人教版2018年七年级数学上册第三章一元一次方程单元测试题含答案
人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。
现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。
人教版七年级数学上册《第三章一元一次方程》单元检测卷(带答案)
人教版七年级数学上册《第三章一元一次方程》单元检测卷(带答案)一、单选题 1.下列方程:①x ﹣2=3x ;①0.3x ;①213+x =5x ﹣1;①x 2﹣4x =3;①x =0;①x +2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .5 2.根据等式的性质判断,下列变形正确的是( )A .由1233x y -=得2x y = B .由3222x x -=+得4x = C .由233x x -=得3x =D .由5ax a =得5x =3.下列说法正确的是( ) A .在等式ab =ac 两边除以a ,可得b =c B .在等式2x =2a ﹣b 两边除以2,可得x =a ﹣bC .在等式a =b 两边除以(c 2+1),可得21a c +=21b c + D .在等式b c a a =两边除以a ,可得b =c 4.解方程14(1)22y y y ⎛⎫--=+ ⎪⎝⎭的步骤如下: 解:①去括号,得4421y y y --=+.①移项,得4214y y y +-=+.①合并同类项,得35y =.①两边同除以3,得53y =. 经检验,53y =不是方程的解.则上述解题过程中出错的步骤是( ) A .① B .① C .① D .①5.把一些图书分给某班学生阅读,如果每人分2本,则剩余15本;如果每人分3本,则还缺25本,设这个班有x 名学生,可列方程为( )A .215325x x -=+B .215325x x +=-C .215325x x -=-D .215325x x +=+6.下列各式中,是一元一次方程的有( )①13x -= ①123y -=- ①25x y -= ①4321x x -=+( )个.A .1B .2C .3D .48.将一个正方形甲和两个正方形乙分别沿着图中虚线川剪刀剪成4个完全相等的长方形和一个正方形(如图1),已知正方形甲中剪出的小正方形面积是1,正方形乙中剪出的小正方形面积是4,现将剪得的12个长方形摆成如图2正方形ABCD (不重叠无缝隙).则正方形ABCD 的面积是()A .9B .16C .25D .369.某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A .0.68x x -=B .0.0618x -=C .80.61x -=D .0.618x -=11.一架飞机往返于甲、乙两地,已知飞机在无风时的飞行速度为520千米/小时,若某次往返中顺风从甲地飞至乙地用时6小时,逆风返回用时7小时,则甲、乙两地相距( )A.2-B.2C.1-D.1二、填空题+=.如图①,13.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即18826 y=时,b的值为.当30314.如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.15.整式9+的值随x的取值不同而不同,下表是当x取不同值时对应的整式值,则关于x的方程mx n--=的解为.mx n94x2-1-012+404-8-12mx n9-16.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为170米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米.按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作天.17.一个两位数,十位数字比个位数字大2,如果把十位数字和个位数子对调得到的新两位数比原两位数小13,设原数的个位数为x,则列方程为 .18.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为千米/小时.19.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是20.从12点整开始到1点,经过分钟,钟表上时针和分针的夹角恰好为110.三、解答题(1)(2)去括号,得42516x x --+=. 第二步移项,得45621x x -=+-. 第三步合并同类项,得7x -= 第四步方程两边同除以1-,得7x =-. 第五步填空:①以上求解步骤中,第________步开始出现错误,具体的错误是_____________________________; ①该方程正确的解为________.24.把正整数1,2,3,4,2016排列成如图所示的形式.(1)用一个矩形随意框住4个数,把其中最小的数记为x ,另三个数用含x 式子表示出来,当被框住的4个数之和等于418时,x 值是多少?(2)被框住的4个数之和能否等于724?如果能,请求出此时x 值;如果不能,请说明理由.25.已知一块A 型纸板可以制成1个C 型正方形纸板和2个D 型长方形纸板,一块B 型纸板可以制成2个C 型正方形纸板和1个D 型长方形纸板.现有A ,B 两种纸板共20块,设A 型纸板有x 块(x 为正整数). (1)求总共可以制成多少个C 型正方形纸板(用含有x 的式子表示)(2)出售一个C 型正方形纸板可以获利10元,出售1个D 型长方形纸板可以获利12元.若将所制成的C 型,D 型纸板全部售出可以获利650元,求x 的值.参考答案:1.A2.B3.C4.B5.B6.B22.(1);(2).。
人教版七年级数学上册第三章《一元一次方程》测试卷含答案
人教版七年级数学上册第三章《一元一次方程》测试卷含答案班级:姓名:得分:一、选择题(每题3分,共30分)1.下列方程中是一元一次方程的是()A.x+3=y+2B.x+3=3-xC.=1D.x2-1=02.方程3x-1=5的解是()A.x=B.x=C.x=18D.x=23.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程t=,未知数系数化为1,得t=1D.方程=1化成3x=64.日历中同一竖列相邻三个数的和不可能是()A.78B.26C.21D.455.方程-x=+1去分母得()A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球质量为()A.10 gB.15 gC.20 gD.25 g7.若“☆”是新规定的某种运算符号,设x☆y=xy+x+y,则2☆m=-16中,m的值为()A.8B.-8C.6D.-68.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 m栽1棵,则树苗缺21棵;如果每隔6 m栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x9.轮船在静水中的速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km,则列出的方程正确的是()A.(20+4)x+(20-4)x=5 B.20x+4x=5C.x20+x4=5 D.x20+4+x20-4=510.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为()A.180元B.202.5元C.180元或202.5元D.180元或200元二、填空题(每题3分,共24分)11.写出一个解是-2的一元一次方程:____________________.12.比a的3倍大5的数等于a的4倍,列方程是.13.已知关于x的方程x+k=1的解为x=5,则-|k+2|=________.14.当y=________时,1-2y-56与3-y6的值相等.15.对于两个非零有理数a,b,规定:a⊗b=ab-(a+b).若2⊗(x+1)=1,则x 的值为________.16.一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的15,则这个两位数是________.17.一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.18.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4 000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4 000元的应缴纳全部稿费的11%的税.今知丁老师获得一笔稿费,并缴纳个人所得税420元,则丁老师的这笔稿费有________元.三、解答题(19题16分,20,21题每题6分,22题8分,其余每题10分,共66分)19.解方程:(1)2x+3=x+5; (2)2(3y-1)-3(2-4y)=9y+10;(3)12x+2⎝⎛⎭⎪⎫54x+1=8+x; (4)3y-14-1=5y-76.20.已知y1=-23x+1,y2=16x-5,且y1+y2=20,求x的值.21.如果方程x-43-8=-x+22的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求式子a-1a的值.22.如图,一块长5 cm、宽2 cm的长方形纸板,一块长4 cm、宽1 cm的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问:大正方形的面积是多少?23.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见下表:若某户居民某月份用水8 t,则应收水费:2×6+4×(8-6)=20(元).注:水费按月结算.(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5 t),共交水费44元,则该户居民3,4月份各用水多少吨?25.某校计划购买20张书柜和一批书架,现从A,B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元.A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A超市和B超市需分别准备多少元货款?(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至少需准备多少元货款?并说明理由.答案一、1.C 2.B 3.D 4.B 5.B 6.B7.A 8.C 9.D 10.C 二、11.2x -1=-5(答案不唯一)12.3a +5=4a 13.-2 14.8 15.2 16.45 17.10 18.3 800 三、19.解:(1)移项,得2x -x =5-3.合并同类项,得x =2.(2)去括号,得6y -2-6+12y =9y +10. 移项,得6y +12y -9y =10+2+6. 合并同类项,得9y =18. 系数化为1,得y =2.(3)去括号,得12x +52x +2=8+x. 去分母,得x +5x +4=16+2x. 移项,得x +5x -2x =16-4. 合并同类项,得4x =12. 系数化为1,得x =3.(4)去分母,得3(3y -1)-12=2(5y -7). 去括号,得9y -3-12=10y -14. 移项,得9y -10y =3+12-14. 合并同类项,得-y =1. 系数化为1,得y =-1.20.解:由题意,得⎝ ⎛⎭⎪⎫-23x +1+(16x -5)=20,解得x =-48.21.解:解x -43-8=-x +22,得x =10.因为方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,所以把x =10代入方程4x -(3a +1)=6x +2a -1,得4×10-(3a +1)=6×10+2a -1,解得a =-4. 所以a -1a =-4+14=-334. 22.解:设大正方形的边长为x cm .根据题意,得x-2-1=4+5-x,解得x=6.6×6=36(cm2).答:大正方形的面积是36 cm2.23.解:设甲、乙两地之间距离的一半为s km,则全程为2s km.根据题意,得2s4-⎝⎛⎭⎪⎫s4+s20=2.解得s=10.所以2s=20.答:甲、乙两地之间的距离是20 km.24.解:(1)48(2)设该户居民3月份用水x t,则4月份用水(15-x)t,其中x<5,15-x>10.根据题意,得2x+2×6+4×4+(15-x-10)×8=44.解得x=4,则15-x=11.答:该户居民3月份用水4 t,4月份用水11 t.25.解:(1)根据题意,到A超市购买需准备货款20×210+70(x-20)=70x +2 800(元),到B超市购买需准备货款0.8(20×210+70x)=56x+3 360(元).(2)由题意,得70x+2 800=56x+3 360,解得x=40.答:当购买40个书架时,无论到哪家超市购买所付货款都一样.(3)因为A超市的优惠政策为买一张书柜赠送一个书架,相当于打7.5折;B超市的优惠政策为所有商品打8折,所以应该到A超市购买20张书柜,赠20个书架,再到B超市购买80个书架.所需货款为20×210+70×80×0.8=8 680(元).答:至少需准备8 680元货款.。
2018年人教版七年级上第三章一元一次方程单元测试(有答案)
第三章一元一次方程单元测试一、选择题1.下列不是一元一次方程的()A. 5x+3=3x−7B. 1+2x=3C. 2x3+5x=3 D. x−7=02.已知x a+a=3是关于x的一元一次方程,则该方程的解为()A. x=1B. x=2C. x=3D. x=43.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是()A. 1B. 4C. 15D. −14.已知关于x的一元一次方程199x+3=2x+b的解为x=−2,那么关于y的一元一次方程199(y+1)+3=2(y+1)+b的解为().A. y=3B. y=1C. y=−1D. y=−35.已知a=2b-1,下列式子:①a+2=2b+1;②a+12=b;③3a=6b-1;④a-2b-1=0,其中一定成立的有()A. ①②B. ①②③C. ①②④D. ①②③④6.设P=2y−2,Q=2y+3,且3P−Q=1,则y的值是( )A. 0.4B. 2.5C. −0.4D. −2.57.下列变形中:①由方程x−125=2去分母,得x−12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x−4=x+4移项,得7x=0;④由方程2−x−56=x+32两边同乘以6,得12−x−5=3(x+3).错误变形的个数是()个.A. 4B. 3C. 2D. 18.解方程3y−14−1=3y−73时,为了去分母应将方程两边同时乘以()A. 12B. 10C. 9D. 49. 若关于x 的方程(k -2018)x -2016=6-2018(x +1)的解是整数,则整数k 的取值个数是( )A. 2B. 3C. 4D. 610. 在有理数范围内定义运算“*”,其规则为a *b =-2a+b 3,则方程(2*3)(4*x )=49的解为( )A. −3B. −55C. −56D. 5511. 方程2y -12=12y -中被阴影盖住的是一个常数,此方程的解是y =-53.这个常数应是( )A. 1B. 2C. 3D. 412. 某班级劳动时,将全班同学分成n 个小组,若每小组10人,则有一组多2人,若每小组12人,则有一组少4人,按下列哪个选项重新分组,能使每组人数相同?( )A. 4组B. 5组C. 6组D. 7组13. 李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x ,那么可得方程( )A. 2000(1+x)=2120B. 2000(1+x%)=2120C. 2000(1+x ⋅80%)=2120D. 2000(1+x ⋅20%)=212014. 甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x 天,可得方程( )A. (110+115)×2+x15=1 B. x 10+x15=1 C. 210+215+x =1D. 2+x10+215=115. 有m 辆校车及n 个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m +10=43m -1;②n+1040=n+143;③n−1040=n−143;④40m +10=43m +1.其中正确的是( )A. ①②B. ②④C. ②③D. ③④二、填空题16. 已知方程2a −5=x +a 的解是x =−6,那么a =______.17. 若代数式4x -1与3x -6的值互为相反数,则x 的值为______. 18. 一个正数的平方根分别是x +1和x -5,则x =______.19. 对有理数a ,b ,规定一种新运算※,意义是a ※b =ab +a +b ,则方程x ※3=4的解是x =______. 20. 轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了______小时. 三、计算题21. 方程2(x −3)=1+a 与方程x+42−x−0.10.5=1 的解互为相反数,求a 的值22. x 为何值时,代数式x+43的值比3x−12的值大1?23. 同学们,今天我们来学习一个新知识.形如∣∣a c b d ∣∣的式子叫做二阶行列式,它的运算法则用公式表示为∣∣a c b d ∣∣=ad -bc ,利用此法则解决以下问题: (1)仿照上面的解释,表示出∣∣∣m p n q ∣∣∣的结果;(2)依此法则计算∣∣∣21−34∣∣∣的结果;(3)如果∣∣∣53x +1x ∣∣∣=4,那么x 的值为多少?24.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距多少千米?25.星光服装厂接受生产一些某种型号的学生服的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?1.【答案】C【解析】解:A、5x+3=3x-7即2x=10,是一元一次方程;B、1+2x=3即2x=2,是一元一次方程;C、,不是整式方程,不合题意;D、x-7=0即x=7,是一元一次方程.故选C.2.【答案】B【解析】解:∵x a+a=3是关于x的一元一次方程,∴a=1,即方程为x+1=3,解得:x=2,故选B3.【答案】A【解析】解:由2x+5a=3,得x=;由2x+2=0,得x=-1.由关于x的方程2x+5a=3的解与方程2x+2=0的解相同,得=-1.解得a=1.故选:A.4.【答案】D【解析】【分析】此题考查一元一次方程的解,考查整体思想的应用,将y+1看作x即可. 【解答】解:关于x的一元一次方程的解为x=-2,由关于y的一元一次方程,可得y+1=-2,解得y=-3.故选D.5.【答案】A【解析】解:①∵a=2b-1,∴a+2=2b-1+2,即a+2=2b+1,故此小题正确;②∵a=2b-1,∴a+1=2b,∴=b,故此小题正确;③∵a=2b-1,∴3a=6b-3,故此小题错误;④∵a=2b-1,∴a-2b+1=0,故此小题错误.所以①②成立.故选:A.6.【答案】B【解析】【分析】本题考查了解一元一次方程和等式的性质,主要考查学生运用等式的性质解方程的能力,题目比较好,难度不大.把P和Q的值代入3P-Q=1,得出关于y的方程,求出方程的解即可.【解答】解:∵P=2y-2,Q=2y+3,3P-Q=1,∴代入得:3(2y-2)-(2y+3)=1,6y-6-2y-3=1,4y=10,y=2.5.故选B.7.【答案】B【解析】解:①方程=2去分母,两边同时乘以5,得x-12=10.②方程x=,两边同除以,得x=;要注意除以一个数等于乘以这个数的倒数.③方程6x-4=x+4移项,得5x=8;要注意移项要变号.④方程2-两边同乘以6,得12-(x-5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号.故②③④变形错误故选:B.8.【答案】A【解析】【分析】此题考查了解一元一次方程的解法,故分母的关键是找到分母的最小公倍数.【解答】解:解方程-1=时,为了去分母应将方程两边同时乘以12.故选A.9.【答案】D【解析】【分析】本题考查了一元一次方程的解法,解决本题的关键是根据方程kx=b的根是整数,确定k的值;整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【解答】解:(k-2018)x-2016=6-2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选D.10.【答案】D【解析】解:根据题中的新定义得:-×(-)=49,整理得:56+7x=441,解得:x=55,故选:D.11.【答案】C【解析】解:设阴影部分表示的数为a,将y=-代入,得:--=--a,解得:a=3,故选:C.12.【答案】A【解析】解:设将全班同学分成n个小组,根据题意得10n+2=12n-4,解得n=3,所以全班同学共有:10n+2=10×3+2=32人,32=4×8,则将全班同学分成4个小组,能使每组人数相同.故选A.13.【答案】C【解析】解:∵这种储蓄的年利率为x,∴一年到期后李阿姨的存款本息和为:2000(1+x),∵要扣除20%的利息税,∴本息和为:2000+2000x(1-20%),由题意可列出方程:2000+2000x(1-20%)=2120,将上述方程整理可得:2000(1+80%•x)=2120;故选:C.14.【答案】A【解析】【分析】此题考查由实际问题抽象出一元一次方程的知识,关键是找出题目中的相等关系,工程问题的基本公式是:工作量=工作时间×工作效率.此题属于工程问题,基本公式是:工作量=工作时间×工作效率,由此公式可得甲、乙的工作效率分别为、;甲的工作时间是2天,乙的工作时间是(x+2)天,相等关系为:甲、乙两天的工作量+乙x天的工作量=总工作量1.【解答】解:设还需x天能完成任务,根据题意可得方程故选A.15.【答案】D【解析】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.16.【答案】-1【解析】【分析】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程;把x=-6代入方程2a-5=x+a,即可解答.【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,解得:a=-1,故答案为-1.17.【答案】1【解析】解:∵代数式4x-1与3x-6的值互为相反数,∴4x-1+3x-6=0,解得:x=1,故答案为:1.18.【答案】2【解析】【分析】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x-5=0,解得:x=2,故答案为2.19.【答案】0.25【解析】解:根据题意得:3x+x+3=4,解得:x=0.25,故答案为:0.2520.【答案】10【解析】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.21.【答案】解:x+42−x−0.10.5=1,5(x+4)-2(10x-1)=10,-15x=-12,x=45,由题意可知,-45就是方程2(x−3)=1+a的解,代入可得a=-435.22.【答案】解:由题意得:x+43-3x−12=1,去分母得:2x +8-9x +3=6,移项合并得:-7x =-5,解得:x =57.23.【答案】解:(1)根据题意得:原式=mq -np ;(2)原式=8+3=11;(3)由法则得:5x -3(x +1)=4,解得:x =3.5.24.【答案】解:设A 港和B 港相距x 千米,由题意得解得x =504答:A 港和B 港相距504千米.25.【答案】解:设用x 米布料做上衣,则用(750-x )米布料做裤子,由题意得:x 3×2=750−x3×3,解得:x =450,则用750-450=300米布料做裤子,可生产4503×2=300套校服.答:用450米布料生产上衣和300米布料生产裤子才能恰好搭配,共能生产300套.。
人教版七年级数学上册第三章 一元一次方程单元测试 (含答案)
第三章 一元一次方程一、单选题1.下列方程是一元一次方程的是( ) A.4x+2y=3 B.y+5=0 C.x 2=2x ﹣lD.1y+y=2 2.在下列方程中①221x x +=,②139x x -=,③102x =,④123233-=,⑤2133y y -=+是一元一次方程的有( )个. A .1B .2C .3D .43.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1B.由,得C.由,得 D.由,得2x ﹣3x=14.下列选项中,移项正确的是( ) A .方程8x 6-=变形为x 68-=+ B .方程5x 4x 8=+变形为5x 4x 8-= C .方程3x 2x 5=+变形为3x 2x 5-=- D .方程32x x 7-=+变形为x 2x 73-=+ 5.方程23x +=的解是( )A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.如果关于 的方程 - 无解,那么 满足( ). A. B.C. D.任意实数8.方程去分母后正确的结果是( )A. B. C.D.9.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.510.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.511.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x 千米,则列方程正确的是( ) A.()()254254x x +=-B.2556x x +=C.6255x x+= D.6255255x x+=+- 12.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( )A .70,49B .65,48C .72,48D .73,47二、填空题13.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 14.方程320x -+=的解为________.15.已知a 、b 、c 、d 为有理数,现规定一种新运算a b ad bc c d=-,如131(5)321125=⨯--⨯=--,那么当2422(1)7x =+时,则x 的值为_____.16.今有浓度分别为 3%、8%、11%的甲、乙、丙三种盐水 50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为 7%的盐水 100 千克,则丙种盐水最多可用_________千克 三、解答题17.解方程:(1)8x-2=0;(2)2x-5=4x+3 18.解方程:(1)51312423-+--=x x x ;(2)30.4110.50.3---=x x 19.已知A =2x 2+mx ﹣m ,B =3x 2﹣mx +m . (1)求A ﹣B ;(2)如果3A ﹣2B +C =0,那么C 的表达式是什么?(3)在(2)的条件下,若x =4是方程C =20x +5m 的解,求m 的值.20.如图,在数轴上点O 为原点,A 点表示数a ,B 点表示数b ,且a 、b 满足|a+2|+|b-4|=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)如果M 、N 为数轴上两个动点.点M 从点A 出发,速度为每秒1个单位长度;点N 从点B 出发,速度为点A 的3倍,它们同时向左运动.①当运动2秒时,点M、N对应的数分别是、.②当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)21.某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这家公司要生产多少件新产品?(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案答案1.B2.B3.C4.B5.A6.A7.B8.B9.D10.D 11.D 12.C 13.112cm2.14.23 x15.-3 16.5017.(1)8x-2=0 8x=2x=14;(2)2x-5=4x+32x-4x=3+5-2x=8x=-4.18.解:(1)去分母得:3(5x-1)-6(3x+1)=4(x-2),去括号得:15x-3-18x-6=4x-8,移项得:15x-18x-4x=-8+3+6,合并同类项得:-7x=1,系数化为1得:17x=-;(2)系数化为整数得:1030410153x x---=,去分母得:3(10x-30)-5(4x-10)=15,去括号得:30x-90-20x+50=15,移项得:30x-20x=15+90-50,合并同类项得:10x=55,系数化为1得:x=5.5;19.解:(1)A﹣B=(2x2+mx﹣m)﹣(3x2﹣mx+m) =2x2+mx﹣m﹣3x2+mx﹣m=﹣x 2+2mx ﹣2m ;(2)∵3A ﹣2B+C =0, ∴C =﹣3A+2B=﹣3(2x 2+mx ﹣m)+2(3x 2﹣mx+m)=﹣6x 2﹣3mx+3m+6x 2﹣2mx+2m =﹣5mx+5m ;(3)根据题意知x =4是方程﹣5mx+5m =20x+5m 的解, ∴﹣20m+5m =80+5m , 解得:m =﹣4.20.解:(1)240a b ++-=,20a ∴+=,40b -=,解得:2a =-,4b =,∴点A 表示的数为2-,点B 表示的数为4.故答案为:2-,4. (2)①当运动2秒时,点M 对应的数为:2124--⨯=-; 点N 对应的数为:4322-⨯=-; 故答案为:4-,-2. ②当运动t 秒时,点M 对应的数为:2t --; 点N 对应的数为:43t -;故答案为:2t --,4-3t .③设运动t 秒后,点M 、N 、O 恰有一个点为另两个点所连线段的中点, ①若点O 为MN 的中点,即OM =ON ,则2t ---()=43t -, 解得:t =0.5;②当点N 为MO 的中点,即OM =2ON ,则2t ---()=-2(43t -), 解得:t =2;③当点M 为NO 的中点,即2OM =ON ,则22t ---()=-(43t -), 解得:t =8,综上,运动0.5或2或8秒后,点M 、N 、O 中恰有一个点为另两个点所连线段的中点. 21.(1)设这个公司要加工x 件新产品,则红星厂单独加工这批产品需16x天,巨星厂单独加工这批产品需要24x 天,由题意得:16x−24x =20, 解得:x=960.答:这个公司要加工960件新产品。
人教版七年级数学上册第三章《一元一次方程》单元测试题含答案
人教版七年级数学上册第三章《一元一次方程》单元测试题含答案一.选择题(共10小题)1.下列方程中,是一元一次方程的是()A.3x+2y=0 B.=1 C.=1 D.3x﹣5=3x+2 2.下列变形中:①由方程=2去分母,得x﹣12=10;②由方程x=两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定4.若代数式a+b的值为1,则代数式2a+2b﹣9的值是()A.13 B.2 C.10 D.﹣75.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.6.方程3x+6=2x﹣8移项后,正确的是()A.3x+2x=6﹣8 B.3x﹣2x=﹣8+6 C.3x﹣2x=﹣6﹣8 D.3x﹣2x=8﹣6[来7.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a8.某商品原价50元,现提价100%后,要想恢复原价,则应降价()A.30% B.50% C.75% D.100%9.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.210.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赚了10元C.赔了10元D.赚了50元二.填空题(共8小题)11.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是.12.用一根铁丝可围成长、宽分别为5和3的长方形,如果用这根铁丝围成一个正方形,那么该正方形的边长为.13.方程的解为.14.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.15.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为.16.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.17.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?设这个班有x名学生,则由题意可列方程.18.甲列车从A地开往B地,速度是60km/h,乙列车比甲晚1h从B地开往A地,速度是90km/h,已知A、B两地相距300km,当两车距离为15km时,乙列车行驶的时间为h.三.解答题(共7小题)19.解方程:(1)(2).20.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简.(2)当输入的m=﹣1时,求代数式的值.21.某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?22.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?23.甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为45千米/时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为60千米/时,(1)快车开出几小时后与慢车相遇?(2)相遇时快车距离甲站多少千米?24.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?25.已知数轴上点A、点B对应的数分别为﹣4、6.(1)A、B两点的距离是.(2)当AB=2BC时,求出数轴上点C表示的有理数;(3)点D以每秒10个单位长度的速度从点B出发沿数轴向左运动,点E以每秒8个单位长度的速度从点A出发沿数轴向左运动,点F从原点出发沿数轴向左运动,点D、点E、点F同时出发,t秒后点D、点E、点F重合,求出点F的速度.参考答案一.选择题(共10小题)1.【解答】解:A、3x+2y=0,含两个未知数,故不是一元一次方程,故错误;B、=1,是一元一次方程,故此选项正确;C、不是整式方程,故错误;D、3x﹣5=3x+2,左右不相等,且整理后不含有未知数,故错误;故选:B.2.【解答】解:①方程=2去分母,两边同时乘以5,得x﹣12=10.②方程x=,两边同除以,得x=;要注意除以一个数等于乘以这个数的倒数.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号.④方程2﹣两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号.故②③④变形错误故选:B.3.【解答】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.4.【解答】解:∵代数式a+b的值为1,∴a+b=1,将其代入代数式2a+2b﹣9,则2a+2b﹣9,=2(a+b)﹣9,=2×1﹣9,=﹣7,故选:D.5.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为分.故选:B.6.【解答】解:原方程移项得:3x﹣2x=﹣6﹣8.故选:C.7.【解答】解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,所以这个三位数可表示成100b+a.故选:C.8.B9.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选:A.10.【解答】解:设盈利的进价是x元,80﹣x=60%xx=50设亏本的进价是y元y﹣80=20%yy=10080+80﹣100﹣50=10元.故赚了10元.故选:B.二.填空题(共8小题)11.【解答】解:根据题意得:k(﹣3+4)﹣2k+3=5,解得:k=﹣2.故答案为:﹣2.12.【解答】解:设正方形边长为x,由题意得:4x=(5+3)×2,解得:x=4.故答案为:4.13.【解答】解:系数化为1,得x=﹣.故答案为:x=﹣.14.【解答】解:设需x天完成,则x(+)=1,解得x=4,故需4天完成.15.【解答】解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…∴第2014次输出的结果为3.故答案为:3.16.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.17.【解答】解:根据题意,得:3x+20=4x﹣25.18.【解答】解:当两车距离为15km时,设乙列车行驶的时间为xh.分两种情况:①两车相遇之前两车距离为15km,由题意,可得60(x+1)+90x=300﹣15,解得x=1.5;②两车相遇之后两车距离为15km,由题意,可得60(x+1)+90x=300+15,解得x=1.7.答:当两车距离为15km时,乙列车行驶的时间为1.5或1.7h.故答案为1.5或1.7.三.解答题(共7小题)19.【解答】解:(1)6x﹣(2x+5)=6﹣3(2x﹣3)6x﹣2x﹣5=6﹣6x+96x﹣2x+6x=6+9+510x=20x=2(2)5(x﹣2)﹣2(x+1)=35x﹣10﹣2x﹣2=35x﹣2x=3+10+23x=15x=520.【解答】解:(1)根据题意列式得:(m2﹣m)÷m+2=m﹣1+2=m+1;(2)当m=﹣1时,原式=﹣1+1=0.21.【解答】解:(1)设七年级人数是x人,根据题意得,解得:x=240.方法二:设七年级人数是x人,原计划租用45座客车y辆,由题意,解得(2)原计划租用45座客车:(240﹣15)÷45=5(辆).故七年级学生人数是240人,原计划租用45座客车5辆.22.【解答】解:设乙还要x小时完成,根据题意得:×9+x=1,解得:x=2.答:乙还要2小时完成.23.【解答】解:(1)设快车开出x小时后与慢车相遇,则45(x+2)+60x=510,解得x=4,(2)510﹣60×4=270(千米).答:4小时后快车与慢车相遇;相遇时快车距离甲站270千米.24.【解答】(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.[来源:学.科.网]根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.25.【解答】解:(1)6﹣(﹣4)=10.故A、B两点的距离是10.(2)设C表示的有理数为x,两种情况分别是x<6或x>6,6﹣x=10÷2或x﹣6=10÷2解得:x=1或x=11.故数轴上点C表示的有理数是1或11;(3)10t=8t+10t=5(秒)5y+6=10×5解得:y=(个单位长度/秒).答:点F的速度是个单位长度/秒.。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
人教版数学七年级上册第三章《一元一次方程》检测题(含答案)
人教版数学七年级上册第三章《一元一次方程》检测题一、选择题(每题3分,共30分)1.下列等式变形正确的是( )(A )如果s=12ab,那么b=2s a; (B )如果12x=6,那么x=3; (C )如果x-3=y-3,那么x-y=0; (D )如果mx=my,那么x=y2.下列各式中,不属于方程的是 ( )(A ))2(32+-+x x (B )0)24(13=--+x x (C ) 2413+=-x x(D ) 7=x3.下列解方程去分母正确的是( )(A )由1132x x --=,得2x-1=3-3x ; (B )由232124x x ---=-,得2(x-2)-3x-2=-4 (C )由131236y y y y +-=--,得3y+3=2y-3y+1-6y ;(D )由44153x y +-=,得12x-1=5y+20 4.要使代数式5t+41与5(t-41)的值互为相反数,t 是( ) (A )0 (B )203 (C )201 (D )101 5.下列变形符合等式性质的是 ( )(A )如果732=-x ,那么372-=x (B ) 如果123+=-x x ,那么213-=-x x(C )如果52=-x ,那么25+=x(D ) 如果131=-x ,那么3-=x 6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )(A )106元;(B )105元;(C )118元;(D )108元.7.小丽在解关于x 的方程-x+5a=13时,误将-x 看作x ,得到方程的解为x=-2,则原方程的解为( )(A ) x=-3 (B )x=0 (C )x=1 (D )x=28.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另一台亏本20%,则本次出售中,商场( )(A )不赚不赔 (B )赚160元 (C )赚80元 (D )赔80元9.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是 ( )A .20x ·13%=2340B .20x=2340×13%C .20x(1-13%)=2340D .13%·x=234010.小赵去商店买练习本,回来后问同学们:“店主动告诉我,如果多买一些就给我们八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本的价格是多少?”(A )0.4 元 (B )0.5元 (C )0.6元 (D )0.7元二、耐心填一填(每题3分,共30分)11.x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14. 以x=2为根的一元一次方程是____________________(写出满足条件的一个方程即可).15.在一次猜迷抢答赛上,每人有30道的答题,答对1小题加20分,答错1题扣10分,小明共得了120分,则小明答对 道题?答错 道题? 16.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是 .17.小新问妈妈的生日是几号?妈妈指着某月日历回答:我生日这一天的上、下、左、右四个日期数之和恰好是80,则小新妈妈的生日是 号18.在等式“2×( )-3×( )=15”的括号中分别填入一个数,使这两个数是互为相反数19.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.20.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.试问这个月的石油价格相对上个月的增长率是 .三、用心解一解(共60分)21. (本题8分)解下列方程:(1)70%x+(30-x)×55%=30×65%; (2)511241263x x x +--=+;22.(本题6分)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222x x x +=-⊗,怎么办呢?这时小李走过来看了一下说,这个方程的解与方程3x+5=0的解是一样的,你能帮小明补出这个常数吗?请写出你的思考过程.23.(本题8分)为开展“喜迎建党90华诞”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?24.(本题8分)2019年某市高档住房的房产税起征价格税率表: 征收价格(1)小明家在市主城九区购买了一套建筑面积为148平方米的新建商品住房,已知成交建筑面积均价分别为16500元/平方米,求这套高档住房应缴房产税多少元;(2)小芳家在市主城九区购买了一套建筑面积为188平方米的新建商品住房,已知小芳家向税务部门缴了37600元的房产税,问这套新建商品住房成交建筑面积均价为多少?25.(本题10分)在“家电下乡”活动中,对彩电、冰箱(含冰柜)、洗衣机三大类家电给予产品销售价格13%的财政资金直补。
人教版七年级数学上册《第三章一元一次方程》单元测试题(有答案)
人教版七年级数学上册《第三章一元一次方程》单元测试题一.选择题(共10小题)1.下列方程中,不是一元一次方程的为()A.3x+2=6B.4x﹣2=x+1C.x+1=0D.5x+6y=12.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数3.把方程﹣=1去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣1=12D.3x﹣2(x﹣1)=124.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=565.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.46.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则7.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+68.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米9.某品牌服装店一次同时售出两件上衣,每件售价都是135元,若按成本计算,其中一件盈利25%,另一件亏损25%,则这家商店在这次销售过程中()A.盈利为0B.盈利为9元C.亏损为8元D.亏损为18元10.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x二.填空题(共8小题)11.已知3m﹣11与5m﹣7是互为相反数,则m=.12.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.13.当x时,式子x+1与2x+5的值互为相反数.14.已知x=3是关于x方程mx﹣8=10的解,则m=.15.若关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,则m=.16.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.17.五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x张,则可列方程为:.18.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.三.解答题(共8小题)19.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=20.有一组互相咬合的齿轮.(1)大齿轮有140个齿,小齿轮齿数是大齿轮齿数的,小齿轮有多少个齿?(2)大齿轮每分钟转80周,比小齿轮每分钟转的周数少,小齿轮每分钟转多少周?21.已知(m2﹣1)x2﹣(m﹣1)x+8=0是一元一次方程.(1)求代数式200(m+x)(x﹣2m)﹣18m的值;(2)求关于y的方程m|y﹣2|=x的解.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.24.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?25.为了鼓励节约用电,电业局规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小明家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小明家一个月用电a度(a>150),那么这个月应缴纳电费多少元?(用含a 的代数式表示)(3)如果这个月小明家缴纳电费为87.8元,那么他们家这个月用电多少度?26.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m 级精致点”,且满足GE=3GF,求m的值.参考答案与试题解析一.选择题(共10小题)1.解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.解:根据一元一次方程的特点可得,解得m=1.故选:A.3.解:去分母得:3x﹣2(x﹣1)=12,故选:D.4.解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.5.解:因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.6.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.7.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.8.解:设火车的速度是x米/秒,根据题意得:800﹣40x=60x﹣800,解得:x=16,即火车的速度是16米/秒,火车的车长是:60×16﹣800=160(米),故选:C.9.解:设盈利的那件上衣的成本价为x元,亏损的那件上衣的成本为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180,∴(135﹣x)+(135﹣y)=(135﹣108)+(135﹣180)=﹣18(元).故选:D.10.解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.二.填空题(共8小题)11.解:根据题意,得:3m﹣11+5m﹣7=0,则3m+5m=11+7,∴8m=18,解得m=,故答案为:.12.解:根据题中的新定义得:2x+3(x+1)=8,去括号得:2x+3x+3=8,解得:x=1,故答案为:113.解:根据题意得:x+1+2x+5=0,解得:x=﹣2,即当x=﹣2时,式子x+1与2x+5的值互为相反数,故答案为:=﹣2.14.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:615.解:∵关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得:m=﹣4.故答案为:﹣4.16.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.17.解:设该团购买成人门票x张,由题意得:50x+20(50﹣x)=1800,故答案为:50x+20(50﹣x)=1800.18.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.三.解答题(共8小题)19.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.解:(1)140×=28(个),答:小齿轮有28个;(2)设小齿轮每分钟转x周,x(1﹣)=80,解得,x=400答:小齿轮每分钟转400周.21.解:(1)由题意可知:m2﹣1=0,m﹣1≠0,∴m=﹣1,将m=﹣1代入原方程可得:2x+8=0,∴x=﹣4,(1)将x=﹣4,m=﹣1代入原式可得:原式=200×(﹣5)×2﹣18×(﹣1)=2018.(2)当m=﹣1,x=﹣4时,∴﹣1|y﹣2|=﹣4,∴y=6或y=﹣2.22.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.24.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.25.解:(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150)=75+0.8a﹣120=0.8a﹣45答:这个月应缴纳电费(0.8a﹣45)元;(3)∵87.8>150×0.5∴所用的电超过了150度设此时用电a度,根据题意得:0.5×150+0.8(a﹣150)=87.8∴75+0.8a﹣120=87.8∴a=166答:他们家这个月用电166度.26.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.11。
人教版初中数学七年级上册第三章《一元一次方程》测试题(含答案)
第三章《一元一次方程》测试题一、单选题1.下列四个方程中,是一元一次方程的是( )A .236x x +=B .342x x =-C .230y +=D .124x y +=- 2.由m =4﹣x ,m =y ﹣3,可得出x 与y 的关系是( )A .x+y =7B .x+y =﹣7C .x+y =1D .x+y =﹣1 3.2x =是以下哪个方程的解( )A .1102x -=B .1102x +=C .210x +=D .210x -= 4.根据“x 的3倍与5的和比x 的13多2”可列方程( ) A .()3523x x +=+ B .3523x x +=- C .()3523x x +=- D .3352x x =++ 5.若多项式3x+5与5x -7的值相等,则x 的值为( )A .3B .4C .5D .6 6.若方程()2230a x ax -+-=是关于x 的一元一次方程,那么a 的值是( )A .0B .2C .±2D .-27.已知x =2是关于x 的一元一次方程(m -2)x +2=0的解,则m 的值为( ) A .-1 B .0 C .1 D .28.下列通过移项变形错误的是( )A .由227x x +=-,得272x x -=--B .由324y y +=-,得423y y +=-C .由2324t t t -+=-,得2243t t t ++=-+D .由123m -=,得213m =-9.若三个连续偶数的和是30,则它们的积是( )A .960B .140C .990D .1680 10.由方程211123x x -+-=,去分母得( ) A .2116x x --+= B .()()321216x x --+=C .()()221316x x --+=D .33226x x ---=11.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为( )A .x =0B .x =﹣1C .x =2D .x =﹣2 12.某商品按原来的8折出售,仍可获利10%,若商品的原价是3300元,此商品的进货价是( ).A .2400元B .2460元C .2480元D .2680元二、填空题13.5与x 的差等于x 的2倍,根据前面的描述直接列出的方程是________________________.14.已知(1)8k k x 是关于x 的一元一次方程,则k =______. 15.若方程360x -=与关于x 的方程328x k +=的解相同,则k =______. 16.如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)17.某市按如下规定收取每月煤气费:用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分按每月1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气_______立方米.三、解答题18.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2) (2)13(x ﹣5)=3﹣23(x ﹣5)(3)24x +﹣1=326x - (4)x ﹣19(x ﹣9)=13[x+13(x ﹣9)](5)210.5x --30.6x +=0.5x+219.已知关于x 的方程(m+5)x |m|﹣4+18=0是一元一次方程.试求:(1)m 的值;(2)3(4m ﹣1)﹣2(3m+2)的值.20.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=.(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.21.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?22.某工厂车间有21名工人,每人每天可以生产12个螺钉或18个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名.23.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?参考答案1.B2.A3.A4.D5.D6.B7.C8.C9.A10.B11.A12.A13.52x x -= 14.1 15.1; 16.3217.100. 18.解:(1)去括号得:20﹣y=﹣1.5y ﹣2,移项合并得:0.5y=﹣22,解得:y=﹣44;(2)去分母得:x ﹣5=9﹣2x +10,移项合并得:3x=24,解得:x=8;(3)去分母得:3x +6﹣12=6﹣4x ,移项合并得:7x=12,解得:x=127; (4)去括号得:x ﹣19x +1=13x +19x ﹣1, 去分母得:9x ﹣x +9=3x +x ﹣9,移项合并得:4x=﹣18,解得:x=﹣92; (5)方程整理得:4x ﹣2﹣5153x +=0.5x +2, 去分母得:12x ﹣6﹣5x ﹣15=1.5x +6,移项合并得:5.5x=27,解得:x=5411. 19.解:(1)依题意有|m|﹣4=1且m+5≠0,解得m=5;(2)3)4m)1))2)3m+2)=12m)3)6m)4=6m)7)当m=5时,原式=6×5)7=23)20.解:(1)当m 2=时,原方程为3x 10--=. 解得,1x 3=-. (2)当m 5≠时,方程有解.3m 2x 1m 5m 5-==----. ∵方程有整数解,且m 是整数.∴m 51-=±,m 52-=±.解得,m 6=或m 4=,m 7=或m 3=.故答案为:(1)x=-13;(2)m=3或4或6或7. 21. 解:设每件衬衫降价x 元,依题意有120×400+(120﹣x )×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标. 22. 解:设分配x 名工人生产螺母,则(21-x )人生产螺钉,由题意得 11812(21)2x x ⨯=⨯-, 解得:x=12,则21-x=9,答:车间应该分配生产螺钉和螺母的工人9名,12名.23. 解:(1)设求经过x 小时快车追上慢车.115x -85x=450解得x=15答:经过15小时快车追上慢车)2)求经过a 小时两车相距50千米.两种情况:①相遇前两车相距50千米,列方程为:115a+85a+50=450 解得a=2②相遇后两车相距50千米,列方程为:115a+85a -50=450解得a=2.5 答:经过2或2.5小时两车相距50千米.。
人教版七年级数学上册第三章一元一次方程单元测试 (含答案)
人教版七年级数学上册第三章一元一次方程单元测试 (含答案)一、单选题 1.若()1280m m x -++=是一元一次方程,则m 为( )A .2B .2-C .2±D .1-2.若是方程的解,则代数式的值为( )A.-5B.-1C.1D.53.下列方程中是一元一次方程的是( ) A.B.C.D.4.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1B.由,得C.由,得D.由,得2x ﹣3x=15.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.若 x =0 是方程 3x -2m =1 的解,则 m 的值是( ) A.-B.2C.-2D.08.根据下列条件可列出一元一次方程的是( ) A .a 与l 的和的3倍 B .甲数的2倍与乙数的3倍的和 C .a 与b 的差的20%D .一个数的3倍是59.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.510.解方程5x-3=2x+2,移项正确的是( ) A.5x-2x=3+2 B.5x+2x=3+2 C.5x-2x=2-3D.5x+2x=2-311.一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使千米,则小时可以到达,如果汽车每小时行使千米,那么可以提前到达布达拉宫的时间是( )小时. A.B.C.D.12.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重可能是( )A.千克B.千克C.千克D.千克二、填空题 13.已知()1240a a x--+=是关于x 的一元一次方程,则a =______.14.一列方程如下排列:1142x x -+=的解是2x =, 2162x x -+=的解是3x =, 3182x x -+=的解是4x =. ……根据观察所得到的规律,请你写出其中解是2019x =的方程是______.15.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为________________________。
2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题(含答案解析)
2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题一.选择题(共10小题)1.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣62.若方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,则a的值为()A.0B.3C.﹣3D.±33.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=5.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.26.若代数式值比的值小1,则k的值为()A.﹣1B.C.1D.7.下列各题正确的是()A.由5x=﹣2x﹣3,移项得5x﹣2x=3B.由=1+,去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x﹣9=1D.把﹣=1中的分母化为整数,得﹣=18.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=.12.方程﹣x=0.5的两边同乘以,得x=.13.已知5x+7与2﹣3x互为相反数,则x=.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是元.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣118.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.22.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?23.小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有商品价格可获9折优惠;方案二:如交纳200元会费成为该超市会员,则所有商品价格可获8折优惠.(1)若用x(元)表示商品价格,请用含x的代数式分别表示两种购物方案所付金额.(2)当商品价格是多少元时,两种方案所付金额相同?(3)小王计划在该超市购买价格为2700元的电脑一台,选择哪种方案更省钱?2018年秋人教版七年级上册数学《第三章一元一次方程》单元测试题参考答案与试题解析一.选择题(共10小题)1.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣6【分析】由已知得出a﹣2b=8,代入原式=2(a﹣2b)+10计算可得.【解答】解:∵﹣a+2b+8=0,∴a﹣2b=8,则原式=2(a﹣2b)+10=2×8+10=16+10=26,故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.若方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,则a的值为()A.0B.3C.﹣3D.±3【分析】根据一元一次方程的定义解答即可.【解答】解:因为方程(|a|﹣3)x2+(a﹣3)x+1=0是关于x的一元一次方程,看到:|a|﹣3=0,a﹣3≠0,解得:a=﹣3,故选:C.【点评】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=【分析】根据等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立分别进行判断.【解答】解:A、由a=b,得=,所以A选项正确;B、由﹣3x=﹣3y,得x=y,所以B选项错误;C、由=1,得x=4,所以C选项错误;D、由x=y,a≠0,得=,所以D选项错误.故选:A.【点评】本题考查了等式的性质:等式两边加上(或减去)同一个数,等式仍然成立;等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立.5.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.2【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣10+3+2x=0,移项合并得:7x=7,解得:x=1,故选:C.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.6.若代数式值比的值小1,则k的值为()A.﹣1B.C.1D.【分析】根据题意列出方程,求出方程的解即可得到k的值.【解答】解:根据题意得: +1=,去分母得:2k +2+6=9k +3, 移项合并得:7k=5,解得:k=, 故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 7.下列各题正确的是( )A .由5x=﹣2x ﹣3,移项得5x ﹣2x=3B .由=1+,去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x ﹣9=1D .把﹣=1中的分母化为整数,得﹣=1【分析】各方程整理变形后,即可作出判断.【解答】解:A 、由5x=﹣2x ﹣3,移项得5x +2x=﹣3,不符合题意;B 、由=1+,去分母得2(2x ﹣1)=6+3(x ﹣3),不符合题意;C 、由2(2x ﹣1)﹣3(x ﹣3)=1,去括号得4x ﹣2﹣3x +9=1,不符合题意;D 、把﹣=1中的分母化为整数,得﹣=1,符合题意,故选:D .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =【分析】设有糖果x 颗,根据该幼儿园小朋友的人数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有糖果x 颗,根据题意得: =.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场【分析】设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据共得47分列出关于x的方程,解之可得.【解答】解:设这个队胜了x场,则平了30﹣x﹣9=21﹣x(场),根据题意,得:3x+21﹣x=47,解得:x=13,即这个队胜了13场,故选:D.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.10.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是()A.80元B.90元C.100元D.110元【分析】设这件衣服的进价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件衣服的进价为x元,根据题意得:0.6×200﹣x=20%x,解得:x=100.答:这件衣服的进价为100元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.二.填空题(共6小题)11.若x与9的积等于x与﹣16的和,则x=﹣2.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:9x=x﹣16,移项合并得:8x=﹣16,解得:x=﹣2,故答案为:﹣2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.方程﹣x=0.5的两边同乘以2,得x=﹣1.【分析】方程x系数化为1,即可求出解.【解答】解:方程﹣x=0.5的两边同乘以2,得x=﹣1,故答案为:2;﹣1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.已知5x+7与2﹣3x互为相反数,则x=﹣4.5.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+7+2﹣3x=0,移项合并得:2x=﹣9,解得:x=﹣4.5,故答案为:﹣4.5【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2016+2017n+c2018的值为2.【分析】利用负整数,绝对值,以及倒数,自然数的定义判断确定出m,n以及c的值,代入原式计算即可求出值.【解答】解:根据题意得:m=﹣1,n=0,c=1,则原式=1+0+1=2,故答案为:2【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.已知a、b、c、d为有理数,现规定一种新运算=ad﹣bc,如=1×(﹣5)﹣3×2=﹣11那么,当=22时,则x的值为﹣3.【分析】根据行列式,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:根据题意知2×7﹣4(x+1)=22,解得:x=﹣3,故答案为:﹣3.【点评】本题考查了解一元一次方程,利用行列式得出一元一次方程是解题关键.16.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,则这件外衣的标价是275元.【分析】设这件外衣的标价为x元,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件外衣的标价为x元,根据题意得:0.8x﹣200=200×10%,解得:x=275.答:这件外衣的标价为275元.故答案为:275.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共9小题)17.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m的值.【解答】解:方程3x+2=﹣4,解得:x=﹣2,把x=﹣2代入第一个方程得:﹣6=3m﹣1,解得:m=﹣.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.【分析】(1)方程移项合并,根据有唯一解确定出条件即可;(2)根据方程有无数解确定出条件即可;(3)根据方程无解确定出条件即可.【解答】解:方程整理得:(b﹣3)x=a﹣6,(1)由方程有唯一解,得到b﹣3≠0,即b≠3;(2)由方程有无数解,得到b﹣3=0,a﹣6=0,即a=6,b=3;(3)由方程无解,得到b﹣3=0,a﹣6≠0,即a≠6,b=3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.【分析】设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据“一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍”,列出关于x的一元一次方程,解之即可.【解答】解:设十位上的数字为x,个位上的数字为3x,百位上的数字为x+7,根据题意得:x+(x+7)+3x=17,解得:x=2,即十位上的数字为2,个位上的数字为6,百位上的数字为9,则这个三位数为926,答:这个三位数为926.【点评】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.21.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.【分析】(1)利用相反数的定义得到3m+7﹣10=0,然后解关于m的一元一次方程即可;(2)利用绝对值的意义和有理数的分类得到a=2或a=﹣2,c=﹣1,然后分别把a=2,b=﹣3,c=﹣1和a=﹣2,b=﹣3,c=﹣1代入a+b﹣c中计算即可.【解答】解:(1)根据题意得3m+7﹣10=0,解得 m=1; (2)根据题意得 a=2 或 a=﹣2,c=﹣1, 当 a=2,b=﹣3,c=﹣1,a+b﹣c=2﹣3﹣(﹣1)=0; 当 a=﹣2,b=﹣3,c=﹣1,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4. 【点评】本题考查了解一元一次方程:解一元一次方程的一般步骤,针对方程的特点,灵活应 用,各种步骤都是为使方程逐渐向 x=a 形式转化.也考查了相反数与绝对值. 22.一艘货轮往返于上下游两个码头之间,逆流而上需要 6 小时,顺流而下需要 4 小时,若船 在静水中的速度为 20 千米/时,则水流的速度是多少千米/时? 【分析】设水流的速度是 x 千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x) 千米/时,根据路程=速度×时间结合两个码头之间的距离不变,即可得出关于 x 的一元一次 方程,解之即可得出结论. 【解答】解:设水流的速度是 x 千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20 ﹣x)千米/时, 根据题意得:6(20﹣x)=4(20+x), 解得:x=4. 答:水流的速度是 4 千米/时. 【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关 键. 23.小李读一本名著,星期六读了 36 页,第二天读了剩余部分的 ,这两天共读了整本书的 , 这本名著共有多少页? 【分析】设这本名著共有 x 页,根据头两天读的页数是整本书的 ,即可得出关于 x 的一元一次 方程,解之即可得出结论. 【解答】解:设这本名著共有 x 页, 根据题意得:36+ (x﹣36)= x, 解得:x=216. 答:这本名著共有 216 页. 【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关 键. 24.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表 所示的数据:功率 普通白帜灯 100 瓦(即 0.1 千 瓦) 优质节能灯 20 瓦(即 0.02 千 瓦)使用寿命 2000 小时价格 3 元/盏4000 小时35 元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度 0.5 元.(注:用电度数=功率(千 瓦)×时间(小时),费用=灯的售价+电费) 请你解决以下问题: (1)如果选用一盏普通白炽灯照明 1000 小时,那么它的费用是多少? (2)在白炽灯的使用寿命内,设照明时间为 x 小时,请用含 x 的式子分别表示用一盏白炽灯的 费用和一盏节能灯的费用; (3)照明多少小时时,使用这两种灯的费用相等? (4)如果计划照明 4000 小时,购买哪一种灯更省钱?请你通过计算说明理由. 【分析】(1)根据表格列出算式,计算即可得到结果; (2)根据表格中的数据列出代数式即可; (3)令两代数式相等列出方程,求出方程的解即可得到结果; (4)根据照明 4000 小时,求出各自的费用,比较即可得到结果. 【解答】解:(1)根据题意得:1000×0.1×0.5+3=53(元), 则一盏普通白炽灯照明 1000 小时,费用为 53 元; (2) 用一盏白炽灯的费用为 0.1x×0.5+3=0.05x+3 (元) ; 一盏节能灯的费用为 0.02x×0.5=0.01x+35 (元); (3)根据题意得:0.05x+3=0.01x+35, 解得:x=800, 则照明 800 小时时,使用这两种灯的费用相等; (4)用节能灯省钱,理由为: 当 x=4000 时,用白炽灯的费用为 2000×0.1×0.5×2+3×2=206(元); 用节能灯的费用为 4000×0.02×0.5+35=75(元), 则用节能灯省钱. 【点评】此题考查了一元一次方程的应用,列代数式,以及代数式求值,弄清题意是解本题的 关键.25.某超市为了回馈广大新老客户,决定元旦期间开展优惠活动.方案一:非会员购物,所有 商品价格可获 9 折优惠;方案二:如交纳 200 元会费成为该超市会员,则所有商品价格可获 8 折优惠. (1)若用 x(元)表示商品价格,请用含 x 的代数式分别表示两种购物方案所付金额. (2)当商品价格是多少元时,两种方案所付金额相同? (3)小王计划在该超市购买价格为 2700 元的电脑一台,选择哪种方案更省钱? 【分析】(1)根据两种优惠方案,找出选择各方案所需费用; (2)由两种方案所付金额相同,即可得出关于 x 的一元一次方程,解之即可得出结论; (3)代入 x=2700 求出选择两种方案所需费用,比较后即可得出结论. 【解答】解:(1)方案一所付金额:0.9x 元; 方案二所付金额:(0.8x+200)元. (2)根据题意得:0.9x=0.8x+200, 解得:x=2000. 答:当商品价格是 2000 元时,两种方案所付金额相同. (3)方案一所付金额:0.9x=0.9×2700=2430(元); 方案二所付金额:0.8x+200=0.8×2700+200=2360(元). ∵2360<2430, ∴选择方案二更省钱. 【点评】本题考查了列代数式、代数式求值以及一元一次方程的应用,解题的关键是:(1)根 据两种优惠方案, 列出代数式; (2 ) 找准等量关系, 正确列出一元一次方程; ( 3) 代入 x=2700 求值.。
七年级数学上册《第三章一元一次方程》单元测试卷-带答案(人教版)
七年级数学上册《第三章一元一次方程》单元测试卷-带答案(人教版)一、选择题1.若()125m m x--= 是关于x 的一元一次方程,则m 的值为( )A .-2B .-1C .1D .22.方程261x x -=-的解是( ).A .5B .52-C .5±D .533.把方程1263x x +-=去分母,下列变形正确的是( ) A .212x x -+= B .2(1)12x x -+= C .2112x x -+=D .2(1)2x x -+=4.某种商品的进价为120元,若按标价九折降价出售,仍可获利24元,该商品的标价为( )A .140元B .150元C .160元D .170元5.已知关于x 的一元一次方程20232023xa x +=的解是2022x =,关于y 的一元一次方程20232023bc a +=-的解是2021y =-(其中b 和c 是含有y 的代数式),则下列结论符合条件的是( )A .11b y c y =--=+, B .11b y c y =-=-,C .11b y c y =+=--, D .11b y c y =-=-, 6.若关于x 的方程240x a +-=的解是2x =-,则a 的值等于( )A .8B .0C .2D .8-7.下列方程变形正确的是( )A .由21x -=得2x =-B .由13x -=得31x =-C .由312x -=得23x =- D .由27x +=得72x =+8.已知关于x 的方程2x+a=1-x 与方程2x-3=1的解相同,则a 的值为( )A .2B .-2C .5D .-59. 下列方程变形中,正确的是( )A .方程1125x x--=,去分母得()51210x x --= B .方程()3251x x -=--,去括号得3251x x -=--C .方程2332t =,系数化为1得1t = D .方程3221x x -=+,移项得3212x x -=-+10.甲单位到药店购买了一箱消毒水和60元的口罩,乙单位在同一药店购买了一箱消毒水和25元的口罩,乙单位购买总价只相当于甲单位购买总价的712,一箱消毒水多少元?设一箱消毒水为x 元,则下列方程正确的是( )A .712(25+x)=60+x B .60+712x=25+x C .60-712x=25+xD .712(60+x)=25+x 二、填空题11.若关于x 的方程(1)20kk x ++=是一元一次方程,则k = . 12. 若3x m+5y 3与23x 2y n的差仍为单项式,则m+n = . 13.若()52x +与()29x -+互为相反数,则2x -的值为 .14.重百十周年店庆,小明妈妈以平时八折的优惠购买了一件衣服,节省24元,那么小明妈妈购买这件衣服实际花费了 元.三、计算题15.解方程:(1)()243x x --=(2)31142x x--= 四、解答题16.已知关于x 的方程 2312a x -= ,在解这个方程时,粗心的小琴同学误将 3x - 看成了3x + ,从而解得 3x = ,请你帮他求出正确的解.17.当x 取什么数时, 31x + 与 3x - 互为相反数。 18.已知关于x 的方程1322x x +=-与23x m mx -=+的解互为倒数,求m 的值. 19.在即将到来的“6.18年中大促”活动中,某商场计划对所有商品打折出售.已知某商品的进价是1500元,按照商品标价的八折出售时,利润率是12%,那么该商品的标价是多少元?五、综合题20.已知方程(1﹣m 2)x 2﹣(m+1)x+8=0是关于x 的一元一次方程.(1)求m 的值及方程的解.(2)求代数式 22152(2)3(2)3x xm x xm -+-+ 的值.21.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程-20x =是方程10x -=的后移方程.(1)判断方程210x +=是否为方程230x +=的后移方程 (填“是”或“否”); (2)若关于x 的方程30x m +=是关于x 的方程()()2243x x -=-+的后移方程,求m 的值.22.卡塔尔世界杯的举办掀起了青少年校园足球热,某体育用品商店对甲、乙两种品牌足球开展促销活动,已知甲、乙两种品牌足球的标价分别是:160元/个,60元/个,现有如下两种优惠方案: 方案一:不办理会员卡,购买甲种品牌足球享受8.5折优惠;购买乙种品牌足球,5个(含5个)以上享受8.5折优惠,5个以下按标价购买.方案二:办理一张会员卡100元,购买甲、乙两种品牌足球均享受7.5折优惠.(1)若购买甲种品牌足球3个,乙种品牌足球4个,哪一种方案更优惠?多优惠多少元? (2)若购买甲种品牌足球若干个,乙种品牌足球6个,方案一与方案二所付金额相同,求购买甲种品牌的足球个数.参考答案与解析1.【答案】A【解析】【解答】解:∵()125m m x--= 是关于x 的一元一次方程∴|m|-1=1且m-2≠0 解之:m=±2且m≠2 ∴m=-2. 故答案为:A【分析】利用一元一次方程的定义:含一个未知数,含未知数项的最高次数为1,一次项的系数不等于0,可得到关于m 的方程和不等式,分别求解,可得到m 的值.2.【答案】A【解析】【解答】解:261x x -=-移项得261x x -=- 合并同类项得5x = 故答案为:A.【分析】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.3.【答案】B【解析】【解答】解:1263x x +-=去分母,得2(1)12x x -+= 故答案为:B.【分析】由等式的性质,在方程的两边同时乘以6,右边的2也要乘以6,不能漏乘,据此即可得出答案.4.【答案】C【解析】【解答】解:设该商品的标价为x 元0.9x=120×(1+20%) 解得:x=160答:该商品的标价为160元 故答案为:C .【分析】设该商品的标价为x 元,根据题意列出方程0.9x=120×(1+20%),再求出x 的值即可。
人教版七年级上册数学第三章《一元一次方程》测试题含答案解析
《一元一次方程》单元检测题一、单选题1.某商品打七折后价格为a 元,则原价为( )A. a 元B. 107a 元C. 30%a 元D. 710a 元2.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是( )A. 3(x +2)=2x −9B. 3(x −2)=2x +9C. x 3+2=x−92D. x 3−2=x+923.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A. 5B. 4C. 3D. 24.下列变形中:①由方程x−125=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x=1;③由方程6x ﹣4=x+4移项,得7x=0;④由方程2−x−56=x+32两边同乘以6,得12﹣x ﹣5=3(x+3).错误变形的个数是( )个.A. 4B. 3C. 2D. 15.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人6.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( )A. 0.8x +28=(1+50%)xB. 0.8x -28=(1+50%)xC. x +28=0.8×(1+50%)xD. x -28=0.8×(1+50%)x7.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元8.方程x-3=-6的解是( ).A. x=2B. x=-2C. x=3D. x=-39.方程2x-3y=7,用含x 的代数式表示y 为( )A. y=13(7-2x)B. y=13(2x-7)C. x=12(7+3y)D. x=12(7-3y)10.方程2x −3=1的解是( )A. x =0B. x =12C. x =1D. x =211.方程3x −1=5的解是( )A. x =3B. x =4C. x =2D. x =6二、填空题12.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.13.已知A=5x+2,B=11-x,当x=________时,A比B大3.14.当x=_____时,代数式2x−3与代数式6−x的值相等.15.已知方程2x−3y+1=0,用含y的代数式表示x为________.16.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元.三、解答题17.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.18.老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。
人教版七年级数学上册_第三章《一元一次方程》单元测试题(含答案)
人教版七年级数学上册_第三章《一元一次方程》单元测试题考试总分: 120 分考试时间: 120 分钟一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若是一元一次方程,则的值为()A. B.C. D.不能确定2.方程去分母后可得()A. B.C. D.3.方程的解是,则等于()A. B. C. D.4.某企业去年产值万元,今年比去年增产,今年产值是()A.万元B.万元C.万元D.万元5.自行车的轮胎安装在前轮上行驶千米后报废,安装在后轮上,只能行驶千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?()A.千米B.千米C.千米D.千米6.若,则下列各式不一定成立的是()A. B.C. D.7.一杯鲜果汁原价元,现商场促销:买杯鲜果汁送张奖券,张奖券兑杯鲜果汁,则每张奖券的价值相当于()元.A. B. C. D.8.下列各式中不是方程的是()A. B.C. D.9.下列以为解的方程是()A. B.C. D.10.解方程时,移项正确的是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知是关于的一元一次方程,则________.12.某数的一半比这个数小,设这个数为,则可列方程为________.13.在等式的两边同时________,得到.14.小彬和小强每天早晨坚持跑步,小彬每秒跑,小强每秒跑.如果他们站在百米跑道的两端同时相向起跑,那么________秒后两人相遇.15.关于的方程是一元一次方程,则________,方程的解是________.16.已知关于的方程的解为正整数,则整数的值为________.17.一台电视机原价是元,现按原价的折出售,则购买台这样的电视机需要________元.18.如果关于的方程的解是,那么的值是________.19. 一个两位数的个位数字是,十位数字是,这个两位数可表示为________,把个位与十位数字对调位置,则新的两位数表示为________,若新数比原来两位数小,则可列方程________.20.一项工程,甲单独做天完成,乙单独做完成时间比甲少天.甲先做天,然后乙再加入又做了天,此时完成了这项工程的________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解方程(1)(2)(3)(4).22.已知方程的解比方程的解大,求的值.23.巳知:是关于的一元一次方程:求,的值.若是的解,求的值.24.某地区的手机收费标准有两种方式,用户可任选其一:.月租费元,元/分;.月租费元,元/分.某用户某月打手机分钟,则方式应交付费用:________元;方式应交付费用:________元;(用含的代数式表示)某用户估计一个月内打手机时间为小时,你认为采用哪种方式更合算?25.一个邮递员骑自行车要求在规定时间内把特快专递送到单位.如果他提早分钟出发,那么只需以每小时行千米的速度就可准时到达;如果速度每小时增加千米,就可早分钟到达.问他去的单位有多远?26.为节约能源,某单位按以下规定收取每月电费:用电不超过度,按每度元收费,如果超过度,超过部分按每度元收费.若某住户四月份的用电量是度,求这个用户四月份应交多少电费?若该住户五月份的用电量是度,则他五月份应交多少电费?答案1.B2.B3.D4.A5.C6.D7.B8.C9.B10.D11.12.13.减去14.15.16.、或17.18.19.或20.21.解:移项合并得:,解得:;去括号得:,移项合并得:,解得:;去分母得:,解得:;方程整理得:,去分母得:,移项合并得:,解得:.22.解:去括号,得.移项,得.合并同类项,得.系数化为,得.方程的解比方程的解大,得的解是.把代入方程,得.解得.23.解: ∵是关于的一元一次方程,,,,;把,代入,,.24.当时,,,因为,所以采用种方式较合算.25.他去的单位有千米.26.解:当时,这个用户四月份应电费为元;当时,这个用户四月份应电费为元;∵ ,∴五月份应交电费为(元).。
2018人教版七年级数学上第3章一元一次方程单元测试含答案
一元一次方程.下列通过移项变形,错误的是( ).由,得 .由,得.由,得 .由,得.把方程变形为,其依据是( ).等式的性质 .等式的性质 .分数的基本性质 .乘法分配律.下列去括号正确的是( )()得()得()得[()]得.下列方程变形正确的是( ).由得 .由()得.由得()() .由得.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( ).已知公式()中,,,,则..将方程的分母化为整数,方程变为..小颖按如图所示的程序输入一个正数,最后输出的结果为.则满足条件的值为..阅读题:课本上有这样一道例题:“解方程:”解:去分母得:()()①②③④请回答下列问题:()得到①式的依据是;()得到②式的依据是;()得到③式的依据是;()得到④式的依据是..解方程:()()()(); ();(); ();().等于什么数时,代数式的值比的值的倍小?.关于的方程的解是,对于同样的,求另一个关于的方程的解. .已知:关于的方程()与()有相同的解,求:以为未知数的方程的解..若已知,并且,求..对于两个有理数,,我们规定一种新运算“*”:*.()解方程:**;()若无论为何值,总有*,求的值.参考答案,,.()等式性质()乘法分配律()等式性质()等式性质.()去括号,得,移项合并同类项,得,两边同时除以,得.()去分母,得()()(),去括号,移项合并同类项得,两边同时除以,得.()去括号,得,移项合并同类项,得,两边同时除以,得.()原方程可化为()(),去括号,得,移项,合并同类项得,两边同时除以,得.()原方程可化为:()(),去括号,得,移项合并同类项,得,两边同时除以,得..依题意,得,解得..将代入第一个方程中,解得,.再将代入第二个方程中,解得..由(),得.把代入(),得().解得.把代入方程,得.解得..因为,所以()(). 解得..()由**,得,解得.()由*,得,所以(). 因为它的解为所有数,所以.所以.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年七年级数学上册第三章一元一次方程单元测试题
一、选择题(每题3分,共24分)
1.下列等式①325=-;②152=-x x ;③753=-y x ;④23=-x ;⑤()()2222232-+=-x x x ;⑥51=+x ,其中一元一次方程的个数为( )
A.1
B.2
C.3
D.4
2.代数式5
1+-x x 的值等于3时,x 的值是( ) A.4 B.1 C.-4 D.-1
3.下列变形正确的是( )
A. 254+=-x x 变形得524+-=-x x
B.
32
1532+=-x x 变形得3354+=-x x C. ()()3214+=-x x 变形得6214+=-x x D. 23=x 变形得3
2=x 4.解方程2632x x =+-,去分母,得( ) A. x x 332=-- B. ()x x 33212=+-
C. ()x x 3312=+-
D. x x 332=+-
5.下列方程中,和方程32=-x 的解相同的方程是( )
A. 532=-x
B. 1514=+x
C. 2444=+x
D. 713=-x
6.一份数学试卷,有25道选择题,做对一道题得4分,做错一道题倒扣1分,某同学做了全部试题,得了80分,他共做对( )
A.18道
B.19道
C.20道
D.21道
7.有甲、乙两桶油,从甲倒出19升到乙桶后,乙桶比甲桶还少6升,乙桶原有32升,问甲桶原来有油( )
A.76升
B.60升
C.42升
D.36升
8.若a 、b 互为相反(0≠a ),则一元一次方程0=+b ax 的解是( )
A.1
B.-1
C.-1或1
D.任意有理数
二、填空题(每小题3分,共24分)
9.如果1-=x 是方程8=+a x 的解,则a = .
10.某商品标价605元,打6折(按标价的60%)售出,仍可获利10%,则该商品的进价是 .
11.当=x 时,代数式
()x -131与代数式()172+x 的值相等. 12.已知:()0412=+++-x y x ,则=x ,=y .
13.写出一个一元一次方程,使它的解为2,未知数的系数为负整数,方程为 .
14.某工厂今年第一季度的产值2538万元,比去年同季度增产了8%,则去年第一季度的产值是 .
15.一项工程,甲单独完成要10天,乙单独完成要15天,则由甲先做5天,然后甲、乙合做余下的部分还要 完成.
16.某人乘船由A 地顺流而下到B 地,然后又原路逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,则A 、B 两地之间的距离是
千米.
三、解答题
17.解下列方程(每小题5分,共20分)
(1)()()()x x x -=---1414312
(2)
326107=-y
(3)
1413313-+=-x x
(4)
()()15
312121-=⎥⎦⎤⎢⎣⎡--x x x .
18. k 为何值时,多项式y x xy y kxy x 261322--+--中,不含x 、y 的乘积项.(12分)
19.一个大人一餐能吃4个面包,3个小孩一餐只吃一个面包,现有大人和小孩共102人,一餐刚好吃100个面包,这102人中大人和小孩各有多少人?(12分)
20.如果方程22834+-=--x x 的解与方程()526534-+=--a x a x 的解相同,求式子a a 1-的值.(12分)
21. 我国邮政部门规定:国内平信100克以内(包括100克),每20克需贴邮票0.8元,不足20克的,以20克计算,超过100克的,超过部分每100克需加帖邮票2元,不足100克的以100克计算.(14分)
(1).寄一封45克重的国内平信,需贴邮票多少元?
(2).某人寄一封国内平信贴了8元邮票,此信重约多少克?
(3).现在有9人参加比赛,每份试卷重14克,每个信封重5克,将这9份试卷分别装两个信封寄出,怎样装才能使所贴邮票
金额最少?最少的邮票金额是多少?
参考答案
1.C ;
2.A ;
3.D ;
4.C ;
5.C ;
6.D ;
7.A ;
8.A ;
9.9;10.330;11.
131; 12.-4、-3;13. 42=-x ;14.2350;15.1.5;16.12.5;
17.(1)5.0-=x 、(2)2-=y 、(3)35-
=y 、(4)7
17=x . 18.6;
19.解:设有x 个大人 1003
1024=-+
x x 18=x ,84102=-x 20. 23- 21.(1)2.4
(2)300
(3)一个信封装3份,另一个信封装6份;或一个4份,另一个5份.。