通州区2013—2014学年第一学期期末考试试卷 初三数学

合集下载

2013-2014学年度第一学期期末考试初三数学试题卷

2013-2014学年度第一学期期末考试初三数学试题卷

2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。

2013-2014学年度第一学期期末测试(含答案)初三数学

2013-2014学年度第一学期期末测试(含答案)初三数学

2013-2014学年度第一学期阶段性测试九年级数学(北师大版)本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共2页,满分为36分;第II卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共36分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效,一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)I.点A(-3,4)所在象限为A.第一象限 B.第二象限 C.第三象限 D.第四象限2.-个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为3.若直线则直线不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某反比例函数的图象经过点(一l,6),下列各点也在该函数图象上的是A.(一3,2)B.(3,2)C.(2,3)D.f6,1)5.如图,已知AB为圆O的直径,点C在圆O上,∠C=15o,则∠BOC的度数为A. 150B. 300C. 450D. 6006.下列二次函数的图象中,开口向上的有:A. 1个 B.2个 C.3个 D.4个7.已知二次函数的图象如图所示,则下列结论正确的是A. a>0 B.b<0C. c<0D. b2-4ac>08.如图,4为反比例函数图象上一点,ABIx轴于点召,若则后的值为A.6 B. 3 D.无法确定9.如图,在4x4的正方形网格中,cosa的值为10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间“分钟)的函数关系是A.Q=0.2tB.Q=20-0.2tC.卢0.2QD. t=20-0.2Q11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④平分弦的直径垂直于弦.其中正确的有A.4个 B.3个 C. 2个 D. 1个12.如图,的半径为2,点A的坐标为直线AB为的切线,曰为切点.则曰点的坐标为第1I卷(非选择题共84分)注意事项:1.第1I卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题,每小题3分,共1 8分j巴答案填在题中横线上.)13. cos600=14.如图,AB为的直径,点C在上,∠A=300,则∠B的度数为15.一次函数y=(k-2)x+b的图象如图所示,则K的取值范围是____.16.已知:线段AB=3cm,半径分别是lcm和4cm,则的位置关系是17.抛物线y= kx2 -3x -3的图象和x轴有交点,则K的取值范围是18.如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)20.(本小题满分6分)若反比例函数与一次函数,y=2x-4的图象都经过点A(a,2).(1)求a的值.(2)求反比例函数的解析式;21.(本小题满分6分)如图,已知AB是求AB的长.22.(本小题满分7分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为300,看这栋大楼底部C的俯角为600.热气球A的高度为240米,求这栋大楼的高度.23.(本小题满分7分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明;单价每上涨1元,该商品每月的销量就减少10件.(l)请写出每月销售该商品的利润y(元)与单价上涨x(元)的函数关系式:(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?24.(本小题满分8分)已知的直径AB的长为4cm,C是上一点,过点C作的切线交AB的延长线于点P,求BP的长.25.(本小题满分8分)如图,已知在(l)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径^第25题圈26.(本小题满分9分)如图,直线y= - 2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点D逆时针方向旋转900后得到△OCD.(1)填空:点C的坐标是(__ __,_ _),点D的坐标是(_ __,_ );(2)设直线CD与AB交于点M,求线段BM的长;27.(本小题满分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为抛物线的对称轴l与冉线BD交于点C、与x轴交于点E.(1)求A、B、C三个点的坐标.(2)点P为线段AB上的一个动点(与点A 、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.①求证:AN=BM.②在点P九年级数学试题参考答案与评分标准运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.。

2013-2014学年上学期期末考试初三数学试卷

2013-2014学年上学期期末考试初三数学试卷

2013-2014学年上学期期末考试初三数学试卷(答题时间:120分钟 总分:120分)一:填空题(每题3分,共30分):1. 在一个袋子中装有除颜色外其它均相同的3个红球和1个白球,从中任意摸出一个球,则摸到红球的概率是_________.2、二次函数y=x 2-2x+1的对称轴是x=_____________3.在比例尺为1﹕10 000 0的地图上,量得甲、乙两地的距离是30 cm ,两地的实际距离是__________.4、将抛物线22x y =先向左平移2个单位,再向下平移1个单位得到的抛物线的解析式为_________________;5、如图,AB ∥EF ∥CD ,图中共有 对相似三角形。

6、已知相似的两个矩形中,一个矩形的长和面积分别是4和12,另一个矩形的长为6,这两个矩形的面积比______7、计算:=-+-000060tan 30cos 230sin 45tan 3______8.掷一枚正方体的骰子,六面分别标有1,2,3,4,5,6,掷一次骰子点数小于5朝上的槪率是____________.9、在RtΔABC 中,∠C=900,,3,4==b a ,则cosA 的值为______10.如果某物体的三视图如图所示,那么该物体的形状是______.二:选择题(每题3分,共30分):11. 书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书的概率是( )A .110B .35C . 310D .1512.二次函数y =-2(x -3)2-2,则其顶点为( )A.(0,0)B.(-2,-2)C.(-3,-2)D.( 3,-2)13、在RtΔABC 中,∠C=900,则ba 是∠A 的( ) A 、 正弦 B 、余弦 C 、正切 D 、以上都不对14.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.15.两个相似三角形的面积比为4:9,那么它们的对应高的比为( )A .3:2 B. 2:3 C. 4:9 D. 9:416、澜沧江防洪大坝的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为5m ,路基高为3m ,则路基的下底宽应为( )A .16mB .15mC .14.5mD .14m17、用一个平面去截圆锥,截面图形不可能是 ( )18.二次函数y=x 2﹣6x+4,则此抛物线的对称轴是( ) A .x =4 B.x=3 C. x =﹣5 D. x=﹣119、已知α为锐角,且21)20sin(=︒+α,则α等于( ) A.︒50 B.︒40 C.︒30 D.10°20.下列事件你认为是必然事件的是( )A .从一副扑克牌中任取一张牌,花色是红桃;B .明天本市一定会下雨;C .打开电视机,正在播广告;D .月亮绕着地球转三:解答题:(21、22、24每题10分,23、25每题9分,26题12分,共60分)21. 张红和王伟一起玩扑克牌游戏,在两个不透明的口袋中,分别装有形状、大小、质地等完全相同的三张卡片,甲口袋的卡片标号分别为1,2,3;乙口袋的卡片标号分别为4,5,6;分别从每个口袋中随机抽出一张卡片。

2013—2014学年度第一学期期末考试九年级数学试题(含答案)

2013—2014学年度第一学期期末考试九年级数学试题(含答案)

2013-2014学年度第一学期期末考试九年级数学试题注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案填在后面的表格中...) 1.一元二次方程0)1(=-x x 的解是 A.0=xB.1=xC.0=x 或1=xD.0=x 或1-=x2.下面四个几何体中,俯视图为四边形的是3.抛物线()212y x =-+的对称轴为A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 4.如图,在8×4的矩形网格中,小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为A .1B .13C .12D .25.如图,在□ABCD 中,添加下列条件不能判定□ABCD 是菱形的是 A. AB =BCB. AC ⊥BDC. BD 平分∠ABCD. AC =BD6.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+7.若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是A .-2B .2C .-5D .58.由若干个相同的小立方体搭成的几何体的三视图如图所示, 则搭成这个几何体的小立方体的个数是A .3B .4C .5D .6A B C D主视图 左视图 俯视图DAB CDO B 1 C 1D 19.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小亮与小菲都可以从这三辆车中任选一辆搭乘,则小亮与小菲同车的概率为A .13B .19C .12D .2310.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为A .5 mB .52mC .54mD .310m 11.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是A .(30)(1002)200x x --=B .(1002)200x x -=C .(30)(1002)200x x --=D .(30)(2100)200x x --= 12.若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2=的图象上,则下列结论正确的是A .y 1> y 2> y 3B .y 2> y 1> y 3C .y 3> y 1> y 2D .y 3> y 2> y 1 13.如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 坐标是(3,4),则顶点M 、N 的坐标分别是A .M (5,0),N (8,4)B .M (4,0),N (8,4)C .M (5,0),N (7,4)D .M (4,0),N (7,4)14.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45º得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的 周长是A . 2B .2 2C .1+ 2D .315.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为A .3B.5 C .8 D .9第10题图一、选择题答题表:第Ⅱ卷(非选择题,共75分)二、填空题(本大题共6小题,每小题3分,共18分,把答案填写在题中横线上)16.反比例函数y =kx的图象经过点P(-4,3),则k 的值为 .17.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红.球.的个数约为 . 18.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平 距离AD 为50m ,则这栋楼的高度为___________.19.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =_________.20.如同,矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点'B 重合,则AC = cm.21.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 .(第21题)cA E BCFD7小题,共57分,解答应写出文字说明和运算步骤)22.(本小题7分)完成下列各题:(1)解方程:1042=+x x(2)计算:26tan 30cos45︒︒-︒. 23.(本小题7分)完成下列各题: (1)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .求证:四边形AECF 是平行四边形(2)已知:如图,在Rt △ABC 中,∠C =90°,∠ABC =60°,AC ,D 为CB 延长线上一点,且BD =2AB .求AD 的长.24.(本小题8分)我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次价格下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(本小题8分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?转盘1转盘226.(本小题9分)对于抛物线243y x x=-+.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;(3)利用以上信息解答下列问题:若关于x的一元二次方程2430x x t-+-=(t为实数)在1-<x<72的范围内有解,则t的取值范围是.27.(本小题9分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数ky x=(k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数ky x=的图象上,求当 1≤x ≤3时函数值y 的取值范围; (3)过原点O 的直线l 与反比例函数ky x=的图象交于P 、 Q 两点,试根据图象直接写出线段PQ 长度的最小值.BOA28.(本小题9分)已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒. (1)填空:菱形ABCD 的边长是 ;面积是 ;高BE 的长是 ; (2)若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t九年级数学试题参考答案一、选择题:(每小题3分)C D A B D D B A A B A C A B C 二、填空题:(每小题3分)16. -12 17. 600 18. 50+ 19. 1 20. 4 21. x >21三、解答题:22.(1)解:244104x x ++=+2(2)14x +=…………………………..1分2x +=分2x =-∴12x =-+22x =-分(2)解:26tan 30cos45︒︒-︒26=⨯分32=-12= ………………………………………………7分23.(1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD ……………………………………1分 ∵E 、F 分别是AB 、CD 的中点∴AE =CF ,且AE ∥CF ………………………………..2分 ∴四边形AECF 是平行四边形…………………………..3分(2)解:在Rt △ABC 中,∠C =90°,∠ABC =60°,AC , ∴ 2sin 60ACAB ==︒,BC =1.……………………5分 ∵ D 为CB 延长线上一点,BD =2AB ,∴ BD =4,CD =5. …………………………………6分∴AD =.……………………7分24.解:(1)设平均每次下调的百分率x ,则6000(1-x )2=4860……………………………………3分 解得:x 1=0.1 x 2=1.9(舍去)……………………….…..4分∴平均每次下调的百分率10%..........................................................5分(2)方案①可优惠:4860×100×(1-0.98)=9720元………6分 方案②可优惠:100×80=8000元……………………………….7分∴方案①更优惠………………………………………………8分25.解: (1)解法一:--------------4分 --------------6分 解法二:分(2)∵共有6种结果,两个转盘的指针所指字母都相同时的结果只有一种,∴P (字母相同)=16-----------------------------8分 26.解:(1)它与x 轴交点的坐标为(1,0),(3,0),与y 轴交点的坐标为(0,3),顶点坐标为(2,1)-; ………………………………………3分(2)列表:分图象如图所示. 分 (3)t 的取值范围是18t -≤<.……………………9分……数学试题 第 11 页 (共 8 页)27.解:(1)∵A (2,m ) , ∴OB =2 ,AB =m∴S △AOB =21•OB •AB =21×2×m =21 ∴m =21.............................................................................................................2分 ∴点A 的坐标为(2,21),把A (2,21)代入y=x k ,得21=2k ∴k =1 …………………………………………………………………………4分(2)∵当x =1时,y =1;当x =3时,y =31………………………………….6分 又∵反比例函数y =x1在x >0时,y 随x 的增大而减小 ∴当1≤x ≤3时,y 的取值范围为31≤y ≤1………………………………..7分 (3)由图象可得,线段PQ 长度的最小值为22……………………….9分28.解:(1)5 , 24, 524…………………………………3分 (2)①由题意,得AP =t ,AQ =10-2t. …………………………………………4分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ……………………………5分 ∴BA QA BE QG =, ∴QG =2548548t -, …………………………6分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5). ……7分 ∵6)25(25242+--=t S (25≤t ≤5). ∴当t =25时,S 最大值为6.…………………9分。

九年级数学第一学期期末试卷分析

九年级数学第一学期期末试卷分析

2013-2014学年度第一学期九年级数学期末试卷分析大磨中学刘英2014年1月10日2013-2014学年度第一学期九年级数学期末试卷分析一、基本概况本套试卷包括三部分:选择题、填空题和解答题,考试时间90分钟,总分120分,这次数学期末考试参考49人,均分32.47,及格率14.71%,优秀率2.94%,最高分96分,最低分8分。

二、试题分析这次期末考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习.这次考试主要考察了初三数学21至25章的内容。

主要内容有,二次根式,一元二次方程,旋转,圆和概率。

试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢.注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势.二.试卷分析本套试卷共26道题,其中选择题共30分,填空题占24分,解答题共66分,整体难易程度适中,其中,选择题第10题具有探索性,有利于考察不同层次的学生分析、探求、解决问题的能力,第18题能考察学生灵活运用知识与方法的能力。

得分率较高的题目都是基本知识的应用,说明多数学生对基础知识掌握较好。

得分率较低的题目大多是开放性的、新颖的,实际应用的题目。

三.存在问题1、两极分化严重2、基础知识较差。

我们在阅卷中发现,部分学生基础知识之差让人不可思议.3、概念理解没有到位4、缺乏应变能力5、审题能力不强,错误理解题意四、今后工作思路1、强化纲本意识,注重“三基”教学我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法.在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识.教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络全面提高学生的数学素质.2、强化全面意识,加强补差工这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.3、强化过程意识,暴露思维过程数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.4、教学中重在凸现学生的学习过程,培养学生的分析能力。

2013-2014学年度第一学期期末联合测试九年级数学试卷

2013-2014学年度第一学期期末联合测试九年级数学试卷

学校:____________ 班级:_____________ 姓名:_____________ 座号:_____________---------------密----------------------封-----------------------线-----------------------内---------------------不-----------------------准--------------------------答----- -----------------------题-------------------------------2013~2014学年度第一学期期末联合调研测试九 年 级 数 学亲爱的同学,诚信是我们中华民族的传统美德。

诚信应考,是责任感的体现;诚信应考,是人格魅力的体现。

当你手捧着充满“诚信”的答卷,面对老师,面对父母时,他们一定会因你拥有的人格魅力而骄傲,同时,你也会为自己感到自豪。

亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥。

特别提醒你要仔细审题。

祝你取得好成绩!并请你注意:1.答卷前,请你用钢笔(圆珠笔)将自己的校名、班级、姓名、座号填在密封线内。

2.答卷时,请按题目的要求作答。

3.试卷共6页,考试时间90分钟,满分150分。

题号 一题36分 二题32分 三题 82分 总分 21题 7分 22题 7分 23题 8分 24题 10分 25题 12分 26题12分 27题 12分 28题 14分 得分一、选择题(本大题共12小题,每题3分,共36分。

下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下表中相应题号下的空格内)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列二次根式中,最简二次根式是( )A.51B. 5.0C. 5D. 50 2、“a 是实数, ||0a ≥”这一事件是 ( )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件 3、方程x x 22=的根为( )A. 2=xB. 0=xC.2021==x x ,D. 2021-==x x , 4、如图,⊙O 的半径OC 垂直弦AB 于D ,若AB=8,OD=3 则⊙O 的直径为( )A.5B. 6C. 8D. 105、抛物线()21-=x y 的顶点坐标是( ) A .(1,0) B .(-1,0)C .(-2,1)D .(2,-1)6、已知正六边形的边心距为3,则它的周长是( ) A. 6 B. 12 C.36 D. 3127、二次函数2)1(2+-=x y 的最小值是( ) A. -2 B. -1 C. 1 D. 28、如图,小圆的半径为7,大圆的半径为9,则圆环的面积为( ) A.17π B.32π C. 49πD. 80πD OB第4题AC 79第8题2013-2014学年度第一学期期末调研测试 九年级 数学9、下列图形中,是中心对称图形的是( )A .B .C .D .10、如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .11、若114<<a ,则()()22114-+-a a 化简后为( )A. 7B. -7C. 152-aD. 无法确定12、已知抛物线()02≠++=a c bx ax y 在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . 0>aB . 0<bC . 0>cD . 0<++c b a 二、填空题(本大题共8小题,每题4分,共32分。

2024北京通州区初三(上)期末数学试卷和答案

2024北京通州区初三(上)期末数学试卷和答案

通州区2023-2024学年第一学期九年级期末质量检测数学试卷参考答案及评分标准2024年1月一、 选择题(本题共8个小题,每小题2分,共16分)二、 填空题(本题共8个小题,每小题2分,共16分) 9. 23π 10. 1211. 4 12. 2 13. R ≥1 14. 50° 15. 6 16. (1)4545, (2)90三、解答题(本题共68分,第17-22题每题5分;第23-26题每题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式=2121422⎛⎫⨯−+⨯ ⎪ ⎪⎝⎭…………………3分 =52…………………5分 18. 解:在Rt △ABC 中,BC =6,tan A =34 ∴AC=8 …………………2分∴AB=10 …………………3分∴cos B = 35BC AB = …………………5分 19. 解:(1)∵二次函数图象经过点(-1,0)和(3,0)∴该二次函数图象的对称轴为直线x =1 …………………2分(2)由题意可知:二次函数图象的顶点坐标为(1,-4) …………………3分∴设该二次函数表达式为:()()2140y a x a =−−≠将(3,0)点代入得:440a −=∴1a = …………………4分∴223y x x =−−…………………5分20. 解:在Rt △ADC 中,CD =2,AC=,∴tan ∠CAD=3CD CA == …………………1分 ∴∠CAD =30° …………………2分∵AD 平分∠CAB∴∠CAB =2∠CAD =60° …………………3分在Rt △ABC 中,∠B =30°∴AB =2AC= …………………5分21. 解:过点A 作AD ⊥BC 于点D …………………1分∴∠B =45°,∠C =30°在Rt △ABD 中,AD =BD=200 …………………2分在Rt △ACD 中,CD…………………3分∴CB =200+ …………………4分答:小山两端B ,C之间的距离为(200+米. ………5分22. (1)…………………3分(2)证明:连接AD ,∵点A ,B ,C ,D 在⊙O 上,AD =BC ,∴ AD =BC . …………………4分∴ ∠DBA =∠CAB ( 等弧所对的圆周角相等)(填推理的依据).…………………5分 ∴ BD ∥AC .23. (1)证明:连结CD …………………1分∵BC 为半圆的直径∴∠BDC =90° …………………2分D∴BD ⊥CD∵CA CB =∴点D 为AB 的中点 .………………3分(2)方法一:证明:∵CA CB = ∴∠B =∠A∵四边形BCED 为圆内接四边形∴∠AED =∠B …………………………………4分∴∠AED =∠A …………………………………5分∴AD DE =. …………………………………6分方法二:证明:连结DO ,EO ,∵CA CB =,AD=BD ,∴∠ACD =∠BCD ……………………4分 ∵ 2DOE ACD ∠=∠,2DOB BCD ∠=∠,∴ ∠DOE =∠DOB .∴∴ BD=DE .……………………5分 ∵ AD=BD ,∴AD DE =.……………………6分24. 解:(1)∵直线2y kx =+与双曲线6y x =的一个交点是(,3)A m ∴把点(,3)A m 代入6y x=中,得36m =,2m = ……………………1分 ∴把点(2,3)A 代入2y kx =+,得223k +=,12k =. ……………………2分 (2)点(6,1)P 或(6,1)−−. ……………………6分25.(1)证明:连结OD∵AB 为⊙O 的直径∴∠ACB=90°∵CD 平分∠ACBEDC O A ED A F D O∴∠ACD=45° ……………………1分∴∠AOD=2∠ACD =90° ……………………2分∵DF ∥AB∴∠AOD+∠ODF =180°∴∠ODF =90°∴直线DF 是⊙O 的切线. ……………………3分(2)解:在Rt △ABC 中,∠A =30°,AC =∴4BC =,8AB = ……………………4分∴4OD =∵∠COB =60°又∵DF ∥AB∴∠F =60° ……………………5分在Rt △ODF 中,3==. ……………………6分26. 解:(1)∵()222211y x mx m x m =−+−=−− …………………………1分 ∴抛物线顶点坐标为(m ,-1). …………………………2分(2)y 1 < y 2. …………………………3分(3)∵抛物线对称轴为直线x =m ,∴点(4,y 2)关于对称轴的对称点为(2m -4,y 2),…………………………4分 ∵抛物线开口向上,y 1≤y 2,∴2m -4≤x 1<4,∴2m -4≤-1,解得m ≤32.………………………………………………………………………6分 27. (1)如图 …………………………1分 (2)BE = 2CF ,BE ⊥CF 证明:取AC 中点M ,连结FM ∵F 为AD 中点 ∴FM ∥CD ,12FM CD =数学试卷答案第5页(共5页)∵线段CD 绕点C 顺时针旋转90°得到线段CE ∴12FM CE = ∵AC = BC ∴1122CM AC CB == ∴CM FMBC EC=…………………………2分 ∵FM ∥CD∴∠FMC +∠DCA =180°∴∠FMC =180°-∠DCA =90°-∠ECA ∵∠BCE =90°-∠ECA∴∠FMC =∠BCE …………………………3分∴△FMC ∽△ECB …………………………4分 ∴BE = 2CF ,∠BEC =∠CFM …………………………5分 ∵DC ⊥CE ∴FM ⊥CE∴∠FCE +∠CFM =90°∴∠FCE +∠BEC =90° …………………………6分 ∴BE ⊥CF . …………………………7分 注:方法不唯一,酌情给分 28. 解:(1)P 1N 1,P 2N 2.(2)由题意,可得PN =2MN . ∵MN ≤2,∴PN ≤4.如图,当OP =3且点P 在直线x =2上时, ∵OH =2,∴'PH P H ==结合图形,点P 的纵坐标取值范围为P y (3)11≤≤b −.…………………………………2分…………………………………5分 …………………………………7分。

2013-2014学年度第一学期期末学习水平测试试卷九年级 数学

2013-2014学年度第一学期期末学习水平测试试卷九年级  数学

2013-2014学年度第一学期期末学习水平测试试卷九年级 数学(满分100分;时间:120分钟)一、选择题(共10小题,每题3分,共30分。

每小题只有一个正确答案。

)把选择题中你认为正确的选项填在下面的表格中。

1、()=-23A . 3B . -3C . ±3D . 92、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是 A . 外离B . 外切C .相交D . 内切3、“从布袋中取出一只红球的概率是99%”,这句话的意思是 A . 若取出一只球肯定是红球 B . 取出一只红球的可能性是99%C.若取出一只球肯定不是红球D .若闭门不出100只球中,一定有99只红球4、如图,A ,B ,C 是⊙O 上的三个点,∠BOC =70°,则∠A 的度数为 A .70°B .45°C .40°D . 35°5、下列说法正一元二次方程中,没有实数根的是 A .x 2+2x -4=0B .x 2-4x +4=0C .x 2-2x -5=0D . x 2+3x +4=06、用配方法解方程x 2-4x =5,下列配方正确的是 A .(x -2)2=9B .(x -2)2=1C .(x +2)2=9D . (x +2)2=17、下列图形中,是中心对称图形的是A .B .C .D .8、在半径为18的圆中,120°的圆心角所对的弧长是 A . π12B . 10πC . 6πD . 3π9、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若CD =8,OE =3,则⊙O 的直径为 A . 5B . 6C . 8D . 1010、现有一扇形纸片,圆心角∠AOB 为120°,半径R 的长为cm 3,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥的侧面积为 A .12π B .3π C .32π D . π二、填空题(共10小题,每题2分,共20分) 11、计算:=-+)22)(12( ;12、若实数m 、n 满足035=-++n m ,则m +n = ;13、若关于x 的一元二次方程x 2+(m +2)x -2=0的一个根为1,则m 的值为 ;14、已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2; 15、如图,已知PA ,PB 分别切⊙O 于点A 、B ,∠P =60°,PA =8,那么弦AB 的长为 ;16、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠DAB =52°,那么∠ACD = ;17、方程x 2-2x =0的解为 ;18、如图所示,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 ;第15题图 第16题图 第18题图 19、若12-=a ,则a a 22-的值是 ;20、方程2x2+x+m=0有两个不相等的实数根,则m的取值范围是。

最新北京市通州区九年级上期末考试数学试卷及答案

最新北京市通州区九年级上期末考试数学试卷及答案

(第3题图)(第4题图)通州区初三数学期末考试试卷考生须知 1. 本试卷共6页。

全卷共九道大题,24道小题。

2.本试卷满分100分,考试时间90分钟。

3.答题前,在答题卡上将自己的学校名称、班级、姓名填写清楚。

4.请按照题号顺序在答题卡各题目的答题区域内作答,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答,在试卷上作答无效。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(共10道小题,每小题3分,共30分)1.如果532x =,那么x 的值是( ) A . 310 B .215 C .152 D .1032.反比例函数 (k ≠0)的图象过点(-1,1),则此函数的图象在直角坐标系中的( )A .第二、四象限B .第一、三象限C .第一、二象限D .第三、四象限3.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为( ) A .18° B .30° C .36° D .72° 4.如图,在直角三角形ABC 中,斜边AB 的长为m ,40B ∠=o, 则直角边BC 的长是( ) A .sin 40m oB .cos 40m oC .tan 40m oD .tan 40mo5.把二次函数243y x x =-+化成2()y a x h k =-+的形式,其结果是( ) A .2(2)1y x =-- B .2(2)1y x =+- C .2(2)7y x =-+D .2(2)7y x =++6.随机从三男一女四名学生的学号中抽取两个人的学号,被抽中的两人性别不同的概率为( )xky =A .14B .34C .13D .127.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =-C .221y x =+D .221y x =-8.现有一块扇形纸片,圆心角∠AOB 为120°,弦AB 的长为23cm ,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A .32cm B .π32cm C .23cm D .π23cm 9.如图,在Rt ΔABC 中,∠C =90°,∠A =30°, E 为AB 上一点,且AE ︰EB =4︰1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( ) A .3 B .23C .533D .5310.如图,AB 为半圆的直径,点P 为AB 上一动点.动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t .分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )A B C D 二、填空题(每题4分,4道小题,共16分) 11.若某人沿坡度i =3︰4的斜坡前进10m ,则他所在的位置比他原来的位置升高 m . 12.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,6cm,4cm BE DH ==,则图中阴影部分面积为 2cm .13.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( ).14.如图,是一个高速公路的隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,拱高CD =7米,则此圆的半径OA = . 三、解答题(15——20题,每题5分;21——24每题6分)15.计算: tan 45sin 301cos 60︒+︒-︒;16.已知:如图,AD 平分BAC ∠,AC DE //,且cm AB 5=,求DE 的长.(第16题图) 17.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处正东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC 等于多少米?18.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan ,2ABO ∠=4,OB = 2OE =.求该反比例函数的解析式.19.已知:如图,AB 为半圆O 的直径,C 、D 是半圆上的两点,E 是AB 上除O 外的一点,PA BC30°60°北(第17题图)AC 与DE 交于点F .①»»ADDC =;②DE ⊥AB ;③AF=DF .请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.20.把两个含有30°角的直角三角板如图放置,点D 在BC 上,连结BE 、AD ,AD 的延长线交BE 于点F .问AF 与BE 是否垂直?并说明理由.21.某服装厂批发应季T 恤衫,其单价y (元)与批发数量x (件)(x 为正整数)之间的函数关系如图所示.(1)请你直接写出当100<x ≤500且x 为整数时,y 与x 的函数关系式; (2)一个批发商一次购进200件T 恤衫,所花的钱数是多少元? (其他费用不计);(3)若每件T 恤衫的成本价是45元,当100<x ≤500件( x 为正整数)时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?22.如图,在平面直角坐标系中,以点C (1,1)为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在⊙C 上. (1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.第22题图23.如图,在直角梯形ABCD 中,AB ∥DC ,∠D =90o,AC ⊥BC ,AB =10cm ,BC =6cm ,F 点以2cm /秒的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm /秒的速度在线段BC 上由B 向C 匀速运动,设运动时间为t 秒(0<t<5). (1)求证:△ACD ∽△BAC ; (2)求DC 的长;(3)设四边形AFEC 的面积为y ,求y 关于t 的函数关系式,并求出y 的最小值.24.如图,四边形ABCO 是平行四边形,42AB OB ==,,抛物线过A B C 、、三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形?(3)当t 为何值时,以P B O 、、为顶点的三角形与以点Q B O 、、为顶点的三角形相似?9.通州初三数学期末考试评分标准和参考答案2012.1一、选择题:(每题3分,共30分)1. D2. A3.C4. B5. A6.D7. D8. A9. C 10.D 二、填空题:(每题4分,共16分)11.6; 12.36; 13.32; 14.737. 三、解答题:(15——20每题5分,21——24每题6分,共)15.解: ︒-︒+︒60cos 130sin 45tan=211211-+…………………………………(3分) =3 …………………………………(5分)16.解:Θ,AD 平分BAC ∠∴CAD BAD ∠=∠………………………(1分) ΘAC DE // ∴CAD ADE ∠=∠………………………(2分)∴BADADE ∠=∠∴BD AE = ………………………(3分)∴DE AB =∴ED AB = ………………………(4分) Θcm AB 5=∴cm DE 5= ………………………(5分)17.解: 设灯塔P 到环海路的距离PC 长为x 米根据题意可知:︒=∠︒=∠30,60BPC APC PCBCBPC =∠tan ………………………(1分) ∴33=PC BC ∴x BC 33=………………………(2分) ∴x AC 33500+= Θ︒==∠60tan tan PCACAPC∴333500=+xx………………………(3分)A BC(第17题)∴500333=⎪⎪⎭⎫ ⎝⎛-x ………………………(4分) 500332=x ∴3250=x 米 ………………………(5分)18.解:Θ1tan 422ABO OB OE ∠===,,∴2=OA∴)0,2(),0,4(),2,0(-E B A ………………………(2分) ∴设直线AB 解析式为b kx y +=把B A 、点坐标代入解析式得:⎩⎨⎧=+0b k b 4=2,∴解之得:⎪⎩⎪⎨⎧-=21k b =2,∴直线AB 解析式为221+-=x y ………………………(3分)∴C 点坐标为(-2,3) ………………………(4分)设反比例函数解析式为xky =把C 点坐标代入解析式:6-=k∴反比例函数解析式为xy 6-= ………………………(5分)19.答案不唯一如果有①、②存在,则③成立; ………………………(1分) 证明: 连结AD 、BD .∵BC AD =∴∠DAC =∠B , ………………………(2分) 又AB 为直径,DE ⊥AB ,∴∠ADB =∠AED =90º.………………………(3分) ∴︒=∠+∠90ADE DAE ︒=∠+∠90B DAE ∴B ADE ∠=∠∴ADE DAC ∠=∠ ………………………(4分) ∴DF AF = ………………………(5分)_F _E_ D _C _B _A20.AF ⊥BE . ………………………(1分) ∵ ∠ABC =∠DEC =30°,∠ACB =∠DCE =90° ∴ BC EC AC DC==tan 60°. ………………………(2∴ △DCA ∽△ECB . ………………………(3分) ∴∠DAC =∠EBC . ………………………(4分) ∵ ∠ADC =∠BDF ,∴ ∠EBC +∠BDF =∠DAC +∠ADC =90°∴ ∠BFD =90°∴ AF ⊥BE . ………………………(5分)21. 解:(1) 当100<x ≤500且x 为整数,y =201-x +85 …………(1分)(2)当x =200时,y =201-×200+85=75∴所花的钱数为75×200=15000(元). ………………………(2分)(3)当100<x ≤500且x 为整数时, y =201-x +85∴w =(y -45)x =(201-x +85-45)x ………………………(3分)∴w =201-x 2+40x∴w =201-(x -400)2+8000………………………(4分)∵201-<0∴当x =400时,w 最大,最大值为8000元 ……………(5分) 答:一次批发400件时所获利润最大,最大利润是8000元. ………………………(6分)22.解:(1)作CH x ⊥轴,H 为垂足,………………………(1分)1CH =Q ,半径2CB =︒=∠∴60BCH ,120ACB ∴∠=o ………………………(2分)(2)1CH =Q ,半径2CB =HB ∴=(1A ,C E(1B + ………………………(3分)(3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13),设抛物线解析式2(1)3y a x =-+把点(1B +代入上式,解得1a =- 222y x x ∴=-++ ………………………(4分)(4)假设存在点D 使线段OP 与CD 互相平分, 则四边形OCPD 是平行四边形 PC OD ∴∥且PC OD =.PC y Q ∥轴,∴点D 在y 轴上.又2PC =Q ,2OD ∴=,即(02)D ,.(02)D ,满足222y x x =-++, ………………………(5分) ∴点D 在抛物线上所以存在(02)D ,使线段OP 与CD 互相平分.………………………(6分) 23. 解:(1)∵CD ∥AB ,∴∠ BAC =∠DCA又AC ⊥BC , ∠ACB =90o ∴∠D =∠ACB = 90o∴△ACD ∽△BAC ………………………(1分) (2)822=-=∆BC AB ,AC ABC Rt 中 ∵△ACD ∽△BAC ∴ABAC ACDC =即1088=DC 解得:4.6=DC ………………………(2分) (3) 过点E 作AB 的垂线,垂足为G ,O ACB EGB 90,B ∠=∠=∠Q 公共∴△ACB ∽△EGB ………………………(3分) ∴ EG BE ACAB= 即108t EG =故t EG 54=BEF ABC S S y ∆∆-= ………………………(4分)=()24454542102186212+-=⋅--⨯⨯t t t t ………………(5分) =19)25(542+-t 故当t=52时,y 的最小值为19……………(6分) (其它方法仿此记分)24.解:(1)Q 四边形ABCO 是平行四边形,4.OC AB ∴==(42)(02)(40)A B C ∴-,,,,,. ………………………(1分) Q 抛物线2y ax bx c =++过点B , 2.c ∴=由题意,有1642016422a b a b -+=⎧⎨++=⎩,.解得1161.4a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴所求抛物线的解析式为211 2.164y x x =-++………………………(2分) (2)将抛物线的解析式配方,得211(2)2.164y x =--+ ∴抛物线的对称轴为 2.x = (80)(22)(2).D E F ∴,,,,,0欲使四边形POQE 为等腰梯形,则有..OP QE BP FQ ==即363.2t t t ∴=-=,即 ………………………(3分)(3)欲使以点P B O 、、为顶点的三角形与以点Q B O 、、为顶点的三角形相似,90PBO BOQ ∠=∠=∴Q °,有BP OQ OB BO =或BP BO OB OQ=, 即PB OQ =或2OB PB QO =·.①若P Q 、在y 轴的同侧.当BP OQ =时,t =83t -,2t ∴=.当2OB PB QO =·时,(83)4t t -=,即23840.t t -+= 解得1222.3t t ==, ………………………(4分)②若P Q 、在y 轴的异侧.当PB OQ =时,38t t -=,4t ∴=.当2OB PB QO =·时,(38)4t t -=,即23840t t --=.解得43t ±=403t -=<Q .故舍去. 43t +∴=………………………(5分)∴当2t =或23t =或4t =或t =以P B O 、、为顶点的三角形与以点Q B O 、、为顶点的三角形相似. ………………………(6分)[注]如果学生正确答案与本参考答案不同,请老师按此评分标准酌情给分。

6.2013-2014第1学期初3数学期末考试题答案-通州

6.2013-2014第1学期初3数学期末考试题答案-通州

初三数学期末学业水平质量检测答案—通州二、填空题:(共6个小题,每小题4分,共24分)9.52; 10.122-+-=x x y (答案不唯一,满足1,0-=<c a 即可);11.60º或120º; 12.6; 13.52;14.102.三、解答题:(共9个小题,15-17每题5分,18-22每题6分,23题7分,共52分)15.解:原式=322321212+⨯-+⎪⎭⎫⎝⎛-………………………3分 =32314+-+ ………………………4分 =35+ ………………………5分16.解: 此二次函数图象的对称轴为2=x∴224=-a解得:1-=a ………………………2分∴此二次函数的表达式为c x x y ++-=42点B (-1,0)在此函数图象上,∴ 041=+--c解得:5=c………………………4分∴此二次函数的表达式为542++-=x x y ………………………5分17.解:延长DA 、CB 交于点E ………………………1分 在Rt △CDE 中,tan C =23=CD DE , 21c o s ==EC CD C ∴33=DE ,6=EC ………………………2分EAD=2AB∴设k AB =,则k AD 2=∠C =60º,∠B =∠D =90º ∴∠E =30º 在Rt △ABE 中,21sin ==AE AB E ,33tan ==EB AB E ∴k AB AE 22==,k AB EB 33== ∴334==k DE解得:433=k ………………………4分 ∴49=EB ∴415496=-=BC ………………………5分18.解:(1)答:点O 即为所求作的点.………………………2分(2)解:连接AO在Rt △ACD 中,∠CAD =30º∴52=AC ,∠ACD =60ºAO =CO∴ AO =CO =AC =52答:此弓形所在圆的半径为52. ………………………5分A19.由列表可知,可能出现的结果有9个,平局的结果有1个, 所以P (平局)=91.………………………4分 两方获胜的概率相等,游戏规则对双方是公平的 .………………………5分(说明:树形图法同理给分.)20. (1)………………………2分(2)解: 在点B 处,看点F 和点E 处测得俯角α、β分别为︒30和︒60∴∠BFC =30º,∠BEC =60º ∴∠EBF =30º∴BE =EF ………………………4分在Rt △BEC 中,BEBCBEC =∠sin∴34=BE∴9.673.1434≈⨯≈=EF (米)答:公路宽EF 为6.9米. ………………………5分F21.解:(1)BA BE BC ⋅=2………………………1分(2)①………………………2分② BP BG BC ⋅=2………………………3分 ③ 证明: 在⊙O 中,直径CD AB ⊥∴弧BD =弧BC ∴∠BCD =∠P ∠CBG =∠PBC ∴△CBG ∽△PBC∴BCBGBP BC =∴BP BG BC ⋅=2………………………6分④ 确 ………………………7分22.解:(1) 一次函数x y 2-=的图象过点B ()m ,1∴2-=m∴点B 坐标为()2,1-反比例函数ky x=的图象点B ∴2-=k∴反比例函数表达式为xy 2-=………………………1分 (2)设过点A 、C 的直线表达式为)0(11≠+=k b x k y , 且其图象与y 轴交于点D点()1,n C 在反比例函数xy 2-=的图象上 ∴2-=n∴点C 坐标为()1,2-点B 坐标为()2,1-∴点A 坐标为()2,1-∴⎩⎨⎧=+-=+-21211b k b k解得:3,11==b k∴过点A 、C 的直线表达式为3+=x y ………………………3分 ∴点D 坐标为)3,0( ,32321=⨯⨯=∆COD S 231321=⨯⨯=∆AOD S∴23=-=∆∆∆AOD COD AOCS S S ………………………4分(3)点P 的坐标可能为()0,0、()1,0、()0,1-………………………7分 23. 解:(1) )1,1(-M 为圆心,半径为5∴1,3,3,1====OD OC OB OA∴)1,0(),3,0(),0,3(),0,1(D C B A -………………………1分 设二次函数的表达式为)0)()((21≠--=a x x x x a y 解得:3,1,121=-==x x a∴ 二次函数表达式为)3)(1(-+=x x y整理成一般式为322--=x x y ………………………2分 (2)过点E 作EF ⊥y 轴于点F)3,0(),0,3(C B∴可得23=BC点E 为二次函数322--=x x y 的顶点∴点E 的坐标为()4,1-∴2=CEEF CF BO CO ==,∴∠OCB =∠ECF =45º ∴∠BCE =90º在Rt △BCE 中与Rt △BOD 中,31tan ==∠OB OD OBD ,31tan ==∠CB CE CBE∴∠CBE =∠OBD =β,………………………4分 ∴ sin (α-β)=sin (∠DBC -∠OBD )=sin ∠OBC =22=BC CO ……………5分 (3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0)过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P 过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0) 故在坐标轴上存在三个点P 1(0,0),)31,0(2P ,P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似………………………8分。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2013—2014学年度第一学期期末调研测试九年级数学试题

2013—2014学年度第一学期期末调研测试九年级数学试题

2013—2014学年度第一学期期末调研测试九 年 级 数 学说明: 1.本卷共有五个大题, 25个小题,全卷满分120分,考试时间100分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答的不给分.一.选择题。

(本大题10小题,每小题3分,共30分)1.化简2)2(-的结果正确的是:A .-2B .2C .±2D .42.要使二次根式1-x 有意义,字母x 的取值必须满足的条件是: A .x ≥1 B .x ≤1 C .x >1 D .x <1 3.一元二次方程2x 2-3x =4的二次项系数是:A . 2B . -3C .4 D. -4 4.观察下列标志,从图案看既是轴对称图形又是中心对称图形的有:A .1个B .2个C .3个D .4个 5.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是: A.1B.2 C.3D.46.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为: . .A .21B .31C .41D .617.下列事件是必然事件的是:A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在标准大气压下,水加热到100摄氏度会沸腾 8.两个圆的半径分别是2cm 和7cm ,圆心距是8cm ,则这两个圆的位置关系是:A .外离B .外切C .相交D .内切 9.如图,⊙O 的弦AB =8,OE ⊥AB 于点E ,且OE =3, 则⊙O 的半径是:AB . 2C . 10D . 510.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,. 如果60APB ∠=,8PA =,那么弦AB 的长是: A .4B .8C.D.第9题图P二.填空题.(本大题6小题,每小题4分,共24分)11.点M(3,2-)关于原点对称的对称点的坐标是.12.在一个不透明的布袋中,黄色、白色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数可能是.13.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.14.已知圆锥的母线长和底面圆的直径均是10㎝,则这个圆锥的侧面积是.15.已知四边形ABCD是圆内接四边形,∠A:∠B:∠C=2:5:716.如图,现有一圆心角为90︒,半径为8cm扇形纸片,用它恰好围成一个圆锥的侧面(接缝处忽略不计),则该圆锥底面圆的半径为.三.解答题(一)(本大题3小题,每小题5分,共15分)17.(本小题满分5分)计算:(1-)2014-(π-3)0.18.(本小题满分5分)解一元二次方程:x2+3x=0。

2013-2014学年度第一学期九年级数学期末试卷

2013-2014学年度第一学期九年级数学期末试卷

19、如图,已知 Rt△ ABC 中,∠C=90° ,AC= 2 ,BC=1,若以 C 为圆心,CB 为半径的圆交 AB 于点 P,则 AP = 20、如图,小明作了一顶圆锥形纸帽,已知纸帽底面圆的半 径 OB 为 10cm,母线长 BS 为 20cm,则圆锥形纸帽的侧面 积为 cm2(结果保留含 π 的式子). 三、作图(8 分) 21、如图 6,在平面直角坐标系中,网格中每一个小正方形 的边长为 1 个单位长度;已知△ ABC .(8 分) ⑴△ABC 与△ A1B1C1 关于原点 O 对称,写出△ A1B1C1 各顶点的坐标,画出△ A1B1C1; ⑵ 以 O 为 旋 转 中 心 将 △ ABC 顺 时 针 旋 转 90° 得 △ A2B2C2,画出△ A2B2C2 并写出△ A2B2C2 各顶点的坐标.
)
第 16 题图
第 18 题图
A.-1 到 0 之间 B.0 到 1 之间 C.1 到 2 之间 D.2 到 3 之间 7. 如图,点 A,B,C 都在⊙O 上,∠A=∠B=20º ,则∠AOB 等于( ) A.40º B. 60 º C. 80 º D.100 º 8. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如果平均每月增长率为 x,则由题意列方程应为 ( ) A、200(1+x)2=1000 B、200+200× 2x=1000 C、200+200× 3x=1000 D、200[1+(1+x)+(1+x)2]=1000 9. 如图,把边长为 3 的正三角形绕着它的中心旋转 180° 后, 则新图形与原图 形重叠部分的面积为( )
第 7 题图Байду номын сангаас
y

北京市通州区2013年初三中考数学一模试题与答案 word

北京市通州区2013年初三中考数学一模试题与答案 word

2013年北京市通州区中考第一次模拟考试数学试卷 2013年5月考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称和姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .3B .3-C .13-D .132.在下列几何体中,主视图、左视图和俯视图形状都相同的是A B C D3.2012年,北京实现地区生产总值约17800亿元,比2011年增长百分之七点多.将17800用科学记数法表示应为 A .17.8×103B .1.78×105C .0.178×105D .1.78×1044.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =32°, 则∠AOC 的度数是 A .32°B .64°C .16°D .58°5.端午节吃粽子是中华民族的传统习俗.妈妈买了2只红豆粽和3只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是 A .25 B .12C .15D .236. 一个扇形的圆心角为90°,半径为2,则这个扇形的面积是 A .6πB .4πC .2πD .π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动. 为了解学生每天使用零花钱的情况,小明随机调查了10名同学,结果如下表:每天使用零花钱(单位:元)0 2 3 4 5 人数12412关于这10名同学每天使用的零花钱,下列说法正确的是 A .平均数是2.5B .中位数是3C .众数是2D .方差是4O BAC8. 如图,在直角坐标系xoy 中,已知()01A ,,()0B 3,,以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间的函数关系的图象为第8题图(1) 第8题图(2)二、填空题(本题共16分,每小题4分) 9.若分式2x x-的值为零,则x = . 10.分解因式:322x x x -+= . 11.如图,AB ∥CD ,点E 在AB 上,且DC DE =,70AEC ∠=︒,则D ∠的度数是______.12.定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为kn 2(其中k 是使得kn 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第2013次“F 运算”的结果是 . 三、解答题(本题共30分,每小题5分) 13.计算:()123tan 302312--+-+o.第11题图CDA E BSSSDCBAtO 1234213tO1234213tO12342133124321OtS yxOABCD第8题图(2)第8题图(1)D CBA Oxy14.解不等式组20512(1)x x x -<⎧⎨+>-⎩,.15. 已知:如图,AB =AC ,点D 、E 分别在AB 、AC 上,且使AE =AD .求证:∠B =∠C .16.化简求值:2221y x y x y x ⎛⎫-+ ⎪-⎝⎭g ,其中30x y -=,且0y ≠.17.已知(42)A -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y kx b =+的图象沿y 轴向上平移n 个单位长度,交y 轴于点C ,若12ABC S =V ,求n 的值.ECA D B18. 列方程或列方程组解应用题:根据城市发展规划设计,某市工程队为该城市修建一条长4800米的公路.铺设600米后,为了缩短工期,该工程队增加了人力和设备,实际每天修建公路的长度是原计划的2倍,结果共用9天完成任务.问原计划每天修建公路多少米?四、解答题(本题共20分,每小题5分)19.某中学组织全校1000名学生参加了有关“低碳环保”知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)直接写出频数分布表中a ,b 的值,补全频数分布直方图;(2)学校将对成绩在90分以上(不含90分)的学生进行奖励,请估计全校1000名学生中约有多少名获奖?20.如图,在矩形ABCD 中,AB =3,BC =3,△DCE 是等边三角形,DE 交AB 于点F ,求△BEF 的周长.分组/分 频数 频率 50<x ≤60 10 a 60<x ≤70 b 70<x ≤80 0.2 80<x ≤90 52 0.26 90<x ≤100 0.37 合计1频数 8070 60 50 40 30 20 10 0成绩/分50 60 70 80 90 100ADFEB C21.已知:如图,AB 是⊙O 的直径,AC 是弦.过点A 作∠BAC 的角平分线,交⊙O 于点D ,过点D 作AC 的垂线,交AC 的延长线于点E . (1)求证:直线ED 是⊙O 的切线;(2)连接EO ,交AD 于点F ,若5AC =3AB ,求EOFO的值.22. 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,沿CE 将菱形ABCD 剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S 1、S 2、S 3,周长分别记为l 1、l 2、3l ,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“):面积关系是 ; 周长关系是 .第22题图(矩形)(等腰梯形)(直角三角形)E DCBA ②①E A BCDO第22题图五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知二次函数()2214y x k x k =-++的图象与x 轴分别交于点()1,0A x 、()2,0B x ,且32-<1x <12-. (1)求k 的取值范围;(2)设二次函数()2214y x k x k =-++的图象与y 轴交于点M ,若OM OB =,求二次函数的表达式;(3)在(2)的条件下,若点N 是x 轴上的一点,以N 、A 、M 为顶点作平行四边形,该平行四边形的第四个顶点F 在二次函数()2214y x k x k =-++的图象上,请直接写出满足上述条件的平行四边形的面积.24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB的两侧.(1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.A DB C25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数223y x x =--的图象与x 轴交于点A 、B ,与y 轴交于点D ,AB 为半圆直径,半圆圆心为点M ,半圆与y 轴的正半轴交于点C . (1)求经过点C 的“蛋圆”的切线的表达式; (2)求经过点D 的“蛋圆”的切线的表达式;(3)已知点E 是“蛋圆”上一点(不与点A 、点B 重合),点E 关于x 轴的对称点是F ,若点F 也在“蛋圆”上,求点E 的坐标.yCM A O B x D第25题图通州区初三数学模拟考试参考答案及评分标准2013.5 一、选择题:1.C 2.C 3.D 4.B 5.A 6.D 7.B 8.A 二、填空题:9. 2x =; 10. ()21x x -; 11. 40 ; 12. 1,4;三、解答题: 13. 解:原式= 13312323-⨯++, ……………… 4分;= 131232-++, =332+ . ……………… 5分. 14. ()205121x x x -<⎧⎨+>-⎩, .①②解:解不等式①,得 2x <, ……………… 1分;解不等式②,5122x x +>-, ……………… 2分; 5221x x ->--, ……………… 3分;33x >-,1x >-, ……………… 4分;∴这个不等式组的解集是12x -<< . (5)分.15. 证明:在△ABE 和△AC D 中∵ .AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,, ……………… 3分;∴△ABE ≌△ACD (SAS ). ……………… 4分;∴B C ∠=∠. ……………… 5分.第15题图EDC BA16. 解:原式=x yx y x y y x y x -∙⎪⎪⎭⎫ ⎝⎛-+--2222222,x yx y x x -∙-=222, ……………… 1分; xyx y x y x x -∙-+=))((2, ……………… 2分;=xx y+. ……………… 3分; 由30x y -=,得3x y =, ……………… 4分; ∴原式=33y y y +=34y y =34. ……………… 5分.17. 解:(1) 把(42)A -,,(24)B -,分别代入y kx b =+和my x=中, ∴42244.2-=k b k b m ⎧⎪-+=⎪+=-⎨⎪⎪⎩,, ……………… 1分;解得:128.k b m =-⎧⎪=-⎨⎪=-⎩,, ……………… 2分;∴反比例函数的表达式为8y x=-,一次函数的表达式为2y x =-- ; (2)设一次函数2y x =--的图象与y 轴的交点为D ,则()0D ,-2, (3)分;∵12=∆ABC S , ∴12221421=∙∙+-∙∙CD CD , ……………… 4分;∴4CD =,∴4n =. (5)分.18. 解法一:解:设原计划每天修建公路x 米, 则实际每天修建公路2x 米, …… 1分;根据题意得:600480060092x x-+=, ……………… 3分;∴27009x=, ∴300x =.经检验:x =300是原方程的解,且符合实际问题的意义. ……………… 4分; 答: 原计划每天修建公路300米. ……………… 5分. 解法二:解:设铺设600米用x 天, 则增加人力和设备后,用()9x -天完成任务.……………… 1分; 根据题意得:600480060029x x-⨯=-, ……………… 3分; 解得:2x =.经检验:2x =是原方程的解,且符合实际问题的意义. ……………… 4分; ∴6003002=, 答:原计划每天修建公路300米. ……………… 5分. 四、解答题19. (1)0.05a =,24b =. ……………… 2分; 补全频数分布直方图正确; ……………… 4分; (2)0.371000370⨯=. ……………… 5分. 估计全校1000名学生中约有370名获奖. 20.解法一:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o,3ED EC ==, 在Rt △ADF 中,90A ∠=o ,3AD =,G 第20题图A BCDEF∴tan AFADF AD∠=, tan 33033AF ==o, ∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分; ∴321EF ED DF =-=-=, ……………… 2分; 过点E 作EG CB ⊥,交CB 的延长线于点G . ……………… 3分; 在Rt △ECG 中,90EGC ∠=o ,3EC =,30ECG ∠=o , ∴1322EG EC ==,cos GCECG EC∠=, cos 33032GC ==o , ∴332GC =, ∴3133322GB GC BC =-=-=, 由勾股定理得,222EB EG GB =+,∴3EB =(舍去负值) ……………… 4分; ∴△BEF 的周长=33EF FB EB ++=+. ……………… 5分. 解法二:∵矩形ABCD ,△DCE 是等边三角形,∴60EDC ECD ∠=∠=o ,3ED EC ==,过点E 作EH CD ⊥交CD 于点H ,交AB 于点G . ……………… 1分; ∴点H 是DC 的中点,点G 是AB 的中点, 30FEG ∠=o ,3GH AD ==,在Rt △EHD 中,90EHD ∠=o ,3ED =, ∴sin EH EDH ED∠=, sin 36032EH ==o ,∴332EH =, ∴3133322EG EH GH =-=-=. 在Rt △EGF 中,90EGF ∠=o ,60EFG ∠=o , ∴sin EGEFG EF∠=, sin 1332602EF ==o , ∴1EF =, ……………… 2分; ∴1122FG EF ==, ∵点G 是AB 的中点,3AB =,∴1322GB AB ==, ∴13222FB FG GB =+=+=, ……………… 3分;由勾股定理得,222EB EG GB =+,∴3EB =(舍去负值) ……………… 4分; ∴△BEF 的周长=33EF FB EB ++=+. ……………… 5分. 解法三:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o ,3ED EC ==, 在Rt △ADF 中,90A ∠=o ,3AD =,∴tan AFADF AD∠=, tan 33033AF ==o, ∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分; ∴321EF ED DF =-=-=, ……………… 2分; 过点B 作BG CE ⊥,交CE 于点G . ……………… 3分; 在Rt △BCG 中,90BGC ∠=o ,3BC =,30ECB ∠=o ,H F E D CBA第20题图G∴1322BG BC ==,cos GCBCG BC∠=, cos 33023GC ==o, ∴32GC =, ∴33322GE EC GC =-=-=, 由勾股定理得,222EB EG GB =+,或BG 是线段EC 的垂直平分线,∴3EB =(舍去负值)或BE =BC , ………… 4分;∴△BEF 的周长=33EF FB EB ++=+. ………………5分.21. (1)证明:连接OD.∵OD OA =,∴OAD ODA ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ODA CAD ∠=∠, ……………… 1分; ∴AE ∥OD , ∵DE AE ⊥, ∴ED DO ⊥,∵点D 在⊙O 上,∴ED 是⊙O 的切线; ……………… 2分;(2)解法一:连接CB ,过点O 作OG AC ⊥于点G .…………… 3分; ∵ AB 是⊙O 的直径, ∴90ACB ∠=o , ∵OG AC ⊥, ∴OG ∥CB , ∴AG ACAO AB=, ∵5AC =3AB ,第21题图OE D CBAG 第21题图OF ED CBAG 第20题图ABCDEF∴35AG AO =, ……………… 4分; 设35AG x AO x ==,, ∵DE AE ⊥,ED DO ⊥, ∴四边形EGOD 是矩形, ∴EG OD =,AE ∥OD ,∴5DO x =,5GE x =,8AE x =, ∴△AEF ∽△DFO ,∴EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. (5)分.解法二:连接CB ,过点A 作AH DO ⊥交DO 的延长线于点H . ………… 3分; ∵DE AE ⊥,ED DO ⊥, ∴四边形AHDE 是矩形, ∴EA DH =,AE ∥HD ,AH ∥ED ,∴CAB AOH ∠=∠, ∵ AB 是⊙O 的直径, ∴90ACB ∠=o , ∴ACB AHO ∠=∠, ∴△AHO ∽△BCA , ∴OH ACAO AB=, ∵5AC =3AB ,∴35OH AO =, ……………… 4分;设35OH x AO x ==,, ∴5DO x =,8AE DH x ==, ∵AE ∥HD ,∴△AEF ∽△DFO ,HABC D EFO第21题图∴EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. ……………… 5分.解法三:连接CB ,分别延长AB 、ED 交于点G . ………… 3分; ∵DE AE ⊥,ED DO ⊥, ∴AE ∥OD ,90ODG ∠=o ,∴CAB DOG ∠=∠, ∵ AB 是⊙O 的直径, ∴90ACB ∠=o, ∴ACB ODG ∠=∠, ∴△GDO ∽△BCA , ∴OD ACOG AB=, ∵5AC =3AB ,∴35OD OG =, ……………… 4分; 设35OD x OG x ==,,∴5AO x =,8AG AO OG x =+=, ∵AE ∥OD ,∴△AEG ∽△ODG ,△AEF ∽△DFO ,∴ AG AE OG OD = , EF AEFO OD =, ∴85EF FO = ,∴135EO FO =. ……………… 5分.22.(1)②①②①②①(直角三角形)①②(等腰梯形)(矩形)第21题图F ABD ECGO画图正确; 每图各1分,共3分;(2)面积关系是 S 1=S 2=S 3 ; ……………… 4分; 周长关系是 l 1>l 2>3l . ……………… 5分. 五、解答题: 23.解:(1)令0y =,则()22140x k x k -++=解方程得:2x k =或2x =, ……………… 1分;由题意得:()20A k ,,()20B ,, ∴ 31222-k <<-, ∴3144k -<<-. ……………… 2分;(2)令0x =,则4y k =,∴()04M k ,, ∵OM OB =,∴ 42k -=, ……………… 3分; ∴ 12k =-, ∴22y x x =--. (4)分;或∵OM OB =,()20B ,, ∴()0M ,-2,把点M 的坐标分别代入()2214y x k x k =-++中,∴42k =-, ……………… 3分; ∴ 12k =-, ∴22y x x =--. (4)分;(3)2,517+,517-. (每个答案各1分) ……………… 7分.24.解:(1)过点A 作AG BC ⊥于点G . ∵∠ADB=60°,2AD =, ∴1DG =,3AG =,∴ 3GB =,∴ tan 33AG ABG BG ∠==, ∴30ABG ∠=o ,23AB =, ……………… 1分; ∵ △ABC 是等边三角形,∴ 90DBC ∠=o ,23BC =, ……………… 2分; 由勾股定理得:()222242327CD DB BC =+=+=. …… 3分;(2)作60EAD ∠=o ,且使AE AD =,连接ED 、EB . ………… 4分; ∴△AED 是等边三角形, ∴AE AD =,60EAD ∠=o ,∵ △ABC 是等边三角形, ∴AB AC =,60BAC ∠=o ,∴EAD DAB BAC DAB ∠+∠=∠+∠,即EAB DAC ∠=∠,∴△EAB ≌△DAC . ……………… 5分; ∴EB =DC .当点E 、D 、B 在同一直线上时,EB 最大,∴246EB =+=, .................. 6分; ∴ CD 的最大值为6,此时120ADB ∠=o . (7)分.另解:作60DBF ∠=o ,且使BF BD =,连接DF 、AF . 参照上面解法给分. 25.解:(1)由题意得:()10A -,,()30B ,,()03-D ,,()10M ,. ∴2AM BM CM ===, ∴223OC CM OM =-=,∴()0C ,3G第24题图D CBA 第24题图ED CBA FABCD 第24题图G第25题图y xMO DC B A∵GC 是⊙M 的切线, ∴90GCM ∠=o∴cos OM MCOMC MC MG∠==, ……………… 1分; ∴122MG=, ∴4MG =,∴()30G -,, ∴直线GC 的表达式为333y x =+. ……………… 2分; (2)设过点D 的直线表达式为3y kx =-,∴2323,y kx y x x =-⎧⎨=--⎩,∴()220x k x -+=,或1202x x k ==+,0)]2([2=+-=∆k ,或12x x =, (3)分;∴2k =-,∴ 过点D 的“蛋圆”的切线的表达式为23y x =--. (4)分;(3)假设点E 在x 轴上方的“蛋圆”上,设()E m n ,,则点F 的坐标为()m n -,. EF 与x 轴交于点H ,连接EM . ∴222HM EH EM +=,∴()2214m n -+=,……① ………… 5分; ∵点F 在二次函数223y x x =--的图象上, ∴223m m n --=-,……②解由①②组成的方程组得:131m n ⎧=+⎪⎨=⎪⎩;131m n ⎧=-⎪⎨=⎪⎩.(0n =舍去)……………… 6分;H F EA B CDO M x y 第25题图由对称性可得:131m n ⎧=+⎪⎨=-⎪⎩;131m n ⎧=-⎪⎨=-⎪⎩. ……………… 7分;∴()1131E +,,()2131E -,,()3131E +,-,()4131E -,-. (8)分.。

2014通州区初三数学期末试题

2014通州区初三数学期末试题

通州区初三数学期末学业水平质量检测2015年 1 月 1. 抛物线 y=-x2+2x+1 的极点坐标是( ) . A.(1,0) B.(-1,0) c.(-2,0 )D.(2,-1) 2.如图,点 A 、 B 、 C 都在⊙O上,且点 C 在弦 AB所对的优弧上,若∠A OB=72°,则∠ACB的度数是( ).° B.30 ° C.36 ° D.72 ° 3.有8 个型号同样的足球,此中一等品 5 个,二等品 2 个和三等品1个,从中随机抽取 1 个足球,恰好是一等品的概率是()A. B.C. D. 4. 如图,直线 l1 ∥ l2 ∥l3 ,另两条直线分别交l1 , l2 , l3 于点 A , B , C 及点 D , E , F ,且 AB=3, DE=4, EF=2,则以下等式正确的选项是(). A.BC: DE =1 : 2 B. .BC:DE=2:3 C. . BC: DE= 8 D. . BC:DE=6xk|b|1 5. 以下函数中,当 x > 0 时, y 值随x 值增大而减小的是 () A.y=x2 B.y=x-1 C. D. 6. 如图:为了测楼房 BC的高,在距离楼房 10米的 A 处,测得楼顶B的仰角为,那么楼房 BC的高为()A.10tana(米) B. (米)C.10sina(米)D.(米) 7.如图,点 A 、B、 C、 D、 E、 F、 G、 H、 K都是7×8方格纸中的格点,为使△DEM∽△ ABC,则点 M应是 F、 G、 H、 K四点中的()A.F B. GC. HD. K8 .将抛物线 C: y=x2+3x-10 ,将抛物线 C 平移到 C′ .若两条抛物线 C , C′关于直线 x=1 对称,则以下平移方法中正确的选项是() A.将抛物线C向右平移个单位 B .将抛物线 C 向右平移 3 个单位 C.将抛物线 C 向右平移 5 个单位D .将抛物线 C 向右平移 6 个单位 9 .假如=,那么 10. 计算:在 Rt 三角形 ABC中,角C=90度,角 A=30度,那么 si nA+cosB 11. 一个不透明的口袋中,装有红球 6 个,白球 9 个,黑球鞋3 个,这些球除去颜色不一样外没有任何差别,现从中任意摸出一个球,要使摸到黑球的概率为,需要往这个袋再放入同种黑球个?12.如图,已知D、E分别是△ABC的 AB、 AC边上的点, DE∥BC,且S△ADE? US△四边形 DBCE= 1 ? U8,那么AE? UAC等于()13.已知反比率函数象点( -1 , 3 ),那么个反比率函数的表达式14 .如,在等腰直角三角形ABC中,∠C=90°, AC= 6 , D 是 AC上一点,且, AD的 1 5 .如, AB是⊙ O 的直径,弦CD⊥AB,∠CDB=30°, CD =2 ,暗影部分形的面.16.如:在平面直角坐系中,A(-2, 0 ), B(0 , 1 ),有一抛物 Ln, 它的点 Cn(Xn, Yn)在直 AB上,而且点( Xn+1,0 ) , 当 n=1 , 2 , 3 , 4 , 5⋯, Xn=2,3,5,8,13⋯,依据上述律,写出抛物L1的表达式,抛物L6的点坐,抛物 L6与 X 的交点坐17.二次函数y=-+bx+c的图象过A(2,0),B (0,-6)两点,求这个二次函数表达式18.如图,四边形ABCD、 DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1);(2)19.如图,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O的半(1)求圆心O∠ACM 的度数 20.题,建筑设计师意图.按规定,标志,以便告知下图,求出汽车果精确到0.1m ,径为4cm,MN=4到弦MN的距离;(2)求某大型超市为缓解停车难问提供了楼顶停车场的设计示停车场坡道口上坡要张贴限高车辆能否安全驶入.请根据通过坡道口的限高DF的长(结sin28o ≈, c os28o ≈,tan28o≈0.53).21.如图:在Rt三角形ABC中,角C=90度,BC=9,CA=12 ,角ABC的平分线BD 交AC 于点D,DE垂直DB于点E,点O在AB上,圆O 是三角形BDE的外接圆,交BC于点F,连接EF,求 EF: AC的值22.如图,在平面直角坐标系 xOy 中,已知点B的坐标为(2,0),点C的坐标为(0,8), sin ∠CAB= ,E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE.(1)求AC和OA的长;(2)设AE 的长为m,△CEF的面积为S,求S与m之间的函数关系式;(3)在(2)的条件下试说明S能否存在最大值?若存在,央求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通州区2013—2014学年第一学期期末考试试卷 初三数学一、选择题(本题共8道小题,每小题4分,共32分)1.如图:在Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于( )A .35B .45C .34D .34 2.如图:在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE =∠C ,( ) 且AD ∶AC =2∶3,那么DE ∶BC 等于A .3∶1B .1∶3C .3∶4D .2∶33.如图,点A 、B 、P 是⊙O 上的三点,若∠APB =45°,则∠AOB 的度数为 ( )A .100°B .90°C .85°D .45°4.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是 ( ) A .21B .31C .51D .101 5.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为 ( ) A .8、-1 B .8、1 C .6、-1 D .6、16.反比例函数xky =的图象如图所示,以下结论:①常数0k >;②当0>x 时,函数值0y >;③y 随x 的增大而减小;④若点),(y x P 在此函数图象上,则点),('y x P --也在此函数图象上.其中正确的是( ) A .①②③④B .①②③C .①②④D .②③④7.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,E 为BC 中点,则sin ∠AEB 的值是A .55 B .43 C .53 D .54( ) 8.如图,在⊙O 中,直径AB =4,CD =AB ⊥CD 于点E ,点M 为线段EA 上一个动点,连接CM 、DM ,并延长DM 与弦AC 交于点P ,设线段CM 的长为x ,△PMC 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C DAACBD二、填空题(共6个小题,每题4分,共24分): 9.已知y x 23=,那么=+yx x. 10.请写出一个图象为开口向下,并且与y 轴交于点)1,0(-的二次函数表达式 . 11.如图,AB 是半圆O 的直径,AB =3,弦AC =323,点P 为半圆O 上一点(不与点A 、C )重合. 则∠APC 的度数为 .12.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,BC =8,则MN = . 13.如图,∠AOB =90º,将Rt △OAB 绕点O 按逆时针方向旋转至Rt △O A′B′,使点B 恰好落在边A′B′上.已知tan A =12,OB =5,则BB′= .14.如图,已知在扇形OAB 中,∠AOB =90°,半径OA =10,正方形FCDE 的四个顶点分别在 AB 和半径OA 、OB 上,则CD 的长为 .三、解答题:(共9个小题,15-20每题5分,21、22每题7分,23题8分,共52分) 15.计算:()()1260sin 245tan 45cos 30sin 02+︒-︒-︒+︒-16.已知二次函数24(0)y ax x c a =++≠的图象对称轴为2x =,且过点B (-1,0).求此二次函数的表达式.17.如图,在四边形ABCD 中,∠C =60º,∠B =∠D =90º,AD =2AB ,CD =3,求BC 的长.18.一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行复原,因此把残片抽象成了一个弓形,如图所示,经过测量得到弓形高CD =15米,∠CAD =30°,请你帮助文物学家完成下面两项工作:1)作出此文物轮廓圆心O 的位置(尺规作图,保留作图痕迹,不写作法); 2)求出弓形所在圆的半径.A12题图13题图14题图A19.甲、乙两名同学玩抽纸牌比大小的游戏,规则是:“甲将同一副牌中正面分别标有数字1,3,6的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;乙将同一副牌中正面分别标有数字2,3,4的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;若甲同学抽得的数字比乙同学抽得的数字大,甲获胜,反之乙获胜,若数字相同,视为平局.” 1)请用画树状图或列表的方法计算出平局的概率; 2)说明这个规则对甲、乙双方是否公平.20.如图,谢明住在一栋住宅楼AC 上,他在家里的窗口点B 处,看楼下一条公路的两侧点F 和点E 处(公路的宽为EF ),测得俯角α、β分别为30°和60°,点F 、E 、C 在同一直线上.1)请你在图中画出俯角α和β.2)若谢明家窗口到地面的距离BC =6米,求公路宽EF 是多少米?(结果精确到0.1米;可能用到的数据73.13≈)21.已知:如图,一次函数x y 2-=的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为()m ,1.1)求反比例函数ky x=的表达式; 2)点()1,n C 在反比例函数ky x=的图象上,求△AOC 的面积;3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.22.已知:如图,在⊙O 中,直径AB ⊥CD 于点E ,连接BC .(1)线段BC 、BE 、AB 应满足的数量关系是 ;(2)若点P 是优弧 CAD上一点(不与点C 、A 、D 重合),连接BP 与CD 交于点G . 请完成下面四个任务:①根据已知画出完整图形,并标出相应字母;②在正确完成①的基础上,猜想线段BC 、BG 、BP 应满足的数量关系是 ;③证明你在②中的猜想是正确的;④点P ′恰恰是你选择的点P 关于直径AB 的对称点,那么按照要求画出图形后在②中的猜想仍然正确吗? ;(填正确或者不正确,不需证明)23.如图,在平面直角坐标系xOy 中,以点(1,1)M -为半径作圆,与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,二次函数2(0)y ax bx c a =++≠的图象经 过点A 、B 、C ,顶点为E . (1)求此二次函数的表达式;(2)设∠DBC =α,∠CBE =β,求sin (α-β)的值;(3)坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似.若存在,请直接写出点P 的坐标;若不存在,请说明理由.通州区2013—2014学年第一学期期末考试答案二、填空题:(共6个小题,每小题4分,共24分)9.52; 10.122-+-=x x y (答案不唯一,满足1,0-=<c a 即可);11.60º或120º; 12.6; 13.52;14.102.三、解答题:(共9个小题,15-17每题5分,18-22每题6分,23题7分,共52分)15.解:原式=322321212+⨯-+⎪⎭⎫⎝⎛-………………………3分 =32314+-+ ………………………4分 =35+ ………………………5分16.解: 此二次函数图象的对称轴为2=x∴224=-a解得:1-=a ………………………2分∴此二次函数的表达式为c x x y ++-=42点B (-1,0)在此函数图象上,∴ 041=+--c解得:5=c ………………………4分∴此二次函数的表达式为542++-=x x y ………………………5分17.解:延长DA 、CB 交于点E ………………………1分 在Rt △CDE 中,tan C =23=CD DE , 21c o s ==EC CD C ∴33=DE ,6=EC ………………………2分 AD=2AB∴设k AB =,则k AD 2=∠C =60º,∠B =∠D =90º ∴∠E =30º 在Rt △ABE 中,21sin ==AE AB E ,33tan ==EB AB E E∴k AB AE 22==,k AB EB 33== ∴334==k DE解得:433=k ………………………4分 ∴49=EB ∴415496=-=BC ………………………5分18.解:(1)答:点O 即为所求作的点.(2)解:连接AO在Rt △ACD 中,∠CAD =30º∴52=AC ,∠ACD =60ºAO =CO∴ AO =CO =AC =52答:此弓形所在圆的半径为52. ………………………5分19. ………………………3分由列表可知,可能出现的结果有9个,平局的结果有1个, 所以P (平局)=91.………………………4分 两方获胜的概率相等,游戏规则对双方是公平的 .………………………5分(说明:树形图法同理给分.)A20.1)………………………2分2)解: 在点B 处,看点F 和点E 处测得俯角α、β分别为︒30和︒60∴∠BFC =30º,∠BEC =60º∴∠EBF =30º∴BE =EF ………………………4分在Rt △BEC 中,BEBCBEC =∠sin∴34=BE∴9.673.1434≈⨯≈=EF (米)答:公路宽EF 为6.9米. ………………………5分21.解:(1)BA BE BC ⋅=2………………………1分(2)①………………………2分② BP BG BC ⋅=2………………………3分 ③ 证明: 在⊙O 中,直径CD AB ⊥∴弧BD =弧BC ∴∠BCD =∠P ∠CBG =∠PBC∴△CBG ∽△PBC ∴BCBGBP BC =∴BP BG BC ⋅=2………………………6分④ 正确 ………………………7分22.解:(1) 一次函数x y 2-=的图象过点B ()m ,1∴2-=m ∴点B 坐标为()2,1-反比例函数ky x=的图象点B ∴2-=k ∴反比例函数表达式为xy 2-=F(2)设过点A 、C 的直线表达式为)0(11≠+=k b x k y , 且其图象与y 轴交于点D点()1,n C 在反比例函数xy 2-=的图象上 ∴2-=n ∴点C 坐标为()1,2-点B 坐标为()2,1- ∴点A 坐标为()2,1-∴⎩⎨⎧=+-=+-21211b k b k解得:3,11==b k∴过点A 、C 的直线表达式为3+=x y ………………………3分 ∴点D 坐标为)3,0( ,32321=⨯⨯=∆COD S 231321=⨯⨯=∆AOD S∴23=-=∆∆∆AOD COD AOCS S S ………………………4分(3)点P 的坐标可能为()0,0、()1,0、()0,1-………………………7分 23. 解:(1) )1,1(-M 为圆心,半径为5∴1,3,3,1====OD OC OB OA∴)1,0(),3,0(),0,3(),0,1(D C B A -………………………1分 设二次函数的表达式为)0)()((21≠--=a x x x x a y 解得:3,1,121=-==x x a∴ 二次函数表达式为)3)(1(-+=x x y整理成一般式为322--=x x y ………………………2分 (2)过点E 作EF ⊥y 轴于点F)3,0(),0,3(C B∴可得23=BC点E 为二次函数322--=x x y 的顶点∴点E 的坐标为()4,1- ∴2=CEEF CF BO CO ==,∴∠OCB =∠ECF =45º ∴∠BCE =90º在Rt △BCE 中与Rt △BOD 中,31tan ==∠OB OD OBD ,31tan ==∠CB CE CBE∴∠CBE =∠OBD =β,………………………4分 ∴ sin (α-β)=sin (∠DBC -∠OBD )=sin ∠OBC =22=BC CO ……………5分(3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0)过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P 过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0) 故在坐标轴上存在三个点P 1(0,0),)31,0(2P ,P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似………………………8分。

相关文档
最新文档