初一数学下第8章《二元一次方程组》试题 2

合集下载

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。

精选初中数学七年级下册第8章《二元一次方程组》测试卷及答案

精选初中数学七年级下册第8章《二元一次方程组》测试卷及答案

精选初中数学七年级下册第8章《二元一次方程组》测试卷及答案人教版七年级下册第八章二元一次方程组检测题一、填空题(每题3分,共24分)1、解一次方程组的基本思想是,基本方法是和。

2、二元一次方程52=+x y 在正整数范围内的解是。

3、5+=x y 中,若3-=x 则=y _______。

4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

5、如果方程组-=-=+1242a by x b y ax 的解是?-==11y x ,则=a ,=b 。

6、7、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 {___________________.8、已知:10=+b a ,20=-b a ,则2b a -的值是。

二、选择题:(每题3分,共21分)9、下列方程组中,属于二元一次方程组的是 [ ]A 、??==+725xy y x B 、??=-=+043112y x y x C 、??=+=343453y x y x D 、?=+=-12382y x y x 10、若3243y x b a +与b a yx -634是同类项,则=+b a[ ]A 、-3B 、0C 、3D 、611A 、是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对12、在方程4x-3y=12中,若x=0,那么对应的y值应为:[]A 、4B 、-4C 、3D 、-313、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组[]正确的个数为:A.1个B.2个C.3个D.4个14、下列说法正确的[] A.二元一次方程2x+3y=17的正整数解有2组人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有()①xy+2x -y=7;②4x+1=x -y ;③1x+y=5;④x=y ;⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组x +y =★,2x +y =16的解为?x =6,y =■,那么被“★”“■”遮住的两个数分别是( )A .10,4B .4,10C .3,10D .10,33.已知二元一次方程30x y +=的一个解是x ay b =??=?,其中0a ≠,那么()A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为() A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有() A .2种B .3种C .4种D .5 种6.已知方程组5354x y ax y +=??+=?和2551x y x by -=??+=?有相同的解,则a ,b 的值为()A.12a b =??=?B.46a b =-??=-? C.62a b =-??=? D.142a b =??=?7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.x -y =320x +10y =36B.?x +y =320x +10y =36C.y -x =320x +10y =36D.?x +y =310x +20y =36 8.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,?则下面所列的方程组中符合题意的有()A .246246216246...22222222x y x y x y x yBCD y x x y y x y x +=+=+=+==-=+=+=+9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题1.将方程3y ﹣x =2变形成用含y 的代数式表示x ,则x =.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是.三、解答题 1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1. B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度人教版七年级下第八章二元一次方程组单元测试题(含答案)一、选择题(每题4分,共32分)1. 下列方程中,是二元一次方程的是() A . x xy 212=+ B . 222=-y x C . 31=+yx D . y y x =+23 2. 以?-==11y x 为解的二元一次方程组是()A .??=-=+10y x y x B .-=-=+10y x y x C .=-=+20y x y x D .-=-=+2y x y x3.程1523=+y x 在自然数范围内的解共有()A .1对B .2对D .无数对 4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是() A .??-==12n m B .-=-=12n m C .==12n m D .=-=1 2n m5.关于x 、y 的二元一次方程?=-=+k y x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值是()A .43-B .43C .34D .34-6.若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为()A .3B .—3C .—4D .47.若??==21y x 与==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是()A .-==43y xB .==34y xC .-=-=43y xD .?8.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是()A .=?+?=-10000%5.0%5.222y x y xB .=+=-10000%5.0%5.222yx y x C .=?-?=+22%5.0%5.210000y x y x D .=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = . 10.已知方程组=+=-②①.123,432y x y x 用加减法消去x 的方法是,用加减法消去y 的方法是.11.以方程组?=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第象限.12.已知??==12y x 是二元一次方程组=-=+18my nx ny mx 的解,则n m -2的算术平方根是.13. 若方程组?=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = .14.已知方程组??=+=-241121254y x y x ,则2)(y x +的值为 .15. “今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有人,狗价为元.16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为元,乙余下的钱数为元.三、解答题(共56分)17.(每题5分,共10分)解下列方程组:(1)?=+=+64302y x y x ;(2)=+=-3241123b a b a .18.(8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值.19.(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.20.(9分)已知方程组??-=--=+4652by ax y x 与方程组-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值.21.(10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车axcmcm28ycmcm224第19题图。

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。

最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)

最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)

人教版七年级数学下册第八章二元一次方程组单元检测试题(有答案)一、选择题1 .以下各方程组中,属于二元一次方程组的是()A .B .C .D .2 A C .将方程.y=. x =2 x2 x2y-3+-y3= 3 写成用含x 的式子表示B . y = 3 -D . x = 3-2yy 的形式,正确的选项是 2 x()3 .若方程组的解为,则被“☆ ”、“K”遮住的两个数分别是() A.10,3B.3,10C.4,10D.10,44 .已知x , y 知足方程组则x+y的值为()A .9B .7C .5D .35 .已知甲、乙两数的和是7 ,甲数是乙数的 2 倍,设甲数为x ,乙数为y ,依据题意,列方程组正确的选项是()A. B. C. D.6 .按以下图的运算程序,能使输出结果为 5 的 x , y 的值是()A .x = 5 ,y =-5B .x =- 1 ,y =1C .x = 2 ,y =1D .x =3,y=27.若x 2 y3z=10 ,4x3y2z=15 ,则x y z 的值为()A . 5B . 4C. 3 D . 28.若方程组4x 3 y1ax(a 的解 x 与 y 相等,则 a 的值等于()1)y 3A . 4B .10C.11D. 129. 两个水池共储水40 吨,假如甲池注进水 4 吨,乙池注进水8 吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池本来各储水的吨数是()A .甲池 21 吨,乙池19 吨B .甲池 22 吨,乙池18 吨C. 甲池 23吨,乙池17 吨 D .甲池 24 吨,乙池 16 吨10.某校七年级 (2) 班 40名同学为四川地震灾区捐钱,共捐了100 元,捐钱状况以下表:捐钱(元)1234人数67表格中捐钱 2 元和 3 元的人数不当心被墨水污染已经看不清楚,若设捐钱 2 元的有 x 名同学,捐钱 3 元的有 y 名同学,依据题意,可列方程组()A.x y27x y27x y27D.x y27 2x3y66B.3yC.2 y66 2 y1002x1003x3x二、填空题1.方程组的解是.2.已知对于x , y 的二元一次方程 2 x+■ y= 7中, y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是.3.某旅行社组织甲、乙两个旅行团分别到庐山、婺源旅行,已知这两个旅行团共有55 人,甲旅行团的人数比乙旅行团的人数的 2 倍少5 人,问甲、乙两个旅行团各有多少人?设甲、乙两个旅行团分别有x 人、 y 人,依据题意可列方程组为.4.已知+ ( x + 2 y - 5) 2 = 0 ,则 x + y =.5. “六一”小孩节,某动物园的成人门票每张8 元,小孩门票半价 (即每张 4 元 ),全天共售出门票3000 张,共收入 15600 元,则这天售出了成人票 ________张,小孩票 ___ _ 张.三、计算题1.解方程组:(1)(2)2.已知与都是方程kx - b = y 的解,求k 和 b 的值.3.已知方程组小马因为看错了方程①中的m ,获得方程组的解为小虎因为看错了方程②中的n ,获得方程组的解为请你依据上述条件求原方程组的解.4.请你依据王老师所给的内容,达成以下各小题.(1)若 x =-5, 2◎4 =- 18,求y 的值;(2)若 1◎1=8,4◎2=20,求x , y 的值.5.“六一”小孩节有一投球入盆的游戏,深受同学们的喜欢,游戏规则以下:如图,在一大盆里放一小茶盅 ( 叫好运区 ) 和小茶盅外大盆内 ( 环形区 ) 分别得不一样的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分状况以以下图.(1)每投中“好运区”和“环形区”一次,分别得多少分?(2)依据这类得分规则,小红可否获得一张奖券?请说明原因.6.数学方法:解方程组若设x + y = A , x - y = B ,则原方程组可变形为解方程组得因此解方程组得我们把某个式子当作一个整体,用一个字母去取代它,这类解方程组的方法叫作换元法.(1)请用这类方法解方程组(2)已知对于x , y 的二元一次方程组的解为那么对于m , n 的二元一次方程组的解为;(3)已知对于x , y 的二元一次方程组的解为则对于x , y 的方程组的解为.答案与分析一、选择题。

(完整word版)初一数学下第8章《二元一次方程组》试题及答案

(完整word版)初一数学下第8章《二元一次方程组》试题及答案

《二元一次方程组》 §8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= 用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=____时,方程为一元一次方程;当k=____时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 C、二元一次方程组的解必是它所含的二元一次方程的解B、二元一次方程组有无数个解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解§8.2消元——二元一次方程组的解法一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组 (1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)

最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一、选择题(共10小题,每小题3分,共30分)1.下列不是二元一次方程组的是()A.B.3x=4y=1 C.D.2.下列各组数值是二元一次方程x-3y=4的解的是()A.B.C.D.3.利用代入消元法解方程组下列做法正确的是()A.由①,得x=B.由①,得y=C.由②,得y=D.由②,得y=4.由方程组的解满足x+y=5,则m值为()A.12 B.-12 C. 2 D.-25.已知则用含x的式子表示y,应是()A.x=-y+4 B.y=4x C.y=-x+4 D.y=x-46.在等式y=kx+b中,当x=2时,y=-4;当x=-2时,y=8,则这个等式是() A.y=3x+2 B.y=-3x+2 C.y=3x-2 D.y=-3x-27.春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则赵芸同学和妈妈去该景区游玩时,门票需要花费()A.120元B.130元C.140元D.150元8.解方程组以下解法不正确的是()A.由①,②消去z,再由①,③消去z B.由①,③消去z,再由②,③消去zC.由①,③消去y,再由①,②消去y D.由①,②消去z,再由①,③消去y9.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.10.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元二、填空题(共8小题,每小题3分,共24分)11.某工厂现在年产值是150万元,如果每增加1 000元的投资,一年可增加2 500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y的满足的方程为__________.12.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是________.13.二元一次方程3x+2y=10的非负整数解是______________.14.方程组的解为________________.15.方程3x-y=4中,有一组解x与y互为相反数,则3x+y=________.16.已知方程组则x-y=______,x+y=______.17.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.18.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作桌面50个,或制作桌腿300条,现有5立方米木料,请你设计一下,用________立方米木料做桌面,恰好使桌面与桌腿配套,二者均没有剩余.三、解答题(共7小题,共66分)19.(8分)(1)解二元一次方程组:(2)若关于x、y的方程组与(1)中的方程组有相同的解,求a+b的值.20. (8分)若方程组的解x、y的和为-5,求k的值,并解此方程组.21. (8分)是否存在m值,使方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.22. (8分)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?23. (10分)王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44 000元.其中种茄子每亩用了1 700元,种西红柿每亩用了1 800元.问种茄子和西红柿两种大棚蔬菜各多少亩?24. (12分)绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?25. (12分)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人),准备在同一家服装厂购买演出服装,下面是该服装厂给出的服装的价格:如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合购买服装共可以节约多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学因故不能演出,请你为两所学校设计一种最省钱的购买服装方案答案解析1.【答案】C【解析】A.符合二元一次方程组的定义,属于二元一次方程组,故本选项错误; B .符合二元一次方程组的定义,属于二元一次方程组,故本选项错误; C.x1是分式,不属于二元一次方程组,故本选项正确; D .符合二元一次方程组的定义,属于二元一次方程组,故本选项错误;故选C. 2.【答案】A【解析】A.将x =1,y =-1代入方程左边,得x -3y =1+3=4,右边为4,本选项正确; B .将x =2,y =1代入方程左边,得x -3y =2-3=-1,右边为4,本选项错误; C .将x =-1,y =-2代入方程左边,得x -3y =-1+6=5,右边为4,本选项错误; D .将x =4,y =-1代入方程左边,得x -3y =4+3=7,右边为4,本选项错误. 故选A. 3.【答案】B【解析】由①,得2x =6-3y ,x =;3y =6-2x, y =;由②,得5x =2+3y ,x =,3y =5x -2,y =.故选B.4.【答案】C 【解析】由①,得x =4-2m ,由②,得y =m +3,代入x +y =5,得4-2m +m +3=5, 解得m =2,故选C. 5.【答案】C 【解析】①+②,得x +y =4,则y =-x +4,故选C. 6.【答案】B【解析】分别把当x =2时,y =-4,当x =-2时,y =8代入等式y =kx +b ,得①-②,得4k =-12,解得k =-3,把k =-3代入①,得-4=-3×2+b ,解得b =2, 分别把k =-3,b =2的值代入等式y =kx +b ,得y =-3x +2,故选B.7.【答案】A【解析】设成人票是x元/张,学生票是y元/张,依题意,得解得则x+y=120.即赵芸同学和妈妈去该景区游玩时,门票需要花费120元.故选A.8.【答案】D【解析】解方程组以下解法不正确的是由①,②消去z,再由①,③消去y.故选D.9.【答案】C【解析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意,得故选C.10.【答案】B【解析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:①甲、乙两种服装的原单价共为880元;②打折后两种服装的单价共为684元,由此列出方程组求解.设甲、乙两种服装的原单价分别是x元、y元.根据题意,得解得答:甲、乙两种服装的原单价分别是480元、400元.故选B.11.【答案】y=×0.25+150【解析】本题的等量关系:总产值等于增加的产值+现在年产值.设新增加的投资额为x万元,总产值为y万元,由题意,得y=×0.25+150.12.【答案】-2或-3【解析】若方程组是关于x,y的二元一次方程组,则c+3=0,a-2=1,b+3=1,解得c=-3,a=3,b=-2.所以代数式a +b +c 的值是-2.或c +3=0,a -2=0,b +3=1, 解得c =-3,a =2,b =-2.所以代数式a +b +c 的值是-3. 故答案为-2或-3. 13.【答案】【解析】当x =0时,2y =10,解得y =5; 当x =1时,2y =7,解得y =3.5(不合题意舍去); 当x =2时,2y =4,解得y =2; 当x =3时,y =21(不合题意舍去); 当x ≥4时,y <0(不合题意). 故答案为或14.【答案】【解析】将①代入②,得2y +10-y =5,解得y =-5,将y =-5代入①,得x =0,则方程组的解为故选答案为15.【答案】2【解析】依题意,得x =-y .∴3x -y =3x +x =4x =4,∴x =1, 则y =-1.∴3x +y =2.故答案为2. 16.【答案】-1 5 【解析】①-②,得x -y =-1,①+②,得3x +3y =15, 所以x +y =5. 故答案为-1;5. 17.【答案】20【解析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x +y 的值即为总路程. 根据题意,得54634=+++x y y x ,即522=+yx ,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案填20. 18.【答案】3【解析】根据题意可得等量关系:①x立方米木料做桌面+y立方米木料做桌腿=5立方米;②桌面的总数×4=桌腿的总数,根据等量关系列出方程组即可.设用x立方米木料做桌面,y立方米木料做桌腿,根据题意,得解得答:用3立方米木料做桌面,恰好使桌面与桌腿配套,二者均没有剩余.故答案为3.19.【答案】解(1)①-②,得5y=-5,即y=-1,把y=-1代入①,得x=6,则方程组的解为(2)把代入方程组,得解得则a+b=2.【解析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程组求出a与b的值,即可求出a+b的值.20.【答案】解②×2-①,得7x+6y=6③,又由题意,得x+y=-5④,联立③④,得方程组解得代入①,得k=13.【解析】解关于x、y的方程组,x,y即可用k表示出来,再根据x、y的和为-5,即可得到关于k的方程,从而求得k的值.21.【答案】解∵方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程,∴|m|-2=0,m+2≠0,m+1≠0,解得m=2,故当m=2时,方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程.【解析】利用二元一次方程的定义得出其系数的关系进而求出即可.22.【答案】解设茶壶的单价为x元,茶杯的单价为y元,由题意,得解得答:茶壶的单价为70元,茶杯的单价为15元.【解析】设茶壶的单价为x元,茶杯的单价为y元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解.23.【答案】解设种茄子的大棚有x亩,种西红柿的大棚蔬菜有y亩,由题意,得解得答:种茄子的大棚有10亩,种西红柿的大棚蔬菜有15亩.【解析】设种茄子的大棚有x亩,种西红柿的大棚蔬菜有y亩,根据25亩蔬菜用去了44 000元,列方程组求解.24.【答案】解(1)由题意可设拆旧舍x平方米,建新舍y平方米,则解得答:原计划拆建各4 500平方米.(2)计划资金y1=4 500×80+4 500×800=3 960 000元,实用资金y2=1.1×4 500×80+0.9×4 500×800=4 950×80+4 050×800=396 000+3 240 000=3 636 000,∴节余资金:3 960 000-3 636 000=324 000,∴可建绿化面积==1 620平方米,答:可绿化面积1 620平方米.【解析】(1)等量关系为:计划在年内拆除旧校舍面积+计划建造新校舍面积=9 000平方米,计划建造新校舍面积×90%+计划拆除旧校舍面积×(1+10%)=9 000平方米.依等量关系列方程,再求解.(2)先算出计划的资金总量和实际所用的资金总量,然后算出节余的钱,那么可求可绿化的面积.25.【答案】解(1)由题意,得5 000-40×92=5 000-3 680=1 320(元),答:甲、乙两校联合购买服装共可以节约1 320元;(2)设甲、乙两所学校各有x、y人准备参加演出,则根据题意,得解得答:甲校有52人,乙校有40人;(3)由题意,得两校联合购买82套需要的费用为50×82=4 100,两校联合购买91套需要的费用为40×91=3 640,∵3 640<4 100.∴购买91套比买82套更省钱.【解析】(1)根据服装厂的销售价格和求出联合购买需要的费用,由单独购买一共人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。

最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)

最新人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一、选择题(共10 小题,每题 3 分,共30 分)1.以下不是二元一次方程组的是()A .B . 3x = 4y = 1C .D.2.以下各组数值是二元一次方程x- 3y= 4 的解的是 ()A .B .C .D.3.利用代入消元法解方程组以下做法正确的选项是()A .由①,得 x=B.由①,得 y=C.由②,得 y=D.由②,得 y=4.由方程组的解知足 x+ y= 5,则 m 值为 ()A. 12B.-12 C . 2 D.-25.已知则用含 x 的式子表示 y,应是 ()A . x=- y + 4B . y = 4xC . y =- x + 4 D. y= x-46.在等式 y= kx+ b 中,当 x= 2时, y=- 4;当 x=- 2时, y=8,则这个等式是 ()A . y= 3x + 2B . y=- 3x+ 2C. y= 3x- 2 D. y=- 3x- 27.春节前夜,某旅行景区的成人票和学生票均对折,李凯同学一家(2 个成人和 1个学生 )去了该景区,门票共花销200 元,王玲同学一家 (3 个成人和 2 个学生 )去了该景区,门票共花费 320 元,则赵芸同学和妈妈去该景区游乐时,门票需要花销()A. 120元B. 130元C. 140 元D. 150 元8.解方程组以下解法不正确的选项是()A .由①,②消去 z,再由①,③消去 z B.由①,③消去 z,再由②,③消去 zC.由①,③消去 y,再由①,②消去 y D.由① ,②消去 z,再由①,③消去 y9.甲库房乙库房共存粮450 吨,现从甲库房运出存粮的60%,从乙库房运出存粮的40%. 结果乙库房所余的粮食比甲库房所余的粮食多30 吨.若设甲库房本来存粮x 吨,乙库房本来存粮 y 吨,则有 ()A .B .C. D .10.为办理甲、乙两种积压服饰,商场决定打折销售,已知甲、乙两种服饰的原单价共为880元,现将甲服饰打八折,乙服饰打七五折,结果两种服饰的单价共为684 元,则甲、乙两种服饰的原单价分别是()A .400元, 480元B. 480元, 400元C. 560 元,320 元D.320元, 560元二、填空题 (共 8 小题,每题 3 分 ,共 24 分 )11.某工厂此刻年产值是150 万元,假如每增添 1 000 元的投资,一年可增添2 500 元的产值,设新增添的投资额为x 万元,总产值为 y 万元,那么 x, y 的知足的方程为__________ .12.若方程组是对于 x, y 的二元一次方程组,则代数式a+ b+ c 的值是________.13.二元一次方程3x+ 2y= 10 的非负整数解是 ______________.14.方程组的解为 ________________ .15.方程 3x- y= 4 中,有一组解 x 与 y 互为相反数,则 3x+ y= ________.16.已知方程组则 x- y= ______, x+ y=______.17.某人步行 5 小时,先沿平展道路走,而后上山,再沿来的路线返回,若在平展道路上每小时走 4 千米,上山每小时走 3 千米,下山每小时走 6 千米,那么这 5 小时共走了行程____________千米.18.一张方桌由一个桌面和四条桌腿构成,假如 1 立方米木材可制作桌面50 个,或制作桌腿300 条,现有 5 立方米木材,请你设计一下,用________立方米木材做桌面,恰巧使桌面与桌腿配套,两者均没有节余.三、解答题 (共 7 小题,共66 分 )19.( 8 分) (1)解二元一次方程组:(2) 若对于 x、 y 的方程组与(1)中的方程组有同样的解,求a+ b 的值.20. ( 8 分)若方程组的解x、y的和为-5,求k的值,并解此方程组.21.( 8 分)能否存在 m 值,使方程 (|m|- 2)x2+ (m+ 2)x+ (m+ 1)y= m+ 5 是对于 x, y 的二元一次方程?若存在,求出 m 的值;若不存在,请说明原因.22. ( 8 分)电子商务的迅速发展逐渐改变了人们的生活方式,网购已悄悄进入千家万户.李阿姨在淘宝网上花220 元买了 1 个茶壶和10 个茶杯,已知茶壶的单价比茶杯的单价的 4 倍还多 10 元.请问茶壶和茶杯的单价分别是多少元?23.( 10 分)王大伯承包了 25 亩土地,今年春天改种茄子和西红柿两种大棚蔬菜,用去了44 000 元.此中种茄子每亩用了 1 700 元,种西红柿每亩用了 1 800 元.问种茄子和西红柿两种大棚蔬菜各多少亩?24. (12 分)绵阳中学为了进一步改良办学条件,决定计划拆掉一部分旧校舍,建筑新校舍.拆除旧校舍每平方米需80 元,建筑新校舍每平方米需要800 元,计划在年内拆掉旧校舍与建造新校舍共9 000平方米,在实行中为扩大绿化面积,新建校舍只达成了计划的90%而拆掉旧校舍则超出了计划的10%,结果恰巧达成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化 1 平方米需要 200 元,那么把在实质的拆、建工程中节余的资本所有用来绿化,可绿化多少平方米?25. ( 12 分)为庆贺“六一”小孩节,某市中小学一致组织文艺汇演,甲、乙两所学校共92人( 此中甲校人数多于乙校人数,且甲校人数不足90 人) ,准备在同一家服饰厂购置演出服装,下边是该服饰厂给出的服饰的价钱:假如两所学校分别独自购置服饰,一共对付5000 元.(1)假如甲、乙两校结合购置服饰共能够节俭多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)假如甲校有 10 名同学因故不可以演出,请你为两所学校设计一种最省钱的购置服饰方案答案分析1.【答案】 C【分析】 A. 切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;B.切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;C. 1是分式,不属于二元一次方程组,故本选项正确;xD.切合二元一次方程组的定义,属于二元一次方程组,故本选项错误;应选 C.2.【答案】A【分析】 A. 将 x= 1, y=- 1 代入方程左侧,得x- 3y=1+ 3= 4,右侧为 4,本选项正确;B.将 x= 2, y= 1 代入方程左侧,得x- 3y= 2- 3=- 1,右侧为4,本选项错误;C.将x=- 1, y=- 2 代入方程左侧,得x- 3y=- 1+ 6=5,右侧为4,本选项错误;D.将x= 4, y=- 1 代入方程左侧,得x- 3y=4+ 3= 7,右侧为4,本选项错误.应选 A.3.【答案】 B【分析】由①,得 2x= 6- 3y, x=;3y=6-2x,由② ,得 5x= 2+ 3y,x=,3y=5x-2,y=y=.应选 B.;4.【答案】C【分析】由① ,得 x= 4- 2m,由②,得 y= m+ 3,代入 x+ y= 5,得 4- 2m+m+ 3= 5,解得 m=2,应选 C.5.【答案】 C【分析】①+②,得 x+ y= 4,则 y=- x+ 4,应选 C.6.【答案】 B【分析】分别把当x= 2 时,y=- 4,当 x=- 2 时,y= 8 代入等式 y= kx+ b,得①-②,得 4k=- 12,解得 k=- 3,把 k=- 3 代入①,得- 4=- 3×2+ b,解得 b=2,分别把 k=- 3, b= 2 的值代入等式y= kx+ b,得 y=- 3x+ 2,应选 B.7.【答案】 A【分析】设成人票是x 元 /张,学生票是y 元/ 张,依题意,得解得则x+y=120.即赵芸同学和妈妈去该景区游乐时,门票需要花销120 元.应选 A.8.【答案】 D【分析】解方程组以下解法不正确的选项是由① ,② 消去z,再由① ,③ 消去 y.应选 D.9.【答案】 C【分析】要求甲,乙库房本来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲库房运出存粮的60%,从乙库房运出存粮的40%.结果乙库房所余的粮食比甲库房所余的粮食多30 吨,甲库房、乙库房共存粮450 吨.设甲库房本来存粮x 吨,乙库房本来存粮y 吨.依据题意,得应选 C.10.【答案】 B【分析】设甲、乙两种服饰的原单价分别是x 元、 y 元,知足等量关系:① 甲、乙两种服饰的原单价共为 880元;② 打折后两种服饰的单价共为684 元,由此列出方程组求解.设甲、乙两种服饰的原单价分别是x 元、 y 元.依据题意,得解得答:甲、乙两种服饰的原单价分别是480元、 400元.应选 B.11.【答案】 y=×0.25+ 150【分析】此题的等量关系:总产值等于增添的产值+此刻年产值.设新增添的投资额为x 万元,总产值为y 万元,由题意,得y=×0.25+150.12.【答案】- 2 或- 3【分析】若方程组是对于 x, y 的二元一次方程组,则 c+ 3=0, a- 2=1, b+ 3=1,解得 c=- 3, a= 3, b=- 2.因此代数式a+ b+ c 的值是- 2.或 c+ 3= 0, a- 2= 0, b+ 3= 1,解得 c=- 3, a= 2, b=- 2.因此代数式a+ b+ c 的值是- 3.故答案为- 2 或- 3.13.【答案】【分析】当x= 0 时, 2y= 10,解得 y= 5;当 x= 1 时, 2y= 7,解得 y= 3.5(不合题意舍去 );当 x= 2 时, 2y= 4,解得 y= 2;当 x= 3 时, y=1(不合题意舍去 );2当 x≥4时, y< 0(不合题意 ).故答案为或14.【答案】【分析】将①代入②,得2y+ 10- y= 5,解得y=- 5,将 y=- 5 代入①,得x= 0,则方程组的解为应选答案为15.【答案】 2【分析】依题意,得x=- y.∴3x- y= 3x+ x= 4x= 4,∴ x= 1,则 y=- 1.∴ 3x+ y= 2.故答案为 2.16.【答案】- 1 5【分析】①-②,得 x- y=- 1,①+②,得 3x+3y= 15,因此 x+ y= 5.故答案为- 1; 5.17.【答案】 20【分析】设平路有x 千米,上坡路有 y 千米,依据平路用时+上坡用时+下坡用时+平路用时= 5,即可得解.注意求得x+ y 的值即为总行程.依据题意,得xy y x 5 ,即xy 5 ,则x+y=10(千米),436422这 5 小时共走的行程= 2×10=20(千米 ).故答案填 20. 18.【答案】 3【分析】依据题意可得等量关系:① x立方米木材做桌面+y 立方米木材做桌腿= 5 立方米;②桌面的总数×4=桌腿的总数,依据等量关系列出方程组即可.设用 x 立方米木材做桌面,y 立方米木材做桌腿,依据题意,得解得答:用 3 立方米木材做桌面,恰巧使桌面与桌腿配套,两者均没有节余.故答案为 3.19.【答案】解(1)①-②,得 5y=- 5,即 y=- 1,把 y=- 1 代入①,得 x= 6,则方程组的解为(2) 把代入方程组,得解得则a+b=2.【分析】 (1)方程组利用加减消元法求出解即可;(2) 把 x 与 y 的值代入方程组求出 a 与 b 的值,即可求出a+ b 的值.20.【答案】解②×2-①,得 7x+6y= 6③,又由题意,得x+ y=- 5④,联立③④ ,得方程组解得代入①,得k= 13.【分析】解对于x、 y 的方程组,x, y 即可用k 表示出来,再依据x、 y 的和为-5,即可得到对于k 的方程,从而求得k 的值.21.【答案】解∵ 方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是对于x,y的二元一次方程,∴|| 202≠01≠02m -=, m+, m+,解得 m=,故当 m=2时,方程(||2)2(m+2)(m+1)y=m+5是对于 x, y 的二元一次方程.m -x +x+【分析】利用二元一次方程的定义得出其系数的关系从而求出即可.22.【答案】解设茶壶的单价为x 元,茶杯的单价为y 元,由题意,得解得答:茶壶的单价为70 元,茶杯的单价为15 元.【分析】设茶壶的单价为x 元,茶杯的单价为y 元,依据题意可得, 1 个茶壶和10 个茶杯共花去 220 元,茶壶的单价比茶杯的单价的 4 倍还多 10 元,据此列方程组求解.23.【答案】解设种茄子的大棚有x 亩,种西红柿的大棚蔬菜有y 亩,由题意,得解得答:种茄子的大棚有 10 亩,种西红柿的大棚蔬菜有15亩.【分析】设种茄子的大棚有 x 亩,种西红柿的大棚蔬菜有y 亩,依据 25 亩蔬菜用去了 44 000元,列方程组求解.24.【答案】解(1)由题意可设拆旧舍x 平方米,建新舍y 平方米,则解得答:原计划拆建各 4 500 平方米.(2)计划资本1=4 500 ×80+ 4 500 ×800= 3 960 000元,y适用资本y2= 1.1 ×4 500 ×80+ 0.9 ×4500×800= 4 950 ×80+4 050 ×800= 396 000 +3 240 000=3 636 000,∴节余资本: 3 960 000- 3 636 000= 324 000,∴可建绿化面积== 1 620 平方米,答:可绿化面积 1 620 平方米.【分析】(1) 等量关系为:计划在年内拆掉旧校舍面积+计划建筑新校舍面积=9 000 平方米,计划建筑新校舍面积×90%+计划拆掉旧校舍面积×(1+10%)=9000 平方米.依等量关系列方程,再求解.(2)先算出计划的资本总量和实质所用的资本总量,而后算出节余的钱,那么可求可绿化的面积.25.【答案】解(1)由题意,得 5 000- 40×92=5 000- 3 680= 1 320(元 ) ,答:甲、乙两校结合购置服饰共能够节俭 1 320元;(2)设甲、乙两所学校各有 x、 y 人准备参加演出,则依据题意,得解得答:甲校有52 人,乙校有40 人;(3)由题意,得两校结合购置82 套需要的花费为50×82= 4 100,两校结合购置91 套需要的花费为40×91= 3 640,∵3 640<4 100.∴购置 91 套比买 82 套更省钱.【分析】 (1)依据服饰厂的销售价钱和求出结合购置需要的花费,由独自购置一共人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.以下方程中,是二元一次方程的是()A . 3x- 2y= 4zB . 6xy+ 9= 0C.1+ 4y = 6D.4x =y-2 x42.以下方程组中,是二元一次方程组的是()x+ y= 42a- 3b= 11A. B.2x+ 3y= 75b- 4c= 6x2= 9x+ y= 8C. D.y=2x x2- y= 43. 方程组的解为()A.B.C.D.4. 夏天到临,某商场试销 A、B 两种型号的电扇,两周内共销售30 台,销售收入5300 元, A 型电扇每台 200 元, B 型电扇每台150 元,问 A、B 两种型号的电扇分别销售了多少台?若设 A 型电扇销售了x 台, B 型电扇销售了y 台,则依据题意列出方程组为()A.B.C.D.5. 小岩打算购置气球装束学校“毕业典礼”活动会场,气球的种类有笑容和爱心两种,两种气球的价钱不一样,但同一种气球的价钱同样.因为会场部署需要,购置时以一束(4个气球)为单位,已知第一、二束气球的价钱以下图,则第三束气球的价钱为()A. 19B. 18C. 16D. 156. 某文具店一本练习本和一支水笔的单价共计为支水笔,共花了 36 元.假如设练习本每本为3 元,小妮在该店买了20 本练习本和x 元,水笔每支为y 元,那么依据题意,以下10方程组中,正确的选项是()A.B.C.D.7.《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其粗心是:今有人合伙买羊,若每人出 5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为 y 线,依据题意,可列方程组为()A.B.C.D.8. 某次知识比赛共有 20 道题,规定:每答对一道题得 +5分,每答错一道题得﹣ 2 分,不答的题得 0 分,已知圆圆此次比赛得了60 分,设圆圆答对了x 道题,答错了 y 道题,则()A. x﹣ y=20 B. x+y=20C. 5x﹣ 2y=60D. 5x+2y=609. 阅读理解: a,b,c,d 是实数,我们把符号称为 2×2 阶队列式,而且规定:=a × d ﹣ b × c ,比如:=3 ×(﹣ 2 )﹣ 2 ×(﹣ 1 ) =﹣ 6+2=﹣ 4 .二元一次方程组的解能够利用2× 2 阶队列式表示为:;此中D=,D x=,D y =.问题:对于用上边的方法解二元一次方程组时,下边说法错误的选项是()A. D==﹣ 7B. D x =﹣ 14C. D y=27D.方程组的解为10. 若二元一次联立方程式的解为 x=a, y=b,则 a+b 之值为什么?()A.24 B. 0C.﹣ 4 D.﹣ 811. 为奖赏消防操练活动中表现优秀的同学,某校决定用1200 元购置篮球和排球,此中篮球每个 120 元,排球每个 90元,在购置资本恰巧用尽的状况下,购置方案有()A.4 种B.3种C.2 种D.1 种12.某酒店一共 70 个房间,大房间每间住 8 个人,小房间每间住 6 个人,一共 480 个学生刚好住满,设大房间有 x 个,小房间有 y 个.以下方程正确的选项是()A. B .C.D.二.填空题1.若对于 x、 y 的二元一次方程 3x﹣ ay=1 有一个解是,则 a=.2.六一小孩节,某少儿园用100 元钱给小朋友买了甲、乙两种不一样的玩具共30 个,单价分别为 2 元和 4 元,则该少儿园购置了甲、乙两种玩具分别为、个.3.对于实数 a, b,定义运算“◆”: a◆b=,比如 4◆3,因为 4> 3.所以 4◆3==5.若 x, y 知足方程组,则 x◆y=.4.已知 x,y 知足方程组,则 x2﹣ 4y2的值为.5.我国古代数学著作《九章算术》中有一道论述“盈不足术”的问题,译文为:“现有几个人共同购置一个物件,每人出8 元,则多 3 元;每人出7 元,则差 4 元.问这个物件的价钱是多少元?”该物件的价钱是元.6.我国明朝数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.假如 1 托为 5 尺,那么索长为尺,竿子长为尺.7. 若二元一次方程组的解为,则a﹣b=.8. 已知是对于x,y的二元一次方程组的一组解,则a+b=.9.小强同学诞辰的月数减去日数为2,月数的两倍和日数相加为 31,则小强同学诞辰的月数和日数的和为.三.解答题1. 解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不单最早提到了分数问题,也第一记录了“盈不足”等问题.若有一道论述“盈不足”的问题,原文以下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,假如每人出 9 文钱,就会多 11 文钱;假如每人出 6 文钱,又会缺 16 文钱.问买鸡的人数、鸡的价钱各是多少?请解答上述问题.4.某水果店 5 月份购进甲、乙两种水果共花销 1700 元,此中甲种水果 8 元 / 千克,乙种水果18 元 / 千克.6 月份,这两种水果的进价上浮为:(1)若该店 6 月份购进这两种水果的数目与甲种水果 10 元千克,乙种水果 20 元 / 千克. 5 月份都同样,将多支付货款 300 元,求该店5 月份购进甲、乙两种水果分别是多少千克?(2)若 6 月份将这两种水果进货总量减少到120 千克,且甲种水果不超出乙种水果的 3 倍,则 6 月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节到临之际,某商铺订购了A 型和 B 型两种粽子, A 型粽子 28 元/ 千克, B 型粽子24 元 / 千克,若 B 型粽子的数目比 A 型粽子的 2 倍少 20 千克,购进两种粽子共用了2560 元,求两种型号粽子各多少千克.6.为提升市民的环保意识,倡议“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A, B 两种不一样款型,此中A型车单价400 元, B 型车单价320 元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100 辆,总价值36800元.试问本次试点投放的 A 型车与 B 型车各多少辆?( 2)试点投放活动获得了广大市民的认同,该市决定将此项公益活动在整个城区全面铺开.依据试点投放中A, B 两车型的数目比进行投放,且投资总价值不低于184 万元.请问城区10 万人口均匀每100 人起码享有 A 型车与 B 型车各多少辆?7.为拓宽学生视线,指引学生主动适应社会,促使书籍知识和生活经验的深度交融,我市某中学决定组织部分班级去赤壁展开研学旅行活动,在参加此次活动的师生中,若每位老师带17 个学生,还剩 12 个学生没人带;若每位老师带18 个学生,就有一位老师少带 4 个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总花费不超出3100 元,为了安全,每辆客车上起码要有2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上起码要有 2 名老师,可知租用客车总数为8辆;(3)你能得出哪几种不一样的租车方案?此中哪一种租车方案最省钱?请说明原因.参照答案:一、选择题。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案)

人教版七年级数学下册第八章 二元一次方程组 单元测试卷一、选择题(共10小题,每题3分,共30分)2方程组327413x y x y +=⎧⎨-=⎩的解是( ).A .13x y =-⎧⎨=⎩B .3-1x y =⎧⎨=⎩ C .31x y =-⎧⎨=-⎩ D .1-3x y =-⎧⎨=⎩3.如果2x -7y =8,那么用含y 的代数式表示x 正确的是( ) A .827x y -=B .287x y +=C .872y x +=D .872yx -= 4.已知32x y =⎧⎨=-⎩是二元一次方程35x my -=的一组解,则m 的值为( )A .-2B .2C .-0.5D .0.5 5.方程28x y +=的正整数解的个数是( )A .4B .3C .2D .1 6.若方程326ax y x -=+是关于x ,y 的二元一次方程,则a 必须满足( ) A. a ≠2 B. a ≠-2 C. a =2 D. a =0 7.若3270x y --=,则696y x --的值为( )A .15B .-27C .-15D .无法确定 8.已知21x y =⎧⎨=⎩是方程组51ax by bx ay +=⎧⎨+=⎩的解,则a b -的值是( )A. -1B. 2C. 3D. 49.如果方程24,27,90x y x y y kx +=--=-+=有公共解,则k 的解是( ) A .-3 B .3 C .6 D .-610. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,可列方程组正确的是( ) A .5510442x y x y y =+⎧⎨=+⎩ B .5510424x y x y y -=⎧⎨-=⎩ C .5+105442x y x y =⎧⎨-=⎩ D .5510424x y x y-=⎧⎨-=⎩二、填空题(每题3分,共18分)11.已知方程5340x y +-=,用含x 的代数式表示y 的形式,则y =__________________。

(真题汇编)人教版七年级下册数学第八章 二元一次方程组含答案

(真题汇编)人教版七年级下册数学第八章 二元一次方程组含答案

人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、下列是二元一次方程组的是()A. B. C. D.2、关于的方程组的解是,则等于()A.9B.3C.4D.13、三元一次方程组的解的个数为()A.无数多个B.1C.2D.04、二元一次方程组的解x,y的值相等,则k的值为()A. B.1 C.2 D.5、若是方程的一个解,则m的值为()A.1B.C.D.6、已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.47、如果方程组的解x、y的值相同,则m的值是()A.1B.﹣1C.2D.﹣28、若5x2y a和4x a+b﹣4y2b﹣2是同类项,则的值为()A.﹣B.C.﹣D.9、方程组的解是()A. B. C. D.10、把方程改写成用含x的式子表示y的形式,正确的是()A. B. C. D.11、三元一次方程组的解为()A. B. C. D.12、如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.913、已知实数x,y,z满足,则代数式4x﹣4z+1的值是()A.-3B.3C.-7D.714、下列方程组中是二元一次方程组的是()A. B. C. D.15、若A(m-1,2n+3)与B(n-1,2m+1)关于y轴对称,则m与n的值分别为()A. ,B. ,C.-1,-1D.-1, 1二、填空题(共10题,共计30分)16、若方程组的解x、y的和为0,则k的值为________.17、若二元一次方程组的解为,则m+n=________18、若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.19、若把面值为1元的纸币换成面值为1角或5角的硬币,则共有________种换法.(提示:二元一次方程非负整数解问题)20、若x、y满足方程组,则代数式2x3+5x2+2018的值为________.21、《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果木条长x尺,绳子长y尺,可列方程组为________.22、已知,是二元一次方程组的解,则m+3n的平方根为________.23、已知方程的两个解是,,则________,________24、整数x,y满足方程2xy+x+y=83,则x+y=________或________。

初一数学下第8章《二元一次方程组》试题及答案.doc

初一数学下第8章《二元一次方程组》试题及答案.doc

初一数学下第8章《二元一次方程组》试题及答案§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( ) A 、2 B 、-2 C 、2或-2 D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(解析版)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(解析版)

人教版七年级下册第八章二元一次方程组检测题一、填空题(每题3分,共24分)1、解一次方程组的基本思想是 ,基本方法是 和 。

2、二元一次方程52=+x y 在正整数范围内的解是 。

3、5+=x y 中,若3-=x 则=y _______。

4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。

6、7、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 {___________________.8、已知:10=+b a ,20=-b a ,则2b a -的值是 。

二、选择题:(每题3分,共21分)9、下列方程组中,属于二元一次方程组的是 [ ]A 、⎩⎨⎧==+725xy y x B 、⎪⎩⎪⎨⎧=-=+043112y x y x C 、⎪⎩⎪⎨⎧=+=343453y x y x D 、⎩⎨⎧=+=-12382y x y x 10、若3243y x b a +与b a yx -634是同类项,则=+b a[ ]A 、-3B 、0C 、3D 、611A 、 是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对12、在方程4x-3y=12中,若x=0,那么对应的y值应为: [ ] A 、4 B 、-4 C 、3 D 、-313、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个14、下列说法正确的 [ ] A.二元一次方程2x+3y=17的正整数解有2组人教版七年级数学下册第8章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间:100分钟; 满分:120分班级: 姓名: 学号: 分数:一、选择题(本题共10个小题,每小题3分,共30分)1.下列各式是二元一次方程的是( )A .21=+b aB .532=-n mC .2x+3=5D .3=xy2.若⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为 ( )A .8B .223 C .-223D .-2193.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是 ( )A .代入法B .加减法C .试值法D .无法确定4.方程组的解为⎩⎨⎧=y x 2,则被遮盖的两个数分别为( ) A .1,2 B .1,3 C .5,1 (D)2,45.下列方程组,解为⎩⎨⎧-=-=21y x 是( )A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y xC .⎩⎨⎧=-=-133y x y xD .⎩⎨⎧=+-=-533y x y x6.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢 笔x 支,铅笔y 支,根据题意,可得方程组( )A .⎩⎨⎧+==+3230x y y xB .⎩⎨⎧-==+3230x y y xC .⎩⎨⎧+==+3230y x y xD . ⎩⎨⎧-==+3230y x y x7.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x ,则x +y 的值是( )A .3B .5C .7D .98.已知n m n m y x -+53与-9x 7-m y 1+n 的和是单项式,则m ,n 的值分别是( )A .m=-1,n=-7B .m=3,n=1⎩⎨⎧=+=+32y x y xC .m=1029,n=56 D .m=45,n=-2 9.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元10.已知二元一次方程3x +y =0的一个解是⎩⎨⎧==by ax ,其中a ≠0,那么( )A. a b >0B. a b =0C. a b<0 D. 以上都不对二、填空题(本题共6个小题,每小题4分,共24分) 11.请你写出一个有一解为的二元一次方程: .12.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________. 13.若x a-b-2-2y a +b =3是二元一次方程,则a=________ , b=________. 14.方程4x +3y =20的所有非负整数解为: .15.某商品成本价为t 元,商品上架前定价为s 元,按定价的8折销售后获利45元。

人教版初一数学下册第8章《二元一次方程组》单元试卷(详细答案版)

人教版初一数学下册第8章《二元一次方程组》单元试卷(详细答案版)

2、下列二元一次方程组中,以x=13x+y=5B、x-y=13x+y=-5C、x-2y=-33x+y=5D、x-y=3 b=1.2.则方程组2(x+2)-3(y-1)=13,y=2.2B、x=8.3y=1.2C、x=10.3y=2.2D、x=10.36、已知3x+y=12,人教版初一数学下册第八章二元一次方程组水平测试题一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是()A、xy=5B、6x=5yC、x+1y=6D、4x+y2=6y=2为解的是()A、x-y=13x+y=43、解方程组8x+52y=1,比较简便的方法是()8x-2y=3.A、代入法B、加减法C、试数法D、无法确定4、若方程组的解是()2a-3b=13,3a+5b=30.9.的解是a=8.3,3(x+2)+5(y-1)=30.9.A、x=6.3y=0.25、若二元一次方程3x-2y=1的解为正整数,则x的值为()A、奇数B、偶数C、奇数或偶数D、0x+3y=8.那么x+y的值是()A、0B、5C、-1D、17、如果3x3m-2n-4y n-m+12=0是二元一次方程,那么m、n的值分别为()A、2、3B、2、1C、-1、2D、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为()A、3个B、4个C、5个D、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果每个同学分5本则多出5本,则五年级共有同学()名。

1y = x ⋅ 25%.B 、 x + y = 180,x = y ⋅ 25%. C 、 x + y = 180,x - y = 25%. D 、 x + y = 180.2、已知满足二元一次方程组 2 x + y = 5, y = -2 是方程组ax + by = 1,(A 、9B 、10C 、11D 、4210、为保护生态环境,某山区将一部分耕地改为林地。

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。

最新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)

最新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)

人教版七年级数学下册第八章二元一次方程组单元测试题含答案一、选择题1 、方程2 x - =0 ,3 x + y =0 , 2 x + xy =1 , 3 x + y -2 x =0 , x 2 - x +1=0 中,二元一次方程的个数是()A. 5 个B. 4 个C. 3 个D. 2 个2 、已知是关于 x 、 y 的二元一次方程, 则m 、n 的解是( ) (A )(B )(C )(D )3 、方程组的解的情况是().A.一个解B.二个解C.无解D.无数个4 、下列各组数值是方程的解的一组是()A.B.C.D.5 、由方程组可得出与的关系是()A.B.C.D.6 、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行千米,那么甲小时追上乙;如果乙先走小时,甲只用小时追上乙,则乙的速度是()A.千米/时B.千米/时C.千米/时D.千米/时7 、已知, 是方程组的解,则的值为().A.B.C.D.8 、如果二元一次方程组的解是二元一次方程的一个解,则()A.B.C.D.9 、已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50 元,若甲商品打六折,乙商品打八折,则可赚30 元,甲、乙两种商品的定价分别为()A. 50 元、150 元B. 50 元、100 元C. 100 元、50 元D. 150 元、50 元10 、在一次野炊活动中,小明所在的班级有x 人,分成y 组,若每组7 人,则余下3 人;若每组8 人,则缺 5 人,求全班人数的正确的方程组是()A. . C. D.二、填空题1 、方程的一个解是那么的值为_____ .2 、已知二元一次方程,用含x 的式子表示y ,则y =_____ ;若y 的值为2 ,则x 的值为_____ .3 、如果,,则_____ .4 、若甲队有人,乙队有人,若从甲队调出人到乙队,则甲队人数是乙队人数的一半,可列方程为_____ .5 、当_____________ 时,下列方程① ,② ,③有公共解.6 、二元一次方程的所有正整数解为_____ .7 、若,那么_____ .8 一个两位数的十位数字与个位数字之和等于5 ,十位数字与个位数字之差为1 ,设十位数字为x ,个位数字为y ,则用方程组表示上述语言为______ .9 方程x (x +3 )=0 的解是______ .10 由方程组,可以得到x + y + z 的值是______ .三、解答题1 、解下列方程组:(1 )(4 分)(2 )(4 分)(3 )(6 分)2 、小明手上有一张元的人民币,当路过商店门口时,他想把这元钱换成元或元的零钱,请他细考虑一下,售货员可有几种兑换方法?(5 分)3 、小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图3 ),求出他们看中的随身听和书包单价各是多少元吗?(5 分)4 、“利海”通讯器材商场,计划用元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部元,乙种型号手机每部元,丙种型号手机每部元.(1 )若商场同时购进其中两种不同型号的手机共部,并将元恰好用完.请你帮助商场计算一下如何购买.(2 )若商场同时购进三种不同型号的手机共部,并将元恰好用完,并且要求乙种型号手机的购买数量不少于部且不多于部,请你求出商场每种型号手机的购买数量.(8 分)答案:5.某旅行社组织一批游客外出旅游,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.已知45 座客车租金为每辆220 元,60 座客车租金为每辆300 元,问:(1 )这批游客的人数是多少?原计划租用多少辆45 座客车?(2 )若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?一、选择题1、D;2 、C ;3 、C ;4 、A ;5 、C ;6 、A ;7 、D ;8 、B ;9 、D;10 、A二、填空题1 、;2 、y= ,6 ;3 、16 ;4 、x -10= (y+10) ;5 、;6 、;7 、-;8.9 0 或-310 3三、解答1 、 1 .( 1 ) (2 ) (3 )2 、 种兑换方法.(提示:此题实际是求二元一次方程的非负整数解.)3 、设他们看中的书包的单价为 x 元,随身听的单价为 y 元 .则根据题意,得 解得答 他们看中的随身听和书包单价各是 360 元和 92 元4.( 1 )两种购买方法:甲种型号手机购买 部,乙种型号手机购买 部,或甲种型号手 机购买 部,丙种型号手机购买 部;( 2 )若乙种型号手机购买 部,则甲种型号手机购买 部,丙种型号手机购买 部,若乙种型号手机购买 部,则甲种型号手机购买 部,丙种型号手机购买 部;若乙种型号手机购买 部,由甲种型号手机购买 部,丙种型号手机购买 部.5. 解:( 1 )设这批游客的人数是 x 人,原计划租用 45 座客车 y 辆. 根据题意,得 , 解这个方程组,得.答:这批游客的人数 240 人,原计划租 45 座客车 5 辆;( 2 )租 45 座客车: 240÷45≈5.3 (辆),所以需租 6 辆,租金为 220×6=1320 (元),租 60 座客车: 240÷60=4 (辆),所以需租 4 辆,租金为 300×4=1200 (元).答:租用 4 辆 60 座客车更合算.人教版七年级下册单元测试卷:第八章 二元一次方程组一、填空。

精选人教版初中数学七年级下册第8章《二元一次方程组》单元测试及答案

精选人教版初中数学七年级下册第8章《二元一次方程组》单元测试及答案

人教版七年级数学下册第 8 章《二元一次方程组》培优试题( 2)一.填空题(共 8 小题,每题 3 分,共 24 分) .已知二元一次方程 2x 3y 5 0 的一组解为xa,则 6b 4a3.1y b2.已知 x 3y 9 ,请用含 x 的代数式表示 y ,则 y.3.若实数 x ,y 知足条件 2x y 3 ,试写出一个 x 和一个 y 使它们知足这个条件, 此时 x; y .4.若x1是二元一次方程组 ax 2 y 0 的解,则 a b.y22bx ay 25.甲、乙两人同时解对于 x 、 y 的方程组axy 3 可是甲看错了 a ,求得解为2 x by 1,x 1 ,乙看错了 b ,求得解为x1,则 a b .y 1y45 x 4y 4z 13,6.若 2x 7 y 3z 19,则 5x y z 1 的立方根是.3x2yz 187.若 7 x a y 3 与 x 2 y a b 是同类项,则 b.8.已知: 22 222, 33 323, 44 4 2 4 ,5 5 52 5 , ,若33881515 242410 b102b切合前方式子的规律,则 a b.aa二.选择题(共10 小题,每题 3 分,共 30 分)9.若 (m 2018) x |m| 2017 ( n 4) y |n| 3 2018 是对于 x , y 的二元一次方程,则 ()A . m 2018 , n 4B . m 2018 , n4 C . m2018 , n4D . m 2018 , n410.以下 4 组数值,哪个是二元一次方程2 x3 y 5的解? ()x0 B .x 1C .x 2D .x 4A .3y5y1y3y 111.以下方程组中不是二元一次方程组的是( )x 2B .x y 1xy 5D .y xA .x y 2 C .x 2 y 1y 3xy 112.以方程组x 2y3的解为坐标的点在 ()3x 2 y 7A .第一象限B .第二象限C .第三象限D .第四象限13.已知2x2y 2a,且 3x 2 y 0 ,则 a 的值为 ()x4 y4a,A .2B .0C . 4D .514.已知实数 x , y , z 知足xy z 7 ,则代数式 3(xz) 1的值是 ()4 x y 2 z 2A . 2B . 4C . 5D . 615.若x2是对于 x 、 y 的方程组axby2的解,则 ( a b)( a b) 的值为 () y 1bxay 7A .15B . 15第 8 章 二元一次方程组人教版数学七年级下册单元测试卷:一、选择题(本大题共8 小题,每题4 分,共 32 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组》§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的 ( )个。

A、1 B、2 C、3 D、42、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( ) A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x y x7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是() A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元——二元一次方程组的解法一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy + 的值。

3、列方程解应用题一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3实际问题与二元一次方程组列方程解下列问题1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?2、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A 处甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A 点距北山站的距离。

3、甲乙两地相距60千米,A 、B 两人骑自行车分别从甲乙两地相向而行,如果A 比B 先出发半 小时,B 每小时比A 多行2千米,那么相遇时他们所行的路程正好相等。

求A 、B 两人骑自行车 的速度。

(只需列出方程即可)4、已知甲、乙两种商品的原价和为200元。

因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少元。

5、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

6、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。

若有一支球队最终的积分为18分,那么这个球队平几场?7、现有A 、B 、C 三箱橘子,其中A 、B 两箱共100个橘子,A 、C 两箱共102个,B 、C 两箱共106个,求每箱各有多少个?第八单元测试一、选择题(每题3分,共24分)1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11x y x x y x2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y xB 、⎩⎨⎧-==;1,3y xC 、⎩⎨⎧-=-=;1,3y xD 、⎩⎨⎧-=-=.3,1y x3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x( )A 、12B 、121- C 、12- D 、.1214、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

A 、23 B 、-13 C 、-5 D 、137、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A 、01043=--x xB 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x二、填空题(每题3分,共24分)1、21173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242y x y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=310y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么aa 12--= 。

三、用适当的方法解下列方程(每题4分,共24分) ⎩⎨⎧=-=+-6430524m n n m ⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x⎩⎨⎧=-=+110117.03.04.0y x y x ⎪⎩⎪⎨⎧=+=+-722013152y x y x1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一共多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,及格生平均成绩为6分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时 后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千 米,求A、B二人的速度。

相关文档
最新文档