=AC ,∴∠B=∠C.∵∠B=50°,∴∠C=50°,∴∠BAC=180°-50°-50°=80°.∵∠BAD=55°,∴∠DAE=25°.∵DE ⊥AD ,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.22. 证明:如答图,连接DE ,DF ,∵AB=AC ,∴∠B=∠C.在△EBD 和△DCF 中, {BE =CD ,∠B =∠C ,BD =CF ,∴△EBD ≌△DCF(SAS),∴DE=DF.∵DG ⊥EF ,∴DG 是等腰△DEF 的中线,∴EG=12EF.23. 证明:(1)∵BD 平分∠CBA ,∴∠EBD=∠CBD.∵DE ⊥AB ,∴∠DEB=90°.∵∠C=90°,∴∠DEB=∠C.在△DEB 和△DCB 中, {∠DEB =∠C ,∠EBD =∠CBD ,DB =DB ,∴△DEB ≌△DCB(AAS).(2)由(1)知△DEB ≌△DCB ,∴DE=DC ,BE=BC.∵AD+DC=AC=BC ,∴AD+DE=BE.24. (1) 225(3)优角∠PCQ 与钝角∠PCQ解:(1)∵∠1,∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°.(2)钝角∠BCD=∠A+∠B+∠D.理由如下:∵在四边形ABCD 中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°,∴钝角∠BCD=∠A+∠B+∠D.(3)①优角∠PCQ 与钝角∠PCQ.②∵∠APD ,∠AQB 的平分线交于点M ,∴∠AQM=∠BQM ,∠APM=∠DPM.令∠AQM=∠BQM=α,∠APM=∠DPM=β.∵在镖形APMQ 中,有∠A+α+β=∠PMQ ,在镖形APCQ 中,有∠A+2α+2β=∠QCP ,∴∠QCP+∠A=2∠PMQ. ∵∠A+∠QCP=180°,∴∠PMQ=90°.∴PM ⊥QM.25. (1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠CEA=90°. ∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.在△ADB 和△CEA 中, {∠ABD =∠CAE ,∠BDA =∠CEA ,AB =AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE.(2)解:成立.证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α, ∴∠DBA=∠CAE.在△ADB 和△CEA 中, {∠BDA =∠AEC ,∠DBA =∠CAE ,AB =AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE.(3)证明:如答图,过点E 作EM ⊥HI 于点M ,过点G 作GN ⊥HI 的延长线于点N.∴∠EMI=∠GNI=90°.由(1)和(2)的结论可知EM=AH=GN(证△AEM ≌△BAH 和△AHC ≌△GNA),∴EM=GN.在△EMI 和△GNI 中,{∠EIM =∠GIN,EM =GN,∠EMI =∠GNI ,∴△EMI ≌△GNI(AAS),∴EI=GI ,∴I 是EG 的中点.26. (1)证明:∵∠CAO=90°-∠BDO ,∴∠CAO=∠CBD.在△ACD 和△BCD 中, {∠ACD =∠BCD,∠CAO =∠CBD,CD =CD ,∴△ACD ≌△BCD(AAS).∴AC=BC.(2)由(1)知∠CAD=∠DEA=∠DBO ,∴BD=AD=DE.如答图,过D 作DN ⊥AC 于N 点,∵∠ACD=∠BCD ,∴DO=DN.在Rt △BDO 和Rt △EDN 中, {BD =DE ,DO =DN ,∴Rt △BDO ≌Rt △EDN(HL),∴BO=EN.在△DOC 和△DNC 中, {∠DOC =∠DNC =90°,∠OCD =∠NCD ,DC =DC ,∴△DOC ≌△DNC(AAS),∴OC=NC ,∴BC+EC=BO+OC+NC-NE=2OC=8.。
2020-2021学年八年级数学上学期期中测试卷02(沪教版)(解析版)
八年级第一学期数学期中考试(二)一、单选题(本大题共6题,每题3分,共18分)1.在下列方程中,一元二次方程的个数是()①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣5x=0.A.1个B.2个C.3个D.4个【答案】A【解析】①3x2+7=0,是一元二次方程,故本小题正确;②ax2+bx+c=0,a≠0时是一元二次方程,故本小题错误;③(x﹣2)(x+5)=x2﹣1,整理后不是一元二次方程,故本小题错误;④3x2﹣=0,是分式方程,不是一元二次方程,故本小题错误.故选A.2.下列二次根式中属于最简二次根式的是()A14B48C abD44a+【答案】A【解析】如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.只有A符合定义.故答案选A3.实数24b b ac±-是方程的根()A.20ax bx c++=B.20ax bx c-+= C.20ax bx c--=D.20ax bx c+-=【答案】B【解析】A方程20ax bx c++=的根为24b b acx-±-=,故A错误B 方程20ax bx c -+=的根为242b b ac x a ±-=,故B 正确C 方程20ax bx c --=的根为242b b ac x a +±=,故C 错误 D 方程20ax bx c +-=的根为24b b ac x +-±=,故D 错误 4.下列变形正确的是( )A .(16)(25)1625--=-⨯-B .111161642442=⨯=⨯=C .2()a b +=|a +b |D .222524-=25﹣24=1 【答案】C【解析】A 、()()1625162516254520-⨯-=⨯=⨯=⨯=,故本选项不符合题意;B 、1656516==442,故本选项不符合题意; C 、2(a b)+=|a+b|,故本选项符合题意;D 、()()222524?2524252449-=+⨯-==7,故本选项不符合题意; 故选C .5.已知k 1<0<k 2,则函数y=k 1x 和2k y x=的图象大致是( ) A . B .C .D . 【答案】D【解析】试题分析::∵k 1<0<k 2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D .6.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .a c =B .a b =C .a b =D .a b c ==【答案】A【解析】 ∵一元二次方程ax 2+bx+c=0(a≠0)有两个相等的实数根∴△=b 2−4ac=0,又a+b+c=0,即b=−a−c ,代入b 2−4ac=0得(−a−c)2−4ac=0,即(a+c)2−4ac=a 2+2ac+c 2−4ac=a 2−2ac+c 2=(a−c)2=0,∴a=c故选:A二、填空题(本大题共12题,每题3分,共36分)73的有理化因式是____________+3【解析】一般二次根式的有理化因式是符合平方差公式的特点的式子3 +3+38.化简201920202)2)⨯的结果为_________.【答案】2.【解析】201920202)2)⨯=20192)2)]2)⋅2019(34)2)=-⋅=2.故答案为:2.9.在实数范围内因式分解2243=x x +- _____________.【答案】2x x ⎛++ ⎝⎭⎝⎭ 【解析】2x 2+4x-3=0的解是x 1,x 2,所以可分解为2x 2+4x-3=2()().即: 2x 2+4x-3=22222x x ⎛⎫⎛+-++ ⎪ ⎪⎝⎭⎝⎭.故答案为: 2x x ⎛+⎝⎭⎝⎭. 10.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为______.【答案】6或12或10【解析】解:∵2680x x -+=,∴()()240x x --=,解得:2x =或4x =,∵等腰三角形的底和腰是方程2680x x -+=的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10. 当边长为2的等边三角形,得出这个三角形的周长为2+2+2=6.当边长为4的等边三角形,得出这个三角形的周长为4+4+4=12.∴这个三角形的周长为6或12或10.故答案为:6或12或10.11.计算: =_________.2【解析】因为2<22==212.已知a ,b ,c 为三角形三边,则++.【答案】a b c ++【解析】由三角形的三边关系定理得:,,a b c a c b b c a +>+>+>0,0,0a b c b a c b c a ∴+->--<+->++a b c a c b b c a =+-++-++-a b c =++故答案为:a b c ++.13.方程22(2)(3)20mm x m x --+--=是一元二次方程,则m=_____. 【答案】-2【解析】试题分析:根据一元二次方程的定义,二次项系数不为0,未知数的次数为2,可得22022m m -≠⎧⎨-=⎩,可求得m=-2. 故答案为:-214.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.【答案】r c【解析】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r =,其中自变量是r ,因变量是C .故答案为,.r C15.如图,点M 是反比例函数k y x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.【答案】14【解析】∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a =∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP∴=72k ∴14k =故答案为:14.16.若关于x 的一元二次方程2124102x mx m --+=有两个相等的实数根,则2(2)2(1)m m m ---的值为__.【答案】72【解析】由题意可知:△=4m 2−2(1−4m )=4m 2+8m−2=0,∴m2+2m=12,∴(m−2)2−2m(m−1)=−m2−2m+4=−12+4=72,故答案为7 2 .17.若A、B两点关于y轴对称,且点A在双曲线12yx=上,点B在直线3y x上,设点A的坐标为(a,b),则a bb a+=________________.【答案】16【解析】试题解析:∵点A的坐标为(a,b),A、B两点关于y轴对称,∴B(-a,b),∵点A在双曲线y=-12x上,点B在直线y=x+3上,∴a b=-12,-a+3=b,即ab=-12,a+b=3,∴原式=2()2a b abab+-=16.18.某超市销售一种水果,每月可售出500千克,每千克盈利10元.经市场分析,售价每涨1元,月销售量将减少10千克.如果该超市销售这种水果每月盈利8000元,那么该水果的单价涨了多少元?设水果单价涨了x元,根据题意,可列方程为_____.【答案】(10+x)(500﹣10x)=8000【解析】设水果单价涨了x元,则每千克水产品获利(10+x)元,月销售量减少10x千克;由题意可列方程(10+x)(500﹣10x)=8000.故答案为:(10+x)(500﹣10x)=8000.三、解答题(本大题共7题,19-22每题5分,23-24每题8分,25题10分,共46分).19.计算:(1181224÷3(2)(13(3)+(3)2.【答案】(1)2;(2)3.【解析】解:(1)原式==﹣=;(2)原式=1﹣=.20.解方程:(1)2230x x --=(2)23(1)24x -=(3)23250x x +-=【答案】(1)13x =,21x =-;(2)1211x x ==-,;(3)153x =-,21x = 【解析】解:(1)2230x x --=, (3)(1)0x x -+=,∴13x =,21x =-.(2)()23124x -=, 2(1)8x -=,1x -=±∴1211x x ==-,.(3)23250x x +-=,(35)(1)0x x +-=, ∴153x =-,21x =. 21.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【答案】(1) 2m <;(2) m 的值是1.【解析】解:(1)根据题意得:()()22410m --->,解得:2m <.故m 的取值范围为2m <;(2)由(1)得:2m <m 为非负整数,0m ∴=或1,把0m =代入原方程得:2210x x --=,解得:112x =-,212x =+,0m =不合题意舍去;把1m =代入原方程得:220x x -=,解得:10x =,22x =.故m 的值是1.22.如图,平面直角坐标系xOy 中,点(),1A a 在双曲线3y x=上,函数y kx b =+的图象经过点A ,与y 轴上交点()0,2B -.(1)求直线AB 的解析式;(2)设直线AB 交x 轴于点C ,求三角形OAC 的面积.【答案】(1)2y x =-;(2)1.【解析】(1)将(),1A a 代入3y x =得31a=,解得3a = ()3,1A ∴将()3,1A ,()0,2B -代入y kx b =+得312k b b +=⎧⎨=-⎩ 解得12k b =⎧⎨=-⎩故直线AB 的解析式为2y x =-;(2)如图,过点A 作AH OC ⊥由点A 的坐标得:1AH =对于2y x =-当0y =时,20x -=,解得2x =()2,0C ∴ 2OC ∴= 则1121122OAC S OC AH =⋅=⨯⨯=.23.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一式子的平方,如243(13)+=+,然后小明以进行了以下探索: 设23(3)a m +=+(其中a ,b ,m ,n 均为整数),则有223323a b m n mn +=++,所以223a m n =+,2b mn =,这样小明找到了一种类似3a b +请仿照小明的方法探索解决下列问题:(1)当a ,b ,m ,n 均为整数时,若25(5)a b m n ++,则a=_____,b=_______; (2)请找一组正整数,填空:5(____+______)2; (3)若245(5)a m +=+,且a ,m ,n 均为正整数,求a 的值.【答案】(1)225m n +,2mn ;(2)5(答案不唯一);(3)9或21.【解析】解:(1)∵(255a m +=+ = 2m 5mn + 25n , ∴a=225m n +,b=2mn .(2)令m=2,n=1,则a=22+5×12=9,b=2×2×1=4,∴()2;故答案为;(3)由题意,得22542a m nmn ⎧=+⎨=⎩∵42mn=,且m,n为正整数∴m=2,n=1或m=1,n=2∴222519a=+⨯=或2215221a=+⨯=.24.某水果店销售一种水果的成本价是5元/千克.在销售过程中发现,当这种水果的价格定在7元/千克时,每天可以卖出160千克.在此基础上,这种水果的单价每提高1元/千克,该水果店每天就会少卖出20千克.()1若该水果店每天销售这种水果所获得的利润是420元,则单价应定为多少?()2在利润不变的情况下,为了让利于顾客,单价应定为多少?【答案】(1)若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.()2因为让利于顾客,所以定价定为8元.【解析】解:(1)若该水果店每天销售这种水果所得利润是420元,设单价应为x元,由题意得:(x-5)[160-20(x-7)]=420,化简得,x2-20x+96=0,解得x1=8,x2=12.答:若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.(2)因为让利于顾客,所以定价定为8元.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.如图,正方形OAPB、ADFE的顶点A、D.B在坐标轴上,点B在AP上,点P、F在函数kyx=上,已知正方形OAPB的面积是9.(1)求k 的值和直线OP 的解析式;(2)求正方形ADFE 的边长(3)函数k y x =在第三象限的图像上是否存在一点Q ,使得△ABQ 的面积为10.5?若存在,求出Q 点坐标;若不存在,请说明理由.【答案】(1)9y x =;直线OP 的解析式为y=x ;(2)正方形ADFE 的边长为得3352-+;(3)不存在.【解析】分析: (1)利用正方形的性质得到P 点坐标为(3,3),再把P 点坐标代入k y x =即可得到k 的值;然后利用待定系数法求直线OP 的解析式;(2)设正方形ADFE 的边长为a ,利用正方形的性质易表示F 点的坐标为(a+3,a ),然后把F (a+3,a )代入9y x =,再解关于a 的一元二次方程即可得到正方形ADFE 的边长;(3)如图,连接QA ,QB ,QO ,AB ,设Q (x ,y )(x <0),利用S △ABQ =S △AOQ + S △BOQ + S △ABO =10.5列出关于x 的方程求解即可.解:(1)∵正方形OAPB 的面积为9,∴PA=PB=3,∴P 点坐标为(3,3),把P (3,3)代入k y x =得,k=3×3=9, 即9y x=;设直线OP 的解析式为y=k 1x ,把P (3,3)代入y=k 1x 得,k 1=1,∴直线OP 的解析式为y=x ;(2)设正方形ADFE 的边长为a ,则F 点的坐标为(a+3,a ),把F(a+3,a)代入9yx=得,a(a+3)=9,解得a1=3352-+,a2=3352--,∴正方形ADFE的边长为得335 -+;(3)∵P(3,3)且四边形AOBP是正方形,∴AO=BO=3,设Q(x,9x)(x<0),连接QO,QB,QA,AB,如图所示,假定△ABQ的面积为10.5,则有,S△BOQ+S△AOQ+S△AOB=10.5即,11913||3||3310.5 222xx⨯⨯+⨯⨯+⨯⨯=∵x<0∴方程整理得,2490x x++=∵△=2244419200b ac-=-⨯⨯=-<∴此方程无实数解,故函数9yx=在第三象限的图像上不存在一点Q,使得△ABQ的面积为10.5。
2020-2021学年度九年级(上)期中数学试卷 (附答案)
2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠A O C的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x,2017)、(x,2017)是12该函数图象上的两个点,则当x=122时,函数值y=(A.﹣2017B.c C.0)D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x<x<x<x<x<x<x,根据表中所提供的信息,以下判断正确的是()①a 1234567>0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x… (x1x2)mx3x4kx5x6mx7……y169916 A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x,x,那么(1+x)(1+x)的值1212是.10.(3分)如图,将△AB C绕点A逆时针方向旋转到△A DE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:.①二次三项式ax2++的最大值为4;②4+2+<0;③一元二次方程2++=1的bx c a b c ax bx c 两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x2﹣2x﹣15=0.̂̂14.(6分)如图,在⊙O中,=A40D,∠=°,求∠的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽1度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池41面积的,求道路的宽.616.(6分)如图,将△ABC绕点A逆时针旋转得到△AB′C′.若点B′落到BC边上,∠B=50°.求∠CB′C′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BA D是它的个外角,OP⊥B C交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BA D的角平分线A G.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且O D∥B C,O D与AC 交于点E.(1)若∠B=70°,求∠CA D的度数;(2)若AB=4,A C=3,求DE的长.21.(8分)如图,△OB D中,O D=B D,△OB D绕点O逆时针旋转一定角度后得到△OA C,此时B,D,C三点正好在一条直线上,且点D是B C的中点.(1)求∠C O D度数;(2)求证:四边形O D A C是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。
2020-2021学年八年级上学期数学期中考试卷附答案
一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、103.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 25.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是cm.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、参考答案与试题解析一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线〔成轴〕对称,进而得出答案.解答:解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B、点评:此题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、10考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据n边形的内角和公式,得〔n﹣2〕•180=1080,解得n=8.∴这个多边形的边数是8.应选:C、点评:此题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,假设AB=AC,那么△ABD ≌△ACD〔SAS〕;故A不符合题意;B、∵∠1=∠2,AD为公共边,假设BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,假设∠B=∠C,那么△ABD≌△ACD〔AAS〕;故C不符合题意;D、∵∠1=∠2,AD为公共边,假设∠BDA=∠CDA,那么△ABD≌△ACD 〔ASA〕;故D不符合题意.应选:B、点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 2考点:角平分线的性质;垂线段最短.分析:根据垂线段最短,过点D作DQ⊥AB于Q,此时DQ的值最小,再根据角平分线上的点到角的两边距离相等可得DQ=CD、解答:解:如图,过点D作DQ⊥AB于Q,由垂线段最短可得,此时DQ的值最小,∵∠C=90°,BD是∠ABC的平分线,∴DQ=CD=3.应选C、点评:此题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并确定出DQ最短的情况是解题的关键.5.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m考点:三角形三边关系.专题:应用题.分析:首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.解答:解:∵PA、PB、AB能构成三角形,∴PA﹣PB<AB<PA+PB,即4m<AB<28m.应选D、点评:三角形的两边,那么第三边的范围是:大于的两边的差,而小于两边的和.6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°考点:翻折变换〔折叠问题〕;三角形内角和定理.专题:计算题.分析:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∠A+∠B+∠C=180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.解答:解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.应选C、点评:此题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据〝角边角〞画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用〝角边角〞定理作出完全一样的三角形.应选D、点评:此题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD考点:全等三角形的判定与性质;平行线的判定.分析:由∠B=∠C=90°,直接得出选项B成立;作EF⊥AD垂足为点F,证得△DEF≌△DCE和△AFE≌△ABE,得出选项A、选项D成立;因为AB≠CD,AE≠DE,不可能得出选项C成立;由此得出结论即可.解答:解:∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故B正确;如图,作EF⊥AD垂足为点F,∴∠DFE=90°,∴∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DEF和△DCE中;,∴△DEF≌△DCE〔AAS〕;∴CE=EF,DC=DF,∠CED=∠FED,又∵∠B=∠C=∠DFE=90°,AE=AE,在Rt△AFE和Rt△ABE中,,∴Rt△AFE≌Rt△ABE〔HL〕;∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故A正确;AD=AF+DF=AB+CD,故D正确;∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE、∵AB≠CD,AE≠DE,∴△EBA≌△DCE不可能成立.即C不正确;应选:C、点评:此题题综合考查了角平分线的性质、三角形全等的判定与性质等知识点.9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个考点:轴对称的性质.分析:先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.解答:解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.应选C、点评:此题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8考点:等腰直角三角形;勾股定理.专题:网格型.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC 底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.应选:C、点评:此题考查了等腰三角形的判定;解答此题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是22.考点:等腰三角形的性质.分析:题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.点评:此题考查了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是26 cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.解答:解:如图,连接BD、∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC,∵AC=16cm,BC=10cm,∴△BCD的周长=10+16=26cm.故答案为:26.点评:此题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=35°.考点:等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠B,根据等边对等角可得∠C=∠CAD,然后利用三角形的内角和定理列式进行计算即可得解.解答:解:∵AB=AD,∠BAD=40°,∴∠B=〔180°﹣∠BAD〕=〔180°﹣40°〕=70°,∵AD=DC,∴∠C=∠CAD,在△A BC中,∠BAC+∠B+∠C=180°,即40°+∠C+∠C+70°=180°,解得∠C=35°.故答案为:35°.点评:此题考查了等腰三角形两底角相等的性质,等边对等角的性质,熟记性质是解题的关键.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=8.考点:含30度角的直角三角形;等腰三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.解答:解:∵∠DBC=60°,∠C=90°,∴∠BDC=90°﹣60°=30°,∴BD=2BC=2×4=8,∵∠C=90°,∠A=15°,∴∠ABC=90°﹣15°=75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∴∠ABD=∠A,∴AD=BD=8.故答案为:8.点评:此题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是9.考点:等腰三角形的判定与性质;平行线的性质.专题:压轴题.分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.解答:解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.点评:此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=3﹣.考点:规律型:图形的变化类;等边三角形的性质.分析:根据等边三角形的性质〔三边相等〕求出等边三角形的周长P1,P2,P3,P4,然后即可得到规律.解答:解:P1=1+1+1=3,P2=1+1+==3﹣,P3=1+1+×3==3﹣,P4=1+1+×2+×3==3﹣,…Pn=3﹣,故答案为:3﹣.点评:此题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,解答:证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC、∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC〔AAS〕,∴DE=DF.点评:此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.考点:作图-轴对称变换;轴对称-最短路线问题.分析:〔1〕直接利用关于x轴对称点的性质得出各点坐标画出图形即可;〔2〕利用轴对称求最短路线的方法得出即可;〔3〕利用关于x轴对称点的性质得出横纵坐标关系得出答案.解答:解:〔1〕如下图:A′〔4,﹣4〕、B′〔1,﹣2〕、C′〔3,﹣2〕;〔2〕如下图:P点即为所求;〔3〕∵△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,∴,解得:.点评:此题主要考查了轴对称变换以及利用轴对称求最短路径问题,得出对应点位置是解题关键.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.考点:等边三角形的判定;全等三角形的判定与性质.专题:探究型.分析:先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC、在△ABP与△ACQ中,∵,∴△ABP≌△ACQ〔SAS〕.∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.点评:考查了等边三角形的判定及全等三角形的判定方法.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:〔1〕由垂直平分线的性质可知DA=DB,可求得∠ABD=40°,再由AB=AC,可求得∠ABC,再利用角的和差可求得∠CBD;〔2〕由〔1〕可知AD=BD,可得BD+CD=AC=10,结合△BCD的周长可求得BC、解答:解:〔1〕∵AB的垂直平分线MN交AC于D,∴DA=DB,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠ACB==70°,∴∠CBD=∠ABC﹣∠ABD=70°﹣40°=30°;〔2〕由〔1〕可知DA=DB,∴BD+DC=AD+DC=AC=10,∵△BCD的周长是m,∴BC=m﹣10.点评:此题主要考查线段垂直平分线的性质,掌握线段垂直平分线的点到线段两端点的距离相等是解题的关键.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、考点:角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕由角平分线的性质可得ED=EC,那么可得∠ECD=∠EDC;〔2〕由角平分线的性质可知ED=EC,在Rt△ODE中可求得DE=6,那么EC=6,在Rt△OEC中可求得OC=8=OD,可得点E、O都在线段CD的垂直平分线上,可知OE垂直平分CD、解答:证明:〔1〕∵OM与OB是两坐标轴的夹角的三等分线,∴OM平分∠BOC,∵EC⊥X轴于C点,ED⊥OB于D点,∴DE=CE,∴∠ECD=∠EDC;〔2〕在Rt△ODE中,OD=8,OE=10,由勾股定理可求得DE=6,由〔1〕可得EC=ED=6,在Rt△OCE中,OE=10,EC=6,由勾股定理可求得OC=8,∴OC=OD,∴点O、E都在线段CD的垂直平分线上,∴OE垂直平分CD、点评:此题主要考查角平分线的性质及等腰三角形的性质、线段垂直平分线的判定,由条件得到DE=CE且求得OC=OD=8是解题的关键,注意勾股定理的应用.22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:〔1〕根据AE=CD,AB=AC,∠BAC=∠C即可求得△ABE≌△CAD;〔2〕由〔1〕得∠AEB=∠ADC,即可求得∠BPQ=∠C,即可求得BP 的长,即可解题.解答:解:〔1〕∵在△ABE和△CAD中,,∴△ABE≌△CAD,〔SAS〕〔2〕∵△ABE≌△CAD,∴AD=BE,∠AEB=∠ADC∵∠DAC+∠ADC+∠ACB=180°,∠DAC+∠AEB+∠APE=180°,∴∠ACB=∠APE=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.点评:此题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,此题中求证△ABE≌△CAD是解题的关键.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;〔2〕根据E是BC的中点BD=CF=BE=CE,即可求得DF∥BC,即可解题.解答:〔1〕证明:∵AB=AC,[来源:]∴∠B=∠C,∵在△BDE和△CEF中,,∴△BDE≌△CEF,〔SAS〕∴DE=EF,∴△DEF是等腰三角形;〔2〕解:∵E是BC的中点,BE=CF,BD=CE、∴BD=CF=BE=CE,∴BD+CF=BC,∴∠BDE=∠CFE,∴∠ADF=∠AFD,∴DF∥BC,∵BC>DF,∴BD+CF>DF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,此题中求证△BDE≌△CEF是解题的关键.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕作BQ⊥EF,易证△ABE≌△CBF和△BEF为等边三角形,可得∠ABE=30°和EF=BF,即可解题;〔2〕延长DA,使得AQ=CF,可证RT△BCF≌RT△BAQ,可得∠ABQ=∠CBF,CF=AQ,进而可以求证△BEF≌△BEQ得到QE=EF,即可解题.解答:解:〔1〕作BQ⊥EF,∵AE=CF,AB=BC,∴根据勾股定理可得:BF=BE,∵∠MBN=60°∴△BEF为等边三角形,∴EF=BF=BE,在RT△ABE和RT△CBF中,,∴RT△ABE≌RT△CBF〔HL〕,∴∠ABE=∠CBF,∵∠MBN=60°,∠ABC=120°,∴∠ABE=∠CBF=30°,∴BF=2CF,∴AE+CF=EF;〔2〕延长DA,使得AQ=CF,∵AQ=CF,AB=AC,∴根据勾股定理可得:BQ=BF,在RT△BCF和RT△BAQ中,,∴RT△BCF≌RT△BAQ〔HL〕,∴∠ABQ=∠CBF,CF=AQ,∴∠FBQ=∠ABC=120°,∴∠QBE=60°,在△BEF和△BEQ中,,∴△BEF≌△BEQ〔SAS〕,∴QE=EF,∴EF=QE=AE+AQ=AE+CF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,此题中,〔1〕中求证RT△ABE≌RT△CBF,〔2〕中求证△BEF≌△BEQ是解题的关键.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为〔3,﹣1〕;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:〔1〕作BD⊥CD,易证△OAC≌△DCB,即可解题;〔2〕作BE⊥OC,易证OAC≌△ECB,可求得OC=AO+BD,即可解题;〔3〕过点B作BG⊥BC交y轴于点G,易证△BCG≌△CAD,可得BG=BD,进而可以求证△DBE≌△GBE,可得∠BDE=∠BGE,即可解题.解答:解:〔1〕作BD⊥CD,∵∠OCA+∠DCB=90°,∠OAC+∠DCB=90°,∴∠OAC=∠DCB,∵在△OAC和△DCB中,,∴△OAC≌△DCB,〔AAS〕∴CD=OA=2,BD=OC=1,OD=3,∴B点坐标为〔3,﹣1〕;〔2〕作BE⊥OC,那么四边形ODBE为矩形,∵∠ACO+∠BC O=90°,∠ACO+∠OAC=90°,∴∠BCO=∠CAO,∵△OAC和△ECB中,,∴△OAC≌△ECB,〔AAS〕∴EC=OA,∵四边形ODBE为矩形,∴OE=BD,∵OC=OE+EC,∴OC=AO+BD,∴存在定值,且为1;〔3〕过点B作BG⊥BC交y轴于点G,∴∠CBG=∠ACD=90°,∵∠BCG+∠ACG=90°,∠ACO+∠DCO=90°,∴∠DCO=∠CAO.在△BCG和△CAD中,,∴△BCG≌△CAD〔ASA〕,∴BG=CD=BD、∵∠ABC=∠BAC=45°,∴∠EBG=∠DBE=45°,在△DBE和△GBE中,,∴△DBE≌△GBE〔SAS〕,∴∠BDE=∠BGE,∵∠BCG+∠BGE=90°,∠BCG+∠ADC=90°,∴∠BGE=∠ADC,∴∠ADB=∠CDE、点评:此题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,此题中每一问都找出全等三角形并求证是解题的关键.。
【3套打包】南京市南京市第九中学小升初第一次模拟考试数学试卷含答案
新小升初数学试卷及答案(人教版)(1)小升初模拟训练(二)一、选择题1.下面说法正确的是()A. 把一个小数精确到百分位,也就是保留两位小数B. 小数除以小数,商一定是小数C. 91.4里面有914个0.012.微机课上,笑笑坐在微机教室的第4列第2行,用数对(4,2)表示,明明坐在笑笑正后方的第一个位置上,明明的位置用数对表示是( )。
A. (5,2)B. (4,3)C. (3,2)D. (4,1)3.清平中心小学98班有52人,彭老师至少要拿()作业本随意发给学生,才能保证至少有有个学生拿到2本或2本以上的本子.A. 53本B. 52本C. 104本4.下面()杯中的饮料最多。
A. B. C.5.某教育局装备科购进96台电脑,按4∶5∶3分发给第一、第二和第三小学,三所小学各发到电脑多少台?正确的解答是()A. 第一小学:22台第二小学:45台第三小学:29台B. 第一小学:32台第二小学:40台第三小学:24台C. 第一小学:30台第二小学:50台第三小学:16台D. 第一小学:20台第二小学:60台第三小学:20台6.一瓶橙汁有150毫升,求“ 瓶有多少毫升”就是求()A. 150的是多少B. 150减去是多少C. 150加是多少7.你估计小刚有多高?()。
A. 1米25厘米B. 2米52厘米C. 80厘米8.甲、乙两个等高的圆锥,甲圆锥的底面半径是乙圆锥底面半径的3倍,则甲圆锥体积是乙圆锥体积的( )倍。
A. 3B. 9C. 279.在3.145、3.14、π、3.14%中,最大的数是()。
A. 3.145B. 3.14C. πD. 3.14%10.如果把3∶7的前项加上9,要使它的比值不变,后项应()A. 加上9B. 加上21C. 减去911.蔬菜批发站把一批菜按4∶5∶3的比卖给甲、乙、丙三个餐厅,丙餐厅比乙餐厅少买60千克,这批菜一共有()A. 300千克B. 603千克C. 360千克D. 306千克二、判断题12.分母是7的真分数都不能化成有限小数.13.把一根长40厘米的铁丝围成一个长方形,如果长和宽都是质数,那么它的面积一定是51平方厘米。
2020-2021学年江苏省南京市鼓楼区四校联考八年级(上)期中数学试卷 (解析版)
2020-2021学年江苏省南京市鼓楼区四校联考八年级第一学期期中数学试卷一、选择题(共6小题).1.(2分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.2.(2分)下列各式正确的是()A.B.|3.14﹣π|=π﹣3.14C.D.3.(2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.(2分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.(2分)如图所示,△ABC中,AB=BC=AC,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°6.(2分)如图的方格纸中每一个小方格都是边长为1的正方形,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC为等腰三角形,这样的格点的个数有()A.8个B.9个C.10个D.11个二、填空题(共10小题).7.(2分)比较大小:2.8.(2分)角是轴对称图形,是它的对称轴.9.(2分)已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=.10.(2分)等腰三角形的一个内角为70°,另外两个内角的度数为.11.(2分)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯米.12.(2分)如图,在△ABC中,DE是AC的垂直平分线,AE=3,△BCD的周长为13,则△ABC的周长是.13.(2分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.14.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.15.(2分)如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是.16.(2分)如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.三、解答题(共8小题,共68分.)17.(8分)计算(1)(﹣2)2+;(2)+(π﹣3)0﹣|1﹣|.18.(10分)求下列各式中的x:(1)(x+2)2=4;(2)1+(x﹣1)3=﹣7.19.(8分)如图,已知直线l及直线l外一点P.(1)求作:直线PQ,使得PQ⊥l.(保留作图痕迹)(2)证明:PQ⊥l.20.(8分)如图,点D,E分别是三角形△ABC边BC上的点,若AB=AC,BE=CD,求证:AD=AE.21.(6分)已知:△ABC和△ECD是等腰直角三角形,∠ACB=∠DCE=90°,点D在AB的延长线上.求证:AE2+AD2=ED2.22.(6分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.23.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t秒(t>0).(1)若点P在BC上且满足PA=PB,则此时t=.(2)若点P恰好在∠ABC的角平分线上,求此时t的值;(3)在点P运动过程中,若△ACP为等腰三角形,则此时t=.24.(12分)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=9,AC=5,BC边上的中线AD的取值范围.(1)小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请写出图1中AC与BQ的位置关系并证明;(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC =90°,试探究线段AD与EF的数量和位置关系,并加以证明.参考答案一、选择题(共6小题).1.(2分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.(2分)下列各式正确的是()A.B.|3.14﹣π|=π﹣3.14C.D.解:A、=9,故本选项错误;B、正确;C、=2,故本选项错误;D、已是最简形式,并且不是同类项,不用计算,故本选项错误.故选:B.3.(2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一条边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.4.(2分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.(2分)如图所示,△ABC中,AB=BC=AC,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°解:在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°,∴∠APE=∠ABC=60°.故选:D.6.(2分)如图的方格纸中每一个小方格都是边长为1的正方形,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC为等腰三角形,这样的格点的个数有()A.8个B.9个C.10个D.11个解:图中的黑点为C点所在位置,这样的C点共有9个.故选:B.二、填空题(共10小题).7.(2分)比较大小:>2.解:=9,23=8,∵9>8,∴>2.故答案为:>.8.(2分)角是轴对称图形,角平分线所在的直线是它的对称轴.解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.9.(2分)已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=4﹣.解:∵实数a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵3<<4,∴的整数部分为3,e=3,∵2<<3,∴的小数部分为﹣2,即f=﹣2,∴﹣+e﹣f=﹣+3﹣(﹣2)=0﹣1+3﹣+2=4﹣,故答案为:4﹣.10.(2分)等腰三角形的一个内角为70°,另外两个内角的度数为55°,55°或70°,40°.解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故填55°,55°或70°,40°.11.(2分)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯17米.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.12.(2分)如图,在△ABC中,DE是AC的垂直平分线,AE=3,△BCD的周长为13,则△ABC的周长是19.解:∵DE是AC的垂直平分线,AE=3,∴DA=DC,AC=2AE=6,∵△BCD的周长为13,∴BC+BD+CD=13,∴BC+BD+DA=BC+AB=13,∴△ABC的周长=BC+AB+AC=13+6=19,故答案为:19.13.(2分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.14.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.15.(2分)如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是50°.解:过点E作EN⊥BD,垂足为N,作EM⊥AC,垂足为M,作EF⊥AB,交BA的延长线于F,∵BE平分∠ABC,CE平分∠ACD,∴EF=EN=EM,∴E点在∠FAC的角平分线上,∴∠CAE=∠CAF,∵∠CAF+∠BAC=180°,∠BAC=80°,∴∠CAF=100°,∴∠CAE=50°.16.(2分)如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为8.解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为:8.三、解答题(本大题共8小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算(1)(﹣2)2+;(2)+(π﹣3)0﹣|1﹣|.解:(1)原式=4+4﹣2=6;(2)原式=+1﹣(﹣1)=﹣.18.(10分)求下列各式中的x:(1)(x+2)2=4;(2)1+(x﹣1)3=﹣7.解:(1)x+2=±2,∴x+2=2或x+2=﹣2,∴x=0或﹣4;(2)(x﹣1)3=﹣8,x﹣1=﹣2,∴x=﹣1.19.(8分)如图,已知直线l及直线l外一点P.(1)求作:直线PQ,使得PQ⊥l.(保留作图痕迹)(2)证明:PQ⊥l.【解答】(1)解:如图,直线PQ即为所求.(2)证明:由作图可知,PC=PD,CQ=QD,∴PQ垂直平分线段CD,∴PQ⊥直线l.20.(8分)如图,点D,E分别是三角形△ABC边BC上的点,若AB=AC,BE=CD,求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE.21.(6分)已知:△ABC和△ECD是等腰直角三角形,∠ACB=∠DCE=90°,点D在AB的延长线上.求证:AE2+AD2=ED2.【解答】证明:∵BC=AC,∴∠ACB=90°,∴∠ABC=∠CAB=45°.∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=CA,CD=CE,∠BCD=∠ECA,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠CAE=∠CBD=135°,∴∠DAE=∠CAE﹣∠CAB=90°,∴AD2+AE2=ED2.22.(6分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为:AB+AC+BC=13+15+5+9=42m,△ABC的面积为:×BC×AD=×14×12=84m2.23.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t秒(t>0).(1)若点P在BC上且满足PA=PB,则此时t=.(2)若点P恰好在∠ABC的角平分线上,求此时t的值;(3)在点P运动过程中,若△ACP为等腰三角形,则此时t=或或或3.解:(1)如图,设PB=PA=x,则PC=4﹣x,∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,在Rt△ACP中,AC2+PC2=AP2,∴32+(4﹣x)2=x2,解得x=,∴BP=,∴t===.故答案为:.(2)如图,过P作PD⊥AB于D,∵BP平分∠ABC,∠C=90°,∴PD=PC,BC=BD=4,∴AD=5﹣4=1,设PD=PC=y,则AP=3﹣y,在Rt△ADP中,AD2+PD2=AP2,∴12+y2=(3﹣y)2,解得y=,∴CP=,∴t===,当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t==.综上所述,点P恰好在∠ABC的角平分线上,t的值为或.(3)分四种情况:①如图,当P在AB上且AP=CP时,∠A=∠ACP,而∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP,∴P是AB的中点,即AP=AB=,∴t==.②如图,当P在AB上且AP=CA=3时,t==.③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,则CD==,∴Rt△ACD中,AD=,∴AP=2AD=,∴t==.④如图,当P在BC上且AC=PC=3时,BP=4﹣3=1,∴t===3.综上所述,当t=或或或3时,△ACP为等腰三角形.故答案为:或或或3.24.(12分)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=9,AC=5,BC边上的中线AD的取值范围.(1)小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是2<AD<7.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请写出图1中AC与BQ的位置关系并证明;(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC =90°,试探究线段AD与EF的数量和位置关系,并加以证明.解:(1)延长AD到Q使得DQ=AD,连接BQ,∵AD是△ABC的中线,∴BD=CD,在△QDB和△ADC中,,∴△QDB≌△ADC(SAS),∴BQ=AC=5,在△ABQ中,AB﹣BQ<AQ<AB+BQ,∴4<AQ<14,∴2<AD<7,故答案为:2<AD<7;(2)AC∥BQ,理由:由(1)知,△QDB≌△ADC,∴∠BQD=∠CAD,∴AC∥BQ;(3)EF=2AD,AD⊥EF,理由:如图2,延长AD到Q使得DQ=AD,连接BQ,由(1)知,△BDQ≌△CDA(SAS),∴∠DBQ=∠ACD,BQ=AC,∵AC=AF,∴BQ=AF,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴∠BAC+∠ABC+∠DBQ=180°,∴∠BAC+ABQ=180°,∵∠BAE=∠FAC=90°,∴∠BAC+∠EAF=180°,∴∠ABQ=∠EAF,在△ABQ和△EAF中,,∴△ABQ≌△EAF,∴AQ=EF,∠BAQ=∠AEF,延长DA交EF于P,∵∠BAE=90°,∴∠BAQ+∠EAP=90°,∴∠AEF+∠EAP=90°,∴∠APE=90°,∴AD⊥EF,∵AD=DQ,∴AQ=2AD,∵AQ=EF,∴EF=2AD,即:EF=2AD,AD⊥EF.。
鲁教版2020-2021学年度第一学期八年级数学期中模拟优生提升测试题(附答案详解)
40
35
26
16
要了解哪种品牌最畅销,公司经理最关心的是上述数据找()
A.平均数B.众数C.中位数D.方差
18.-9a2b+3ac2-6abc各项的公因式是_______;
19.一种病毒长度约为0.000056mm,用科学记数法表示这个数为________.
20.解分式方程 的解是________
参考答案
1.C
【解析】
【分析】先计算每根单价,再计算a,b,c便可分析出结果.
【详解】解:据题意可知,开始时油条的单价为 元/根,第一次涨价后的单价为
元/根,第二次涨价后的单价为 元/根,因而可求得a= ,
b= , c= ,
所以,a<b<c,2a<c,2b=c是正确的,a+b≠c,所以C是错误的,
故选:C
27.(1)分解因式
(2)计算
28.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .
(1)若F(a)= 且a为100以内的正整数,则a=________;
(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.
29.计算.
(1) ;
(2) ;
(3)(4x2-y2)÷ .
30.先化简,再求值 然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
4.A【解析】【来自析】本题分式方程无解指的是分式方程的分母为0,可以根据增根的意义列出方程,求出a的值.
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(二)
2022-2023学年八年级上学期期中考前必刷卷02数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2020·北京市朝阳区芳草地国际学校富力分校八年级期中)“致中和,天地位焉,万物育焉.”中国古人把和谐平衡的精神之美,演变成了一种对称美.从古至今,人们将对称元素赋予建筑、器物、绘画、饰品等事物上,使对称之美惊艳了千年的时光.在下列我国建筑简图中,不是轴对称图形的是()A.B.C.D.2.(2022·四川·富顺第二中学校八年级阶段练习)下列生活实物中,没有应用到三角形的稳定性的是( )A.B.C.D.3.(2022·广东·东莞市松山湖莞美学校八年级阶段练习)如图,在直角三角形ABC中,∠ACB=90°,CD是AB 边上的高,AB=13cm,BC=12cm,AC=5cm,则CD的长为( )A.5cm B.6013cm C.135cm D.3013cm4.(2022·全国·八年级课时练习)如图,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则BC的长为()A.8B.7C.6D.55.(2022·山东·万杰朝阳学校七年级期中)如图,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过点B,C.若∠A=40°,则∠ABX+∠ACX=()A.25°B.30°C.45°D.50°6.(2022·山东·滨州市滨城区教学研究室八年级期中)给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,AC=EF,∠B=∠E;③ ∠B =∠E ,AB =DF ,∠C =∠F ;④ AB =DE ,AC =DF ,A D ∠=∠.其中,能确定△ ABC 和△ DEF 全等的条件共有( )A .1组B .2组C .3组D .4组7.(2021·广西北海·八年级期中)如图,在ABC V 中,AB AC =,点D 是底边BC 上异于AC 中点的一个点,ADE DAC ∠=∠,DE AC =.运用以上条件(不添加辅助线)可以说明下列结论错误的是( )A .ADE DAC ≌△△B .AF DF =C .AF CF =D .B E∠=∠8.(2022·河南·郑州经开区外国语女子中学八年级期末)如图,在ABC V 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB 、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC V 的高B .ABC V 的中线C .ABC V 的角平分线D .以上都不对9.(2019·安徽合肥·八年级期中)如图,ABC ∆中, BP 平分∠ABC , AP ⊥BP 于P ,连接PC ,若PAB ∆的面积为3.5cm 2,PBC ∆的面积为4.5cm 2,则PAC ∆的面积为( ).A .0.25cm 2B .0.5 cm 2C .1cm 2D .1.5cm 210.(2022·黑龙江·哈尔滨工业大学附属中学校七年级期末)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°12+∠A ,②∠EBO 12=∠AEF ,③∠DOC +∠OCB =90°,④设OD =m ,AE +AF =n ,则S △AEF 2mn =.其中正确的结论有( )A .1个B .2个C .3个D .4个11.(2022·山东威海·七年级期末)如图,四边形ABCD ,90B C ∠=∠=︒,边AD 的中垂线分别交BC ,AD 于点E ,F ,且AF EF =若5AB =,12CD =,则BE 的长为( )A .7B .12C .13D .1712.(2022·四川绵阳·八年级期末)如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,AD 经过点O 与BC 交于点D ,以AD 为边向两侧作等边△ADE 和等边△ADF ,分别和AB ,AC 交于点G ,H ,连接GH .若∠BOC =120°,AB =a ,AC =b ,AD =c .则下列结论中正确的个数有( )①∠BAC =60°; ②△AGH 是等边三角形;③AD 与GH 互相垂直平分; ④()12ABC S a b c =+△.A .1个B .2个C .3个D .4个13.(2021·浙江·宁波市兴宁中学九年级期中)如图,点P ,Q ,R 分别在等边△ABC 的三边上,且AP =BQ =CR ,过点P ,Q ,R 分别作BC ,CA ,AB 边的垂线,得到△DEF 、若要求△DEF 的面积,则只需知道()A .EP 的长B .EF 的长C .AP 的长D .DP 的长14.(2021·山东·梁山县第二中学八年级阶段练习)如图,在长方形ABCD 中4AB DC ==,5AD BC ==.延长BC 到E ,使2CE =,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→→向终点A 运动,设点P 运动的时间为t 秒,存在这样的t ,使△DCP 和△DCE 全等,则t 的值为( )A .12t =B .32t =C .12t =或32t =D .32t =或112t =第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)在一个三角形中,三个内角之比为1:2:6,则这个三角形是______三角形.16.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)一个正多边形的一个内角是它外角的4倍,这个正多边形的内角和为______度.17.(2022·黑龙江·大庆市庆新中学八年级期末)如图,是我们七上学过的利用尺规“作一个角等于已知角”的过程,爱思考的小明一直不知道这样作出的角和已知角为何相等,在学习了三角形全等的证明之后,终于解开了谜团,原来只要证明△DOC ≌△D 'O 'C '就能得出∠O =∠O ',那么小明证明△DOC ≌△D 'O 'C '的依据是___________.18.(2021·浙江宁波·七年级期末)如图,BD 是ABC V 的中线,延长BD 至E ,使得DE DB =,连接AE ,EAD DBC ∠>∠,点F 在DAE ∠的平分线上,且12FBC DBC ∠=∠.设,ADB DBC αβ∠=∠=,则AFB ∠=___________(用含α、β的式子表示)三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2020·湖北·公安县教学研究中心八年级期中)已知三角形的三条边长为6、10和x .(1)若6是最短边长,求x 的取值范围;(2)若x 为整数,求三角形周长的最大值.20.(2021·重庆市渝北区实验中学校八年级期中)如图,在ABC V 中,AD BC ⊥于点,46,68D B C ∠∠== .(1)尺规作图:作BAC ∠的平分线交BC 于点E (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求DAE ∠的度数.21.(2020·天津市红桥区教师发展中心八年级期中)如图所示,已知△ABC 中,AB=AC ,E ,D ,F 分别在AB ,BC 和AC 边上,且BE =CD ,BD =CF ,过D 作DG ⊥EF 于G .求证:EG =12EF .22.(2021·山东·单县湖西学校八年级阶段练习)如图所示,在ABC V 中,ABC ∠和ACB ∠的平分线相交于点P ,且PE AB ⊥,PF AC ⊥,垂足分别是E 、F.(1)PE 与PF 相等吗?请说明理由;(2)若7AB =,6BC =,5AC =,点P 到BC 的距离为2,求ABC V 的面积.23.(2022·全国·八年级专题练习)问题发现:如图1,已知C 为线段AB 上一点,分别以线段AC ,BC 为直角边作等腰直角三角形,90ACD ∠=︒,CA CD =,CB CE =,连接AE ,BD ,线段AE ,BD 之间的数量关系为______;位置关系为_______.拓展探究:如图2,把Rt ACD △绕点C 逆时针旋转,线段AE ,BD 交于点F ,则AE 与BD 之间的关系是否仍然成立?请说明理由.24.(2022·江苏镇江·八年级阶段练习)我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB ,OC =OD ,∠AOB =∠COD =90°,回答下列问题:(1)求证:△OAC 和△OBD 是兄弟三角形.(2)“取BD 的中点P ,连接OP ,试说明AC =2OP .”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.①请在图中通过作辅助线构造△BPE ≌△DPO ,并证明BE =OD ;②求证:AC =2OP .25.(2022·辽宁·沈阳市第一二六中学七年级阶段练习)等腰△ABC ,CA =CB ,D 为直线AB 上一动点,以CD 为腰作等腰三角形△CDE ,顶点C 、D 、E 按逆时针方向排列,CD =CE ,∠ACB =∠DCE ,连接BE .(1)若∠ACB =60°,当点D 在线段AB 上时,如图(1)所示,此时AD 与BE 的数量关系为______;(2)若∠ACB =90°,当点D 在线段BA 延长线上时,如图(2)所示,AD 与BE 有什么关系,说明理由;(3)当BE AC ∥时,若△CAD 中最小角为15°,试探究∠CDA 的度数(直接写出结果).26.(2022·辽宁沈阳·七年级期末)如图①,在△ABC 中,AB =AC =BC =10cm ,动点P 以每秒1cm 的速度从点A 出发,沿线段AB 向点B 运动.设点P 的运动时间为t (t >0)秒.(知识储备:一个角是60°的等腰三角形是等边三角形)(1)当t =5时,求证:△PAC 是直角三角形;(2)如图②,若另一动点Q 在线段CA 上以每秒2cm 的速度由点C 向点A 运动,且与点P 同时出发,点Q 到达终点A 时点P 也随之停止运动.当△PAQ 是直角三角形时,直接写出t 的值;(3)如图③,若另一动点Q 从点C 出发,以每秒1cm 的速度沿射线BC 方向运动,且与点P 同时出发.当点P 到达终点B 时点Q 也随之停止运动,连接PQ 交AC 于点D ,过点P 作PE ⊥AC 于E .在运动过程中,线段DE 的长度是否发生变化?若不变,直接写出DE的长度;若变化,说明如何变化.2022-2023学年八年级上学期期中考前必刷卷02(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C19.(1)6≤x<16(2)31【分析】(1)根据三角形的三边关系,即可求解;(2)根据三角形的三边关系,可得4<x<16,再由x为整数,可得x的最大值为15,即可求解.(1)解:由题意得:10-6<x<10+6,即4<x<16∵6是最短边长,∴x≥6∴x的取值范围是6≤x<16;(2)解:由(1)可知,4<x<16,∵x为整数,∴x的最大值为15,∴三角形周长的最大值为6+10+15=31.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.20.(1)见解析(2)11°【分析】(1)根据角平分线的作图方法作图解答即可;(2)根据三角形内角和定理及角平分线定义求出∠CAE,根据直角三角形的性质求出∠CAD,即可得到DAE的度数.(1)如图,AE即为所求;(2)解:∵∠B =46°,∠C =68°,∴∠BAC =180°-∠B -∠C =66°,∵AE 平分∠BAC ,∴∠CAE =33°,∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =22°,∴∠DAE =∠CAE -∠CAD =33°-22°=11°.【点睛】此题考查了角平分线的作图,三角形内角和定理,直角三角形两锐角互余的性质,正确掌握角平分线的作图及直角三角形的性质是解题的关键.21.证明见详解【分析】做辅助线DE 、DF ,证明△EBD ≌△DCF (SAS ),证得△EDF 为等腰三角形,根据等腰三角形三线合一的性质即可证得.【详解】解:如图连接DE 、DF ,∵AB =AC ,∴∠EBD =∠DCF ,在△EBD 和△DCF 中,BE DC EBD DCF BD CF =⎧⎪∠=∠⎨⎪=⎩,∴△EBD ≌△DCF (SAS ),∴DE =DF ,则△EDF 为等腰三角形,又∵DG ⊥EF ,∴EG =GF ,∴EG =12EF .【点睛】此题考查了等腰三角形判定与性质、全等三角形的判定与性质,解题的关键是作辅助线构造全等三角形并证明△EDF 是等腰三角形.22.(1)PE 与PF 相等,理由见解析;(2)18【分析】(1)过P 点作PH ⊥BC 于H 点,根据角平分线的性质得到PH =PE ,PH =PF ,等量代换即可得到PE =PF ;(2)由(1)得到PE =PF =2,然后根据ABC PAB PBC PCA S S S S =++V V V V 进行计算.(1)解:PE 与PF 相等.理由:过P 点作PH ⊥BC 于H 点,如图,∵BP 为∠ABC 的平分线,PE ⊥BA ,PH ⊥BC ,∴PH =PE ,∵CP 为∠ACB 的平分线,PF ⊥CA ,PH ⊥BC ,∴PH =PF ,∴PE =PF ;(2)∵点P 到BC 的距离为2,即PH =2,∴PE =PF =2,∴ABC PAB PBC PCA S S S S =++V V V V 11172625218222=⨯⨯+⨯⨯+⨯⨯=.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.23.问题发现:AE BD =,AE BD ⊥;拓展探究:成立,理由见解析【分析】问题发现:根据题目条件证△ACE ≌△DCB ,再根据全等三角形的性质即可得出答案;拓展探究:用SAS 证ACE DCB ∆≅∆,根据全等三角形的性质即可证得.【详解】解:问题发现:延长BD ,交AE 于点F ,如图所示:∵90ACD ︒=∠,∴90ACE DCB ︒∠=∠=,又∵,CA CD CB CE ==,∴ACE DCB ∆≅∆(SAS ),,AE ED CAE CDB ∴=∠=∠,∵90CDB CBD ︒∠+∠=,∴90CAE CBD ︒∠+∠=,∴90AFD ︒∠=,∴AF FB ⊥,AE BD ∴⊥,故答案为:AE BD =,AE BD ⊥;拓展探究:成立.理由如下:设CE 与BD 相交于点G ,如图1所示:∵90ACD BCE ︒∠=∠=,∴ACE BCD ∠=∠,又∵CB CE =,AC CD =,∴ACE DCB ∆≅∆(SAS ),∴AE BD =,AEC DBC ∠=∠,∵90CBD CGB ︒∠+∠=,∴90AEC EGF ︒∠+∠=,∴BD AE ⊥,即AE BD =,AE BD ⊥依然成立.【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.24.(1)见解析(2)①见解析;②见解析【分析】(1)证出∠AOC +∠BOD =180°,由兄弟三角形的定义可得出结论;(2)①延长OP 至E ,使PE =OP ,证明△BPE ≌△DPO (SAS ),由全等三角形的性质得出BE =OD ;②证明△EBO ≌△COA (SAS ),由全等三角形的性质得出OE =AC ,则可得出结论.(1)证明:∵∠AOB =∠COD =90°,∴∠AOC +∠BOD =360°-∠AOB -∠COD =360°-90°-90°=180°,又∵AO =OB ,OC =OD ,∴△OAC 和△OBD 是兄弟三角形;(2)①证明:延长OP 至E ,使PE =OP ,∵P 为BD 的中点,∴BP =PD ,又∵∠BPE =∠DPO ,PE =OP ,∴△BPE ≌△DPO (SAS ),∴BE =OD ;②证明:∵△BPE ≌△DPO ,∴∠E =∠DOP ,∴∠EBO +∠BOD =180°,又∵∠BOD +∠AOC =180°,∴∠EBO =∠AOC ,∵BE =OD ,OD =OC ,∴BE =OC ,又∵OB =OA ,∴△EBO ≌△COA (SAS ),∴OE =AC ,又∵OE =2OP ,∴AC =2OP .【点睛】本题是三角形综合题,考查了新定义兄弟三角形,全等三角形的判定与性质,正确作出辅助线是解题的关键.25.(1);AD =BE ;(2);AD =BE ,理由见解析;(3)105°或45°或15°.【分析】(1)根据全等三角形的判定可以得出△ACD ≌△BCE ,从而得出结论;(2)根据全等三角形的判定可以得出△ACD ≌△BCE ,从而得出结论;(3)分D 在线段AB 上、当点D 在BA 的延长线上、点D 在AB 的延长线上三种情形根据等边三角形的性质、三角形内角和定理计算即可.(1)∵∠ACB =60°,∠ACB =∠DCE ,∴∠ ACB =∠DCE =60°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .故答案为:AD =BE ;(2)AD =BE ,理由如下:∵∠ACB =90°,∠ACB =∠DCE ,∴∠ ACB =∠DCE =90°.∴∠ACB -∠ACE =∠DCE -∠ACE ,即∠DCA =∠ECB .在△ACD 和△BCE 中,AC BC DCA ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .(3)解:当D 在线段AB 上时,∵BE ∥CA ,∴∠CBE =∠ACB ,∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,∴∠CAD =∠ACB ,又∠CAB =∠CBA ,∴△CAB 为等边三角形,∴∠CAB =60°,当△CAD 中的最小角是∠ACD =15°时,∴∠CDA =180°-60°-15°=105°,当点D 在BA 的延长线上时,∵BE ∥CA ,∴∠ACE =∠CEB ,∠ABE =∠CAB ,∵△DCA ≌△ECB,∴∠CDA=∠CEB,∠CAD=∠CBE,∴∠ACB=∠ACE+ECB=∠CEB+∠ECB=180°-∠CBE=180°-∠CAD=∠CAB=∠CBA,∴△CAB是等边三角形,当△CAD中的最小角是∠ACD=15°时,∠CDA=∠CAB-∠ACD=45°,当△CAD中的最小角是∠CDA时,∠CDA=15°;当点D在AB的延长线上时,只能∠CDA=15°,综上所述,∠CDA的度数为105°或45°或15°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、等边三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的首先思考问题.26.(1)见解析(2)4或5 2(3)不变,5cm【分析】(1)利用等腰三角形三线合一的性质证明即可;(2)分两种情况:①当∠APQ=90°时,则∠AQP=30°,由直角三角形的性质得AQ=2AP,由题意得出方程,解方程即可;②当∠AQP=90°时,则∠APQ=30°,由直角三角形的性质得AP=2AQ,由题意得出方程,解方程即可;(3)过点Q作QF⊥AC,交AC的延长线于F,先证△APE≌△CQF(AAS),得AE=CF,PE=QF,再证△PDE≌△QDF(AAS),得DE=DF=12EF,进而得出答案.(1)证明∵△ABC是等边三角形,∴AB=BC=AC=10,当t=5时,PA=5,∴PA=PB,∴CP⊥AB,∴△ACP是直角三角形;(2)解:分两种情况:①当∠APQ=90°时,如图2-1所示:则∠AQP =90°-∠A =30°,∴AQ =2AP ,由题意可得:AP =t ,CQ =2t ,则AQ =10-2t ,∴10-2t =2t ,解得52t =;②当∠AQP =90°时,如图2-2所示:则∠APQ =90°-∠A =30°,∴AP =2AQ ,∴t =2(10-2t ),解得:t =4;综上,当52t =或4时,△PAQ 是直角三角形;(3)解:线段DE 的长度不变化,理由如下:过点Q 作QF ⊥AC ,交AC 的延长线于F ,如图3所示:∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠DEP =∠CFQ =90°,∵∠QCF =∠ACB =60°,∴∠A=∠QCF,又∵AP=CQ,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF,又∵∠PDE=∠QDF,∴△PDE≌△QDF(AAS),EF,∴DE=DF=12∵EF=CE+CF,AC=CE+AE,∴EF=AC=10,EF=5,∴DE=12即线段DE的长度不变,为定值5cm.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、含30°角的直角三角形的性质、直角三角形的性质以及动点问题等知识;本题综合性强,熟练掌握等边三角形的性质和直角三角形的性质,证明三角形全等是解题的关键.。
北师大版2020-2021学年度第一学期八年级数学期中模拟测试题1(附答案)
6.函数 中,自变量x的取值范围( )
A.x>﹣4B.x>1C.x≥﹣4D.x≥1
7.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为( )
A.8B.10C.12D.14
8.如图,矩形OABC中,OA、OC分别在平面直角坐标系x轴、y轴的正半轴上,点D在AB上,将△CDB沿着CD翻折,点B恰好落在OA的中点E处,若四边形OCDA的面积为 ,则直线ED的解析式为( )
A. B.30 C. D.30
二、填空题
11.已知点 是直线 上一动点,点 在点 的下方,且 轴, 轴上有一点 ,当 值最小时,点 的坐标为___________.
12.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且 ,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为_
= tanα(2x2−2ax+a2)
∴S阴的值先变小后变大,
故选:B
【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
6.B
【解析】
根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x>1.
故选:B.
7.B
【解析】
当x=9时,原式=2×9-11=7.
小荣同学是这样计算的:
解: =x-1+10-x=9.
聪明的 同学,谁的计算结果是正确的呢?错误的计算错在哪里?
28.如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),
2021-2022学年北师大版八年级数学第一学期期中模拟测试题2(附答案)
2021-2022学年北师大版八年级数学第一学期期中模拟测试题一.选择题(共10小题,满分30分)1.若直角三角形的斜边长为V6, 一条直角边长为1,则另一条直角边长为()A. 5 B .匚 C. . ♦ D. 72.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A. 10 B . 12 C. 13 D. 143.如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有-滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的爬行最短路线长为(杯壁厚度不计)(2 (附答案)A . 12cmB . 17cm C. 20cm4. J!看的平方根是( )A. ±4 B . 4 C. ±25. 一个正数的两个平方根分别是2a-1与-a+2,则这个正数是A. 1B. - 1C. 96.已知Q-3 ) 2 =Q ,则x-y=( )A. 2B. - 2C. 47.在平面直角坐标系中,点P ( - 3, 4)位于( ) D. 25cmD. 2)D. - 3 D. - 4A.第一象限B.第二象限C.第三象限D.第四象限伸长0.5cm,则挂上物体后弹簧的长度 y (cm)与所挂物体的质量 x (kg) (0WxW5)之间的关系式为()A. y=0.5 (x+8)B. y=0.5x- 8C. y=0.5(x —8)D. y=0.5x+810 .早上,小明从家里步行去学校, 出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前 往学校,两人同时到达.设小明在途中的时间为x,两人之间的距离为 y,则下列选项中11 . 一组勾股数,若其中两个为 15, 8,则第三个数为 12 .在正方形网格中, A 、B 、C 、D 均为格点,则/ BAC-/DAE=8 .象棋在中国有着三千多年的历史, 如图是一方的棋盘,如果“帅”的坐标是(0, 1), “卒”的坐标是(2, 2),那么“马”的坐标是()C. (—2, 2)D. (2, 2)9 . 一根弹簧长8cm,它所挂物体的质量不能超过 5kg,并且所挂的物体每增加1kg,弹簧就A. (― 2, 1)B. (2, — 2).填空题(共10小题,满分30分)13.在RtAABC 中,/A=90° , BC=10, AB=6,如果点P 在AC 边上,且点P 至U Rt4ABC的两个顶点的距离相等,那么AP的长为 .14.若a-1和-5是实数m的两个不同的平方根,则a的值为 .15,右(茂-4 Iz r/bM]。
人教版2021-2022学年八年级数学 《多边形的内角和》含答案解析
专题03 多边形的内角和一、单选题1.(2020·重庆市第二十九中学校八年级月考)某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10B.9C.8D.7【答案】A【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式与外角和定理,利用方程法求边数.2.(2021·四川七年级期末)某校新建的科技馆准备用正多边形地砖铺设地面,下列组合中能铺满地面的是()A.正方形和正六边形B.正三角形和正六边形C.正五边形和正八边形D.正方形和正十边形【答案】B【分析】正多边形的组合能否铺满地面,看位于同一顶点处的几个角之和能否为360°进行判定即可.【详解】解:A、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;B、正三角形和正六边形内角分别为60°、120°,显然能构成360°的周角,故能铺满;C、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.D、正方形和正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满.故选B.【点睛】本题主要考查了平面几何图形镶嵌,解题的关键是明确围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.(2021·全国八年级课前预习)下列叙述正确的是( )A .每条边都相等的多边形是正多边形;B .如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凹多边形;C .每个角都相等的多边形叫正多边形;D .每条边、每个角都相等的多边形叫正多边形【答案】D 【详解】由题意可知,A 、B 、Cj 均不正确,只有D 是正确的。
2020-2021八年级数学上期中试卷附答案(5)
2020-2021八年级数学上期中试卷附答案(5)一、选择题1.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 2.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 3.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 4.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1 D .1x x - 6.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°7.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .710.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 12.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27 二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.18.若分式67x--的值为正数,则x 的取值范围_____. 19.计算:0113()22-⨯+-=______.20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____. 三、解答题21.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)22.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;25.已知a =23b =23求下列各式的值:(1)a 2+2ab +b 2 (2)a 2-b 2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.2.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】 解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.故选:B .【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 3.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.A解析:A【解析】 试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A .5.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.6.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.7.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.12.B解析:B【解析】分析:由于3a×3b=3a+b,所以3a+b=3a×3b,代入可得结论.详解:∵3a×3b=3a+b∴3a+b=3a×3b=1×2=2故选:B.点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.60【解析】【分析】首先连接AB由题意易证得△AOB是等边三角形根据等边三角形的性质可求得∠AOB的度数【详解】连接AB根据题意得:OB=OA=AB∴△AOB是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC的距离都相等从而可得到△ABC的面积等于周长的一半乘以OD然后列式进行计算即可求解【详解】解:如图连接OA作OE⊥AB解析:33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=33. 故答案为:33.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a 由分式方程解为负数得到1-a<0且1-a≠-1解得:a >1且解析:12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析17.180°【解析】∵将△ABC 三个角分别沿DEHGEF 翻折三个顶点均落在点O 处∴∠B=∠HOG∠A=∠DOE∠C=∠EOF∠1+∠2+∠HOG+∠EOF+∠DOE=360°∵∠HOG+∠EOF+∠DO解析:180°【解析】∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°, ∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.22.见解析【解析】【分析】作∠AOB 的角平分线与线段MN 的垂直平分线的交点即所求仓库的位置.【详解】如图所示:点P 即为所求,【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—应用与设计作图,解题关键在于掌握作图法则.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.证明见解析.【解析】试题分析:欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了. 试题解析:证明:∵在△ABD 和△CBD 中,AB=CB ,AD=CD ,BD=BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .25.(1)16;(2)【解析】【分析】(1)用完全平方公式将原式变形为2()a b +,然后代入求值;(2)用平方差公式将原式变形为()()a b a b +-,然后代入求值.【详解】解:(1)a 2+2ab +b 22()a b =+2(22=++-16=(2)a 2-b 2()()a b a b =+-(222=++-+-+4=⨯=【点睛】本题考查代数式求值及二次根式的混合运算,掌握完全平方公式和平方差公式将原式正确变形,然后代入计算是解题关键.。
南京市联合体学校2020-2021学年九年级(上)期中数学试题(含答案)
2020~2021学年度第一学期期中学情调研九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列方程中,是关于x 的一元二次方程的是A .2x +y =2B .x +y 2=0C .ax 2+bx +c =0D .2x -x 2=1 2.若圆弧的半径为3,所对的圆心角为60°,则弧长为A . 12πB .πC .32πD .3π3.反映一组数据变化范围的是 A .极差B .方差C .众数D .平均数4.下列方程中,两个实数根的和为0的是 A .x 2-x =0B .x 2+2x =0C .x 2-1=0D .x 2-2x +1=05.某校九年级(1)班部分学生上学路上所花的时间如图所示. 设他们上学路上所花时间的平均数为a ,中位数为b ,众数 为c ,则有A .b >a >cB .c >a >bC .a >b >cD .b >c >a6.如图,AC 为半圆的直径,弦AB =3,∠BAC =30°,点E 、F 分别为AB 和AC 上的动点,则BF +EF 的最小值为 A . 3 B .332C .3D .32+ 3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上)7.方程x2-4=0的解是▲ .8.若⊙O的半径为3cm,点A与圆心O的距离为4cm,则点A与⊙O的位置关系是▲.9.若关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k=▲.10.某招聘考试分笔试和面试两项,笔试按60%、面试按40%计算总成绩.若李明笔试成绩为90分,面试成绩为85分,则李明的总成绩是▲分.11.将方程x2+6x-3=0化为(x+h)2=k的形式是▲.12.如图,△ABC内接于⊙O,∠A=64°,则∠OBC=▲°.13.如图,在正八边形ABCDEFGH中,连接AE、AG,则∠EAG=▲°.14.已知圆锥的母线长为8cm,侧面展开图的圆心角为45°,则该圆锥的侧面积为▲cm2.15.已知⊙O的半径为6,弦AB长为62,则AB所对的圆周角的度数为▲°.16.如图,在四边形ABCD中,∠BAD=∠CDA=90°,CD=2AB,过A、B、D三点的⊙O分别交BC、CD于点E、F.下列结论:①DF=CF;②⌒AB=⌒BE;③AE=AD.其中所有正确结论的序号是▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2-10x+16=0;(2)x(x-3)=6-2x.18.(8分)已知关于x的方程x2-mx+(m-2)=0.(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值以及方程的另一个根.19.(8分)甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):(1)完成下表:(2)请运用所学的统计知识,从两个不同角度评价甲、乙两人的数学成绩.20.(6分)已知某企业2020年3月份的口罩产量是500万只,4月份的产量比3月份有所增长.5月份新冠疫情有所好转,口罩产量降为420万只.若两次产量变化的百分率相同,求这个百分率.21.(8分)如图,在⊙O 中,AB 是⊙O 的直径,CD 是⊙O 的弦,CD ⊥AB ,垂足为P .过点D 作⊙O 的切线与AB 的延长线相交于点E . (1)若∠ABC =56°,求∠E 的度数. (2)若CD =6,BP =2,求⊙O 的半径.22.(8分)如图,有一道长为10m 的墙,计划用总长为54m 的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD.若花圃ABCD 面积为72m 2,求AB 的长.23.(6分)如图,在⊙O 中,C 是⌒AB 的中点,∠C =∠AOB .求证:四边形OACB 是菱形.24.(8分)如图,PM 是⊙O 的切线,切点是A .点B 、C 、D 是⊙O 上的点,P A =PB . (1)求证PB 是⊙O 的切线;(2)若∠C =92°,∠MAD =40°,则∠P = ▲ °.25.(8分)某商店经销的某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?26.(10分)如图,在矩形ABCD中,AB=4,BC=6.点E为CD边上的一个动点(不与C、D重合),⊙O是△BCE的外接圆.(1)若CE=2,⊙O交AD于点F、G,求FG的长度.(第26题)(2)若CE的长度为m,⊙O与AD的位置关系随着m的值变化而变化,试探索⊙O与AD的位置关系及对应的m的取值范围.27.(10分)(1)如图①,AB 是⊙O 的直径,点C 、D 在⊙O 上,且BC =BD ,CD =AD .求证∠ADC =2∠BDC .(2)如图②,AB 是⊙O 的直径,点C 在⊙O 上.若点D 是平面内...任意一点,且满足AD =CD , ∠ADC =2∠BDC .①利用直尺和圆规在图②中作出所有满足条件的点D (保留作图痕迹,不写作法). ②若AB =4,BC 长度为m (0<m <4),点D 的个数随着m 的值变化而变化,直接写出点D 的个数及对应的m 的取值范围.2020~2021学年度第一学期期中学情分析样题九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x=±2 8.圆外9.4 10.88 11.(x+3)2=1212.26 13.45 14.8π15.45或135 16.①③三、解答题(本大题共11小题,共计88分)17.(本题8分)(1)解:x2-10x+25=9, ······································································· 1分(x-5)2=9, ···················································································· 2分x-5=±3,x1=8,x2=-2.·············································································· 4分(2)解:x(x-3)=-2(x-3),……………………………………………… 5分x (x-3)+2(x-3)=0,(x-3)( x+2)=0,············································································· 6分x1=3,x2=-2.·············································································· 8分18.(本题8分)(1)证明:∵a=1,b=-m,c= m-2 ···························································· 1分∴b 2-4ac=(-m )2-4×1×8(m-2)=m 2-4m+8=(m-2)2+4 ······················ 2分∵(m-2)2≥0,∴(m-2)2+4>0 ······························································· 3分∴不论m为何值,该方程都有两个不相等的实数根.·································· 4分(2)根据题意:22-2 m+(m-2)=0,∴m=2.············································ 6分则x2-2x=0,∴x1=0,x2=2.∴m的值为2,另一个根为0.······························································ 8分19.(本题8分)(1)85,11.2 ··························································································· 4分(2)数据的集中程度:①从中位数看,甲的中位数略大于乙的中位数,说明甲的数学成绩略好于乙;数据的离散程度:②从方差看,甲的方差小于乙的方差,且两人的平均成绩相同,说明甲的成绩比乙更稳定;数据的变化趋势:③从两人成绩的变化趋势看,乙的成绩在逐渐上升,说明乙的成绩进步较大。
2020-2021学年度第一学期江苏省南京市鼓楼区九年级期中考试数学模拟试卷(含解析)
2020-2021学年度第一学期江苏省南京市鼓楼区九年级期中考试数学模拟试卷一、选择题(本大题共2小题,每小题2分,共12分.请把答案填写在答题卡相应位置上).1.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A. 1,4,3B. 0,﹣4,﹣3C. 1,﹣4,3D. 1,﹣4,﹣32.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数与实数b的取值有关3.有下列四个命题:①经过三个点一定可以作圆②等弧所对的圆周角相等;③三角形的外心到三角形各顶点的距离都相等; ④在同圆中,平分弦的直径一定垂直于这条弦.其中正确的有( )A. 0B. 1C. 2D. 34.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A. 55°B. 65°C. 60°D. 75°5.如图,在△ABC中,AC=50m,BC=40m,∠C=90°,点P从点A开始沿AC 边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着射线CB匀速移动,当△PCQ的面积等于300m2运动时间为()A. 5秒B. 20秒C. 5秒或20秒D. 不确定6.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M到坐标原点O的距离是()A. 10B. 8 √2C. 4 √13D. 2 √41二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.一元二次方程x2−2x+c=0有两个相等的实数根,则c=________.8.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.9.设m ,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=________.10.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.11.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB=________.12.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为________.13.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC 的外接圆,则BC的长等于________.14.一个三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,则该三角形的周长为________.15.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是________.16.如图,点0为正六边形ABCDEF的中心,点M为AF中点,以点0为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=________三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解答下列各题:(1)用配方法解方程:x2−8x−4=0 .(2)已知一元二次方程2x2−mx−m=0的一个根是−12.求m的值和方程的另一个根.18.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x²-mx+ m2- 14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?19.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.20.如图,⊙O中,弦AB与CD相交于点E, AB=CD,连接AD、BC .求证:(1)弧AD=弧BC ;(2)AE=CE .21.如图,在方格纸中,A,B,C三点都在小方格的顶点上(每个小方格的边长为1).(1)在图甲中画一个以A,B,C为其中三个顶点的平行四边形,并求出它的周长.(2)在图乙中画一个经过A,B,C三点的圆,并求出圆的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⊙O 交BD于E,交AD于F,且弧AE=弧CE,连接OA、OF.(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.24.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45° .(1)求∠EBC的大小;(2)若⊙O的半径为2,求图中阴影部分的面积.25.阅读理解:材料一:若三个非零实数x ,y ,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x ,y ,z构成“和谐三数组”.,材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba .x1⋅x2=ca问题解决:(1)请你写出三个能构成“和谐三数组”的实数________;(2)若x1,x2是关于x的方程ax2+bx +c= 0 (a ,b ,c均不为0)的两根,x3是关于x的方程bx+c=0(b ,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;的图象上,且三点的(3)若A(m ,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数y=4x纵坐标恰好构成“和谐三数组”,求实数m的值.26.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE//CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.27.问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是________. (2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案一、选择题1.解:一元二次方程x2-4x-3=0的二次项系数、一次项系数和常数项分别为1,-4,-3.故答案为:D.2.解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故答案为:A.3.解:①经过在同一条直线上的三个点不能作圆,只有三个点不在同一条直线上时才可以作圆,故本小题不符合题意;②等弧所对的圆周角相等,符合圆周角定理,故本小题符合题意;③三角形的外心是三角形三边垂直平分线的交点,所以到三角形各顶点的距离都相等,故本小题符合题意;④在同圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本小题不符合题意.故答案为:C.4.解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.5.解:设运动的时间为t,则AP=2t,CQ=3t∴PC=50-2t∵∠C=90°,S△PCQ=300·PC·CQ=300∴12解得t1=5,t2=20.故答案为:C。
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。
江苏省南京市2020-2021学年第一学期金中河西、新城八年级数学期中试卷
EB 交于点 O ,下列说法中正确的序号有
.
①图中共有 4 组全等三角形
② AD = BD , AE = CE
③点 O 在∠DOE 的角平分线上 ④点 O 在线段 BC 的垂直平分线上
14.如图,将宽 AB 为 3 cm 的长方形纸片 ABCD 沿 EF 折叠, EG = 5 cm ,则折痕 EF 的长
请利用上述模型解决下列问题:
(1)几何应用:如图 2,∆ABC 中,∠C = 90° , A=C B=C 2 , E 是 AB 的中点, P 是
BC 边上的一动点,则 PA + PE 的最小值为
;
(2)代数应用:求代数式 x2 + 1 + (3 − x)2 + 9(0x3) 的最小值;
(3)几何拓展:如图 3,∆ABC 中,AC = 2 ,∠A = 30° ,若在 AB 、AC 上各取一点 M 、
A.0.6
B.0.8
C.1
D.1.6
(第 5 题)
(第 6 题)
6.如图,在正方形 ABCD 所在平面内求一点 P ,使点 P 与正方形 ABCD 的任意两个顶点构
成 △PAB , △PBC , △PAD , △PCD 均是等腰三角形,则满足上述条件的所有点 P 的个数
为(
)
A.8 个
B.9 个
C.10 个
【金中河西&新城数学】2020 八上期中考试试卷
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分。在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确源自项的字母代号填涂在答题卡相应位置上)
1.下列图案中,是轴对称图形的是 ( )
A.
B.
C.
2020-2021学年八年级数学上学期期中考试高分直通车(解析版)卷(6)
2020-2021学年八年级上学期数学期中考试高分直通车【人教版】专题2.6人教版八年级数学上册期中全真模拟卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•三台县一模)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解析】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.(2019秋•恩施市期末)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解析】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.(2020春•魏县期末)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【分析】稳定性是三角形的特性.【解析】根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.4.(2019秋•埇桥区期末)如图,一副分别含有60°和45°角的两个直角三角板,拼成如下图形,其中∠C =90°,∠BAC=45°,∠EDC=60°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【分析】先由平角的定义求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解析】∵Rt△CDE中,∠C=90°,∠EDC=60°,∴∠BDF=180°﹣60°=120°,∵∠C=90°,∠BAC=45°,∴∠B=45°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.5.(2019秋•增城区期中)不能说明两个三角形全等的条件是()A.三边对应相等B.两边及其夹角对应相等C.两角及其夹边对应相等D.三角对应相等【分析】运用全等三角形的判定方法结合已知条件逐项分析,即可解答.【解析】A、三边对应相等,符合SSS,能推出两个三角形全等;B、两边及其夹角对应相等,符合SAS,能推出两个三角形全等;C、两角及其夹边对应相等,符合ASA,能推出两个三角形全等;D、三角对应相等满足AAA,不能推出全等三角形,是错误的.故选:D.6.(2019秋•莱山区期末)若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【解析】根据题意,此正多边形的边数为360°÷45°=8, 则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条). 故选:B .7.(2019秋•长清区期末)如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE =CD ,然后利用△ABD 的面积列式计算即可得解. 【解析】如图,过点D 作DE ⊥AB 于E , ∵∠C =90°,AD 平分∠BAC , ∴DE =CD , ∴S △ABD =12AB •DE =12×10•DE =15, 解得DE =3, ∴CD =3. 故选:A .8.(2020•建湖县模拟)如图,在△ABC 中,按以下步骤作图:①分别以A 、B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;②作直线MN 交AC 于点D ,连接BD .若∠A =25°,则∠CDB =( )A.25°B.50°C.60°D.90°【分析】根据基本尺规作图得到直线MN是线段AB的垂直平分线,根据线段的垂直平分线的性质得到DA=DB,根据三角形的外角的性质解答即可.【解析】由作图的步骤可知,直线MN是线段AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=25°,∴∠CDB=∠DBA+∠A=50°,故选:B.9.(2018春•章丘区期末)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解析】∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B .10.(2019•济源一模)如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A .90°B .95°C .100°D .105°【分析】由CD =AC ,∠A =50°,根据等腰三角形的性质,可求得∠ADC 的度数,又由题意可得:MN 是BC 的垂直平分线,根据线段垂直平分线的性质可得:CD =BD ,则可求得∠B 的度数,继而求得答案. 【解析】∵CD =AC ,∠A =50°, ∴∠ADC =∠A =50°,根据题意得:MN 是BC 的垂直平分线, ∴CD =BD , ∴∠BCD =∠B , ∴∠B =12∠ADC =25°,∴∠ACB =180°﹣∠A ﹣∠B =105°. 故选:D .11.(2019秋•费县期中)已知:在△ABC 中,∠A =60°,如要判定△ABC 是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形; ②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB 、BC 上的高相等”,那么△ABC 是等边三角形. 上述说法中,正确的有( ) A .3个B .2个C .1个D .0个【分析】利用有一个角为60°的等腰三角形为等边三角形可判断①正确;由∠A =60°,∠B =∠C ,利用三角形的内角和定理得到∠B=∠C=60°,即三个内角相等,可得出三角形ABC为等边三角形,判断②正确;由HL判定出直角三角形ACD与直角三角形AEC全等,由全等三角形的对应角相等得到∠ACE=∠BAC=60°,再利用三角形的内角和定理得到第三个角也为60°,即三内角相等,可得出三角形ABC为等边三角形,判断③正确.【解析】①若添加的条件为AB=AC,由∠A=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△ABC为等边三角形;②若添加条件为∠B=∠C,又∵∠A=60°,∴∠B=∠C=60°,∴∠A=∠B=∠C,则△ABC为等边三角形;③若添加的条件为边AB、BC上的高相等,如图所示:已知:∠BAC=60°,AE⊥BC,CD⊥AB,且AE=CD,求证:△ABC为等边三角形.证明:∵AE⊥BC,CD⊥AB,∴∠ADC=∠AEC=90°,在Rt△ADC和Rt△CEA中,{AC=CADC=EA,∴Rt△ADC≌Rt△CEA(HL),∴∠ACE=∠BAC=60°,∴∠BAC=∠B=∠ACB=60°,∴AB=AC=BC,即△ABC为等边三角形,综上,正确的说法有3个.故选:A.12.(2018秋•宣城期末)如图,已知线段AB=18米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走2米,P、Q同时从B出发,则出发x 秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.4B.6C.4或9D.6或9【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【解析】当△APC≌△BQP时,AP=BQ,即18﹣x=2x,解得:x=6;当△APC≌△BPQ时,AP=BP=12AB=9米,此时所用时间为9秒,AC=BQ=18米,不合题意,舍去;综上,出发6秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2019秋•朝阳区期中)在平面直角坐标系xOy中,点C(3,﹣1),则点C关于y轴对称点的坐标为(﹣3,﹣1).【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解析】点C(3,﹣1),则点C关于y轴对称点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).14.(2019秋•莱西市期中)如图,在△ABC中,D为AB延长线上一点,DE⊥AC于E,∠C=40°,∠D =20°,则∠ABC的度数为70°.【分析】由直角三角形的性质可求∠A=70°,由三角形内角和定理可求解.【解析】∵DE⊥AC,∠D=20°,∴∠A=70°,∵∠A+∠C+∠ABC=180°,∴∠ABC=180°﹣40°﹣70°=70°,故答案为70°.15.(2020春•吴江区期中)一个多边形的内角和与外角和的和是720°,那么这个多边形的边数n=4.【分析】首先设这个多边形的边数有n条,根据多边形内角和公式(n﹣2)•180°可得内角和,再根据外角和为360°可得方程(n﹣2)•180+360=720,再解方程即可.【解析】设这个多边形的边数有n条,由题意得:(n﹣2)•180+360=720,解得:n=4.故答案为:4.16.(2019秋•常熟市期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=6,DC=8,DE=20,则FG=6.【分析】只要证明EG=EB,DF=DC即可解决问题.【解析】∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵BE=6,DC=8,DE=20,∴FG=DE﹣EG﹣DF=DE﹣BE﹣CD=20﹣6﹣8=6,故答案为6.17.(2020春•南岗区校级期中)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为3cm.【分析】先根据角平分线的性质得到DE =DF ,再利用三角形面积公式得到12×AB ×DE +12×DF ×AC =21,所以12×8×DE +12×DE ×6=21,然后解关于DE 的方程即可.【解析】∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC , ∴DE =DF ,∵S △ABD +S △ACD =S △ABC , ∴12×AB ×DE +12×DF ×AC =21,即12×8×DE +12×DE ×6=21, ∴DE =3(cm ). 故答案为3.18.(2020春•福田区期中)如图,已知等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面结论:①∠APO =∠ACO ;②∠APO +∠PCB =90°;③PC =PO ;④AO +AP =AC ;其中正确的有 ①②③④ .(填上所有正确结论的序号)【分析】连接BO ,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出∠APO =∠ACO ,∠APO +∠DCO =30°,由三角形的内角和定理,角的和差求出∠POC =60°,再由等边三角的判定证明△OPC 是等边三角形,得出PC =PO ,∠PCO =60°,推出∠APO +∠PCB =90°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO +AP =AC ,即可得出结果.【解析】连接BO ,如图1所示: ∵AB =AC ,AD ⊥BC , ∴BO =CO ,∴∠OBC=∠OCB,又∵OP=OC,∴OP=OB,∴∠OBP=∠OPB,又∵在等腰△ABC中∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠OBC+∠OBP=∠OCB+∠ACO,∴∠OBP=∠ACO,∴∠APO=∠ACO,故①正确;又∵∠ABC=∠PBO+∠CBO=30°,∴∠APO+∠DCO=30°,∵∠PBC+∠BPC+∠BCP=180°,∠PBC=30°,∴∠BPC+∠BCP=150°,又∵∠BPC=∠APO+∠CPO,∠BCP=∠BCO+∠PCO,∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,又∵∠POC+∠OPC+∠OCP=180°,∴∠POC=60°,又∵OP=OC,∴△OPC是等边三角形,∴PC=PO,∠PCO=60°,故③正确;∴∠APO+∠DCO+∠PCO=30°+60°,即:∠APO+∠PCB=90°,故②正确;在线段AC上截取AE=AP,连接PE,如图2所示:∵∠BAC+∠CAP=180°,∠BAC=120°,∴∠CAP=60°,∴△APE是等边三角形,∴AP=EP,又∵△OPC是等边三角形,∴OP=CP,又∵∠APE=∠APO+∠OPE=60°,∠CPO=∠CPE+∠OPE=60°,∴∠APO=∠EPC,在△APO和△EPC中,{AP=EP∠APO=∠EPC OP=CP,∴△APO≌△EPC(SAS),∴AO=EC,又∵AC=AE+EC,AE=AP,∴AO+AP=AC,故④正确;故答案为:①②③④.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•市北区期末)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是9.【分析】(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【解析】(1)如图所示;(2)S△ABC=4×5−12×2×4−12×3×3−12×1×5=20﹣4−92−52=9.故答案为:9.20.(2020•开远市模拟)已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF且AC∥DF 求证:△ABC≌△DEF.【分析】先证出∠ACB=∠DFE,再由已知条件即可证明△ABC≌△DEF.【解析】证明:∵AC ∥DF , ∴∠ACB =∠DFE ,在△ABC 和△DEF 中,{∠A =∠DAC =DF∠ACB =∠DFE∴△ABC ≌△DEF (ASA ).21.(2019秋•樊城区期末)如图,D 是△ABC 的BC 边上的一点,且∠1=∠2,∠3=∠4,∠BAC =66°,求∠DAC 的度数.【分析】根据三角形的外角的性质得到∠4=∠1+∠2,根据三角形内角和定理计算即可. 【解析】∠4=∠1+∠2,∠1=∠2, ∴∠4=2∠1, ∵∠3=∠4, ∴∠3=2∠1,∴180°﹣4∠1+∠1=66°, 解得,∠1=38°,∴∠DAC =66°﹣∠1=28°.22.(2019秋•平山县期末)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE =CF .求证:AD 是△ABC 的角平分线.【分析】首先可证明Rt △BDE ≌Rt △DCF (HL )再根据三角形角平分线的逆定理求得AD 是角平分线即可.【解析】证明:∵DE ⊥AB ,DF ⊥AC , ∴Rt △BDE 和Rt △CDF 是直角三角形. {BD =DC BE =CF, ∴Rt △BDE ≌Rt △CDF (HL ), ∴DE =DF ,又∵DE ⊥AB ,DF ⊥AC , ∴AD 是角平分线.23.(2019秋•来凤县期末)已知:如图,Rt △ABC 中,∠BAC =90°,AB =AC ,D 是BC 的中点,AE =BF .求证:(1)DE =DF ;(2)若BC =8,求四边形AFDE 的面积.【分析】(1)连接AD ,证明△BFD ≌△AED ,根据全等三角形的性质即可得出DE =DF ; (2)根据△DAE ≌△DBF ,得到四边形AFDE 的面积=S △ABD =12S △ABC ,于是得到结论. 【解析】证明:(1)连接AD ,∵Rt △ABC 中,∠BAC =90°,AB =AC , ∴∠B =∠C =45°, ∵AB =AC ,DB =CD , ∴∠DAE =∠BAD =45°, ∴∠BAD =∠B =45°, ∴AD =BD ,∠ADB =90°, 在△DAE 和△DBF 中, {AE =BF∠DAE =∠B =45°AD =BD, ∴△DAE ≌△DBF (SAS ),∴DE=DF;(2)∵△DAE≌△DBF,∴四边形AFDE的面积=S△ABD=12S△ABC,∵BC=8,∴AD=12BC=4,∴四边形AFDE的面积=S△ABD=12S△ABC=12×12×8×4=8.24.(2019春•杜尔伯特县期末)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.【解析】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,{BD=DFDC=DE,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,{CD=DEAD=AD,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.25.(2019秋•河东区期中)已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,E是AC上一点,连结EB.(1)如图1,若点E在线段AC上,过点A作AM⊥BE,垂足为M,交BO于点F.求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【分析】(1)根据等腰直角三角形的性质和全等三角形的判定得出Rt△BOE≌Rt△AOF,进而证明即可.(2)根据等腰直角三角形的性质和全等三角形的判定得出Rt△BOE≌Rt△AOF,进而解答即可.【解析】(1)证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF,∴OE=OF;(2)OE=OF成立;∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠F+∠MBF=90°=∠B+∠OBE,又∵∠MBF=∠OBE,∴∠F=∠E,∴Rt△BOE≌Rt△AOF,∴OE=OF26.(2018秋•杨浦区期中)已知△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP、CP分别是△ABC的外角∠CBM和∠BCN的平分线,BD⊥AP,用含α的代数式表示∠BPC的度数,用含β的代数式表示∠PBD的度数,并说明理由.(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.∠BPC=90°+1 2α∠PBD=1 2β【分析】(1)根据三角形内角和定理可求出∠CBA+∠ACB,根据邻补角的性质可求出∠MBC+∠NGB,再根据角平分线的性质∠PBC+∠PCB,根据三角形内角和定理算出结果.【解析】(1)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α,∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α,∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°,∴∠MBC+∠NGB=360°﹣∠ABC﹣∠ACB=360°﹣(180°﹣α)=180°+α,∵BP,CP分别平分△ABC的外角∠CBM和∠BCN,∴∠PBC=12∠MBC,∠PCB=12∠NCB,∴∠PBC+∠PCB=12∠MBC+12∠NCB=12(180°+α)=90°+12α,∵∠BPC+∠PBC+∠PCB=180°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(90°+12α)=90°−12α,∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角,∴∠MBC=α+β,∵BP平分∠MBC,∴∠MBP=12∠MBC=12(α+β),∵∠MBP是△ABP的外角,AP平分∠BAC,∴∠BAP=12α,∠MBP=∠BAP+∠APB,∴∠PBD=90°﹣∠APB=90°﹣(∠MBP﹣∠BAP)=90°﹣∠MBP+∠BAP=90°−12(α+β)+12α=90°−12β;(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论已发生变化,∠BPC=90°+12α;∠PBD=12β.故答案为:90°+12α;12β.。
2020-2021学年江苏省南京市联合体八年级(上)期中数学试卷
2020-2021学年江苏省南京市联合体八年级(上)期中数学试卷一、选择题(本大题共8小题,共16.0分)1.下列四个图形中,是轴对称图形的为()A. B. C. D.2.下列各组数作为三角形的三边长,其中能构成直角三角形的是()A. 2、3、4B. 3、4、5C. 4、5、6D. 5、6、73.若等腰三角形的两边长为3和5,则该等腰三角形的周长为()A. 11B. 13C. 11或13D. 124.如图,∠DAC=∠BAC,下列条件中,不能判定△ABC≌△ADC的是()A. DC=BCB. AB=ADC. ∠D=∠BD. ∠DCA=∠BCA5.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A. 150cm2B. 200cm2C. 225cm2D. 无法计算6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AB=10,AD=2,则CD的长度是()A. 2B. 3C. 4.8D. 47.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则边AC的长是()A. 3B. 4C. 5D. 68.已知△ABC中,AC=BC=4,∠ACB=90°,D是AB边的中点,点E、F分别在AC、BC边上运动,且保持AE=CF.连接DE、DF、EF得到下列结论:①△DEF是等腰直角三角形;②△CEF面积的最大值是2;③EF的最小值是2.其中正确的结论是()A. ②③B. ①②C. ①③D. ①②③二、填空题(本大题共10小题,共20.0分)9.角的内部到角的两边的距离相等的点,一定在______ .10.已知△ABC≌△DEF,∠A=40°,∠E=80°,则∠C=______ °.11.已知:如图,∠CAB=∠DBA,只需补充条件______ ,就可以根据“SAS”得到△ABC≌△BAD.12.等腰三角形的一个内角为100°,则它的底角为______.13.在△ABC中,AC=5,BC=12,AB=13,则△ABC的面积为=______ .14.一个直角三角形的两边长分别是3和7,则第三边长的平方为______ .15.如图,在△ABC中,AB的垂直平分线l交BC于点D,BC=7,AC=4,则△ACD的周长为______ .16.如图,在△ABC中,BD平分∠ABC,AE⊥BD.若∠ABC=30°,∠C=50°,则∠CAE的度数为______ °.17.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是________cm2.18.如图,在四边形ABCD中,AB⊥BC,AC⊥CD,AC=CD,若AB=3,BC=1,则点D到AB的距离是______ .三、解答题(本大题共8小题,共64.0分)19.如图,点C、E在边BF上,BE=CF,AB//DE,∠A=∠D.求证:AC=DF.20.如图,在△ABC中,AD⊥BC,垂足为点D,AB=13,BD=5,AC=15.(1)求AD的长;(2)求BC的长.21.证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中,______ ;求证:______ ;证明:22.如图,点B、D、C在一条直线上,AB=AD,AC=AE,∠BAD=∠EAC.(1)求证:BC=DE;(2)若∠B=70°,求∠EDC.23.如图,在△ABC中,D,E是BC边上两点,AD=AE,∠BAD=∠CAE.求证:AB=AC.24.如图,在△ABC中,点D、E在边BC上,BD=CE,DM⊥AC,垂足为M,EN⊥AB,垂足为N,DM与EN交于点P,且BN=CM.(1)求证:PD=PE;(2)连接AP,并延长AP交BC于点Q,求证:过点A、P的直线垂直平分线段BC.25.(1)如图,已知四边形ABCD,请用直尺和圆规在边BC上求作一点P,使∠APB=∠CPD(不写作法,保留作图痕迹);(2)请根据(1)的作图过程,说明∠APB=∠CPD的理由.26.(1)如图①,△ABC是等边三角形,M为边BC的中点,连接AM,将线段AM顺时针旋转120°,得到线段AD,连接BD;点N在BC的延长线上,且CN=MC,连接AN.求证:BD=AN.(2)若将问题(1)中的条件“M为边BC的中点”改为“M为边BC上的任意一点”,其他条件不变,结论还成立吗?如果成立,请画出图形并给出证明;如果不成立,请举出反例.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.【答案】B【解析】解:A、22+32≠42,不符合勾股定理的逆定理,故本选项不符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项符合题意;C、42+52≠62,不符合勾股定理的逆定理,故本选项不符合题意;D、52+62≠72,不符合勾股定理的逆定理,故本选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【答案】C【解析】解:由题意知,应分两种情况:(1)当腰长为3时,周长=2×3+5=11;(2)当腰长为5时,周长=2×5+3=13.故选:C.讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.【答案】A【解析】解:A、DC=BC,∠DAC=∠BAC,再加上公共边AC=AC,不能判定△ABC≌△ADC,故此选项符合题意;B、AB=AD,∠DAC=∠BAC,再加上公共边AC=AC,可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、∠B=∠D,∠DAC=∠BAC,再加上公共边AC=AC,能利用AAS判定△ABC≌△ADC,故此选项不合题意;D、∠DCA=∠BCA,∠DAC=∠BAC,再加上公共边AC=AC,能利用ASA判定△ABC≌△ADC,故此选项不合题意;故选:A.利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.【答案】C【解析】解:正方形ADEC的面积为:AC2,正方形BCFG的面积为:BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选:C.小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.6.【答案】D【解析】解:如图,∵Rt△ABC中,∠ACB=90°,CE为AB边上的中线,AB=10,∴AE=CE=12AB=5,∵AD=2,∴DE=3.∵CD为AB边上的高,∴∠CDE=90°,∴由勾股定理,得CD=√CE2−DE2=√52−32=4.故选:D.由已知条件推知AE=CE=12AB=5,则DE=3.在直角△CDE中,利用勾股定理求CD 的长度.本题主要考查了勾股定理和直角三角形斜边上的中线,根据已知条件得到线段EC,DE 的长度是解题的关键.7.【答案】B【解析】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=12AB·DE=12×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9−5=4,∴12AC·DF=4,∴12AC·2=4,∴AC=4.故选B.首先根据角平分线性质求出DF,然后根据三角形面积公式求出△ABD的面积,最后求出△ADC面积,即可求出答案.本题主要考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.8.【答案】B【解析】解:①∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵AE=CF,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.故此选项正确;③由于△DEF是等腰直角三角形,因此当DF最小时,EF也最小;即当DF⊥BC时,DF最小,此时DF=12BC=2.∴EF=√2DF=2√2.故此选项错误;②∵△ADE≌△CDF,∴S△CDF=S△ADE,∴S四边形CEDF=S△ADC.当△CEF面积最大时,此时△DEF的面积最小,∵∠C=90°,AC=BC=4,∴AB=√42+42=4√2,∴AD=CD=2√2,此时S△CEF=S四边形CEDF−S△DEF=S△ADC−S△DEF=12×2√2×2√2−12×2×2=4−2=2.故此选项正确;故正确的有①②,故选:B.①由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;③△DEF是等腰直角三角形,√2DF=EF,当DF与BC垂直,即DF最小时,EF取最小值2√2,②根据两三角形全等时面积也相等得:S△CDF=S△ADE,利用割补法知:S四边形CEDF= S△ADC,当△CEF面积最大时,此时△DEF的面积最小,计算S△CEF=S四边形CEDF−S△DEF=S△ADC−S△DEF,代入即可.本题是三角形的综合题,难度适中,此题考查了全等三角形的判定与性质,以及等腰直角三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键,在第③问中,由DF的最值来确定EF的最值,这在讨论最值问题中经常运用,要熟练掌握.9.【答案】这个角的平分线上【解析】解:∵角的平分线上的点到角的两边的距离相等,∴角的内部到角的两边的距离相等的点,一定在这个角的平分线上.故答案为:这个角的平分线上.直接根据角平分线的性质进行解答即可.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.10.【答案】60【解析】解:∵△ABC≌△DEF,∠E=80°,∴∠B=∠E=80°,在△ABC中,∠C=180°−40°−80°=60°,故答案为:60.根据全等三角形的性质求出∠B,根据三角形内角和定理计算,得到答案.本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.11.【答案】AC=BD【解析】解:补充条件AC=BD.理由:在△ABC和△BAD中,{AC=BD∠CAB=∠DBA AB=BA,△ABC≌△BAD(SAS).故答案为:AC=BD.根据SAS的判定方法可得出答案.此题主要考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.【答案】40°【解析】解:①当这个角是顶角时,底角=(180°−100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.13.【答案】30【解析】解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=12×5×12=30,故答案为:30.先根据勾股定理的逆定理判定△ABC为直角三角形,然后根据直角三角形的面积解答即可.本题考查了勾股定理的逆定理.先判定△ABC为直角三角形是解题的关键.14.【答案】58或40【解析】解:当第三边是斜边时,则有第三边的平方=32+72=58;当第三边是直角边时,则有第三边的平方=72−32=40.则第三边长的平方为58或40.故答案是:58或40.此题要分情况考虑:当第三边是斜边时;当第三边是直角边时.考查了勾股定理,关键是熟练运用勾股定理,注意此类题的两种情况.15.【答案】11【解析】解:∵AB的垂直平分线l交BC于点D,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=4+7=11.故答案为11.根据线段的垂直平分线的性质得到DA=DB,然后利用等线段代换得到△ACD的周长= AC+BC.本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等;三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.16.【答案】25【解析】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°−15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB−∠C=75°−50°=25°,故答案为:25.依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.本题主要考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.17.【答案】5.1【解析】【分析】此题考查了图形的折叠变换,能够根据折叠的性质和勾股定理求出A′E和DE的长是解答此题的关键.根据折叠的性质知:AE=A′E,AB=A′D;可设AE为x,用x表示出A′E和DE的长,进而在Rt△A′DE中求出x的值,即可得到A′E和DE的长,利用三角形面积公式即可求得△DEF的面积.【解答】解:设AE=A′E=x,则DE=5−x;在Rt△A′ED中,A′E=x,A′D=AB=3cm,ED=AD−AE=5−x;由勾股定理得:x2+9=(5−x)2,解得x=1.6;即A′E=1.6cm,则DE=5−1.6=3.4cm,∴S△DEF=DE⋅AB÷2=3.4×3÷2=5.1(cm2).故答案为:5.118.【答案】4【解析】解:在△ABC中,AB⊥BC,AB=3,BC=1,∴AC=√AB2+BC2=√10,∵AC⊥CD,AC=CD,∴CD=√10,∴AD=√2AC=2√5,过D点作DE⊥AB于E,设AD=x,则BE=3−x,DE=√20−x2,依题意有12×3×1+12×√10×√10=12x√20−x2+12(1+√20−x2)(3−x),解得x1=2,x2=−4(负值舍去),则DE=√20−x2=√20−22=16.故点D到AB的距离是4.故答案为:4.根据勾股定理可求AC,再根据等腰直角三角形的性质求出AD,过D点作DE⊥AB于E,设AD=x,再表示出BE,DE,根据四边形ABCD的面积的两种不同形式列出关于x的方程,解方程可求x,进一步得到点D到AB的距离.本题考查了勾股定理以及等腰直角三角形性质的运用,能够用两种不同形式表示四边形ABCD的面积是解决问题的关键.19.【答案】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF.∵AB//DE,∴∠B=∠DEF,在△ABC与△DEF中,{∠A=∠D∠B=∠DEF BC=EF,∴△ABC≌△DEF(AAS),∴AC=DF.【解析】由“AAS”可证△ABC≌△DEF,可得AC=DF.本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是本题的关键.20.【答案】解:(1)∵AD⊥BC,∴∠ADB=∠CDA=90°.在Rt△ADB中,∵∠ADB=90°,∴AD2+BD2 = AB2,∴AD2=AB2−BD2=144.∵AD>0,∴AD=12.(2)在Rt△ADC中,∵∠CDA=90°,∴AD2+CD2 = AC2 , ∴CD2=AC2−AD2=81.∵CD>0,∴CD=9.∴BC=BD+CD=5+9=14.【解析】(1)依据勾股定理,即可得到AD的长;(2)依据勾股定理,即可得到CD的长,进而得出BC=BD+CD=14.本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.21.【答案】∠B=∠C△ABC为等腰三角形【解析】∠B=∠C,AB=AC;证明:过点A作AD⊥BC,垂足为D.∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△ACD中,∵∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS).∴AB=AC,∴△ABC为等腰三角形.根据题意易得已知,求证,过点A作AD⊥BC,垂足为D.通过证明△ABD≌△ACD可得AB=AC,进而证明结论.本题主要考查等腰三角形的判定,全等三角形的性质与判定,构造全等三角形是解题的关键.22.【答案】解:(1)∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,∴∠BAC=∠DAE,在△ABC与△ADE中,{AB =AD ∠BAC =∠DAE AC =AE,∴△ABC≌△ADE(SAS),∴BC =DE ;(2)∵△ABC≌△ADE ,∴∠B =∠ADE =70°,∵AB =AD ,∴∠B =∠ADB =70°,∵∠ADB +∠ADE +∠EDC =180°,∴∠EDC =180°−∠ADE −∠ADB =40°.【解析】(1)由“SAS ”可证△ABC≌△ADE ,可得BC =DE ;(2)由全等三角形的性质和等腰三角形的性质可得∠B =∠ADB =70°=∠ADE ,由平角的性质可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定方法是本题的关键.23.【答案】解:如图,∵AD =AE ,∴∠1=∠2,∴180°−∠1=180°−∠2.即∠3=∠4,在△ABD 与△ACE 中,{∠BAD =∠CAE AD =AE ∠3=∠4, ∴△ABD≌△ACE(ASA),∴AB =AC .【解析】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.根据等腰三角形的性质得到∠1=∠2,根据全等三角形的判定和性质即可得到结论.24.【答案】证明:(1)∵DM⊥AC,EN⊥AB,∴∠BNE=∠DMC=90°.∵BD=CE,∴BD+DE=CE+DE,∴BE=CD.在Rt△BNE与Rt△CMD中,∵{BE=CDBN=CM,∴Rt△BNE≌Rt△CMD(HL).∴∠NED=∠MDC.∴PD=PE.(2)如图,∵Rt△BNE≌Rt△CMD,∴∠B=∠C,NE=MD.∵∠B=∠C,∴AB=AC.∵NE=MD,PD=PE,∴NE−PE=MD−PD,∴PN=PM.∵PN=PM,PN⊥AB,PM⊥AC,∴AP平分∠BAC.即AQ平分∠BAC.∵AB=AC,∴AQ⊥BC,BQ=CQ,即过点A、P的直线垂直平分BC.【解析】(1)证明Rt△BNE≌Rt△CMD(HL),得出∠NED=∠MDC.则可得出结论;(2)得出PN=PM,则AP平分∠BAC,由等腰三角形的性质可得出结论.本题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.25.【答案】解:(1)如图,点P即为所求.(2)根据作图,可知点A和A1点关于直线BC对称,∴∠APB=∠A1PB,∵∠A1PB与∠CPD是对顶角,∴∠A1PB=∠CPD,∴∠APB=∠CPD.【解析】(1)作点A关于直线BC的对称点A′,连接A′D交BC于点P,连接PA,点P即为所求.(2)利用轴对称的性质以及对顶角线段解决问题即可.本题考查作图−复杂作图,轴对称的性质,对顶角线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.【答案】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,AB=BC=AC,∵又M是BC的中点,∴∠AMB=∠AMN=90°,BC=2BM=2MC,∠BAM=∠BAC=30°,∵AM顺时针旋转120°得到线段AB,∴∠MAD=120°,AD=AM,∴∠BAD=∠MAD−∠BAM=120°−30°=90°,∴∠BAD=∠AMN=90°,∵MC=CN,∴MN=2MC=BC=AB,在△DBA和△ANM中,{AB=MN∠BAD=∠AMB AD=AM,∴△DBA≌△ANM(SAS),∴BD=AN.(2)结论成立,理由如下:①如图②−1中,当BM>12BC时,分别过点A、点D作AG⊥BM、DH⊥BA垂足分别为G、H.∴∠DHA=∠AGM=90°,∵∠AMG+∠BAM+∠ABC=180°,∠ABC=160°,∴∠AMG=180°−∠ABC−∠BAM=120°−∠BAM,∵AM顺时针旋转120°得到线段AB,∴∠MAD=120°,AD=AM,∴∠DAB=120°−∠BAM,∴∠DAB=∠AMB,在△DAH和△AMG中,{∠DHA=∠AGM ∠DAH=∠AMG AD=AM,∴△DAH≌△AMG(AAS),∴DH=AG,AH=GM,又∵△ABC 是等边三角形,AG ⊥BM ,∴BG =GC ,∴GN =GC +CN =GC +CM =BG +GC −GM =BC −GM ,又∵BH =AB −HA ,AH =GM ,AB =BC ,∴BH =GN .∵DH =AG ,∠DHA =∠AGM =90°,BH =GN ,在△DBH 和△ANG 中,{DH =AG ∠DHA =∠AGM BH =GN∴△DBH≌△ANG(SAS),∴BD =AN .②当BM <12BC 时,同法可得BD =AN .【解析】(1)证明△DBA≌△ANM(SAS),可得BD =AN .(2)分两种情形:①如图②−1中,当BM >12BC 时,分别过点A 、点D 作AG ⊥BM 、DH ⊥BA 垂足分别为G 、H.证明△DAH≌△AMG(AAS),推出DH =AG ,AH =GM ,再证明△DBH≌△ANG(SAS),可得BD =AN.②当BM <12BC 时,同法可得BD =AN . 本题考查旋转的性质,等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021南京市南京市第九中学八年级数学上期中模拟试题附答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为() A.100B.80C.50或80D.20或803.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点4.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7B.8C.6D.55.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C.40004000210x x-=-D.40004000210x x-=-6.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A.2 B.-2 C.0.5 D.-0.57.下列运算正确的是()A.(-x3)2=x6 B.a2•a3=a6 C.2a•3b=5ab D.a6÷a2=a38.如图,已知a∥b,∠1=50°,∠3=10°,则∠2等于()A.30°B.40°C.50°D.60°9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A .2B .3C .1D .1.5 10.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .711.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角12.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD=3,则线段BD 的长为___.14.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.15.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 16.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.若关于x 的分式方程111x x m +--=2有增根,则m =_____. 19.观察下列各式的规律: ()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a a b ab a b b b a +++=--…可得到()()2019201820182019a a b ab b a b ++++=-______.20.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-. 22.已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值.23.解分式方程:22111x x x +=-- 24.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.D解析:D【解析】【分析】首先证明△ABC≌△CDE,推出CE=AC,∠D=∠B,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD⊥AB,即可一一判断.【详解】在Rt△ABC和Rt△CDE中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B .【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.5.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.A解析:A【解析】【分析】A.利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B.利用同底数幂的乘法法则计算得到结果,即可做出判断;C.利用单项式乘单项式法则计算得到结果,即可做出判断;D.利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.8.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.9.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.10.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.11.B解析:B【解析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.12.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).二、填空题13.9【解析】【分析】利用三角形的内角和求出∠A余角的定义求出∠ACD然后利用含30度角的直角三角形性质求出AC=2ADAB=2AC即可【详解】解:∵CD⊥AB∠ACB=90°∴∠ADC=∠ACB=90解析:9【解析】利用三角形的内角和求出∠A ,余角的定义求出∠ACD ,然后利用含30度角的直角三角形性质求出AC=2AD ,AB=2AC 即可..【详解】解:∵CD ⊥AB ,∠ACB=90°,∴∠ADC= ∠ACB=90°又∵在三角形ABC 中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=12AC,即AC=6 ∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】 本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.14.33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC 的距离都相等从而可得到△ABC 的面积等于周长的一半乘以OD 然后列式进行计算即可求解【详解】解:如图连接OA 作OE ⊥AB解析:33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进行计算即可求解.【详解】解:如图,连接OA ,作OE ⊥AB 于E ,OF ⊥AC 于F .∵OB 、OC 分别平分∠ABC 和∠ACB ,∴OD=OE=OF ,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=33. 故答案为:33.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k的值【详解】方程两边都乘(x+1)(x﹣1)得2(x+1)+kx=3(x﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【详解】方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得:解析:60060010 5x x-= -【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x人,由题意得:600600105x x-=-,故答案为:600600105x x-=-.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.【解析】【分析】根据已知等式归纳总结得到一般性规律写出所求式子结果即可【详解】归纳总结得:(a −b)(a2019+a2018b+…+ab2019+b2019)=a2020−b2020故答案为:【点睛 解析:20202020a b -【解析】【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【详解】归纳总结得:(a−b)(a 2019+a 2018b+…+ab 2019+b 2019)=a 2020−b 2020.故答案为:20202020a b -.【点睛】此题考查多项式乘多项式,平方差公式,解题关键在于找到运算规律.20.10【解析】【分析】设正多边形的边数为n 然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n 由题意得=144°解得n=10故答案为10【点睛】本题考查了多边形的内角与外角熟记公式解析:10【解析】【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180n n-︒=144°, 解得n=10.故答案为10.【点睛】 本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.三、解答题21.11x +. 【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷-=2(1)(1)(1)(1)x x x x x x +-⋅-+ =11x +, 当21x =-时,原式=211-+=22. 考点:分式的化简求值.22.12【解析】解:∵2410x x --=,∴241x x -=.∴()22222222(23)()()4129312934931912x x y x y y x x x y y x x x x --+--=-+-+-=-+=-+=⨯+=.将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.23.x=-3【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:方程左右两边同时乘以(x-1)²得:2+2x=x-1,解得:x=-3,经检验x=-3是原分式方程的解.点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.24.答案见解析【解析】试题分析:首先作ABC α∠=,进而以B 为圆心a 的长为半径画弧,再以A 为圆心a 为半径画弧即可得出C 的位置.试题解析:如图所示:△ABC 即为所求.25.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.。