高中数学第1课极坐标系学案新人教A版选修4_6.doc
课堂新坐标高中数学人教A版选修学案:极坐标系含解析
二极坐标系1.理解极坐标系的概念.2.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(难点)3.掌握极坐标和直角坐标的互化关系式,能进行极坐标和直角坐标的互化.(重点、易错点)[基础·初探]教材整理1极坐标系阅读教材P8~P10,完成下列问题.1.极坐标系的概念(1)极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.2.点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O 的坐标为(0,θ)(θ∈R).如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用惟一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是惟一确定的.在极坐标系中,ρ1=ρ2,且θ1=θ2是两点M (ρ1,θ1)和N (ρ2,θ2)重合的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 前者显然能推出后者,但后者不一定推出前者,因为θ1与θ2可相差2π的整数倍.【答案】 A教材整理2 极坐标和直角坐标的互化 阅读教材P 11,完成下列问题.1.互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图1-2-1所示.图1-2-12.互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式⎩⎨⎧x =ρcos θy =ρsin θ ρ2=x 2+y 2, tan θ=yx (x ≠0)将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化为直角坐标是( )A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)【解析】 x =ρcos θ=10 cos π3=5,y =ρsin θ=10sin π3=5 3. 【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]将点的极坐标化为直角坐标写出下列各点的直角坐标,并判断所表示的点在第几象限. (1)⎝ ⎛⎭⎪⎫2,4π3;(2)⎝ ⎛⎭⎪⎫2,23π;(3)⎝ ⎛⎭⎪⎫2,-π3;(4)(2,-2). 【思路探究】 点的极坐标(ρ,θ)―→⎩⎨⎧x =ρcos θy =ρsin θ―→点的直角坐标(x ,y )―→判定点所在象限.【自主解答】 (1)由题意知x =2cos 4π3=2×⎝ ⎛⎭⎪⎫-12=-1,y =2sin 4π3=2×⎝ ⎛⎭⎪⎫-32=-3, ∴点⎝ ⎛⎭⎪⎫2,4π3的直角坐标为()-1,-3,是第三象限内的点.(2)x =2cos 23π=-1,y =2sin 23π=3,∴点⎝ ⎛⎭⎪⎫2,23π的直角坐标为(-1,3),是第二象限内的点.(3)x =2cos ⎝ ⎛⎭⎪⎫-π3=1,y =2sin ⎝ ⎛⎭⎪⎫-π3=-3,∴点⎝ ⎛⎭⎪⎫2,-π3的直角坐标为(1,-3),是第四象限内的点.(4)x =2cos (-2)=2cos 2,y =2sin(-2)=-2sin 2,∴点(2,-2)的直角坐标为(2cos 2,-2sin 2),是第三象限内的点.1.点的极坐标与直角坐标的互化公式的三个前提条件:(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的长度单位相同.2.将点的极坐标(ρ,θ)化为点的直角坐标(x ,y )时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键.[再练一题]1.分别把下列点的极坐标化为直角坐标: (1)⎝ ⎛⎭⎪⎫2,π6;(2)⎝ ⎛⎭⎪⎫3,π2;(3)(π,π). 【解】 (1)∵x =ρcos θ=2cos π6=3, y =ρsin θ=2sin π6=1,∴点的极坐标⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1).(2)∵x =ρcos θ=3cos π2=0, y =ρsin θ=3sin π2=3,∴点的极坐标⎝ ⎛⎭⎪⎫3,π2化为直角坐标为(0,3).(3)∵x =ρcos θ=πcos π=-π, y =ρsin θ=πsin π=0,∴点的极坐标(π,π)化为直角坐标为(-π,0).将点的直角坐标化为极坐标分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π): (1)(-2,23);(2)(6,-2);(3)⎝ ⎛⎭⎪⎫3π2,3π2.【思路探究】 利用公式ρ2=x 2+y 2,tan θ=yx (x ≠0),但求角θ时,要注意点所在的象限.【自主解答】 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=yx =-3,θ∈[0,2π), 由于点(-2,23)在第二象限, ∴θ=2π3,∴点的直角坐标(-2,23)化为极坐标为⎝ ⎛⎭⎪⎫4,23π.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22, tan θ=y x =-33,θ∈[0,2π), 由于点(6,-2)在第四象限, ∴θ=11π6,∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2, tan θ=yx =1,θ∈[0,2π), 由于点⎝ ⎛⎭⎪⎫3π2,3π2在第一象限,∴θ=π4,∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.1.将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.2.在[0,2π)范围内,由tan θ=yx (x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.[再练一题]2.已知下列各点的直角坐标,求它们的极坐标: (1)A (3,3);(2)B (-2,-23);【导学号:91060003】(3)C (0,-2);(4)D (3,0).【解】 (1)由题意可知:ρ=32+(3)2=23, tan θ=33,所以θ=π6,所以点A 的极坐标为⎝ ⎛⎭⎪⎫23,π6.(2)ρ=(-2)2+(-23)2=4,tan θ=-23-2=3,又由于θ为第三象限角,故θ=43π,所以B 点的极坐标为⎝ ⎛⎭⎪⎫4,43π.(3)ρ=02+(-2)2=2,θ为32π,θ在y 轴负半轴上,所以C 点的极坐标为⎝ ⎛⎭⎪⎫2,32π. (4)ρ=32+02=3,tan θ=03=0,故θ=0, 所以D 点的极坐标为(3,0).极坐标与直角坐标的综合应用在极坐标系中,如果A ⎝ ⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π).【思路探究】 解答本题可以先利用极坐标化为直角坐标,再根据等边三角形的定义建立方程组求解点C 的直角坐标,进而求出点C 的极坐标.【自主解答】 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2). 对于B ⎝ ⎛⎭⎪⎫2,54π有ρ=2,θ=54π, ∴x =2cos 5π4=-2,y =2sin 5π4=-2, ∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4,∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16,解之得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y =6,∴C 点的坐标为(6,-6)或(-6,6), ∴ρ=6+6=23,tan θ=-66=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝ ⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.本例综合考查了点的极坐标与直角坐标的互化公式以及等边三角形的意义和性质.结合几何图形可知,点C 的坐标有两解,设出点的坐标寻求等量关系建立方程组求解是关键.2.若设出C (ρ,θ),利用余弦定理亦可求解.[再练一题]3.本例中,如果点的极坐标仍为A ⎝ ⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4,且△ABC 为等腰直角三角形,如何求直角顶点C 的极坐标?【解】 对于点A ⎝ ⎛⎭⎪⎫2,π4,直角坐标为(2,2),点B ⎝ ⎛⎭⎪⎫2,5π4的直角坐标为(-2,-2),设点C 的直角坐标为(x ,y ),由题意得AC ⊥BC ,且|AC |=|BC |, ∴AC →·BC →=0,即(x -2,y -2)·(x +2,y +2)=0, ∴x 2+y 2=4.①又|A C →|2=|B C →|2,于是(x -2)2+(y -2)2 =(x +2)2+(y +2)2,∴y =-x ,代入①,得x 2=2,解得x =±2, ∴⎩⎨⎧ x =2,y =-2,或⎩⎨⎧x =-2,y =2,∴点C 的直角坐标为(2,-2)或(-2,2), ∴ρ=2+2=2,tan θ=-1,θ=7π4或3π4, ∴点C 的极坐标为⎝ ⎛⎭⎪⎫2,3π4或⎝ ⎛⎭⎪⎫2,7π4.[探究共研型]极坐标探究1 如图1-2-2是某校园的平面示意图.假设某同学在教学楼处,请回答下列问题:①他向东偏北60°方向走120 m 后到达什么位置?该位置惟一确定吗? ②如果有人打听体育馆和办公楼的位置,他应如何描述?图1-2-2【提示】 以A 为基点,射线AB 为参照方向,利用与A 的距离、与AB 所成的角,就可以刻画平面上点的位置.①到达图书馆,该位置惟一确定;②体育馆在正东方向60 m 处,办公楼在西北方向50 m 处.探究2 在极坐标系中,⎝ ⎛⎭⎪⎫4,π6,⎝ ⎛⎭⎪⎫4,π6+2π,⎝ ⎛⎭⎪⎫4,π6+4π,⎝ ⎛⎭⎪⎫4,π6-2π表示的点有什么关系?你能从中体会极坐标与直角坐标在刻画点的位置时的区别吗?【提示】 由终边相同的角的定义可知,上述极坐标表示同一个点.实际上,⎝ ⎛⎭⎪⎫4,π6+2k π(k ∈Z )都表示这个点. 设点A ⎝ ⎛⎭⎪⎫2,π3,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).【思路探究】 欲写出点的极坐标,首先应确定ρ和θ的值. 【自主解答】 如图所示,关于极轴的对称点为B 2,-π3, 关于直线l 的对称点为C ⎝ ⎛⎭⎪⎫2,23π,关于极点O 的对称点为D ⎝ ⎛⎭⎪⎫2,-23π. 四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序.[再练一题]4.在极坐标系中与点A ⎝ ⎛⎭⎪⎫3,-π3关于极轴所在的直线对称的点的极坐标是( )A.⎝ ⎛⎭⎪⎫3,23π B.⎝ ⎛⎭⎪⎫3,π3 C.⎝ ⎛⎭⎪⎫3,43π D.⎝ ⎛⎭⎪⎫3,56π 【解析】 与点A ⎝ ⎛⎭⎪⎫3,-π3关于极轴所在的直线对称的点的极坐标可以表示为⎝ ⎛⎭⎪⎫3,2k π+π3(k ∈Z ). 【答案】 B[构建·体系]极坐标系—⎪⎪⎪⎪—极坐标的概念—点与极坐标的关系—极坐标与直角坐标的互化1.极坐标系中,点M (1,0)关于极点的对称点为( ) A .(1,0) B .(-1,π) C .(1,π)D .(1,2π)【解析】 ∵(ρ,θ)关于极点的对称点为(ρ,π+θ), ∴M (1,0)关于极点的对称点为(1,π). 【答案】 C2.点A 的极坐标是⎝ ⎛⎭⎪⎫2,7π6,则点A 的直角坐标为( )A .(-1,-3)B .(-3,1)C .(-3,-1)D .(3,-1)【解析】 x =ρcos θ=2cos 76π=-3, y =ρsin θ=2sin 76π=-1.【答案】 C3.点M 的直角坐标为⎝ ⎛⎭⎪⎫0,π2,则点M 的极坐标可以为( )A.⎝ ⎛⎭⎪⎫π2,0 B.⎝ ⎛⎭⎪⎫0,π2 C.⎝ ⎛⎭⎪⎫π2,π2 D.⎝ ⎛⎭⎪⎫π2,-π2【解析】 ∵ρ=x 2+y 2=π2,且θ=π2, ∴M 的极坐标为⎝ ⎛⎭⎪⎫π2,π2.【答案】 C4.将极轴Ox 绕极点顺时针方向旋转π6得到射线OP ,在OP 上取点M ,使|OM |=2,则ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴的对称点的极坐标为_______________________________________(ρ>0,θ∈[0,2π)).【导学号:91060004】【解析】 ρ=|OM |=2,与OP 终边相同的角为-π6+2k π(k ∈Z ). ∵θ∈[0,2π),∴k =1,θ=11π6, ∴M ⎝ ⎛⎭⎪⎫2,11π6,∴M 关于极轴的对称点为⎝ ⎛⎭⎪⎫2,π6.【答案】 ⎝ ⎛⎭⎪⎫2,11π6 ⎝ ⎛⎭⎪⎫2,π65.在极轴上求与点A ⎝ ⎛⎭⎪⎫42,π4距离为5的点M 的坐标.【解】 设M (r,0),∵A ⎝ ⎛⎭⎪⎫42,π4,∴(42)2+r 2-82r cos π4=5,即r 2-8r +7=0, 解得r =1或r =7,∴点M 的坐标为(1,0)或(7,0).我还有这些不足:(1) (2) 我的课下提升方案:(1)(2)学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.下列各点中与⎝ ⎛⎭⎪⎫2,π6不表示极坐标系中同一个点的是( )A.⎝ ⎛⎭⎪⎫2,-116π B.⎝ ⎛⎭⎪⎫2,136π C.⎝ ⎛⎭⎪⎫2,116π D.⎝⎛⎭⎪⎫2,-236π 【解析】 与极坐标⎝ ⎛⎭⎪⎫2,π6相同的点可以表示为⎝ ⎛⎭⎪⎫2,π6+2k π(k ∈Z ),只有⎝ ⎛⎭⎪⎫2,116π不适合. 【答案】 C2.将点的极坐标(π,-2π)化为直角坐标为( ) A .(π,0) B .(π,2π) C .(-π,0)D .(-2π,0)【解析】 x =πcos(-2π)=π,y =πsin(-2π)=0, 所以点的极坐标(π,-2π)化为直角坐标为(π,0). 【答案】 A3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合【解析】 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.【答案】 A4.在极坐标系中,已知点P 1⎝ ⎛⎭⎪⎫6,π4、P 2⎝ ⎛⎭⎪⎫8,3π4,则|P 1P 2|等于( )A .9B .10C .14D .2【解析】 ∠P 1OP 2=3π4-π4=π2,∴△P 1OP 2为直角三角形,由勾股定理可得|P 1P 2|=10.【答案】 B5.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是( )【导学号:91060005】A.⎝ ⎛⎭⎪⎫2,-π3 B.⎝ ⎛⎭⎪⎫2,4π3 C.⎝ ⎛⎭⎪⎫1,-π3 D.⎝ ⎛⎭⎪⎫2,-4π3 【解析】 极径ρ=12+(-3)2=2,极角θ满足tan θ=-31=-3, ∵点(1,-3)在第四象限,∴θ=-π3. 【答案】 A 二、填空题6.平面直角坐标系中,若点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=13y 后的点为Q ,则极坐标系中,极坐标为Q 的点到极轴所在直线的距离等于________.【解析】 ∵点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=13y 后的点为Q ⎝ ⎛⎭⎪⎫6,7π6,则极坐标系中,极坐标为Q 的点到极轴所在直线的距离等于6⎪⎪⎪⎪⎪⎪sin 7π6=3.【答案】 37.已知点P 在第三象限角的平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.【解析】 ∵点P (x ,y )在第三象限角的平分线上,且到横轴的距离为2,∴x =-2,且y =-2, ∴ρ=x 2+y 2=22,又tan θ=y x =1,且θ∈[0,2π),∴θ=5π4. 因此点P 的极坐标为⎝ ⎛⎭⎪⎫22,5π4.【答案】 ⎝ ⎛⎭⎪⎫22,5π48.极坐标系中,点A 的极坐标是⎝ ⎛⎭⎪⎫3,π6,则(1)点A 关于极轴的对称点的极坐标是________; (2)点A 关于极点的对称点的极坐标是________;(3)点A 关于过极点且垂直于极轴的直线的对称点的极坐标是________.(本题中规定ρ>0,θ∈[0,2π))【解析】 点A ⎝ ⎛⎭⎪⎫3,π6关于极轴的对称点的极坐标为⎝ ⎛⎭⎪⎫3,11π6;点A 关于极点的对称点的极坐标为⎝ ⎛⎭⎪⎫3,7π6;点A 关于过极点且垂直于极轴的直线的对称点的极坐标为⎝ ⎛⎭⎪⎫3,5π6.【答案】 (1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝ ⎛⎭⎪⎫3,5π6 三、解答题9.(1)已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫3,-π4,B ⎝ ⎛⎭⎪⎫2,2π3,C ⎝ ⎛⎭⎪⎫32,π,D ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.(2)已知点的直角坐标分别为A (3,3),B ⎝ ⎛⎭⎪⎫0,-53,C (-2,-23),求它们的极坐标(ρ≥0,0≤θ<2π).【解】 (1)根据x =ρcos θ,y =ρsin θ, 得A ⎝ ⎛⎭⎪⎫322,-322, B (-1,3),C ⎝ ⎛⎭⎪⎫-32,0,D (0,-4).(2)根据ρ2=x 2+y 2,tan θ=y x 得A ⎝ ⎛⎭⎪⎫23,π6,B ⎝ ⎛⎭⎪⎫53,3π2,C ⎝ ⎛⎭⎪⎫4,4π3.10.在极坐标系中,已知△ABC 的三个顶点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝ ⎛⎭⎪⎫2,5π3.(1)判断△ABC 的形状; (2)求△ABC 的面积.【解】 (1)如图所示,由A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝ ⎛⎭⎪⎫2,5π3,得|OA |=|OB |=|OC |=2, ∠AOB =∠BOC =∠AOC =2π3,∴△AOB ≌△BOC ≌△AOC ,∴AB =BC =CA ,故△ABC 为等边三角形.(2)由上述可知,AC =2OA sin π3=2×2×32=2 3. ∴S △ABC =34×(23)2=3 3.[能力提升]1.已知极坐标平面内的点P ⎝ ⎛⎭⎪⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为 ( )A.⎝ ⎛⎭⎪⎫2,π3,(1,3) B.⎝ ⎛⎭⎪⎫2,-π3,(1,-3) C.⎝ ⎛⎭⎪⎫2,2π3,(-1,3) D.⎝ ⎛⎭⎪⎫2,-2π3,(-1,-3) 【解析】 点P ⎝ ⎛⎭⎪⎫2,-5π3关于极点的对称点为⎝ ⎛⎭⎪⎫2,-5π3+π,即⎝ ⎛⎭⎪⎫2,-2π3,且x =2cos ⎝ ⎛⎭⎪⎫-2π3=-2cos π3 =-1,y =2sin ⎝ ⎛⎭⎪⎫-2π3=-2sin π3=- 3.【答案】 D2.已知极坐标系中,极点为O,0≤θ<2π,M ⎝ ⎛⎭⎪⎫3,π3,在直线OM 上与点M的距离为4的点的极坐标为________.【解析】 如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.【答案】 ⎝ ⎛⎭⎪⎫7,π3或⎝ ⎛⎭⎪⎫1,4π33.直线l 过点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫3,π6,则直线l 与极轴夹角等于________.【解析】 如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6, 所以∠OAB =π-π62=5π12, 所以∠ACO =π-π3-5π12=π4. 【答案】 π44.某大学校园的部分平面示意图如图1-2-3:用点O ,A ,B ,C ,D ,E ,F ,G 分别表示校门,器材室,操场,公寓,教学楼,图书馆,车库,花园,其中|AB |=|BC |,|OC |=600 m .建立适当的极坐标系,写出除点B 外各点的极坐标(限定ρ≥0,0≤θ<2π且极点为(0,0)).图1-2-3【解】 以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系,由|OC |=600 m ,∠AOC =π6,∠OAC =π2,得|AC |=300 m ,|OA |=300 3 m ,又|AB |=|BC |,所以|AB |=150 m. 同理,得|OE |=2|OG |=300 2 m ,所以各点的极坐标分别为O (0,0),A (3003,0),C ⎝ ⎛⎭⎪⎫600,π6,D ⎝ ⎛⎭⎪⎫300,π2,E ⎝ ⎛⎭⎪⎫3002,3π4,F (300,π),G ⎝ ⎛⎭⎪⎫1502,3π4.。
高中数学第一章坐标系第2节极坐标系教学案新人教A版选修4
第2节 极坐标系[核心必知]1.极坐标系的概念 (1)极坐标系的建立在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.极坐标与直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ; ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0)W. [问题思考]1.平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,θ+2n π)或(-ρ,θ+(2n +1)π)(其中n ∈Z ).2.若ρ>0,0≤θ<2π,则除极点外,点M (ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系.3.若点M 的极坐标为(ρ,θ),则M 点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).已知定点P ⎝⎛⎭⎪⎫4,π3.(1)将极点移至O ′⎝ ⎛⎭⎪⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.[精讲详析] 本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23,|OP |=4,∠POx =π3,∠O ′Ox =π6,∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2.即|O ′P |=2.∴|OP |2=|OO ′|2+|O ′P |2,∠OO ′P =π2.∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3.∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为(2,2π3).(2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=π2.∴P 点的新坐标为(4,π2).—————————————建立极坐标系的要素是(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向.四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0;但必要时,允许ρ<0.1.边长为a 的正六边形的一个顶点为极点,极轴通过它的一边,求正六边形各顶点坐标.解:由点的极坐标的定义可知,正六边形各顶点的极坐标分别为:(0,0)、(a ,0)、(3a ,π6)、(2a ,π3)、(3a ,π2)、(a ,23π)或(0,0)、(a ,0)、(3a ,-π6)、(2a ,-π3)、(3a ,-π2)、(a ,-23π).若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)[精讲详析] 本题考查极坐标和直角坐标的互化.解答此题只需将已知条件代入相关公式即可.(1)∵x =ρcos θ=4·cos 5π3=2.y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4.∴点B 的极坐标为(22,7π4).又∵x =0,y <0,ρ=15, ∴点C 的极坐标为(15,3π2).(1)将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是:x =ρcos θ,y =ρsin θ; (2)将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是:ρ2=x 2+y 2,tan θ=y x(x ≠0),在利用此公式时要注意ρ和θ的取值范围.2.(1)把点M 的极坐标⎝⎛⎭⎪⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标.(ρ>0,0≤θ<2π) 解:(1)x =8cos 2π3=-4,y =8sin2π3=43, 因此,点M 的直角坐标是(-4,43). (2)ρ=(6)2+(-2)2=22, tan θ=-26=-33,又因为点在第四象限,得θ=116π.因此,点P 的极坐标为(22,11π6).在极坐标系中,已知A ⎝ ⎛⎭⎪⎫3,-π3,B ⎝ ⎛⎭⎪⎫1,23π,求A 、B 两点之间的距离. [精讲详析] 本题考查极坐标与直角坐标的互化、极坐标系中两点间的距离公式.解答此题可直接利用极坐标系中两点间的距离公式求解,也可以先将极坐标化为直角坐标,然后利用两点间的距离公式求解.法一:由A (3,-π3)、B (1,2π3)在过极点O 的一条直线上,这时A 、B 两点的距离为|AB |=3+1=4,所以,A 、B 两点间的距离为4.法二:∵ρ1=3,ρ2=1,θ1=-π3,θ2=2π3,由两点间的距离公式得|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2) =32+12-2×3×1×cos (-π3-23π)=10-6cos π =10+6 =16 =4.法三:将A (3,-π3),B (1,2π3)由极坐标化为直角坐标,对于A (3,-π3)有x =3cos (-π3)=32,y =3sin(-π3)=-332, ∴A (32,-332).对于B (1,2π3)有x =1×cos 2π3=-12,y =1×sin2π3=32, ∴B (-12,32).∴|AB |=(32+12)2+(-332-32)2=4+12=4. ∴AB 两点间的距离为4.对于这类问题的解决方法,可以直接用极坐标内两点间的距离公式d =ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)求得;也可以把A 、B 两点由极坐标化为直角坐标,利用直角坐标中两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2求得;极坐标与直角坐标的互化体现了化归的解题思想;还可以考虑其对称性,根据对称性求得.3.在极坐标系中,如果等边三角形的两个顶点是A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,54π,则求第三个顶点C 的坐标.解:由题设知,A 、B 两点关于极点O 对称,又|AB |=4,由正三角形的性质知,|CO |=23,∠AOC =π2,从而C 的极坐标为(23,34π)或(23,-π4).极坐标与直角坐标的互化在高考模拟中经常出现.本考题将极坐标与直角坐标的互化同极坐标系中两点间的距离和简单的三角恒等变换相结合考查,是高考模拟命题的一个新亮点.[考题印证]已知极坐标系中,极点为O ,将点A (4,π6)绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.[命题立意] 本题主要考查点的极坐标的求法以及直角坐标与极坐标的转化. [解析] 依题意,点B 的极坐标为(4,5π12),∵cos 5π12=cos (π4+π6)=cos π4cos π6-sin π4·sin π6=22·32-22·12=6-24, sin 5π12=sin (π4+π6)=sin π4cos π6+cos π4·sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=6+ 2.∴点B 的直角坐标为(6-2,6+2).[答案] (6-2,6+2)一、选择题1.在极坐标系中,点M ⎝ ⎛⎭⎪⎫-2,π6的位置,可按如下规则确定( ) A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2 解析:选B 当ρ<0时,点M (ρ,θ)的位置按下列规定确定:作射线OP ,使∠xOP =θ,在OP 的反向延长线上取|OM |=|ρ|,则点M 就是坐标(ρ,θ)的点.2.在极坐标平面内,点M ⎝ ⎛⎭⎪⎫π3,200π,N ⎝ ⎛⎭⎪⎫-π3,201π,G ⎝ ⎛⎭⎪⎫-π3,-200π,H ⎝⎛⎭⎪⎫2π+π3,200π中互相重合的两个点是( ) A .M 和N B .M 和G C .M 和H D .N 和H 解析:选A 由极坐标定义可知,M 、N 表示同一个点.3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 4.已知极坐标平面内的点P ⎝ ⎛⎭⎪⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为( )A.⎝⎛⎭⎪⎫2,π3,(1,3)B.⎝⎛⎭⎪⎫2,-π3,(1,-3) C.⎝⎛⎭⎪⎫2,2π3,(-1,3) D.⎝⎛⎭⎪⎫2,-2π3,(-1,-3) 解析:选D 点P (2,-5π3)关于极点的对称点为(2,-5π3+π),即(2,-2π3),且x =2cos (-2π3)=-2cos π3=-1,y =2sin (-2π3)=-2sin π3=- 3. 二、填空题5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________.解析:点M 的极坐标为(ρ,θ),设其直角坐标为(x ,y ),依题意得ρ=x ,θ=y , 即x 2+y 2=x 2. ∴y =θ=0,ρ>0, ∴M (ρ,0). 答案:(ρ,0)6.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎪⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析:如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.答案:(7,π3)或(1,4π3)7.直线l 过点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝⎛⎭⎪⎫3,π6,则直线l 与极轴夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.解析:∵tan θ=-43,π2<θ<π,∴cos θ=-35,sin θ=45.∴x =5cos θ=-3,y =5sin θ=4. ∴点M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题9.设点A ⎝⎛⎭⎪⎫1,π3,直线L 为过极点且垂直于极轴的直线,分别求出点A 关于极轴,直线L ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π)解:如图所示:关于极轴的对称点为B (1,-π3)关于直线L 的对称点为C (1,2π3). 关于极点O 的对称点为D (1,-2π3). 10.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ≤2π时,求点P 的极坐标.解:设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x -3=3y ,解得⎩⎨⎧x =3,y =- 3. ∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33, ∵0≤θ<2π,点P 在第四象限, ∴θ=11π6. ∴点P 的极坐标为(23,11π6). 11.在极轴上求与点A ⎝⎛⎭⎪⎫42,π4的距离为5的点M 的坐标. 解:设M (r ,0),因为A (42,π4),所以(42)2+r 2-82r ·cos π4=5. 即r 2-8r +7=0.解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).。
高中数学人教A版选修-创新应用教学案: 第一讲 第节 第课时 圆的极坐标方程含答案
角形中实现,找出这样的三角形便形成了解题的关键.
1.设 M 是定圆 O 内一定点,任作半径 OA,连接 MA,过 M 作 MP⊥MA 交 OA 于 P, 求 P 点的轨迹方程.
解:
以 O 为极点,射线 OM 为极轴,建立极坐标系,如图. 设定圆 O 的半径为 r,OM=a,P(ρ,θ)是轨迹上任意一点. ∵MP⊥MA,∴|MA|2+|MP|2= |PA|2.由余弦定理,可知|MA|2=a2+r2-2arcos θ,|MP|2=a2+ρ2-2aρcos θ.而|PA|=r -ρ,由此可得 a2+r2-2arcos θ+a2+ρ2-2aρcos θ=(r-ρ)2.
π 答案:ρ2-4ρcos (θ- )-1=0
3
7. (天 津 高 考 )已 知 圆 的 极 坐 标 方 程 为 ρ= 4cos θ , 圆 心 为 C, 点 P 的 极 坐 标 为
( )π
4, 3 ,则|CP|=________. 解析:圆 ρ=4cos θ的直角坐标方程为 x2+y2=4x,圆心 C(2,0).点 P 的直角坐标为
构造形如 ρcos θ,ρsin θ,ρ2 的形式,进行整体代换.其中方程的两边同乘以(或同除
以)ρ 及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注
意对变形过程的检验.
( )π
3.把极坐标方程 ρcos θ- 6 =1 化为直角坐标方程.
π
3
1
解:由 ρcos (θ- 6 )=1 得
(3)ρcos2 =1;(4)ρ2cos 2θ=4;(5)ρ=
2
2-cos
θ.
[精讲详析] 本题考查极坐标与直角坐标的互化公式.
(1)将 x=ρcos θ,y=ρsin θ代入 y2=4x,
高中数学第一讲极坐标系与平面直角坐标系的互化同步测试新人教A版选修4-4
极坐标系与平面直角坐标系的互化典题探究例1 将点M 的极坐标2(5,)3π化成直角坐标.例2将点M 的直角坐标)1,3(--化成极坐标.例3在极坐标系中,已知),6,2(),6,2(ππ-B A 求A,B 两点的距离。
例4已知,,A B C 三点的极坐标分别是52(2,),(6,),(4,6123πππ),求ABC ∆的面积.演练方阵A 档(巩固专练)1.将点的直角坐标(-2,23)化成极坐标得( ). A .(4,32π) B .(-4,32π) C .(-4,3π) D .(4,3π) 2.点M 的极坐标是(2,3π),则M 的直角坐标为( ) A .(1,3) B .(−3,1) C .(3,1) D .(−1,3) 3.极坐标方程 cos =sin2( ≥0)表示的曲线是( ). A .一个圆 B .两条射线或一个圆 C .两条直线D .一条射线或一个圆4.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1) B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )5.点M 的直角坐标是(1,3)-,则点M 的极坐标为 . 6 化极坐标方程2cos 0ρθρ-=为直角坐标方程为 .7.将下列各点的极坐标化成直角坐标:3(3,),(4,).42A B ππ--8.将下列各点的直角坐标化成极坐标:(4,43),(1,1).C D ---9.在极坐标系中,求下列两点之间的距离: (1)5(7,),(2,)44A B ππ; (2)11(6,),(4,)412A B ππ-.10.在符合互化条件的直角坐标系和极坐标系中,将下列直角坐标方程(极坐标方程)转化为极坐标方程(直角坐标方程).(1)cos sin 0x y αα-=;(2)24cos52θρ=.B 档(提升精练)1.点P 在曲线 cos +2 sin =3上,其中0≤≤4π,>0,则点P 的轨迹是( ).A .直线x +2y -3=0B .以(3,0)为端点的射线C . 圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段2.设点P 在曲线 sin=2上,点Q 在曲线=-2cos上,则|PQ |的最小值为 ( ).A .2B .1C .3D .0 3.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线 B .椭圆 C . 双曲线 D . 圆4.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 =3截得的弦长为( ).A .22B .2C .52D .325 直线cos sin 0x y αα+=的极坐标方程为____________________6.极坐标方程24sin52θρ⋅=表示的曲线是 。
人教A版高考总复习一轮理科数学精品课件 选修4—4 坐标系与参数方程 第1课时 极坐标方程与参数方程
= + sin.
= cos,
2
2
(3)椭圆方程 2 + 2 =1(a>b>0)的参数方程为
(θ 为参数)
= sin.
2
=
2
,
2
(4)抛物线方程 y =2px(p>0)的参数方程为
(t 为参数)
= 2.
2
2
2
微点拨1.参数方程通过代入消元法或加减消元法消去参数化为普通方程,
= -1 + 2sin (α为参数).以O为极点,x轴的非负半轴为极轴建立极坐标
π
= 2cos,
(2)由(1)得曲线 C 的参数方程为
为参数, 且 ≠
2
= sin
∴点 A( 2cos θ,sin θ)到直线 l 的距离
| 2cos -sin -1|
d=
2
=
,
2
,
2
整理得 2cos θ=sin θ 或 2cos θ-sin θ= 3cos(θ+α)=2 其中 tan =
(3)取相同的长度单位
互化公式
x = ρθ,
①
y = ρθ,
ρ2 = x 2 + y 2 ,
②
y
θ = x ( ≠ 0)
(2)把直角坐标转化为极坐标时,通常有不同的表示法(极角相差2π的整数
倍).一般取ρ≥0,θ∈[0,2π).
4.直线的极坐标方程
(1)若直线过点M(ρ0,θ0),且从极轴到此直线的角为α,则它的方程为ρsin(θ-α)
由已知tan θ=2,可得
16cos2θ-8sin θcos θ=0,
《极坐标系》教案新人教A版选修
数学:1.2《极坐标系》教案(新人教A版选修4-4)极坐标系【基础知识导学】1.极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。
规定:当点M在极点时,它的极坐标可以取任意值。
2.平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x,y)是一一对应的,可是在极坐标系中,虽然一个有序实数对只能与一个点P对应,但一个点P却可以与无数多个有序实数对对应,极坐标系中的点与有序实数对极坐标不是一一对应的。
3.极坐标系中,点M的极坐标统一表达式。
4.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示,同时,极坐标表示的点也是唯一确定的。
5.极坐标与直角坐标的互化(1)互化的前提:①极点与直角坐标的原点重合;②极轴与X轴的正方向重合;③两种坐标系中取相同的长度单位。
(2)互化公式,。
【知识迷航指南】【例1】在极坐标系中,描出点,并写出点M的统一极坐标。
【点评】点的统一极坐标表示式为,如果允许,还可以表示为。
【例2】已知两点的极坐标,则|AB|=______,AB与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即?AOB为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果.【例3】化下列方程为直角坐标方程,并说明表示的曲线.(1),((2)【解】(1)根据极坐标的定义,因为,所以方程表示直线. (2)因为方程给定的不恒为0,用同乘方程的两边得:化为直角坐标方程为即,这是以(1,)为圆心,半径为的圆.【点评】①若没有这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘,使之出现2是常用的方法.【解题能力测试】1.已知点的极坐标分别为,,,,求它们的直角坐标。
1.已知点的直角坐标分别为,求它们的极坐标。
2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4
第2课时 极坐标和直角坐标的互化学习目标 1.了解极坐标和直角坐标互化的条件.2.掌握极坐标与直角坐标互化的公式,能进行极坐标和直角坐标间的互化.3.掌握极坐标系的简单应用.知识点 极坐标和直角坐标的互化思考1 平面内的一个点M 的坐标既可以用直角坐标表示也可以用极坐标表示,那么这两个坐标之间能否转化? 答案 可以.思考2 要进行极坐标和直角坐标的互化,两个坐标系有什么联系? 答案 ①直角坐标的原点为极点;②x 轴的正半轴为极轴;③单位长度相同. 梳理 互化的条件及互化公式(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式①极坐标化直角坐标:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②直角坐标化极坐标:⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).类型一 点的极坐标化直角坐标 例1 把下列点的极坐标化为直角坐标. (1)A ⎝ ⎛⎭⎪⎫2,7π6;(2)B ⎝ ⎛⎭⎪⎫3,-π4;(3)M ⎝⎛⎭⎪⎫6,5π6.解 由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得(1)x =2cos 7π6=-3,y =2sin 7π6=-1,∴点A 的直角坐标为(-3,-1).(2)x =3cos ⎝ ⎛⎭⎪⎫-π4=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=-322,∴点B 的直角坐标为⎝⎛⎭⎪⎫322,-322.(3)x =6cos 5π6=-33,y =6sin 5π6=3,∴点M 的直角坐标为(-33,3).反思与感悟 由极坐标化直角坐标是惟一的.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ惟一确定.跟踪训练1 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,2π3,B ⎝ ⎛⎭⎪⎫32,π,C ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.解 根据x =ρcos θ,y =ρsin θ, 得A (-1,3),B ⎝ ⎛⎭⎪⎫-32,0,C (0,-4). 类型二 点的直角坐标化极坐标例2 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π). (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π). 由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝⎛⎭⎪⎫4,2π3.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33,θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π). 由于点⎝⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4. ∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.引申探究1.若规定θ∈R ,上述点的极坐标还惟一吗?解 (1)⎝ ⎛⎭⎪⎫4,2π3+2k π(k ∈Z ).(2)⎝ ⎛⎭⎪⎫22,11π6+2k π(k ∈Z ). (3)⎝⎛⎭⎪⎫32π2,π4+2k π(k ∈Z ). 极坐标不惟一.2.若点的直角坐标为(1)(0,23),(2)(0,-2),(3)⎝⎛⎭⎪⎫3π2,0化为极坐标(ρ≥0,0≤θ<2π).解 结合坐标系及直角坐标的特点知, (1)⎝ ⎛⎭⎪⎫23,π2.(2)⎝ ⎛⎭⎪⎫2,3π2.(3)⎝ ⎛⎭⎪⎫3π2,0.反思与感悟 (1)将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.(2)在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪训练2 在直角坐标系中,求与点M ⎝ ⎛⎭⎪⎫52,-532的距离为1且与原点距离最近的点N 的极坐标.解 把点M 的直角坐标⎝ ⎛⎭⎪⎫52,-532化为极坐标,得ρ=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫-5322=5,tan θ=-53252=- 3. 因为点M 在第四象限,所以θ=5π3+2k π,k ∈Z ,则点M 的极坐标为⎝ ⎛⎭⎪⎫5,5π3+2k π,k ∈Z .依题意知,M ,N ,O 三点共线,则点N 的极坐标为⎝ ⎛⎭⎪⎫4,5π3+2k π,k ∈Z .类型三 极坐标与直角坐标互化的应用例3 已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,求线段AB 中点的直角坐标.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33),同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段中点的坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,所以线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.引申探究1.若本例条件不变,求线段AB 中点的极坐标. 解 由例3知,AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32,∴ρ2=x 2+y 2=1,∴ρ=1.又tan θ=y x =3,∴θ=4π3,∴极坐标为⎝⎛⎭⎪⎫1,4π3. 2.若本例条件不变,求AB 的直线方程.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33).又因为直线AB 的倾斜角为π3,故斜率k =3,故直线AB 的方程为y -33=3(x -3),即3x -y =0. 反思与感悟 应用点的极坐标与直角坐标互化的策略在解决极坐标平面内较为复杂的图形问题时,若不方便利用极坐标直接解决,可先将极坐标化为直角坐标,利用直角坐标系中的公式、性质解决,再转化为极坐标系中的问题即可.跟踪训练3 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π). 解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝⎛⎭⎪⎫2,5π4有ρ=2,θ=5π4,∴x =2cos 5π4=-2,y =2sin 5π4=-2.∴B (-2,-2).设点C 的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴点C 的坐标为(6,-6)或(-6,6).∴ρ=6+6=23,tan θ=-66=-1或tan θ=6-6=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)答案 A2.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4答案 B解析 设点P 的极坐标为(ρ,θ), ∵ρ2=x 2+y 2=4,∴ρ=2,又tan θ=y x =-1,且点P 在第二象限,∴θ=3π4.3.若M 点的极坐标为⎝⎛⎭⎪⎫2,5π6,则M 点的直角坐标是( )A .(-3,1)B .(-3,-1)C .(3,-1)D .(3,1) 答案 A解析 由公式可知⎩⎪⎨⎪⎧x =ρcos θ=2cos 5π6=-3,y =ρsin θ=2sin 5π6=1,∴M 点的直角坐标为(-3,1).4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点P 的极坐标可以是( ) A.⎝ ⎛⎭⎪⎫1,-π3B.⎝⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 答案 C解析 以原点为极点,x 轴的正半轴为极轴建立极坐标系,则由极坐标与直角坐标的互化公式,得ρ=x 2+y 2=12+(-3)2=2,tan θ=y x =-31=- 3.∵点P 在第四象限,结合选项知,θ可以是-π3,∴点P 的极坐标可以是⎝⎛⎭⎪⎫2,-π3. 5.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标是________.答案 ⎝⎛⎭⎪⎫6,4π3解析 ρ=(-3)2+(-33)2=6, 由6cos θ=-3,得cos θ=-12,又0≤θ<2π,且M (-3,-33)在第三象限, ∴θ=4π3,故点M 的极坐标为⎝⎛⎭⎪⎫6,4π3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带,事实上,若ρ>0,sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).一、选择题1.已知点M 的极坐标为⎝ ⎛⎭⎪⎫-5,π3,下列所给出的四个坐标中不能表示点M 的坐标的是( ) A.⎝ ⎛⎭⎪⎫5,π3 B.⎝ ⎛⎭⎪⎫5,4π3 C.⎝ ⎛⎭⎪⎫5,-2π3 D.⎝ ⎛⎭⎪⎫-5,-5π3答案 A2.直角坐标为(-2,2)的点M 的极坐标可以为( ) A.⎝⎛⎭⎪⎫22,π4 B.⎝⎛⎭⎪⎫-22,π4C.⎝ ⎛⎭⎪⎫22,3π4D.⎝⎛⎭⎪⎫22,-π4 答案 C解析 易知ρ=(-2)2+22=22,tan θ=2-2=-1,因为点M 在第二象限,所以可取θ=3π4,则点M 的极坐标可以为⎝⎛⎭⎪⎫22,3π4.3.若点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为( )A .(3,4)B .(4,3)C .(-4,3)D .(-3,4) 答案 D4.点M 的直角坐标是(3,3),则点M 的极坐标可能为( ) A.⎝⎛⎭⎪⎫23,5π6 B.⎝⎛⎭⎪⎫23,π6C.⎝ ⎛⎭⎪⎫23,-π6D.⎝⎛⎭⎪⎫23,-5π6 答案 B解析 ρ=x 2+y 2=23,tan θ=yx =33, 又θ的终边过点(3,3),所以θ=π6+2k π,k ∈Z ,所以M 的极坐标可能为⎝⎛⎭⎪⎫23,π6. 5.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D 的极坐标为⎝⎛⎭⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42)答案 C解析 设顶点B 的直角坐标为(x 0,y 0).把A ,D 两点的极坐标化为直角坐标,得A (-2,0),D (-22,-22),则由中点坐标公式得-2+x 02=-22,0+y 02=-22,解得x 0=-32,y 0=-42,故顶点B 的直角坐标为(-32,-42). 二、填空题6.把点M 的极坐标⎝ ⎛⎭⎪⎫-10,π6化为直角坐标为________.答案 (-53,-5)7.已知两点的极坐标A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则直线AB 的倾斜角为________. 答案5π6解析 点A ,B 的直角坐标分别为(0,3),⎝⎛⎭⎪⎫332,32,故k AB =32-3332-0=-33,故直线AB 的倾斜角为5π6.8.将向量OM →=(-1,3)绕原点逆时针旋转120°得到向量的直角坐标为________. 答案 (-1,-3)解析 由于M (-1,3)的极坐标为⎝ ⎛⎭⎪⎫2,2π3,绕极点(即原点)逆时针旋转120°得到的点的极坐标为⎝⎛⎭⎪⎫2,4π3,化为直角坐标为(-1,-3).9.在极坐标系中,O 是极点,点A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫3,2π3,则点O 到AB 所在直线的距离是________.答案125解析 点A ,B 的直角坐标分别为(23,2),⎝ ⎛⎭⎪⎫-32,332,则直线AB 的方程为y -2332-2=x -23-32-23,即(4-33)x -(43+3)y +24=0,则点O 到直线AB 的距离为24(4-33)2+[-(43+3)]2=125.10.在极轴上与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标为________. 答案 (1,0)或(7,0)解析 设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0,解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0). 三、解答题11.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)∵x =ρcos θ=4cos 5π3=2,y =ρsin θ=4sin5π3=-23, ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1,且点B 位于第四象限内,∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0,∴ρ=15,θ=3π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 12.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫43,7π6.(1)求|AB |的值;(2)求△AOB 的面积(O 为极点). 解 如图所示,(1)∠AOB =7π6-π3=5π6,所以|AB |2=32+(43)2-2×3×43cos 5π6=93,所以|AB |=93.(2)S △AOB =12OA ·OB sin∠AOB =12×3×43×12=3 3.13.在极坐标系中,已知三点M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝ ⎛⎭⎪⎫23,π6.判断M ,N ,P 三点是否共线?说明理由.解 将极坐标M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝⎛⎭⎪⎫23,π6分别化为直角坐标,得M (1,-3),N (2,0),P (3,3).方法一 因为k MN =k PN =3,所以M ,N ,P 三点共线. 方法二 因为MN →=NP →=(1,3),所以MN →∥NP →, 所以M ,N ,P 三点共线.四、探究与拓展14.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.答案 ⎝ ⎛⎭⎪⎫22,54π 解析 ∵点P (x ,y )在第三象限的角平分线上,且到横轴的距离为2,∴x =-2,y =-2,∴ρ=x 2+y 2=2 2. 又tan θ=y x =1,且θ∈[0,2π),∴θ=54π. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,54π. 15.已知点M 的极坐标为⎝ ⎛⎭⎪⎫4,π6,极点O ′在直角坐标系xOy 中的直角坐标为(2,3),极轴平行于x 轴,极轴的方向与x 轴的正方向相同,两坐标系的长度单位相同,求点M 的直角坐标.解 如图所示.设M 在直角坐标系x ′O ′y ′中的坐标为(x ′,y ′),则x ′=ρcos θ=4cos π6=23,y ′=ρsin θ=4sin π6=2, 又M 在原坐标系中的坐标为(x ,y ),则x =x ′+2=23+2,y =y ′+3=5,∴点M 的直角坐标是(23+2,5).。
高中新课程数学(新课标人教A版)选修4-4《1.2.1极坐标系的的概念》课件2
2 + y2 x ρ =________
2
y tan θ =x(x≠0)
在一般情况下,由tan θ确定角时,可根据点M所在的象限
取最小正角.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
名师点睛
1.极坐标系的概念
极坐标系的建立有四个要素:①极点;②极轴;③长
度单位;④角度单位和它的正方向.四者缺一不可. 极坐标系就是用长度和角度来确定平面内点的位置. 2.点的极坐标:每一个有序实数对(ρ,θ)确定一个点的 位置.其中,ρ是点M的极径,θ是点M的极角. 平面上给定一点,可以写出这个点的无数多个极坐 标.根据点的极坐标(ρ,θ)的定义,对于给定的点 (ρ,θ)有无数个极坐标,可分为两类,一类为(ρ,θ+
知能提升演练
教材超级链接
(2)极坐标系内一点的极坐标的规定: 设M是平面内一点,极点O与点M的距离 极径 ,记为ρ;以极轴Ox |OM|叫做点M的_____
为始边,射线OM为终边的角xOM叫做点
(ρ,θ) 叫做点M的极坐标,记 极角 ,记为θ.有序数对_________ M的_____ M(ρ,θ) 为___________ .
极角θ在后,不能把顺序搞错了. (2)点的极坐标是不唯一的,但若限制ρ>0,0≤θ<2π,则除
极点外,点的极坐标是唯一确定的.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
【变式1】 写出下列各点的极坐标.
解
π A(4,0),B1, 3
2 13 5 C3, π ,D4, π ,E2, π , , 3 12 4
对应关系?
定一点M;反过来,给定平面内一点M,它的极坐标却不是唯 一的.所以极坐标系所在平面内的点与极坐标不能建立一一 对应关系,这是极坐标系与平面直角坐标系的主要区别.
人教版高中数学A版目录
新课标高中数学人教版A 版必修1第一章 集合与函数概念1.1集合 1.2函数及其表示 1.3函数的基本性质第二章 基本初等函数(Ⅰ)2.1指数函数 2.2对数函数 2.3幂函数第三章 函数的应用3.1函数与方程 3.2函数模型及其应用必修2第一章 空间几何体1.1空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章 直线与方程3.1直线的倾斜角与斜率 3.2直线的方程 3.3直线的交点坐标与距离公式第四章 圆与方程4.1圆的方程 4.2直线、圆的位置关系 4.3空间直角坐标系必修3第一章 算法初步1.1算法与程序框图 1.2基本算法语句 1.3算法案例第二章 统计2.1随机抽样 2.2用样本估计总体 2.3变量间的相关关系第三章 概率3.1随机事件的概率 3.2古典概型 3.3几何概型必修4第一章 三角函数1.1任意角和弧度制 1.2任意角的三角函数 1.3三角函数的诱导公式1.4三角函数的图象与性质 1.5函数sin()y A x ωϕ=+ 1.6三角函数模型的简单应用第二章 平面向量2.1平面向量的实际背景及基本概念 2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示 2.4平面向量的数量积 2.5平面向量应用举例第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 3.2简单的三角恒等变换必修5第一章 解三角形1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业第二章 数列2.1数列的概念与简单表示法 2.2等差数列 2.3等差数列的前n 项和 2.4等比数列2.5等比数列前n 项和第三章 不等式3.1不等关系与不等式 3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题 3.42a b +≤ 选修1-1第一章 常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存在量词第二章 圆锥曲线与方程2.1椭圆 2.2双曲线 2.3抛物线第三章 导数及其应用3.1变化率与导数 3.2导数的计算 3.3导数在研究函数中的应用 3.4生活中的优化问题举例选修1-2第一章 统计案例1.1回归分析的基本思想及其初步应用 1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明 2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算第四章框图4.1流程图 4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程 2.2椭圆 2.3双曲线 2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算阅读与思考向量概念的推广与应用 3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数 1.2导数的计算 1.3导数在研究函数中的应用 1.4生活中的优化问题举例1.5定积分的概念 1.6微积分基本定理 1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合 1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列 2.2二项分布及其应用 2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用 3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何1.1古埃及的数学 1.2两河流域的数学 1.3丰富多彩的记数制度第二讲古希腊数学2.1希腊数学的先行者 2.2毕达哥拉斯学派 2.3欧几里得与《原本》 2.4数学之神──阿基米德第三讲中国古代数学瑰宝3.1《周髀算经》与赵爽弦图 3.2《九章算术》 3.3大衍求一术 3.4中国古代数学家第四讲平面解析几何的产生4.1坐标思想的早期萌芽 4.2笛卡儿坐标系 4.3费马的解析几何思想 4.4解析几何的进一步发展第五讲微积分的诞生5.1微积分产生的历史背景 5.2科学巨人牛顿的工作 5.3莱布尼茨的“微积分”第六讲近代数学两巨星6.1分析的化身──欧拉 6.2数学王子──高斯第七讲千古谜题7.1三次、四次方程求根公式的发现 7.2高次方程可解性问题的解决 7.3伽罗瓦与群论7.4古希腊三大几何问题的解决第八讲对无穷的深入思考8.1古代的无穷观念 8.2无穷集合论的创立 8.3集合论的进一步发展与完善第九讲中国现代数学的开拓与发展9.1中国现代数学发展概观 9.2人民的数学家──华罗庚 9.3当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面1.1平面与球面的位置关系 1.2直线与球面的位置关系和球幂定理 1.3球面的对称性第二讲球面上的距离和角2.1球面上的距离 2.2球面上的角第三讲球面上的基本图形3.1极与赤道 3.2球面二角形 3.3球面三角形①球面三角形②三面角③对顶三角形④球极三角形第四讲球面三角形4.1球面三角形三边之间的关系 4.2球面“等腰”三角形4.3球面三角形的周长 4.4球面三角形的内角和第五讲 球面三角形的全等5.1“边边边”(..s s s )判定定理 5.2“边角边”(..s a s )判定定理5.3“角边角”(..a s a )判定定理 5.4“角角角”(..a a a )判定定理第六讲 球面多边形与欧拉公式6.1球面多边形及其内角和公式 6.2简单多面体的欧拉公式6.3用球面多边形的内角和公式证明欧拉公式第七讲 球面三角形的边角关系7.1球面上的正弦定理和余弦定理 7.2用向量方法证明球面上的余弦定理 ①向量的向量积 ②球面上余弦定理的向量证明7.3从球面上的正弦定理看球面与平面 7.4球面上余弦定理的应用──求地球上两城市间的距离第八讲 欧氏几何与非欧几何8.1平面几何与球面几何的比较 8.2欧氏平行公理与非欧几何模型──庞加莱模型8.3欧氏几何与非欧几何的意义选修3-4第一讲 平面图形的对称群1.1平面刚体运动①平面刚体运动的定义②平面刚体运动的性质 1.2对称变换①对称变换的定义②正多边形的对称变换③对称变换的合成④对称变换的性质⑤对称变换的逆变换1.3平面图形的对称群第二讲 代数学中的对称与抽象群的概念2.1n 元对称群n S 2.2多项式的对称变换 2.3抽象群的概念 ①群的一般概念 ②直积第三讲 对称与群的故事3.1带饰和面饰 3.2分子的对称群 3.3晶体的分类 3.4伽罗瓦理论选修4-1第一讲 相似三角形的判定及有关性质1.1平行线等分线段定理 1.2平行线分线段成比例定理1.3相似三角形的判定及性质 ①相似三角形的判定 ②相似三角形的性质 1.4直角三角形的射影定理第二讲 直线与圆的位置关系2.1圆周角定理 2.2圆内接四边形的性质与判定定理 2.3圆的切线的性质及判定定理2.4弦切角的性质 2.5与圆有关的比例线段第三讲 圆锥曲线性质的探讨3.1平行射影 3.2平面与圆柱面的截线 3.3平面与圆锥面的截线选修4-2第一讲 线性变换与二阶矩阵1.1线性变换与二阶矩阵 ①几类特殊线性变换及其二阶矩阵 ⑴旋转变换 ⑵反射变换 ⑶伸缩变换 ⑷投影变换 ⑸切变变换 ②变换、矩阵的相等 1.2二阶矩阵与平面向量的乘法1.3线性变换的基本性质①线性变换的基本性质 ②一些重要线性变换对单位正方形区域的作用第二讲 变换的复合与二阶矩阵的乘法2.1复合变换与二阶矩阵的乘法 2.2矩阵乘法的性质第三讲 逆变换与逆矩阵3.1逆变换与逆矩阵 ①逆变换与逆矩阵 ②逆矩阵的性质 3.2二阶行列式与逆矩阵3.3逆矩阵与二元一次方程组 ①二元一次方程组的矩阵形式 ②逆矩阵与二元一次方程组第四讲 变换的不变量与矩阵的特征向量4.1变换的不变量──矩阵的特征向量 ①特征值与特征向量 ②特征值与特征向量的计算4.2 特征向量的应用 ①n A 的简单表示 ②特征向量在实际问题中的应用选修4-4第一讲 坐标系1.1平面直角坐标系 1.2极坐标系 1.3简单曲线的极坐标方程 1.4柱坐标与球坐标简介第二讲 参数方程2.1曲线的参数方程 2.2圆锥曲线的参数方程 2.3直线的参数方程 2.4渐开线与摆线选修4-5第一讲 不等式和绝对值不等式1.1不等式 ①不等式的基本性质 ②基本不等式 ③三个正数的算术-几何平均不等式1.2绝对值不等式 ①绝对值三角不等式 ②绝对值不等式的解法第二讲 讲明不等式的基本方法2.1比较法 2.2综合法与分析法 2.3反证法与放缩法第三讲 柯西不等式与排序不等式3.1二维形式柯西不等式 3.2一般形式的柯西不等式 3.3排序不等式第四讲数学归纳法证明不等式4.1数学归纳法 4.2用数学归纳法证明不等式选修4-6第一讲整数的整除1.1整除①整除的概念和性质②带余除法③素数及其判别法1.2最大公因数与最小公倍数①最大公因数②最小公倍数 1.3算术基本定理第二讲同余与同余方程2.1同余①同余的概念②同余的性质 2.2剩余类及其运算 2.3费马小定理和欧拉定理2.4一次同余方程①一次同余方程②大衍求一术 2.5拉格朗日插值法和孙子定理 2.6弃九验算法第三讲一次不定方程3.1二元一次不定方程 3.2二元一次不定方程的特解 3.3多元一次不定方程第四讲数伦在密码中的应用4.1信息的加密与去密 4.2大数分解和公开密钥选修4-7第一讲优选法1.1什么叫优选法 1.2单峰函数 1.3黄金分割法——0.618法①黄金分割常数②黄金分割法——0.618法1.4分数法①分数法②分数法的最优性 1.5其他几种常用的优越法①对分法②盲人爬山法③分批试验法④多峰的情形 1.6多因素方法①纵横对折法和从好点出发法②平行线法③双因素盲人爬山法第二讲试验设计初步2.1正交试验设计法①正交表②正交试验设计③试验结果的分析④正交表的特性2.2正交试验的应用选修4-9第一讲风险与决策的基本概念1.1风险与决策的关系1.2风险与决策的基本概念①风险﹙平均损失﹚②平均收益③损益矩阵④风险型决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介4.1马尔可夫链简介①马尔可夫性与马尔可夫链②转移概率与转移概率矩阵 4.2马尔可夫型决策简介 4.3长期准则下的马尔可夫型决策理论①马尔可夫链的平稳分布②平稳分布与马尔可夫型决策的长期准则③平稳准则的应用案例。
人教版高中数学A版目录
新课标高中数学人教版A 版必修1第一章 集合与函数概念1.1集合 1.2函数及其表示 1.3函数的基本性质第二章 基本初等函数(Ⅰ)2.1指数函数 2.2对数函数 2.3幂函数 第三章 函数的应用必修2第一章 空间几何体1.1空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章 直线与方程3.1直线的倾斜角与斜率 3.2直线的方程 3.3直线的交点坐标与距离公式第四章 圆与方程4.1圆的方程 4.2直线、圆的位置关系 4.3空间直角坐标系必修3第一章 算法初步1.1算法与程序框图 1.2基本算法语句 1.3算法案例第二章 统计2.1随机抽样 2.2用样本估计总体 2.3变量间的相关关系第三章 概率3.1随机事件的概率 3.2古典概型 3.3几何概型必修4第一章 三角函数1.1任意角和弧度制 1.2任意角的三角函数 1.3三角函数的诱导公式1.4三角函数的图象与性质 1.5函数sin()y A x ωϕ=+ 1.6三角函数模型的简单应用第二章 平面向量2.1平面向量的实际背景及基本概念 2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示 2.4平面向量的数量积 2.5平面向量应用举例第三章 三角恒等变换第一章 常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存有量词第二章 圆锥曲线与方程2.1椭圆 2.2双曲线 2.3抛物线第三章 导数及其应用3.1变化率与导数 3.2导数的计算 3.3导数在研究函数中的应用 3.4生活中的优化问题举例 选修1-2第一章 统计案例1.1回归分析的基本思想及其初步应用 1.2独立性检验的基本思想及其初步应用第二章 推理与证明2.1合情推理与演绎证明 2.2直接证明与间接证明第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算第四章 框图4.1流程图 4.2结构图选修2-1第一章 常用逻辑用语1.1命题及其关系 1.2充分条件与必要条件 1.3简单的逻辑联结词 1.4全称量词与存有量词第二章 圆锥曲线与方程2.1曲线与方程 2.2椭圆 2.3双曲线 2.4抛物线第三章 空间向量与立体几何3.1空间向量及其运算 阅读与思考 向量概念的推广与应用 3.2立体几何中的向量方法选修2-2第一章 导数及其应用1.1变化率与导数 1.2导数的计算 1.3导数在研究函数中的应用 1.4生活中的优化问题举例1.5定积分的概念 1.6微积分基本定理 1.7定积分的简单应用第二章 推理与证明2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算选修2-3第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合 1.3二项式定理第二章 随机变量及其分布2.1离散型随机变量及其分布列 2.2二项分布及其应用 2.3离散型随机变量的均值与方差2.4正态分布第三章 统计案例3.1回归分析的基本思想及其初步应用 3.2独立性检验的基本思想及其初步应用选修3-1第一讲 早期的算术与几何1.1古埃及的数学 1.2两河流域的数学 1.3丰富多彩的记数制度第二讲 古希腊数学2.1希腊数学的先行者 2.2毕达哥拉斯学派 2.3欧几里得与《原本》 2.4数学之神──阿基米德 第三讲 中国古代数学瑰宝3.1《周髀算经》与赵爽弦图 3.2《九章算术》 3.3大衍求一术 3.4中国古代数学家第四讲 平面解析几何的产生4.1坐标思想的早期萌芽 4.2笛卡儿坐标系 4.3费马的解析几何思想 4.4解析几何的进一步发展 第五讲 微积分的诞生5.1微积分产生的历史背景 5.2科学巨人牛顿的工作 5.3莱布尼茨的“微积分”第六讲 近代数学两巨星6.1分析的化身──欧拉 6.2数学王子──高斯第七讲 千古谜题7.1三次、四次方程求根公式的发现 7.2高次方程可解性问题的解决 7.3伽罗瓦与群论7.4古希腊三大几何问题的解决第八讲 对无穷的深入思考8.1古代的无穷观点 8.2无穷集合论的创立 8.3集合论的进一步发展与完善第九讲 中国现代数学的开拓与发展9.1中国现代数学发展概观 9.2人民的数学家──华罗庚 9.3当代几何大师──陈省身 选修3-3第一讲 从欧氏几何看球面1.1平面与球面的位置关系 1.2直线与球面的位置关系和球幂定理 1.3球面的对称性第二讲 球面上的距离和角2.1球面上的距离 2.2球面上的角第三讲 球面上的基本图形3.1极与赤道 3.2球面二角形 3.3球面三角形 ①球面三角形 ②三面角 ③对顶三角形 ④球极三角形 第四讲 球面三角形4.1球面三角形三边之间的关系 4.2球面“等腰”三角形4.3球面三角形的周长 4.4球面三角形的内角和第五讲 球面三角形的全等5.1“边边边”(..s s s )判定定理 5.2“边角边”(..s a s )判定定理5.3“角边角”(..a s a )判定定理 5.4“角角角”(..a a a )判定定理第六讲 球面多边形与欧拉公式6.1球面多边形及其内角和公式 6.2简单多面体的欧拉公式6.3用球面多边形的内角和公式证明欧拉公式第七讲 球面三角形的边角关系7.1球面上的正弦定理和余弦定理 7.2用向量方法证明球面上的余弦定理 ①向量的向量积 ②球面上余弦定理的向量证明7.3从球面上的正弦定理看球面与平面 7.4球面上余弦定理的应用──求地球上两城市间的距离 第八讲 欧氏几何与非欧几何8.1平面几何与球面几何的比较 8.2欧氏平行公理与非欧几何模型──庞加莱模型8.3欧氏几何与非欧几何的意义选修3-4第一讲 平面图形的对称群1.1平面刚体运动①平面刚体运动的定义②平面刚体运动的性质 1.2对称变换①对称变换的定义②正多边形的对称变换③对称变换的合成④对称变换的性质⑤对称变换的逆变换1.3平面图形的对称群 第二讲 代数学中的对称与抽象群的概念2.1n 元对称群n S 2.2多项式的对称变换 2.3抽象群的概念 ①群的一般概念 ②直积 第三讲 对称与群的故事3.1带饰和面饰 3.2分子的对称群 3.3晶体的分类 3.4伽罗瓦理论选修4-1第一讲 相似三角形的判定及相关性质1.1平行线等分线段定理 1.2平行线分线段成比例定理1.3相似三角形的判定及性质 ①相似三角形的判定 ②相似三角形的性质 1.4直角三角形的射影定理 第二讲 直线与圆的位置关系2.1圆周角定理 2.2圆内接四边形的性质与判定定理 2.3圆的切线的性质及判定定理2.4弦切角的性质 2.5与圆相关的比例线段第三讲 圆锥曲线性质的探讨3.1平行射影 3.2平面与圆柱面的截线 3.3平面与圆锥面的截线选修4-2第一讲 线性变换与二阶矩阵1.1线性变换与二阶矩阵 ①几类特殊线性变换及其二阶矩阵 ⑴旋转变换 ⑵反射变换 ⑶伸缩变换 ⑷投影变换 ⑸切变变换 ②变换、矩阵的相等 1.2二阶矩阵与平面向量的乘法1.3线性变换的基本性质①线性变换的基本性质 ②一些重要线性变换对单位正方形区域的作用 第二讲 变换的复合与二阶矩阵的乘法2.1复合变换与二阶矩阵的乘法 2.2矩阵乘法的性质第三讲 逆变换与逆矩阵3.1逆变换与逆矩阵 ①逆变换与逆矩阵 ②逆矩阵的性质 3.2二阶行列式与逆矩阵3.3逆矩阵与二元一次方程组 ①二元一次方程组的矩阵形式 ②逆矩阵与二元一次方程组第四讲 变换的不变量与矩阵的特征向量4.1变换的不变量──矩阵的特征向量 ①特征值与特征向量 ②特征值与特征向量的计算4.2 特征向量的应用 ①n A 的简单表示 ②特征向量在实际问题中的应用选修4-4第一讲 坐标系1.1平面直角坐标系 1.2极坐标系 1.3简单曲线的极坐标方程 1.4柱坐标与球坐标简介 第二讲 参数方程2.1曲线的参数方程 2.2圆锥曲线的参数方程 2.3直线的参数方程 2.4渐开线与摆线 选修4-5第一讲 不等式和绝对值不等式1.1不等式 ①不等式的基本性质 ②基本不等式 ③三个正数的算术-几何平均不等式1.2绝对值不等式 ①绝对值三角不等式 ②绝对值不等式的解法第二讲 讲明不等式的基本方法2.1比较法 2.2综合法与分析法 2.3反证法与放缩法第三讲 柯西不等式与排序不等式3.1二维形式柯西不等式 3.2一般形式的柯西不等式 3.3排序不等式第四讲 数学归纳法证明不等式4.1数学归纳法 4.2用数学归纳法证明不等式选修4-6第一讲整数的整除1.1整除①整除的概念和性质②带余除法③素数及其判别法1.2最大公因数与最小公倍数①最大公因数②最小公倍数 1.3算术基本定理第二讲同余与同余方程2.1同余①同余的概念②同余的性质 2.2剩余类及其运算 2.3费马小定理和欧拉定理2.4一次同余方程①一次同余方程②大衍求一术 2.5拉格朗日插值法和孙子定理 2.6弃九验算法第三讲一次不定方程3.1二元一次不定方程 3.2二元一次不定方程的特解 3.3多元一次不定方程第四讲数伦在密码中的应用4.1信息的加密与去密 4.2大数分解和公开密钥选修4-7第一讲优选法1.1什么叫优选法 1.2单峰函数 1.3黄金分割法——0.618法①黄金分割常数②黄金分割法——0.618法 1.4分数法①分数法②分数法的最优性 1.5其他几种常用的优越法①对分法②盲人爬山法③分批试验法④多峰的情形 1.6多因素方法①纵横对折法和从好点出发法②平行线法③双因素盲人爬山法第二讲试验设计初步2.1正交试验设计法①正交表②正交试验设计③试验结果的分析④正交表的特性2.2正交试验的应用选修4-9第一讲风险与决策的基本概念1.1风险与决策的关系1.2风险与决策的基本概念①风险﹙平均损失﹚②平均收益③损益矩阵④风险型决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介4.1马尔可夫链简介①马尔可夫性与马尔可夫链②转移概率与转移概率矩阵 4.2马尔可夫型决策简介 4.3长期准则下的马尔可夫型决策理论①马尔可夫链的平稳分布②平稳分布与马尔可夫型决策的长期准则③平稳准则的应用案例。
高中数学第一章坐标系1.4柱坐标系与球坐标系简介教案新人教A版选修4
高中数学第一章坐标系1.4柱坐标系与球坐标系简介教案新人教A 版选修4教学目的:知识目标:了解在柱坐标系、球坐标系中刻画空间中点的位置的方法能力目标:了解柱坐标、球坐标与直角坐标之间的变换公式。
德育目标:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系教学难点:利用它们进行简单的数学应用授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。
问题:如何在空间里确定点的位置?有哪些方法?学生回顾在空间直角坐标系中刻画点的位置的方法极坐标的意义以及极坐标与直角坐标的互化原理二、讲解新课:1、球坐标系设P 是空间任意一点,在oxy 平面的射影为Q ,连接OP ,记| OP |=r ,OP 与OZ 轴正向所夹的角为θ,P 在oxy 平面的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为ϕ,点P 的位置可以用有序数组),,(ϕθr 表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系)有序数组),,(ϕθr 叫做点P 的球坐标,其中r ≥0,0≤θ≤π,0≤ϕ<2π。
空间点P 的直角坐标),,(z y x 与球坐标),,(ϕθr 之间的变换关系为:⎪⎪⎩⎪⎪⎨⎧====++θϕθϕθcos sin sin cos sin 2222r z r y r x r z y x 2、柱坐标系设P 是空间任意一点,在oxy 平面的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点在平面oxy 上的极坐标,点P 的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系有序数组(ρ,θ,Z)叫点P 的柱坐标,其中ρ≥0, 0≤θ<2π, z ∈R空间点P 的直角坐标(x, y, z)与柱坐标(ρ,θ,Z)之间的变换关系为:3、数学应用例1建立适当的球坐标系,表示棱长为1的正方体的顶点.变式训练建立适当的柱坐标系, 表示棱长为1的正方体的顶点.例2.将点M 的球坐标)65,3,8(ππ化为直角坐标.变式训练1.将点M 的直角坐标)2,1,1(--化为球坐标.2.将点M 的柱坐标)8,3,4(π化为直角坐标.3.在直角坐标系中点),,(a a a a (>0)的球坐标是什么?例3.球坐标满足方程r=3的点所构成的图形是什么?并将此方程化为直角坐标方程.⎪⎩⎪⎨⎧===z z y x θρθρsin cos变式训练标满足方程ρ=2的点所构成的图形是什么?例4.已知点M 的柱坐标为),3,4,2(π点N 的球坐标为),2,4,2(ππ求线段MN 的长度.思考: 在球坐标系中,集合⎪⎩⎪⎨⎧⎭⎬⎫≤≤≤≤≤≤=πϕπθϕθ20,20,62),,(r r M 表示的图形的体积为多少?三、巩固与练习四、小 结:本节课学习了以下内容:1.球坐标系的作用与规则;2.柱坐标系的作用与规则。
高中数学《极坐标系的的概念》教案 新人教A版选修4
极坐标系的的概念教学目的:知识与技能:理解极坐标的概念过程与方法:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:理解极坐标的意义教学难点:能够在极坐标系中用极坐标确定点位置授课类型:新授课教学模式:启发、诱导发现教学.教学过程:一、复习引入:情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆? 情境2:如图为某校园的平面示意图,假设某同学在教学楼处。
(1)他向东偏60°方向走120M 后到达什么位置?该位置惟一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.二、讲解新课:从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。
这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。
1、极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)2、极坐标系内一点的极坐标的规定对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。
特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角.3、负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。
人教课标版高中数学选修4-4:《极坐标系》教案-新版
1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。
高中数学第一讲坐标系学案新人教A版选修4.doc
第一讲坐标系一平面直角坐标系[学习目标]1.了解平面直角坐标系的组成,领会坐标法的应用.2.理解平面直角坐标系中的伸缩变换.3.能够建立适当的平面直角坐标系,运用解析法解决数学问题.[知识链接]1.如何根据几何图形的几何特征建立恰当的坐标系?提示(1)如果图形有对称中心,可以选对称中心为坐标原点;(2)如果图形有对称轴,可以选对称轴为坐标轴;(3)若题目有已知长度的线段,以线段所在的直线为x轴,以端点或中点为原点.建系原则:使几何图形上的特殊点尽可能多的落在坐标轴上.2.怎样由正弦曲线y=sin x得到曲线y=sin 2x?提示曲线y=sin x上各点保持纵坐标不变,将横坐标缩为原来的一半.3.怎样由正弦曲线y=sin x得到曲线y=3sin x?提示曲线y=sin x上各点保持横坐标不变,将纵坐标伸长为原来的3倍.[预习导引]1.平面直角坐标系(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立联系,从而实现数与形的结合.(2)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系.(3)坐标法解决几何问题的“三步曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;第二步,通过代数运算,解决代数问题;第三步,把代数运算结果“翻译”成几何结论.2.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为坐标伸缩变换,这就是用坐标方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.要点一 运用坐标法解决解析几何问题例1 △ABC 的顶点A 固定,角A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条直线移动,求△ABC 外心的轨迹方程.解 以边BC 所在的定直线为x 轴,过A 作x 轴的垂线为y 轴,建立直角坐标系,则点A 的坐标为(0,b ).设△ABC 的外心为M (x ,y ).取BC 的中点N ,则MN ⊥BC ,即MN 是BC 的垂直平分线.因为|BC |=2a ,所以|BN |=a ,|MN |=|y |.又M 是△ABC 的外心,所以|MA |=|MB |.又|MA |=x 2+(y -b )2,|MB |=|MN |2+|BN |2=y 2+a 2,所以x 2+(y -b )2=y 2+a 2,化简,得所求的轨迹方程为x 2-2by +b 2-a 2=0(x ∈R ,y >0). 规律方法 建立坐标系的几个基本原则: (1)尽量把点和线段放在坐标轴上; (2)对称中心一般作为原点; (3)对称轴一般作为坐标轴.跟踪演练1 △ABC 的边AB 的长为定长2a ,边BC 的中线的长为定长m ,试求顶点C 的轨迹方程.解 取AB 的中点为原点,直线AB 为x 轴,建立平面直角坐标系,则A (-a ,0),B (a ,0).设C (x ,y ),则边BC 的中点为D ⎝ ⎛⎭⎪⎫x +a 2,y 2,由|AD |=m ,得⎝ ⎛⎭⎪⎫x +a 2+a 2+⎝ ⎛⎭⎪⎫y 22=m 2.化简得(x+3a )2+y 2=4m 2.又因点C 在直线AB 上时不能组成三角形,故y ≠0. 因此顶点C 的轨迹方程是(x +3a )2+y 2=4m 2(y ≠0). 要点二 用坐标法解决平面几何问题例2 已知▱ABCD ,求证:|AC |2+|BD |2=2(|AB |2+|AD |2). 证明 法一(坐标法)以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则AC 的中点E ⎝ ⎛⎭⎪⎫b 2,c2,由对称性知 D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2,|AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2, |AC |2+|BD |2=4a 2+2b 2+2c 2-4ab=2(2a 2+b 2+c 2-2ab ),|AB |2+|AD |2=2a 2+b 2+c 2-2ab ,∴|AC |2+|BD |2=2(|AB |2+|AD |2). 法二(向量法)在▱ABCD 中,AC →=AB →+AD →,两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD →,同理得BD →2=|BD →|2=BA→2+BC →2+2BA →·BC →,以上两式相加,得|AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB →+BA →)=2(|AB→|2+|AD →|2),即|AC |2+|BD |2=2(|AB |2+|AD |2).规律方法 1.本例实际上为平行四边形的一个重要定理:平行四边形的两条对角线的平方和等于其四边的平方和.法一是运用代数方法,即解析法实现几何结论的证明的.这种“以算代证”的解题策略就是坐标方法的表现形式之一.法二运用了向量的数量积运算,更显言简意赅,给人以简捷明快之感. 2.建立平面直角坐标系的方法步骤(1)建系——建立平面直角坐标系,建系原则是利于运用已知条件,使运算简便,表达式简明; (2)设点——选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程; (3)运算——通过运算,得到所需要的结果.跟踪演练2 已知正△ABC 的边长为a ,在平面上求一点P ,使|PA |2+|PB |2+|PC |2最小,并求出此最小值.解 以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立平面直角坐标系,如图,则A ⎝ ⎛⎭⎪⎫0,32a ,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0. 设P (x ,y ),则|PA |2+|PB |2+|PC |2=x 2+⎝⎛⎭⎪⎫y -32a 2+⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2≥a 2,当且仅当x =0,y =36a 时,等号成立.∴所求的最小值为a 2,此时P 点的坐标为P ⎝ ⎛⎭⎪⎫0,36a ,即为正△ABC 的中心. 要点三 平面直角坐标系中的伸缩变换例3 在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标; (2)点B 经过φ变换后得到点B ′⎝ ⎛⎭⎪⎫-3,12,求点B 的坐标;(3)求直线l :y =6x 经过φ变换后所得直线l ′的方程;(4)求双曲线C :x 2-y 264=1经过φ变换后所得曲线C ′的焦点坐标.解 (1)设点A ′(x ′,y ′).由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .又已知点A ⎝ ⎛⎭⎪⎫13,-2.于是x ′=3×13=1,y ′=12×(-2)=-1.∴变换后点A ′的坐标为(1,-1).(2)设B (x ,y ),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x =13x ′,y =2y ′,由于B ′⎝ ⎛⎭⎪⎫-3,12,于是x =13×(-3)=-1,y =2×12=1,∴B (-1,1)为所求.(3)设直线l ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入y =6x 得2y ′=6×⎝ ⎛⎭⎪⎫13x ′,所以y ′=x ′,即y =x 为所求. (4)设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎪⎨⎪⎧x =13x ′y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,∴曲线C ′的方程为x 29-y 216=1,∴a 2=9,b 2=16,c 2=25,因此曲线C ′的焦点F 1(5,0),F 2(-5,0).规律方法 1.解答本题的关键:(1)是根据平面直角坐标系中的伸缩变换公式的意义与作用;(2)是明确变换前后点的坐标关系,利用方程思想求解. 2.伸缩变换前后的关系已知平面直角坐标系中的伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则点的坐标与曲线的方程的关系为跟踪演练3 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足条件的伸缩变换.解 设满足条件的伸缩变换为⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),将其代入方程2x ′-y ′=4,得2λx-μy =4,与x -2y =2比较,将其变成2x -4y =4.比较系数得λ=1,μ=4.所以⎩⎪⎨⎪⎧x ′=x ,y ′=4y .直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.1.坐标系是现代数学中的重要内容,它在数学发展的历史上起着划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁、利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究. 2.体会用坐标伸缩变换研究图形伸缩变换的思想方法(1)平面几何图形的伸缩变换可以归结为坐标伸缩变换,学习中可结合坐标间的对应关系进行理解.(2)对于图形的伸缩变换问题,需要搞清新旧坐标,区别x ,y 和x ′,y ′,点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原曲线的方程,点(x ′,y ′)的坐标适合变换后的曲线方程.1.点P (-1,2)关于点A (1,-2)的对称点坐标为( ) A.(3,6) B.(3,-6) C.(2,-4)D.(-2,4)解析 设对称点的坐标为(x ,y ),则x -1=2,且y +2=-4, ∴x =3,且y =-6. 答案 B2.在同一平面直角坐标系中,将曲线y =3sin 2x 变成曲线y ′=sin x ′的伸缩变换是( )A.⎩⎪⎨⎪⎧x =2x ′,y =13y ′B.⎩⎪⎨⎪⎧x ′=2x ,y ′=13yC.⎩⎪⎨⎪⎧x =2x ′,y =3y ′ D.⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 解析 设⎩⎪⎨⎪⎧x ′=λx ,λ>0,y ′=μy ,μ>0,则μy =sin λx ,即y =1μsin λx .比较y =3sin 2x 与y =1μsinλx ,则有1μ=3,λ=2.∴μ=13,λ=2.∴⎩⎪⎨⎪⎧x ′=2x ,y ′=13y .答案 B3.如何由正弦曲线y =sin x 经伸缩变换得到y =12sin 12x 的图象( )A.将横坐标压缩为原来的12,纵坐标也压缩为原来的12B.将横坐标压缩为原来的12,纵坐标伸长为原来的2倍C.将横坐标伸长为原来的2倍,纵坐标也伸长为原来的2倍D.将横坐标伸长为原来的2倍,纵坐标压缩为原来的12答案 D4.已知函数f (x )=(x -1)2+1+(x +1)2+1,则f (x )的最小值为________.解析 f (x )可看作是平面直角坐标系下x 轴上一点(x ,0)到两定点(-1,1)和(1,1)的距离之和,结合图形可得,f (x )的最小值为2 2. 答案 2 2一、基础达标1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y后,曲线C 变为曲线x ′2+y ′2=0,则曲线C 的方程为( ) A.25x 2+9y 2=0 B.25x 2+9y 2=1 C.9x 2+25y 2=0D.9x 2+25y 2=1解析 将伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y代入x ′2+y ′2=0,得25x 2+9y 2=0,此即为曲线C 的方程.答案 A2.平行四边形ABCD 中三个顶点A ,B ,C 的坐标分别是(-1,2),(3,0),(5,1),则顶点D 的坐标是( ) A.(9,-1)B.(-3,1)C.(1,3)D.(2,2)解析 设D (x ,y ),则由题意,得AB →=DC →,即(4,-2)=(5-x ,1-y ),∴⎩⎪⎨⎪⎧x =1,y =3,即D (1,3). 答案 C3.已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD在伸缩变换⎩⎪⎨⎪⎧x ′=ax ,y ′=y (a >0)的作用下变成正方形,则a 的值为( )A.1B.2C.12D.23解析 如图,由矩形ABCD 变为正方形A ′B ′C ′D ′,已知y ′=y , ∴边长为1,∴AB 长由2缩为原来的一半,∴x ′=12x ,∴a =12.答案 C4.已知f 1(x )=sin x ,f 2(x )=sin ωx (ω>0),f 2(x )的图象可以看作把f 1(x )的图象在其所在的坐标系中的横坐标压缩到原来的13(纵坐标不变)而得到的,则ω为( )A.12B.2C.3D.13解析 对照伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),由y =sin x 得到y ′=sin ωx ′故⎩⎪⎨⎪⎧ωx ′=x y ′=y ,即⎩⎪⎨⎪⎧x ′=1ωx y ′=y. ∴1ω=13,∴ω=3. 答案 C5.若点P (-2016,2017)经过伸缩变换⎩⎪⎨⎪⎧x ′=x2 017,y ′=y2 016后的点在曲线x ′y ′=k 上,则k =________.解析 ∵P (-2 016,2 017)经过伸缩变换⎩⎪⎨⎪⎧x ′=x2 017,y ′=y 2 016,得⎩⎪⎨⎪⎧x ′=-2 0162 017,y ′=2 0172 016代入x ′y ′=k ,得k =x ′y ′=-1. 答案 -16.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换为________.解析 将椭圆方程x 210+y 28=1,化为2x 25+y22=4,∴⎝⎛⎭⎪⎫2x 52+⎝ ⎛⎭⎪⎫y 22=4.令⎩⎪⎨⎪⎧x ′=25x ,y ′=y2得x ′2+y ′2=4,即x 2+y 2=4.∴伸缩变换⎩⎨⎧5x ′=2x ,2y ′=y为所求.答案 ⎩⎪⎨⎪⎧x ′=25x y ′=12y7.在同一平面直角坐标系中,求将曲线x 2-2y 2-3x =0变成曲线x ′2-8y ′2-12x ′=0的伸缩变换. 解 令伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0).将其代入x ′2-8y ′2-12x ′=0得λ2x 2-8μ2y 2-12λx =0,与x 2-2y 2-3x =0.进行比较,得⎩⎪⎨⎪⎧4μ2=λ2,12λ=3.故⎩⎪⎨⎪⎧λ=4,μ=2.从而伸缩变换为⎩⎪⎨⎪⎧x ′=4x ,y ′=2y . 二、能力提升8.在平面直角坐标系中,方程3x -2y +1=0所对应的直线经过伸缩变换⎩⎪⎨⎪⎧x ′=13x ,y ′=2y 后的直线方程为( ) A.3x ′-4y ′+1=0B.3x ′+y ′-1=0C.9x ′-y ′+1=0D.x ′-4y ′+1=0解析 由伸缩变换⎩⎪⎨⎪⎧x ′=13x ,y ′=2y 得⎩⎪⎨⎪⎧x =3x ′,y =12y ′,代入方程3x -2y +1=0有9x ′-y ′+1=0.答案 C9.平面直角坐标系中,在伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0,λ≠1),y ′=μy (μ>0,μ≠1)作用下仍是其本身的点为________.解析 设P (x ,y )在伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)作用下得到P ′(λx ,μy ).依题意得⎩⎪⎨⎪⎧x =λx ,y =μy ,其中λ>0,μ>0,λ≠1,μ≠1.∴x =y =0,即P (0,0)为所求.答案 (0,0)10.已知实数x ,y 满足方程x 2+y 2-4x +1=0,则x 2+y 2的最大值和最小值分别为________. 解析 x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. 答案 7+43;7-4 311.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0; (2)x 2+y 2=2.解 (1)由伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,得⎩⎪⎨⎪⎧x =2x ′,y =3y ′,将其代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0. 所以经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,后,直线5x +2y =0变成直线5x ′+3y ′=0.(2)将⎩⎪⎨⎪⎧x =2x ′,y =3y ′代入x 2+y 2=2,得到经过伸缩变换后的图形的方程是x ′214+y ′219=2,即x ′212+y ′229=1.所以经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y后,圆x 2+y 2=2变成椭圆x ′212+y ′229=1.12.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处.求城市B 处于危险区内的时间.解 以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0),以点B 为圆心,30为半径的圆的方程为(x -40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区.台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2.求得|MN |=2302-d 2=20(km),故|MN |20=1,所以城市B 处于危险区的时间为1 h.三、探究与创新13.学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图,航天器运行(按顺时针方向)的轨迹方程为x 2100+y 225=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴,M ⎝⎛⎭⎪⎫0,647为顶点的抛物线的实线部分,降落点为D (8,0),观测点A (4,0),B (6,0)同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x 轴上方时,观测点A ,B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?解 (1)设曲线方程为y =ax 2+647.因为D (8,0)在抛物线上,∴0=a ·82+647,解得:a =-17.∴曲线方程为y =-17x2+647.(2)设变轨点为C (x ,y ).根据题意可知⎩⎪⎨⎪⎧x 2100+y 225=1 ①y =-17x 2+647 ②得4y 2-7y -36=0,解得y =4或y =-94(不合题意).∴y =4.得x =6或x =-6(不合题意,舍去). ∴C 点的坐标为(6,4).|AC |=25,|BC |=4.所以当观测点A 、B 测得离航天器的距离分别为25、4时,应向航天器发出变轨指令.二 极坐标系[学习目标]1.理解极坐标系的概念,理解极坐标的多值性.2.掌握极坐标与直角坐标的互化.3.掌握极坐标系的简单应用. [知识链接]1.在教材第2页思考中,我们以信息中心为基点,用角和距离刻画点P 的位置,这种刻画就是极坐标思想.这种方法与用直角坐标刻画点P 的位置有什么区别和联系?你认为哪种方法更方便?提示 直角坐标系中点的位置用有序数组来刻画.两者的联系是都通过数刻画点,体现了数形结合思想.在这里,应该使用角和距离刻画点P 位置更方便. 2.由极坐标的意义可判断平面上点的极坐标唯一吗?提示 平面上点的极坐标不是唯一的.如果限定ρ>0,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)可建立一一对应关系.3.联系点的极坐标与直角坐标的互化公式的纽带是什么?提示 任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带.事实上,若ρ>0,则sin θ=y ρ,cos θ=xρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0). [预习导引] 1.极坐标系的概念(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R ).如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的. 3.极坐标与直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.(2)互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:要点一 极坐标系的概念例1 设点A ⎝⎛⎭⎪⎫2,π3,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).解 如图所示,关于极轴的对称点为B ⎝⎛⎭⎪⎫2,-π3.关于直线l 的对称点为C ⎝ ⎛⎭⎪⎫2,23π.关于极点O 的对称点为D ⎝ ⎛⎭⎪⎫2,-23π.规律方法 1.点的极坐标不是唯一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是唯一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序.跟踪演练1 在极坐标系中,下列各点中与⎝⎛⎭⎪⎫2,π6不表示同一个点的是( )A.⎝⎛⎭⎪⎫2,-116πB.⎝⎛⎭⎪⎫2,136πC.⎝⎛⎭⎪⎫2,116πD.⎝⎛⎭⎪⎫2,-236π 解析 与极坐标⎝ ⎛⎭⎪⎫2,π6相同的点可以表示为⎝ ⎛⎭⎪⎫2,π6+2k π(k ∈Z ),只有⎝ ⎛⎭⎪⎫2,116π不满足. 答案 C要点二 极坐标化为直角坐标例2 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫3,-π4,B ⎝ ⎛⎭⎪⎫2,2π3,C ⎝ ⎛⎭⎪⎫32,π,求它们的直角坐标.解 因为x =3cos ⎝ ⎛⎭⎪⎫-π4=3×22=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=3×⎝ ⎛⎭⎪⎫-22=-322,所以A 点的直角坐标为⎝⎛⎭⎪⎫322,-322.同理,B ,C 两点的直角坐标分别为(-1,3),⎝ ⎛⎭⎪⎫-32,0.规律方法 将点的极坐标(ρ,θ)化为点的直角坐标(x ,y )时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 跟踪演练2 分别把下列点的极坐标化为直角坐标:(1)⎝ ⎛⎭⎪⎫2,π6;(2)⎝⎛⎭⎪⎫3,π2;(3)(π,π).解 (1)∵x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1.∴点的极坐标⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1).(2)∵x =ρcos θ=3cos π2=0,y =ρsin θ=3sin π2=3.∴点的极坐标⎝⎛⎭⎪⎫3,π2化为直角坐标为(0,3).(3)∵x =ρcos θ=πcos π=-π,y =ρsin θ=πsin π=0. ∴点的极坐标(π,π)化为直角坐标为(-π,0). 要点三 直角坐标化为极坐标例3 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π): (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4,tan θ=yx=-3,θ∈[0,2π),由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝ ⎛⎭⎪⎫4,23π.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33, θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6. (3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π).由于点⎝ ⎛⎭⎪⎫3π2,3π2在第一象限,∴θ=π4.∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.规律方法 1.将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2, tan θ=yx (x ≠0)进行求解,先求极径,再求极角.2.在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪演练3 点P 的直角坐标为(2,-2),那么它的极坐标可表示为( )A.⎝ ⎛⎭⎪⎫2,π4B.⎝ ⎛⎭⎪⎫2,3π4C.⎝⎛⎭⎪⎫2,5π4 D.⎝⎛⎭⎪⎫2,7π4 解析 ∵ρ=(-2)2+(2)2=2,tan θ=-22=-1,点P 在第四象限,θ=7π4.∴极坐标为⎝⎛⎭⎪⎫2,7π4.答案 D要点四 极坐标的应用例4 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π).解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝ ⎛⎭⎪⎫2,54π有ρ=2,θ=54π,∴x =2cos 54π=-2,y =2sin 54π=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6). ∴ρ=6+6=23,tan θ=-66=-1,∴θ=74π或θ=34π.故点C 的极坐标为⎝⎛⎭⎪⎫23,74π或⎝ ⎛⎭⎪⎫23,34π.规律方法 1.本例综合考查了点的极坐标与直角坐标的互化公式以及等边三角形的意义和性质.结合几何图形可知,点C 的坐标有两解,设出点的坐标寻求等量关系建立方程组求解是关键.2.若设出C (ρ,θ),利用余弦定理亦可求解跟踪演练4 已知A 、B 两点的极坐标分别是⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫4,5π6,求A 、B 两点间的距离和△AOB 的面积.解 求两点间的距离可用如下公式: |AB |=4+16-2×2×4×cos ⎝ ⎛⎭⎪⎫5π6-π3=20=2 5.S △AOB =12|ρ1ρ2sin(θ1-θ2)|=12⎪⎪⎪⎪⎪⎪2×4×sin ⎝ ⎛⎭⎪⎫5π6-π3=12×2×4=4.1.极坐标系的概念极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可. 2.点的极坐标每一个有序实数对(ρ,θ)确定一个点的位置.其中,ρ是点M 的极径,θ是点M 的极角.平面上给定一点,可以写出这个点的无数多个极坐标.如果限定ρ>0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一一对应的关系. 3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带.事实上,若ρ>0,sin θ=y ρ,cos θ=xρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx(x ≠0).1.极坐标⎝⎛⎭⎪⎫1,2π3对应的点在以极点为坐标原点,极轴为横轴的直角坐标系的( )A.第一象限B.第二象限C.第三象限D.第四象限解析 由题意可得ρ=1,θ=2π3,∴x =ρcos θ=-12,y =ρsin θ=32,故它的直角坐标为⎝ ⎛⎭⎪⎫-12,32在第二象限.答案 B2.点A 的极坐标是⎝⎛⎭⎪⎫2,7π6,则点A 的直角坐标为( )A.(-1,-3)B.(-3,1)C.(-3,-1)D.(3,-1)解析 x =ρcos θ=2cos 76π=-3,y =ρsin θ=2sin 76π=-1.答案 C3.把点P 的直角坐标(-3,1)化成极坐标为________(ρ>0,0≤θ<2π).解析 ρ=(-3)2+12=2,tan θ=1-3=-33,又点P 在第二象限,故θ=5π6,因此,点P 的极坐标为⎝ ⎛⎭⎪⎫2,5π6.答案 ⎝⎛⎭⎪⎫2,5π64.将极轴Ox 绕极点顺时针方向旋转π6得到射线OP ,在OP 上取点M ,使|OM |=2,则ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴对称点的极坐标为________(ρ>0,θ∈[0,2π)).解析 ρ=|OM |=2,与OP 终边相同的角为-π6+2k π(k ∈Z ).∵θ∈[0,2π),∴k =1,θ=11π6,∴M ⎝ ⎛⎭⎪⎫2,11π6,∴M 关于极轴的对称点为⎝ ⎛⎭⎪⎫2,π6.答案 ⎝ ⎛⎭⎪⎫2,11π6 ⎝⎛⎭⎪⎫2,π6一、基础达标1.点P 的极坐标为⎝⎛⎭⎪⎫2,74π,则点P 的直角坐标为( ) A.(2,2) B.(2,-2) C.(2,2)D.(-2,2)解析 x =ρcos θ=2,y =ρsin θ=- 2. 答案 B2.点M 的直角坐标为⎝⎛⎭⎪⎫0,π2,则点M 的极坐标可以为( )A.⎝ ⎛⎭⎪⎫π2,0B.⎝⎛⎭⎪⎫0,π2C.⎝⎛⎭⎪⎫π2,π2D.⎝⎛⎭⎪⎫π2,-π2解析 ∵ρ=x 2+y 2=π2,且θ=π2,∴M 的极坐标为⎝ ⎛⎭⎪⎫π2,π2.答案 C3.下列各点与⎝ ⎛⎭⎪⎫2,π3表示极坐标系中同一点的是( ) A.⎝⎛⎭⎪⎫2,2π3B.(2,π)C.⎝⎛⎭⎪⎫2,7π3D.(2,2π)解析 与极坐标⎝ ⎛⎭⎪⎫2,π3相同的点可以表示为⎝ ⎛⎭⎪⎫2,π3+2k π(k ∈Z ),只有⎝⎛⎭⎪⎫2,7π3适合.答案 C4.在极坐标系中,已知点P 1⎝ ⎛⎭⎪⎫6,π4、P 2⎝⎛⎭⎪⎫8,3π4,则|P 1P 2|等于( )A.9B.10C.14D.2解析 ∠P 1OP 2=3π4-π4=π2,∴△P 1OP 2为直角三角形,由勾股定理可得|P 1P 2|=10.答案 B5.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫1,34π,B ⎝⎛⎭⎪⎫2,π4,则A 、B 两点间的距离为________.解析 由公式|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2), 得|AB |=1+4-2×1×2cos ⎝⎛⎭⎪⎫3π4-π4=1+4-0= 5. 答案56.平面直角坐标系中,若点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=13y 后的点为Q ,则极坐标系中,极坐标为Q 的点到极轴所在直线的距离等于________.解析 ∵点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=13y 后的点为Q ⎝ ⎛⎭⎪⎫6,7π6,则极坐标系中,极坐标为Q 的点到极轴所在直线的距离等于6⎪⎪⎪⎪⎪⎪sin 7π6=3.答案 37.在极轴上求与点A ⎝ ⎛⎭⎪⎫42,π4距离为5的点M 的坐标.解 设M (r ,0),∵A ⎝ ⎛⎭⎪⎫42,π4,∴(42)2+r 2-82r cos π4=5,即r 2-8r +7=0,解得r =1或r =7.∴点M 的坐标为(1,0)或(7,0). 二、能力提升8.下列的点在极轴上方的是( ) A.(3,0)B.⎝ ⎛⎭⎪⎫3,7π6C.⎝⎛⎭⎪⎫4,7π4D.⎝⎛⎭⎪⎫4,17π4解析 建立极坐标系,由极坐标的定义可得点(3,0)在极轴上,点⎝ ⎛⎭⎪⎫3,7π6,⎝ ⎛⎭⎪⎫4,7π4在极轴下方,点⎝⎛⎭⎪⎫4,17π4在极轴上方,故选D.答案 D9.点M ⎝⎛⎭⎪⎫6,5π6到极轴所在直线的距离为________.解析 依题意,点M ⎝ ⎛⎭⎪⎫6,5π6到极轴所在的直线的距离为d =6×sin 5π6=3.答案 310.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎪⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析 如图,|OM |=3,∠xOM =π3,在直线OM 上取点P ,Q ,使|OP |=7,|OQ |=1,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.点P ,Q 都满足条件,且∠xOP =π3,∠xOQ =4π3.答案 ⎝⎛⎭⎪⎫7,π3或⎝⎛⎭⎪⎫1,4π311.(1)已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫5,π3,B ⎝ ⎛⎭⎪⎫1,2π3,C ⎝ ⎛⎭⎪⎫2,-3π4,D ⎝ ⎛⎭⎪⎫4,11π6,求它们的直角坐标.(2)已知点的直角坐标分别为A (3,3),B ⎝ ⎛⎭⎪⎫0,-53,C (-1,-3),求它们的极坐标(ρ≥0,0≤θ<2π).解 (1)根据x =ρcos θ,y =ρsin θ,得A ⎝ ⎛⎭⎪⎫52,532,B ⎝ ⎛⎭⎪⎫-12,32,C (-2,-2),D (23,-2).(2)根据ρ2=x 2+y 2,tan θ=y x 得A ⎝ ⎛⎭⎪⎫23,π6,B ⎝ ⎛⎭⎪⎫53,3π2,C ⎝ ⎛⎭⎪⎫2,4π3.12.在极坐标系中,已知△ABC 的三个顶点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3.(1)判断△ABC 的形状; (2)求△ABC 的面积.解 (1)如图所示,由A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3得|OA |=|OB |=|OC |=2,∠AOB =∠BOC =∠AOC =2π3.∴△AOB ≌△BOC ≌△AOC ,∴AB =BC =CA , 故△ABC 为等边三角形. (2)由上述可知,AC =2OA sin π3=2×2×32=2 3. ∴S △ABC =34×(23)2=33(面积单位). 三、探究与创新13.某大学校园的部分平面示意图如图:用点O ,A ,B ,C ,D ,E ,F ,G 分别表示校门,器材室,操场,公寓,教学楼,图书馆,车库,花园,其中|AB |=|BC |,|OC |=600 m.建立适当的极坐标系,写出除点B 外各点的极坐标(限定ρ≥0,0≤θ<2π且极点为(0,0)).解 以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系.由|OC |=600 m ,∠AOC =π6,∠OAC =π2,得|AC |=300 m ,|OA |=300 3 m ,又|AB |=|BC |,所以|AB |=150 m.同理,得|OE |=2|OG |=3002m ,所以各点的极坐标分别为O (0,0),A (3003,0),C ⎝⎛⎭⎪⎫600,π6,D ⎝⎛⎭⎪⎫300,π2,E ⎝ ⎛⎭⎪⎫3002,3π4,F (300,π),G ⎝⎛⎭⎪⎫1502,34π.三 简单曲线的极坐标方程[学习目标]1.了解极坐标方程的意义.2.掌握直线和圆的极坐标方程.3.能够根据极坐标方程研究有关数学问题. [知识链接]1.曲线的极坐标方程是否唯一?提示 由于平面上点的极坐标的表示形式不唯一,所以曲线上的点的极坐标有多种表示,曲线的极坐标方程不唯一.2.上节课我们学了点的直角坐标与极坐标的互化,若已知一曲线的极坐标方程是ρ=2cos θ,那么该曲线对应怎样的几何图形?提示 由ρ=2cos θ得ρ2=2ρcos θ,即x 2+y 2=2x ,即标准方程为(x -1)2+y 2=1,曲线为以(1,0)为圆心,半径为1的圆.[预习导引] 1.曲线与方程的关系在平面直角坐标系中,平面曲线C 可以用方程f (x ,y )=0表示,曲线与方程满足如下关系: (1)曲线C 上点的坐标都是方程f (x ,y )=0的解; (2)以方程f (x ,y )=0的解为坐标的点都在曲线C 上. 2.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合方程f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程. 3.常见曲线的极坐标方程要点一 圆的极坐标方程例1 求圆心在C ⎝ ⎛⎭⎪⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝ ⎛⎭⎪⎫-2,sin 5π6是否在这个圆上.解 如图,由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝⎛⎭⎪⎫3π2-θ,∴ρ=-4sin θ,经验证,点O (0,0),A ⎝⎛⎭⎪⎫4,3π2的坐标满足上式.∴满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2,∴点⎝⎛⎭⎪⎫-2,sin 5π6在此圆上.规律方法 1.求曲线的极坐标方程通常有以下五个步骤:(1)建立适当的极坐标系(本题无需建);(2)在曲线上任取一点M (ρ,θ);(3)根据曲线上的点所满足的条件写出等式;(4)用极坐标(ρ,θ)表示上述等式,并化简得曲线的极坐标方程;(5)证明所得的方程是曲线的极坐标方程.(一般只要对特殊点加以检验即可). 2.求曲线的极坐标方程,关键是找出曲线上的点满足的几何条件,并进行坐标表示. 跟踪演练1 曲线C 的直角坐标方程为x 2+y 2+2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析 直角坐标方程x 2+y 2-2x =0可化为x 2+y 2=2x ,将ρ2=x 2+y 2,x =ρcos θ代入整理得ρ=2cos θ. 答案 ρ=2cos θ要点二 射线或直线的极坐标方程例2 如图,在极坐标系中,直线l 过M ⎝⎛⎭⎪⎫3,π2且该直线与极轴的正方向成π4,求此直线l 的极坐标方程.解 法一 设直线上任意一点为P (ρ,θ),在△OMP 中∠OMP =π2+π4=34π,∠MPO =θ-π4.根据正弦定理得ρsin 3π4=3sin ⎝ ⎛⎭⎪⎫θ-π4, 即ρsin ⎝ ⎛⎭⎪⎫θ-π4=322.法二 设直线上任意一点为P (ρ,θ),点M 的直角坐标为(0,3),直线MP 的倾斜角为π4,∴直线l 为y =x +3,化直角坐标方程为极坐标方程为ρsin θ=ρcos θ+3,∴ρsin ⎝⎛⎭⎪⎫θ-π4=322. 规律方法 法一通过运用正弦定理解三角形建立了动点M 所满足的等式,从而集中条件建立了以ρ,θ为未知数的方程;法二先求出直线的直角坐标方程,然后通过直角坐标向极坐标的转化公式间接得解,过渡自然,视角新颖,不仅优化了思维方式,而且简化了解题过程. 跟踪演练2 求以A (1,0)为端点,倾斜角为π4且在极轴上方的射线的极坐标方程.解 由题意,设M (ρ,θ)为射线上任意一点,根据例题可知,ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,化简得ρ(cos θ-sin θ)=1.经检验点A (1,0)的坐标适合上述方程.因此,以A 为端点且在极轴上方的射线的极坐标方程为ρ(cos θ-sin θ)=1⎝⎛⎭⎪⎫其中ρ≥0,0≤θ<π4. 要点三 极坐标方程与直角坐标方程的互化例3 若曲线C 的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求曲线C 的直角坐标方程;(2)若直线ρsin ⎝⎛⎭⎪⎫θ-π4=0与曲线C 相交于A 、B ,求|AB |. 解 (1)因为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,所以ρ2=x 2+y 2,由ρ=2sin θ+4cos θ,得ρ2=2ρsin θ+4ρcos θ,∴x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5. (2)由ρsin ⎝ ⎛⎭⎪⎫θ-π4=0,得ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ=0, 即ρsin θ-ρcos θ=0,∴x -y =0.由于圆(x -2)2+(y -1)2=5的半径为r =5,圆心(2,1)到直线x -y =0的距离为d =|2-1|2=12,∴|AB |=2r 2-d 2=3 2.规律方法 1.直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.2.对方程进行合理变形,并注重公式的正向、逆向与变形使用. 跟踪演练3 (1)将x 2-y 2=a 2化为极坐标方程; (2)将ρ=2a sin θ化为直角坐标方程. (3)将θ=π3化为直角坐标方程.解 (1)直接代入互化公式,ρ2cos 2θ-ρ2sin 2θ=a 2,∴ρ2cos 2θ=a 2,这就是所求的极坐标方程.(2)两边同乘以ρ得ρ2=2a ·ρsin θ.∴x 2+y 2=2ay ,这就是要求的直角坐标方程.。
高中数学第1课极坐标系学案新人教A版选修4_6
鼎尚出品第1课 极坐标系一、学习要求1. 在问题情境中了解可用距离与角度刻划平面上点的位置;2.了解极坐标系、点的极坐标的概念;3.能写出建立了极坐标系的平面内的点的极坐标。
二、先学后讲1.日常生活中刻划平面上点的位置的方法(1)用点的直角坐标;(2)经纬度;(3)用距离与角度。
2.极坐标系在平面内取一个定点,叫做极点; 自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位 (通常取弧度)及其正方向(通常取逆 时针方向),这样就建立了一个极坐标系。
3.点的极坐标设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的角叫做点的极角,记为。
有序数对叫做点的极坐标,记为。
一般地,不作特殊说明时,我们 认为,可取任意实数。
如:写出图中,,,,,,各点的极坐标()4.点的极坐标的唯一性思考:在极坐标系中,极坐标、、、、xOx5π4π5π6π2π4OBCEDAFG鼎尚出品表示的点有什么关系?一个极坐标只表示一个点,但一个点的极坐标有无数种表示。
极坐标与()表示同一个点;极点的坐标为()。
如果规定:,那么除原点外,平面内的点可用唯一的极坐标表示;同时极坐标表示的点也是唯一确定的。
5.时极坐标的意义若,则,规定点与点关于极点对称,即与表示同一个点。
如:点与点与表示同一个点。
即当时,点位于极角终边的反向延长线上。
三、问题探究 ■合作探究例1.以下各点坐标与点不同的是( )。
.. . .解:点的坐标为,∵与的终边相同, ∴点可以表示为,故相同。
∵与或是终边在反向延长线上的角,∴点可以表示为,,故,相同。
∴选。
x(4 , 5π)(-4,π4)(4 , π4)5π44A B NM.2π34π3,(-5 , -5π3,(-5π3)(-2π3)4π(5 , π3)x(-5 , π3)π3OM 1M四、总结提升本节课你主要学习了。
五、问题过关1.在极坐标系中,点到极点的距离为3,(逆时针方向),则点的极坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课极坐标系
一、学习要求
1.在问题情境中了解可用距离与角度刻划平面上点的位置;
2.了解极坐标系、点的极坐标的概念;
3.能写出建立了极坐标系的平面内的点的极坐标。
二、先学后讲
1.日常生活中刻划平面上点的位置的方法
(1)用点的直角坐标;(2)经纬度;(3)用距离与角度。
2.极坐标系
在平面内取一个定点,叫做极点;
自极点引一条射线,叫做极轴;
再选定一个长度单位,一个角度单位
(通常取弧度)及其正方向(通常取逆
时针方向),这样就建立了一个极坐标系。
3.点的极坐标
设
是平面内一点,极点
与点的距离叫做点的极径,记为
;以极轴为始边,射线为终边的角叫做点的极角,记为。
有序数对叫做点的极坐标,记为。
一般地,不作特殊说明时,我们
认为,可取任意实数。
如:写出图中,,,,
,,各点的极坐标(
4.点的极坐标的唯一性
思考:在极坐标系中,极坐标、、、、
x
O
x
灿若寒星
灿若寒星
表示的点有什么关系?
一个极坐标只表示一个点,但一个点的极坐标有无数种表示。
极坐标与()表示同一个点;极点的坐标为
(
)。
如果规定:,那么除原点外,平面内的点可用唯一的极坐标
表示;同时极坐标
表示的点也是唯一确定的。
5.
时极坐标的意义
若,则
,
规定点
与点
关于极点对称,即
与
表示同一个点。
如:
点
与点
点。
即当时,点
位于极角终边的反向延长线上。
三、问题探究 ■合作探究
例1.以下各点坐标与点不同的是( )。
.
. . .
解:点的坐标为
,
∵与
的终边相同, ∴点可以表示为,故相同。
∵与或是终边在反向延长线上的角,
∴点
可以表示为
,
,
故,相同。
∴选。
x
N
M
.33
,
(-5π
)(-
2π3)x
π
四、总结提升
本节课你主要学习了。
五、问题过关
1.
在极坐标系中,点到极点的距离为3
,(逆时针方向)
,则点的极坐标为。
(答案:)
2.在极坐标系中,与点重合的点是()。
解:极坐标与()表示同一个点。
,固选。
3.在极坐标系中,与点关于极轴对称点是()。
解:关于极轴对称的点,极径没有发生变化,
极角应为()。
故选。
x
灿若寒星。