2010新疆维吾尔自治区C语言版高级

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、编程实现单链表的就地逆置。

23.在数组 A[1..n]中有n个数据,试建立一个带有头结点的循环链表,头指针为h,要求链中数据从小到大排列,重复的数据在链中只保存一个.

2、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。

3、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。

typedef struct

{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问

}stack;

stack s[],s1[];//栈,容量够大

BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。{top=0; bt=ROOT;

while(bt!=null ||top>0)

{while(bt!=null && bt!=p && bt!=q) //结点入栈

{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下

if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存

if(bt==q) //找到q 结点。

for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配

{pp=s[i].t;

for (j=top1;j>0;j--)

if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈

if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历

}//结束while(bt!=null ||top>0)

return(null);//q、p无公共祖先

}//结束Ancestor

4、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x,这情况下向j 小的方向继续查找;二是A[i,j]

void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x

向下最多是m,向左最多是n。最佳情况是在右上角比较一次成功,最差是在左下角(A[b,c]),

比较m+n次,故算法最差时间复杂度是O(m+n)。

5、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)

25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)

26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild

27. (1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1

6、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的

二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x,

这情况下向j 小的方向继续查找;二是A[i,j]

查找成功。否则,若下标已超出范围,则查找失败。

void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x

向下最多是m,向左最多是n。最佳情况是在右上角比较一次成功,最差是在左下角(A[b,c]),

比较m+n次,故算法最差时间复杂度是O(m+n)。

7、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,

则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。

int BPGraph (AdjMatrix g)

//判断以邻接矩阵表示的图g是否是二部图。

{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)

int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组

for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个

集合

相关文档
最新文档