四年级奥数.行程 流水行船 (C级 )学生版
四年级 第8讲 流水行船 例题 学生版
北京大学附属小学 在行程问题这个大家族中,除了我们常常研究的相遇与追击外,还有三大类我们必须了解的问题:火车过桥、流水行程和时钟问题.它们虽然也涉及速度、时间、路程这三个基本关系,但在应用中要兼顾考虑一些其它因素,譬如:火车车长、水流速度等等. 顺水速度=船速+水速, 水船顺V V V += 逆水速度=船速-水速. 水船逆V V V -=( 其中船V 为船在静水中的速度,水V 为水流的速度)由上可得:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.(可理解为和差问题)流水行船问题中的相遇与追及:(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速. 这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速. 也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速. 这说明水中追及问题与在静水中追及问题一样.例题精讲:【例1】甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
【例2】船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?【例3】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。
乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?北京大学附属小学距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?【例5】小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?【例6】甲、乙两船的船速分别为每小时22千米和每小时18千米.两船先后从同一港口顺水开出,乙船比甲船早出发2小时,如果水速是每小时4千米,问:甲船开出后几小时能追上乙船?【思考】江上有甲、乙两码头,相距15千米。
【奥赛】小学数学竞赛:流水行船.学生版解题技巧 培优 易错 难
流水行船教学目标1、掌握流水行船的基本概念2、能够准确处理流水行船中相遇和追及的速度关系知识精讲一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.模块一、基本的流水行船问题【例 1】一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?【巩固】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【例 2】一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【例 3】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
四年级数学-奥数-行程问题-流水行船问题
•*例6 甲、乙两个码头相距144千米, 一艘汽艇在静水中每小时行20千米, 水流速度是每小时4千米。求由甲码 头到乙码头顺水而行需要几小时,由 乙码头到甲码头逆水而行需要多少小 时?(适于高年级程度)
•解:顺水而行的时间是: • 144÷(20+4)=6(小时) • 逆水而行的时间是: • 144÷(20-4)=9(小时) • 答略。
船速是指船本身的速度,也就是在静水中单位 时间里所走过的路程 。 水速,是指水在单位时间里流过的路程 顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公 式(l)可以得到:
水速=顺水速度-船速, 船速=顺水速度-水速
由公式(2)可以得到:
水速=船速-逆水速度, 船速=逆水速度+水速。
•例3 一只船,顺水每小时行20千米, 逆水每小时行12千米。这只船在
静水中的速度和水流的速度各是 多少?(适于高年级程度)
•解:因为船在静水中的速度=(顺水速 度+逆水速度)÷2,
•所以,这只船在静水中的速度是:
• (20+12)÷2=16(千米/小时)
因为水流的速度=(顺水速度-逆水速度) ÷2,所以水流的速度是:
• (20-12)÷2=4(千米/小时)
•例4 某船在静水中每小时行18千米, 水流速度是每小时2千米。此船从甲 地逆水航行到乙地需要15小时。求甲、
乙两地的路程是多少千米?此船从乙
地回到甲地需要多少小时?(适于高 年级程度)
•解:此船逆水航行的速度是: • 18-2=16(千米/小时) • 甲乙两地的路程是: • 16×15=240(千米) • 此船顺水航行的速度是: • 18+2=20(千米/小时)
(完整版)四年级奥数流水行船问题
四年级奥数流水问题【知识要点】流水行船问题和行程问题一样,也是研究路程、速度与时间之间的数量关系。
不过在流水行船问题里,速度会受到水流的影响,发生了变化,同时还涉及水流方向的问题。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺手而行的速度叫顺水速度;船从下游逆水而行的速度叫逆水速度。
各种速度之间的关系:(1)顺水速度=船速+水速逆水速度=船速-水速(2)(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?2、甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度和水速各是多少?7、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A港到下游B港。
已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?1、A、B两港相距140千米,一艘客轮在两港间航行,顺流用去7小时,逆流用10小时,则轮船的船速和水速每小时分别是多少千米?140÷7=20140÷10=14(20+14)÷2=17(20-14)÷2=3所以船速为17千米/小时,水速为3千米/小时。
一起学奥数--行程问题中的流水行船(四年级)
例2、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小 时,达到相距144千米的乙港,再从乙港返回甲港需要多少小时?
V水 乙港
V船
V船 甲港
【分析】轮船从甲港逆水航行144千米,8小时到达乙港。可以得到船逆水航行速度,而静水船航行速 度已知,所以,水流速度为:
乙船顺水行全程要用的时间是: 180÷20=9(小时)
知识点小结
流水行船问题的关键是船航行的#43;水速 逆水速度=船速-水速 水速=(顺水速度-逆水速度)÷2
讲解的最后,我们采用了以目标为导向,一步步倒推的分析 思路。这种倒推式的分析方法,可以帮助我们找到解决问题的方 向。需要通过多多练习。
240÷(20+4)+240÷(20-4)=25小时
第二讲 提高篇
例:(五年级)一条船从a港到b港顺流航行需要6小时,由b港到a港逆流航行需要8 小时,一天,小船从早晨6点由a港出发顺流到b港时,发现一救生圈在途中掉落水 中,立即返回,1小时后找到救生圈,求小船按水流速度由a港漂流到b港需要多少 小时?救生圈时何时掉入水中的?
V船
V水
甲港
乙港
【分析】船在水中行驶,与车在马路上开的区别,在于水的流动影响船的速度,而空气的流动对车的速 度是忽略不计的。
船在水中顺水而下,是船静水中的速度与水流速度的和;而逆流而上时,是两者的差值。所以,知道 顺流速度和逆流速度,就可以采用“和差模型”来解得两个速度因素。
根据题目给定条件,可以得到,顺水速度为:252÷9=28千米/小时 逆水速度为:252÷14=18千米/小时
4年级奥数第一讲:流水问题学生版
四年级奥数暑期第一讲:流水问题关系式:(1)顺水速度=船的速度+水的速度(2)逆水速度=船的速度-水的速度(3)(顺水速度+逆水速度)÷2=船速(4)顺水速度-逆水速度)÷2=水速【例1】:一只船静水中每小时行8千米,逆流2小时行了12千米,水速是多少?【例2】:两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用多少小时?【例3】:一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时2千米,求这条轮船在静水中的速度。
【例4】:某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需要15小时,则甲乙两地相距多少千米?【例5】:两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知水流速度是每小时4千米,逆水行完全程要用多少小时?【例6】:一艘客轮每小时行驶23千米,在一条河流中顺水航行196千米,这条河每小时的水速是5千米,那么,客轮需要航行几小时?【例7】:一艘轮船往返于相距198千米的甲乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺水而下需要9小时,这艘轮船往返甲乙两码头共需几小时?【课堂巩固】1、某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲乙两地相距多少千米?2、一艘轮船从甲港开往乙港,顺水而行每小时行25千米,返回甲港时逆水而行用了9小时,已知水流速度为每小时2千米,甲乙两港相距多少千米?3、一艘轮船每小时行15千米,它逆水12小时行了144千米,如果它顺水行驶同样长的航程需要多少小时?4. 甲、乙两港相距96千米,某船从甲开往乙需4时,返航用6时,现另有一船,其静水速度是28千米/时,该船往返两港共要几小时?5. 小船与下游的一个随水漂流木筏相距90米,小船的静水速度是6米/分,水流速度是4米/分,小船追上木筏需要几分钟?6. 甲船顺水航行4小时,行了160千米,返回原地用了5小时。
四年级奥数流水行船问题
四年级奥数流水行船问题甲船逆水行驶的速度是36-水速,乙船顺水行驶的速度是28+水速。
所以,他们相向而行的速度是36-水速+28+水速=64千米/小时。
因此,两船相遇所需的时间为192÷64=3小时。
3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?设轮船的船速为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:231÷(x+y)=11231÷(x-y)=11+(x-y)÷10解方程得到x=21千米/小时,y=3千米/小时。
因此,轮船逆水行驶这段路程需要的时间为231÷(21-3)-231÷(21+3)=21小时。
4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?设甲船的船速为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:360÷(x-y)=18360÷(x+y)=10解方程得到x=24千米/小时,y=6千米/小时。
同样地,可以列出乙船的方程:360÷(x-y)=15360÷(x+y)=t解方程得到t=12小时。
因此,乙船返回原地需要的时间为15+12=27小时。
5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?设水速为x千米/小时。
根据题意,可以列出方程:15-x=72÷615+x=72÷t解方程得到t=8小时。
因此,轮船顺水行驶同样长的航程需要8小时。
6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度和水速各是多少?设船在静水中的速度为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:208÷(x+y)=8208÷(x-y)=13解方程得到x=24千米/小时,y=4千米/小时。
四年级下册数学竞赛试题:行程.流水型船(C级)全国通用
一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:① 水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.知识框架流水行船【例 1】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【巩固】 乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时?【例 2】一条小河流过A ,B , C 三镇.A ,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B ,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A ,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A ,B 两镇间的距离是多少千米?【巩固】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A 点到 B 点,然后穿过湖到C 点,共用 3 小时;若他由 C 到 B 再到 A ,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A 到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B 再到 A ,共需多少小时?【例 3】长江沿岸有A ,B 两码头,已知客船从A 到B 每天航行500千米,从B 到A 每天航行400千米。
四年级下册数学竞赛试题-行程.流水型船C级.学生版-全国通用
一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:① 水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.知识框架流水行船【例 1】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【巩固】 乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时?【例 2】一条小河流过A ,B , C 三镇.A ,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B ,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A ,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A ,B 两镇间的距离是多少千米?【巩固】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A 点到 B 点,然后穿过湖到C 点,共用 3 小时;若他由 C 到 B 再到 A ,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A 到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B 再到 A ,共需多少小时?例题精讲【例 3】长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。
四年级奥数流水行船
流水行船发现不同知识框架一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二、参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲【例1】一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?【巩固】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,甲乙两地相距多远?【例2】一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【例3】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度.【巩固】海盗船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时?【例4】一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,那么他在无风时的速度是,在无风时他跑100米要用秒.【巩固】A B两城相距1200千米,轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?【例5】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求这两个港口之间的距离是多少?【巩固】轮船用同一速度往返于两码头之间,它顺流而下行了8个小时,逆流而上行了10小时,如果水流速度是每小时3千米,两码头之间的距离是多少千米?【例6】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【巩固】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.【例7】甲、乙两码头相距30千米,路飞和索隆分别乘船从甲乙两个码头相向出发,路飞的速度是3千米每小时,索隆的速度是2千米每小时,水速是1千米每小时,他们多久能够相遇?【巩固】柯南和步美乘船从甲乙两个码头同向出发,步美的速度是3千米每小时,柯南的速度是7千米每小时,水速是1千米每小时,甲乙两个码头的距离是60千米,柯南多久能够追上步美?【例8】A、B 两码头间河流长为220 千米,甲、乙两船分别从A、B 码头同时起航.如果相向而行5 小时相遇,如果同向而行55小时甲船追上乙船.求两船在静水中的速度.【巩固】甲、乙两船从相距64千米的A、B两港同时出发相向而行,2小时相遇;若两船同时同向而行,则甲用16小时赶上乙.问:甲、乙两船的速度各是多少?以下有难度,可选讲【例9】甲、乙两艘小游艇,静水中甲艇每小时行22千米,乙艇每小时行14千米.现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距180千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米?【巩固】学学和思思各开一艘游艇,静水中学学每小时行33千米,思思每小时行21千米。
(完整版)四年级行程问题(流水行船)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
2018四年级奥数.行程.流水型船(C级).学生版
流水行船知识框架一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:1水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲【例1】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【巩固】乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时?欢迎关注:奥数轻松学余老师薇芯:69039270【例2】一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米?【巩固】河水是流动的,在B点处流入静止的湖中,一游泳者在河中顺流从A点到B点,然后穿过湖到C点,共用3小时;若他由C到B再到A,共需6小时.如果湖水也是流动的,速度等于河水速度,从B流向C,那么,这名游泳者从A到B再到C只需 2.5小时;问在这样的条件下,他由C到B再到A,共需多少小时?【例3】长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。
四年级流水行船问题的公式和例题 含答案
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
奥数流水行船学生版
奥数流水行船学生版 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-流水行船扶梯问题知识框架一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲【例 1】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时【例 2】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
四年级流水行船问题的公式和例题含答案精修订
四年级流水行船问题的公式和例题含答案GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、参考系速度
通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两
人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,
所以这里我们必须考虑水流速度对船只速度的影响,具体为:
① 水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)
由上述两个式子我们不难得出一个有用的结论:
船速=(顺水速度+逆水速度)÷2;
水速=(顺水速度-逆水速度)÷2
此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及
①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:
甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速
②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.
甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速
也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.
说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.
知识框架
流水行船
【例 1】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静
水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?
【巩固】 乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在
有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时?
【例 2】一条小河流过A ,B , C 三镇.A ,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B ,C
两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A ,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A ,B 两镇间的距离是多少千米
?
【巩固】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A 点到 B 点,然后穿过湖到
C 点,共用 3 小时;若他由 C 到 B 再到 A ,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A 到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B 再到 A ,共需多少小时?
例题精讲
【例 3】长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。
如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?
【巩固】
甲乙两港相距400千米,甲港在乙港的上游,有一艘游轮从甲港出发到达乙港后返回共用10小
时,水速是游轮静水速度的1
3
,那么水速是____千米/小时。
【例 4】某河有相距 36千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水漂下, 5 分钟后,与甲船相距 2千米.预计乙船出发后几小时可以与此物相遇?
【巩固】一条河上有甲、乙两个码头,甲在乙的上游 50 千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10 分钟后此物距客船 5 千米。
客船在行驶 20 千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。