小学四年级奥数:行程问题

合集下载

四年级奥数讲解:行程问题

四年级奥数讲解:行程问题

四年级奥数讲解:行程问题行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这个周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

所以,两人20÷(6+4)=2 小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样持续来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗持续来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

四年级奥数行程问题

四年级奥数行程问题

甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行58千米,乙车每小时行46千米,两车相遇时距离中点18千米,求东、西两地相距多少千米。

变式题:1.两辆车同时从一个工厂出发,相背而行,一辆车每小时行33千米,另一辆车每小时行42千米,经过多少分钟,两车之间相距150千米?2.甲、乙两地相距320千米,一辆客车与一辆货车同时从两地相向而行,4小时相遇,已知客车每小时行42千米,货车每小时行多少千米?3.两艘军舰同时从相距948千米的两个港口相对开出,一艘军舰每小时行38千米,另一艘军舰每小时行41千米,经过几小时两艘军舰可以相遇?甲、乙两城之间的公路长385千米,两辆汽车同时从甲城开往乙城,第一辆汽车每小时行42千米,第二辆汽车每小时行28千米,第一辆汽车到达乙城后,立即返回,两辆汽车从开出到相遇共用几小时?变式题:1.两列火车从两地相对行驶,甲车每小时行80千米,乙车每小时行70千米,甲车开出1小时后,乙车才出发,又经过2小时两车相遇,两地间的铁路长多少千米?2.一辆客车和一辆货车同时从甲、乙两地相对开出,已知客车每小时行40千米,经过4小时后,客车已驶过中点25千米,这时与货车还相距7千米,货车每小时行多少千米?3.A、B两地相距460千米,甲车从A地开出2小时后,乙车才从B地出发,经过4小时与甲车相遇。

已知甲车每小时比乙车多行10千米,甲车平均每小时行多少千米?一列火车以每分钟900米的速度过一座长2400米的大桥,从车头上桥到最后一节车厢离开大桥,共需3分钟,这列火车长多少米?变式题:1.一列火车全长150米,每秒行19米,这列火车要通过一座420米长的大桥,共需要多少秒?多少分钟能相遇?2.甲、乙两列对开的火车相遇,甲车司机看见乙车从旁边开过去,共用了5秒,甲车每秒行15米,乙车每秒行13米,乙车长多少米?3.两列火车,一列长83米,每秒行20米;另一列长92米,每秒行15米。

现在两车在双轨道上相向而行,从车头相遇到车尾离开,需要几秒钟?兔子在狗前面150米,每秒跑7米,狗在后面追兔子,狗每秒跑9米,狗追上兔子要多少秒?变式题:1.两人在相距24千米的甲、乙两地同时向同一方向出发,在前面的人步行,每小时行4千米,在后面的人骑马,每小时行12千米,几小时后骑马的人能追上步行的人?2.甲、乙两人分别从西村和东村同时向东而行,甲骑车每小时行14千米,乙步行每小时行5千米,2小时后甲追上乙,求东、西两村的距离。

四年级奥数:行程问题(一)

四年级奥数:行程问题(一)
【解析】因为提前 9 分钟相遇,说明李大爷出门时,小明已经比平时多走了两人 9 分钟合走的 路,即多走了(60+40)×9=900(米),
所以小明比平时早出门 900÷60=15(分).
3、甲、乙两人环绕周长是 400 米的跑道跑步,如果两人从同一地点出发背向而行,那么经过 2 分钟相遇;如果两人从同一地点出发同向而行,那么经过 20 分钟两人相遇,已知甲的速度比乙快, 求甲、乙两人跑步的速度各是多少? 【解析】 由两人同一地点出发背向而行,经过 2 分钟相遇知两人每分钟共行 400÷2=200(米) 由两人从同一地点出发同向而行,经过 20 分钟相遇知甲每分钟比乙多走 400÷20=20(米) 根据和差问题的解法可知甲的速度是每分钟(200+20)÷2=110(米) 乙的速度为每分钟 110-20=90(米).
解:(1)从家到学校的距离的 2 倍:1400×2=2800(米) (2)从出发到相遇所需的时间:2800÷(200+80)=10(分) (3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了 10 分钟,相遇处离学校有 600 米.
【巩固拓展】 1、甲车每小时行 40 千米,乙车每小时行 60 千米.两车分别从 A,B 两地同时出发,相向而行, 相遇后 3 小时,甲车到达 B 地.求 A,B 两地的距离. 【解析】先画示意图如下:
例1
如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行.他 们在离A点100米的C点第一次相遇.亮亮到达B点后返回A点,明明到达A点后返回B点,两人在 离B点80米的D点第二次相遇.整个过程中,两人各自的速度都保持不变.求A、B间的距离.
【解析】 第一次相遇,两人共走了 1 个全程,其中亮亮走了 100 米; 从开始到第二次相遇,两人共走了 3 个全程,则亮亮走了 100×3=300(米),亮亮共走 的路程是一个全程多 80 米,所以 A、B 间的距离是:300-80=220(米)

奥数四年级--行程问题

奥数四年级--行程问题
陈沛每分钟走60米,刘毅每分钟走70米,两人的速度和是70+60=130米/ 分。距离=400-(70+60)×3 =10米
(2) 相背:
陈沛每分钟走60米,刘毅每分钟走70米,两人的速度和是70+60=130米/ 分。距离=400+(70+60)×3 =790米
(3) 同向:(走得快的在前)
走得快的在前,间距越来越大。两人的速度差是70-60=10米/分。 距离=400+(70-60)×3 =430米
经 典 题 型
例4、桐桐同学站在铁路边,一列900米长的火车,从他身边开过 用了2分钟。该火车用同样的速度通过一座大桥用了5分钟,这座 大桥长多少米?
分析:桐桐站铁路边不动,所以火车从他身边开过的路程就是车长。
速度=900÷2=450米/秒 注意:火车过桥,则是车头到桥头开始--到车尾离开桥的另一端结束。 过程中行驶的距离 = 桥长+火车长度 示意图如下:
需要208秒。求这辆汽车的速度和长度。
车速每秒8米,车长10米
练 10、一列火车长400米,铁路沿线的电线杆 习 间隔都是40米,从这列火车车头遇到第1根
电线杆,到车尾离开第51根电线杆,共用了 2分钟。这列火车每小时行多少千米?
每小时行72千米
∵ 5分钟行驶距离=450×5=2250米=桥长+ 900米 ∴ 桥长= 2250 - 900 = 1350 米
经 典 题 型
例5、公路两边的电线杆间距30米,一位乘客坐在行驶的汽车中, 他看到第一根电线杆到看到第26根电线杆正好是3分钟。这辆汽 车每小时行驶多少千米?
分析:首先搞清楚汽车3分钟行驶的路程, 前面学过种树问题,第1根 到 第26根电线杆间有 25 段 30米 × 25段 =750 米

小学奥数行程问题汇总

小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度X时间(S=v X t)速度=路程+时间(v=s+t)时间=路程+速度(t=s + v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程♦总时间(「平=’・: 一;;•・例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往” 与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90x2=180 (千米),摩托车“往”的速度是每小时30千米,所用时间是:90+30=3 (小时), 摩托车“返”的速度是每小时45千米,所用时间是:90+45=2 (小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90x2+ (90+30+90+45)=180+5=36 (千米/小时)1、?山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20 千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(;」上):2;路程一定2「1「二:(1"1 ।[:),牢记平均速度公式,就不会错。

二、相遇问题公式:相遇路程=速度和x相遇时间:(L+l)xt=S相遇时间=相遇路程♦速度和:S+(L+1)=t相遇路程+相遇时间=速度和:S+t=(L+\)甲的速度=速度和一乙的速度:,:=S+t—1二乙的速度=速度和一甲的速度:k=S+t—L重要概念:甲的时间=乙的时间=相遇时间:'l=2=t甲的路程+乙的路程=相遇路程:’1, 飞=s例题.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时行6千米,乙每小时走4千米,二人几小时后相遇?分析:根据(相遇路程)小(速度和)=相遇时间,要求相遇时间,首先要求相遇路程,再求速度和。

四年级奥数行程问题及答案【三篇】

四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。

【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。

求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。

【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。

【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。

四年级奥数讲解:行程问题

四年级奥数讲解:行程问题

⾏程问题(⼀) 专题简析: 我们把研究路程、速度、时间这三者之间关系的问题称为⾏程问题。

⾏程问题主要包括相遇问题、相背问题和追及问题。

这⼀周我们来学习⼀些常⽤的、基本的⾏程问题。

解答⾏程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲⼄两⼈分别从相距20千⽶的两地同时出发相向⽽⾏,甲每⼩时⾛6千⽶,⼄每⼩时⾛4千⽶。

两⼈⼏⼩时后相遇? 分析与解答:这是⼀道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲⼄两⼈相距20千⽶,以后两⼈的距离每⼩时缩短6+4=10千⽶,这也是两⼈的速度和。

所以,求两⼈⼏⼩时相遇,就是求20千⽶⾥⾯有⼏个10千⽶。

因此,两⼈20÷(6+4)=2 ⼩时后相遇。

练习⼀ 1,甲⼄两艘轮船分别从A、B两港同时出发相向⽽⾏,甲船每⼩时⾏驶18千⽶,⼄船每⼩时⾏驶15千⽶,经过6⼩时两船在途中相遇。

两地间的⽔路长多少千⽶? 2,⼀辆汽车和⼀辆摩托车同时分别从相距900千⽶的甲、⼄两地出发,汽车每⼩时⾏40千⽶,摩托车每⼩时⾏50千⽶。

8⼩时后两车相距多少千⽶? 3,甲⼄两车分别从相距480千⽶的A、B两城同时出发,相向⽽⾏,已知甲车从A城到B城需6⼩时,⼄车从B城到A城需12⼩时。

两车出发后多少⼩时相遇? 例2:王欣和陆亮两⼈同时从相距2000⽶的两地相向⽽⾏,王欣每分钟⾏110⽶,陆亮每分钟⾏90⽶。

如果⼀只狗与王欣同时同向⽽⾏,每分钟⾏500 ⽶,遇到陆亮后,⽴即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为⽌,狗共⾏了多少⽶? 分析与解答:要求狗共⾏了多少⽶,⼀般要知道狗的速度和狗所⾏的时间。

根据题意可知,狗的速度是每分钟⾏500⽶,关键是要求出狗所⾏的时间,根据题意可知:狗与主⼈是同时⾏⾛的,狗不断来回所⾏的时间就是王欣和陆亮同时出发到两⼈相遇的时间,即2000÷(110+90)=10分钟。

(完整版)四年级奥数行程问题

(完整版)四年级奥数行程问题

行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

小学四年级奥数题:行程问题及答案

小学四年级奥数题:行程问题及答案

三一文库()/小学四年级
〔小学四年级奥数题:行程问题及答案〕
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过
来,8:00货车追上了米老鼠,又过了30秒货车超过了它;
另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了
12秒客车离开了它。

如果客车的长度是货车的2倍,客车的
速度是货车的3倍。

请问:客车和货车在什么时间相遇?两
车错车需要多长时间?
解答:行程问题中的三个量路程、速度和时间,如果题目
中只出现了一个的量的具体数值,那么我们可以设出来没出
现具体数值的两个量中的任意一个量。

当然也可以不设出来,
用设份数的方法来做,但这种方法比较抽象,这里我们采用
设数的方法。

设货车的长度为60米,则客车的长度为120米。

从追上米老鼠到超过,货车用30秒,所以货车与米老师的
第1页共2页
速度差是60÷30=2米/秒。

从和米老鼠相遇到离开,客车用12秒,所以客车与米老师
的速度和是120÷12=10米/秒。

所以我们可以知道客车与货车的速度和是10+2=12米/秒。

又知道客车的速度是货车速度的3倍,则可以求出客车的
速度是9米/秒,货车的速度是3米/秒。

然后可以求出米老
鼠的速度是1米/秒。

实际上本题就算不知道客车速度是货车速度的3倍,也是
可以做出来的。

当然,这时候就算不出客车、货车和米老鼠
的具体速度了。

但还是求出来的答案的。

22。

四年级奥数之行程问题

四年级奥数之行程问题

行程问题知识要点:1、相遇问题或背向问题AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=甲的速度+乙的速度×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= 甲的速度-乙的速度×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A 城需6小时,问:两车出发后多长时间相遇例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长;例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等;某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度;同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地;求该车的平均速度; 2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米;两人在离中点3千米的地方相遇;A、B两地相距多远4.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周;在三条边上它每分钟分别爬行15cm,20cm,30cm如下图;它爬行一周平均每分钟爬行多少厘米5.两列火车,一列长101米,每秒行20米;另一列长103米,每秒行17米.两车相向而行,从车头相遇到车尾离开需几秒6.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少7.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲追及问题例7. 一辆汽车和一辆摩托车同时从甲乙两城同时出发,向一个方向前进,汽车在前,每小时40千米;摩托车在后,每小时75千米;经过3小时摩托车追上了汽车;甲乙两地相距多少千米例8. 小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬例9.甲乙两人赛跑,甲的速度是8米/秒,乙的速度是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙例10、甲每小时行60千米,乙每小时行45千米,甲、乙两人同时从A地出发去B地,甲到达B地后立即沿原路返回,在距B地30千米处与乙相遇,A、B两地相距多少千米例11.小兰和小松同时从学校去少年宫,小兰步行每分钟走6米,小松骑自行车,每小时行15千米,小松比小兰早到12分钟,学校到少年宫一共有多少米例12、快车长106米,慢车长74米,两车同向行使,快车追上慢车后,又给过1分钟才超过慢车,如果相向而行的话,车头相接后经过12秒两车才完全离开;就两列车的速度同步练习8.小明以每分钟50米的从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明;问:小强骑自行车的速度;9.小明每天早上要在7:50之前赶到距家1000米的学校上学;小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书;于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他;1爸爸追上小明用了多长时间2追上小明时,距离学校还有多远10.长180米的客车速度是每秒15米,他追上并超过长100米的货车用了28秒,如果两列火车相向而行,从遇到到完全离开需要多少时间同步测试1、一列客车和一列货车同时从北京站反向而行,货车每小时比客车多走了7千米,4小时后两车相距468千米;求两车的速度;2. 一列客车和一列货车,同时从东、西两地相向开出,客车每小时行56千米,客车每小时行48千米,两车在离中点32千米的地方相遇,求东西两地间的距离是多少千米3、小军和小红两人同时从相距2000米的两地同时同向而行,小军每分钟行120米;小红每分钟行80米;如果一只狗与小军同时出发,它每分钟行400米,当它遇到小红后,立即回头向小军跑去,遇到小军后又立即向小红跑去;这样来回不断,直到小军和小红相遇为止,这时狗跑了多少米4. 龟兔赛跑,全程2000米;龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,结果龟到了终点时,兔子离终点还有400米;兔子在途中睡了多少分钟5.甲乙两车相距90千米,两车同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车6.某学校组织学生看电影,第一批的学生骑自行车先走,他们的速度是200/分,10分钟后,其余同学乘汽车前往电影院,汽车的速度是600/分,结果所有的同学同时到达;求学校和电影院的距离;7.小明步行上学,每分行75米,小明离家12分钟后,爸爸发现小明的数学书没有带,就骑自行车去追,每分钟行375米,爸爸出发多少分钟后能追上小明8、已知甲骑自行车追赶前面步行的乙,乙的速度是每分钟60米,甲的速度是每分钟150米,甲出发8分钟追上乙,那么乙比甲早出发多少分钟9.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少10.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行4千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲11、小亮从家到学校,步行需要40分,骑自行车需要 15分;当他骑车走了9分后自行车发生故障,只好步行到学校,那么,他从家到学校共用了多少时间1-10 A D. C. C. B. D. B. C. D. B.11-16左,2.80°. 7;21. 2:3 Q3﹣,0;.17. ﹣2.18. CD==2.19. 概率为.20. AP=;当x=,即AP=时,.21. AE的长是1.4.22. 设正方形DEFG的边长是x,则=,解得:x=;23. tan∠CMA===3; n=.。

小学奥数四年级行程问题

小学奥数四年级行程问题

小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。

行程问题,四年级奥数

行程问题,四年级奥数

行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。

行程问题主要包括相遇问题、相背问题的追及问题。

例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。

两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。

哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。

)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。

问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。

小学四年级奥数行程问题

小学四年级奥数行程问题

小学四年级奥数行程问题1、甲、乙两辆车同时从两地出发,相向而行。

甲车每小时行45千米,乙车每小时行55千米。

甲、乙两车多长时间后相遇?2、两个城市之间的距离为450千米,一辆汽车以每小时65千米的速度从第一个城市驶向第二个城市。

请问这辆汽车需要多少小时到达第二个城市?3、两个人同时从两个不同的地方出发,走向彼此。

一个人每分钟走50米,另一个人每分钟走40米。

请问,他们需要多少时间才能相遇?4、一辆摩托车和一辆自行车同时从同一地点出发,沿着同一条路前往目的地。

摩托车的速度是每小时60千米,自行车的速度是每小时10千米。

请问,摩托车多长时间后能够追上自行车?5、一辆火车以每小时80千米的速度前行,一个乘客从火车上跳下去,同时一个新乘客以每小时5千米的速度上车。

请问,这两个乘客何时能够相遇?答案:1、相遇时间 = (甲速度 +乙速度)×时间设甲、乙两车x小时后相遇,根据题意可得方程:(45 + 55)x = 100x。

解得x=1,所以甲、乙两车1小时后相遇。

2、时间 =距离 /速度设这辆汽车需要x小时到达第二个城市,根据题意可得方程:450/65=x。

解得x=7.71,所以这辆汽车需要7.71小时到达第二个城市。

3、时间 =距离 / (一个人速度 +另一个人速度)设他们需要x分钟才能相遇,根据题意可得方程:50+40=90x。

解得x=1,所以他们需要1分钟才能相遇。

4、时间 =距离 / (摩托车速度 -自行车速度)设摩托车x小时后能够追上自行车,根据题意可得方程:60−10=(60−10)x。

解得x=5,所以摩托车5小时后能够追上自行车。

5、时间 =距离 / (火车速度 +新乘客速度 -老乘客速度)设这两个乘客x小时后相遇,根据题意可得方程:80+5−5=(80+5−5)x。

解得x=1,所以这两个乘客1小时后相遇。

小学四年级奥数在现今的教育体系中,奥数已成为了一种广受欢迎的数学教育方式。

特别是在小学四年级阶段,奥数的学习对于培养学生的数学思维和解决问题的能力具有重要的作用。

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题行程问题(一)专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析:这是一道相遇问题。

两人每小时共走6+4=10千米(这是他们的速度和)。

求两人几小时相遇,就是求20千米里面有几个1 0千米。

因此,两人20÷(6+4)=2小时后相遇。

试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间。

相遇时间=2000÷(110+90)=10分钟狗共行:500×10=5000米。

试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析:这是一道相背问题。

解答相背问题同相遇问题一样。

甲乙两人共行54-18=36千米,每小时共行7+5=12千米。

要求几小时能行完36千米,就是求36千米里面有几个12千米。

所以,36÷12=3小时。

试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

四年级奥数第十七讲行程问题

四年级奥数第十七讲行程问题

第十七讲行程问题【芝麻开门】为北上抗日,红军战士进行了二万五千里长征,经过漫长跋涉,终于到达了陕北抗日前线,展开了对日军的抗击,取得了抗战的伟大胜利。

抗日战争胜利后,有关专家对红军二万五千里长征进行了回顾,在当时艰苦的条件下,没有吃,没有穿,英勇的红军战士仍然每天坚持行军50里。

同学们,如果按一年365天计算,你知道红军战士走了多长时间才到达陕北的吗?【范例点播】要点1 相遇问题,相遇路程二速度和×相遇时间例1. 甲、乙两车分别从两地同时相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇时,甲车比乙车少行80千米。

两地相距多少千米?甲车每小时行40千米,乙车每小时行60千米,甲车每小时比乙车少行20千米。

相遇时甲车比乙车少行80千米,80千米中有多少个20千米就是行了多少小时,即相遇时间。

解:80÷(60—40)=4(小时)(60+40)×4=400(千米)答:两地相距400千米。

要点2 相背问题,速度和二行走路程÷行走时间例2. 甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分钟后两人相距860米。

小明每分钟走37米,小军每分钟走多少米?小明和小军不是从同一地点相背而行的,他们7分钟一共走的距离是:860—300=560(米)。

两人的速度和=行走路程÷行走时间=560÷7=80(米),所以,小军的速度=速度和—小明的速度=80—37=43(米)。

解:(860—300)÷7—37=560÷7—37=80—37=43(米)答:小军每分钟走43米。

要点3 追及问题,追及时间:路程差÷速度差例3. 人民路小学有一条200米长的环形跑道,芳芳和丽丽同时从起点起跑,芳芳每秒跑6米,丽丽每秒跑4米。

当芳芳第一次追上丽丽时两人各跑了多少米?第二次追上丽丽时两人各跑了多少圈?环形跑道说明是一个封闭路上的追及问题。

四年级奥数——行程问题

四年级奥数——行程问题

四年级奥数——行程问题相遇问题1、南北两村相距90千米,甲从南村出发,他要在9分钟内赶到北村,那他每分钟至少要行多少千米?2、王叔叔因急事,以每小时78千米的车速从甲地赶往乙地,3小时后,他发现时间足够,又以每小时62千米的速度行驶了2小时,赶到了乙地,甲乙两地相距多少千米?3、小飞和小华同时从相距5320米的两地相向而行,两人行了40分钟后还相距1520米,问两人再走几分钟才能相遇?4、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?5、小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发,相向而行,3小时后相遇。

小军从甲地到乙地要12小时,小明从乙地到甲地要几小时?6、甲、乙两车同时从东西两地相对开出,6小时相遇。

如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。

东西两地相距多少千米?7、A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站50千米处相遇。

相遇后继续前进,各自到达乙、甲两站后立即返回,第二次在距乙站20千米处相遇。

甲、乙两站相距多少千米?追及问题1、甲从A出发,每小时12千米,2小时后,乙也从A地相背而行,每小时16千米,再经过4小时他们同时停下来,这时他们相距多远?2、甲、乙相背而行,甲每小时比乙多行2千米,8小时后两人相隔112千米,求甲、乙各自的速度?3、快车和慢车同时从南北两地相对开出,已知快车每小时行60千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距6千米。

慢车每小时行多少千米?4、小华和小亮的家相距410米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后两人可能相距多少米?5、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙的后面250米,乙追上需要多少分钟?6、甲、乙二人同时从A地到B地,甲每小时行10千米,乙每小时行8千米,甲行至15千米处又回去取东西,因此比乙迟1小时到B地。

小学四年级奥数题及答案:行程问题

小学四年级奥数题及答案:行程问题

小学四年级奥数题及答案:行程问题小学四班级奥数题及答案:行程问题
1.行程问题
甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
解答:分析若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:
解:乙的速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒.
2.行程问题
上午8点零8分,小明骑自行车从家里出发,8
分钟后,爸爸骑摩托车去追他,在离家4千米的`地方追上了他.然后爸爸立即回家,到家后又立即回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?
解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分.。

小学四年级上册行程问题1奥数题

小学四年级上册行程问题1奥数题

1、甲乙两地汽车同时从东西两地相向开出,甲车每小时行66千米,乙车每小时行58千米,两车在离中点36千米处相遇,求两东西两地相距多少千米?2、甲乙两车同时从两地相向出发,甲每车行58千米,乙每车行48千米,两车在离终点20千米处相遇,求两地间的路程是多少千米?3、快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距7千米,慢车每小时行多少千米?4、甲乙两人同时从两地出发相向而行,距离是100千米,甲每小时走6千米,乙每小时走4千米。

甲带着一只狗每小时走10千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

问这只狗一共走了多少千米?5、甲乙两队学生从相距18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度在两队间不停的往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?6、甲乙两人分别从东西两地同时出发,相向而行。

甲每小时行5千米,乙每小时行4千米。

甲带一只狗同时出发,狗以每小时8千米的速度向乙奔去,遇到乙后马上回头向甲奔去,遇到甲后又回头向乙奔去,如此往返,直到甲乙两人相距3千米时,狗才停止奔跑,这时狗共奔跑了16千米,问甲乙两地相距多少千米?人相遇?8、甲乙两车从相距270千米的两地同时相向而行,甲车每小时行50千米,乙车每小时行40千米,几小时后,两车相遇?9、甲乙两地相距450千米,A、B两车从两地同时出发,经过5小时后相遇,已知A车每小时比B车多行驶10千米,A、B两车的速度各是多少?10、甲乙两人分别从相距80千米的两地同时出发,相向而行。

甲每小时走6千米,乙每小时走5千米,3小时后,两人相距多少千米?时后,两人相距多少千米?12、甲乙两人同时从相距20千米的两地反向而行,甲每小时行13千米,乙每小时行7千米,几小时后两人相距100千米?13、一辆汽车由甲城开往乙城,行了3小时后,因车发生故障,修了半小时,然后每小时加速5千米,继续前行,经过6小时准时到达乙地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级奥数:行程问题
小学四年级奥数:行程问题
行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系。

下面小编给大家介绍小学四年级奥数——二进制,欢迎阅读!
小学四年级奥数:行程问题
专题简析:
在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。

船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:
顺水速度=船速+水速
逆水速度=船速-水速
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?
分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。

所以,两地相距90×6=540千米。

练习一
1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米,求全程长多少千米。

2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。

东西两城相距多少千米?
3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。

慢车每小时行多少千米?
例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。

A、B两地间的路长多少米?
分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。

这800米就是乙、丙相遇比甲多行的路程。

乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。

因此,AB两地间的路程为(50+40)×80=7200米。

练习二
1,甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。

求两镇之间相距多少米?
2,有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米。

丙车遇到甲车后20分钟又遇到乙车。

求东西两站的距离。

3,甲、乙、丙三人,甲每分钟走60米,乙每分钟走67米,丙每分钟走73米。

甲、乙从南镇,丙从北镇同时相向而行,丙遇乙后10分钟遇到甲。

求两镇相距多少千米。

例3:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。

求船在静水中的速度(即船速)和水流速度(即水速)。

分析与解答:要求船速和水速,要先求出顺水速度和逆水速度,而顺水速度可按行程问题的一般数量关系求,即:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度。

因此,顺水速度是286÷11=26
千米,逆水速度是286÷13=22千米。

所以,船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米。

练习三
1,A、B两港间的水路长208千米。

一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达。

求船在静水中的速度和水流速度。

2,甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。

求船在静水中的速度和水流速度。

3,甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达。

求这架飞机的'速度和风速。

例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。

已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。

又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。

练习四
1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时。

已知这段航道的水流是每小时4千米,求A 港到B港相距多少千米?
2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。

已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?
3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?
例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4
小时,逆流而上需要10小时。

如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同。

根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。

又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。

所以,乙船在静水中每小时行16-6=10千米。

练习五
1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时。

如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。

如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?
3,一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要20小时。

如果乙船顺流而下要10小时,那么乙船逆流而上需要多少小时?。

相关文档
最新文档