高中数学数学苏教版选修1-1课本习题答案扫描版

合集下载

新苏教版数学(选修1-1)本章练测:第2章-圆锥曲线与方程(含答案)

新苏教版数学(选修1-1)本章练测:第2章-圆锥曲线与方程(含答案)

3.设抛物线
的焦点为 F ,准线为 l , P 为抛物线上一点, PA⊥ l, A 为垂足,如果直线 AF 的
斜率为
,那么 PF =.
4. 以椭圆
的左焦点为焦点的抛物线的标准方程是.
5. 设
为双曲线
x2 -
y2 = 1 上一动点,
4
为坐标原点,
为线段
的中点,则点
的轨迹方程是.
6.已知 A( 3, 2), B( -4, 0), P 是椭圆
x2 y2 a2 - b2 = 1
的离心率为 ,若右准线 与两条渐近
线相交于
两点, 为右焦点,△
为等边三角形.
( 1)求双曲线 的离心率 的值;
7. 已知椭圆
x2 +
a2
y2 b2
= 1( a > b > 0) ,直线
原点),则函数
的奇偶性是.
上一点,则 PA+PB 的最大值为.
交椭圆于
两点,△
的面积为 ( 为
8. 以椭圆的右焦点 为圆心的圆恰好过椭圆的中心,交椭圆于点
,椭圆的左焦点为 ,且直
线 与此圆相切,则椭圆的离心率
为.
9.若点 O 和点 F 分别为椭圆
第 2 章 圆锥曲线与方程(苏教版选修 1-1 )
建ቤተ መጻሕፍቲ ባይዱ用时 120 分钟
实际用时
满分 160 分
实际得分
一、填空题 ( 本题共 14 小题,每小题 5 分,共 70 分 )
x2 y2 1. 若椭圆 2 2 1(a b 0) 的离心率是
3 ,则双曲线
x2
2
y2
2
1的离心率是.
ab
2
ab

【创新设计】高中数学(苏教版选修1-1)配套练习:第2章章末总结(含答案解析)

【创新设计】高中数学(苏教版选修1-1)配套练习:第2章章末总结(含答案解析)

章末总结知识点一圆锥曲线的定义和性质关于圆锥曲线的相关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形联合思想、方程思想联合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵巧运用.例 1已知双曲线的焦点在x 轴上,离心率为2, F1, F2为左、右焦点,P 为双曲线上一点,且∠ F1 PF2= 60°, S△PF1F2= 123,求双曲线的标准方程.知识点二直线与圆锥曲线的地点关系直线与圆锥曲线一般有三种地点关系:订交、相切、相离.在直线与双曲线、抛物线的地点关系中有一种状况,即直线与其交于一点和切于一点,两者在几何意义上是截然相反的,反应在代数方程上也是完整不一样的,这在解题中既是一个难点也是一个十分简单被忽略的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无穷凑近时的极限状况,反应在消元后的方程上,就是一元二次方程有两个相等的实数根,即鉴别式等于零;而与圆锥曲线有一个交点的直线,是一种特别的情况 (抛物线中与对称轴平行,双曲线中与渐近线平行 ) ,反应在消元后的方程上,该方程是一次的.例 2如下图, O 为坐标原点,过点 P(2, 0)且斜率为 k 的直线 l 交抛物线 y2= 2x 于 M(x 1,y1),N(x 2, y2) 两点.(1)求 x1x2与 y1 y2的值;(2)求证: OM ⊥ ON.知识点三轨迹问题轨迹是分析几何的基本问题,求解的方法有以下几种:(1)直接法:成立适合的坐标系,设动点为(x, y),依据几何条件直接追求x、 y 之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点变换为已知动点.详细地说,就是用所求动点的坐标x 、 y 来表示已知动点的坐标并代入已知动点知足的曲线的方程,由此即可求得所求动点坐标x 、 y 之间的关系式.(3)定义法:假如所给几何条件正好切合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x ,y)的坐标 x , y 所知足的关系式时,借助第三个变量 t ,成立 t 和 x ,t 和 y 的关系式x = φ(t),y = Φ(t),再经过一些条件消掉 t 就间接地找到了 x 和 y 所知足的方程,从而求出动点 P(x , y)所形成的曲线的一般方程.例 3 设点 A 、B OM ⊥ AB ,垂足为 是抛物线 y 2 =4px (p>0) 上除原点 O 之外的两个动点, 已知 OA ⊥OB ,M ,求点 M 的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、 定值问题是高考命题的一个热门,也是圆锥曲线问题中的一个难点,解决这个难点没有惯例的方法, 但解决这个难点的基本思想是明确的, 定点、定值问题必定是在变化中所表现出来的不变的量,那么就能够用变化的量表示问题的直线方程、数目积、比率关系等,这些直线方程、数目积、比率关系不受变化的量所影响的某个点或值,就是要求的定点、 定值.化解这种问题难点的要点就是引进变化的参数表示直线方程、数目积、比率关系等,依据等式的恒成立、数式变换等找寻不受参数影响的量.2 2例 4 若直线 l :y =kx + m 与椭圆 x +y = 1 订交于 A 、B 两点 (A 、B 不是左、 右极点 ), 4 3A 2 为椭圆的右极点且 AA 2⊥ BA 2,求证:直线 l 过定点.知识点五圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热门,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主假如运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法成立目标函数解与圆锥曲线相关的最值问题,是惯例方法, 其要点是选用适合的变量建立目标函数,而后运用求函数最值的方法确立最值.22 例 5 已知 A(4,0) ,B(2,2) 是椭圆 x y = 1 M 是椭圆上的动点,求25+ 9 内的两定点,点MA + MB 的最值.2 y 2例 6 已知 F 1、 F 2 为椭圆 x + 2 = 1 的上、下两个焦点, AB 是过焦点 F 1 的一条动弦,求△ABF 2面积的最大值.章末总结要点解读例 1解如下图,设双曲线方程为 x 2 y 2a 2-b 2= 1 (a>0,b>0) . c∵ e = = 2,∴ c = 2a.由双曲线的定义,得 |PF 1- PF 2|= 2a = c ,在△ PF 1F 2 中,由余弦定理,得:F 1 F 22= PF 21+ PF 22- 2PF 1·PF 2cos 60 °= (PF 1- PF 2)2+ 2PF 1·PF 2(1- cos60 )°,即 4c 2= c 2 +PF 1·PF 2.①又 S △ PF 1F 2= 12 3,1∴ 2PF 1·PF 2sin 60 =°12 3,即 PF 1·PF 2= 48.②由①②,得 c 2= 16, c = 4,则 a = 2, b 2= c 2- a 2= 12,2 2 ∴所求的双曲线方程为x - y = 1. 4 12例 2 (1) 解 过点 P(2,0)且斜率为 k 的直线方程为: y = k(x -2) .把 y = k(x - 2)代入 y 2 =2x , 2 2 2 2=0,消去 y 得 k x - (4k + 2)x + 4k 因为直线与抛物线交于不一样两点,故 k 2≠0且 = (4k 2+ 2)2- 16k 4= 16k 2+ 4>0 ,2 x 1x 2= 4, x 1+ x 2= 4+ k 2,∵ M 、N 两点在抛物线上, ∴y 21 ·y 22= 4x 1·x 2= 16,而y 1·y 2<0 ,∴ y 1y 2=- 4.→ →, y 2),( 2)证明 ∵OM (x 1, y 1 ), ON =(x 2→ →∴ OM ·ON = x1·x2+ y1·y2= 4- 4= 0.→→∴ OM ⊥ ON,即 OM ⊥ ON.例 3解设直线 OA 的方程为 y= kx (k ≠±1,因为当 k=±1 时,直线 AB 的斜率不存在 ),则直线 OB 的方程为 y=-x, k从而可求 A 4p4p、 B(4pk2,- 4pk)k2,k.于是直线 AB 的斜率为k AB=k2,1- k从而 k OM=k2- 1k,2k - 1∴直线 OM 的方程为y=x,①k-k直线 AB 的方程为y+ 4pk=k2-1(x- 4pk 2).②将①②相乘,得y2+ 4pky=- x(x - 4pk2),即 x2+ y2=- 4pky + 4pk 2x= 4p(k 2x- ky),③2又kx-ky = x,代入③式并化简,222得 (x- 2p) + y = 4p .当 k=±1 时,易求得直线AB 的方程为x=4p.故此时点 M 的坐标为 (4p,0) ,也在 (x- 2p)2+ y2= 4p2 (x ≠ 0)上.∴点 M 的轨迹方程为(x- 2p)2+ y2= 4p2 (x ≠ 0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例 4证明设 A(x 1, y1),B(x 2, y2),y= kx+ m,联立x2+ y2=1,4 3得 (3+ 4k2)x2+ 8mkx + 4(m2- 3)= 0,=64m2k2-16(3 + 4k2)(m 2- 3)>0 ,则x1+x2=-8mk2,3+ 4k4(m2- 3)x1x2=3+4k2 .3+ 4k2- m2>0,即x1+ x2=-8mk2,3+ 4kx1x2=4(m2- 3)3+4k 2 .又 y1y2=(kx 1+ m)(kx 2+ m)= k2x1x2+ mk(x 1+ x2)+m2223(m - 4k )∵椭圆的右极点为 A 2(2,0), AA 2⊥BA 2,∴(x1- 2)(x 2- 2)+ y1y2= 0.∴y1 y2+x1 x2- 2(x1+ x2)+ 4= 0.∴ 3(m 2- 4k2)+ 4(m2- 3)+ 16mk2+ 4=0.24k23+4k3+3+ 4k∴ 7m2+ 16km+4k 2= 0,2k22解得 m1=- 2k, m2=-,且均知足3+ 4k - m >0.当 m1=- 2k 时, l 的方程为 y= k(x -2) ,直线过定点 (2,0) ,与已知矛盾.当 m2=-2k时, l 的方程为 y= k x-2,直线过定点2, 0,777∴直线 l 过定点.例 5 解因为 A(4,0) 是椭圆的右焦点,设A′为椭圆的左焦点,则 A′(-4,0),由椭圆定义知MA + MA′= 10.如下图,则MA + MB = MA + MA′+ MB - MA′=10+ MB - MA′≤ 10+ A′B.当点 M 在 BA′的延伸线上时取等号.因此当 M 为射线 BA′与椭圆的交点时,(MA +MB) max= 10+A′B=10+ 2 10.又如下图,MA + MB = MA + MA′- MA′+ MB =10-(MA′- MB)≥ 10- A′B,当 M 在 A′B的延伸线上时取等号.因此当 M 为射线 A′B与椭圆的交点时,(MA +MB) min= 10- A′B= 10- 2 10.例 6解由题意,F1F2= 2.设直线 AB 方程为 y= kx+ 1,代入椭圆方程2x2+ y2= 2,得 (k2+ 2)x 2+ 2kx - 1= 0,则 x A+ x B=-22k, x A·x B=-21,k+ 2k+ 2∴ |x A- x B|=8(k2+1) k2+ 2.1F1F2·|x A- x B|=2 2×k2+ 1S△ABF 2=22k + 2=2 2×11= 2.≤22×k2+1+12k2+1当 k2+ 1=k 1,即 k= 0 时,2+ 1S△ABF 2有最大面积为 2.章末总结知识点一圆锥曲线的定义和性质关于圆锥曲线的相关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形联合思想、方程思想联合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵巧运用.例 1 已知双曲线的焦点在 x 轴上,离心率为 2, F1, F2为左、右焦点, P 为双曲线上一点,且∠ F1 PF2= 60°, S△PF1F2= 12 3,求双曲线的标准方程.知识点二直线与圆锥曲线的地点关系直线与圆锥曲线一般有三种地点关系:订交、相切、相离.在直线与双曲线、抛物线的地点关系中有一种状况,即直线与其交于一点和切于一点,两者在几何意义上是截然相反的,反应在代数方程上也是完整不一样的,这在解题中既是一个难点也是一个十分简单被忽略的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无穷凑近时的极限状况,反应在消元后的方程上,就是一元二次方程有两个相等的实数根,即鉴别式等于零;而与圆锥曲线有一个交点的直线,是一种特别的情况 (抛物线中与对称轴平行,双曲线中与渐近线平行 ) ,反应在消元后的方程上,该方程是一次的.例 2如下图, O 为坐标原点,过点 P(2, 0)且斜率为 k 的直线 l 交抛物线 y2= 2x 于 M(x 1,y1),N(x 2, y2) 两点.(1)求 x1x2与 y1 y2的值;(2)求证: OM ⊥ ON.知识点三轨迹问题轨迹是分析几何的基本问题,求解的方法有以下几种:(1)直接法:成立适合的坐标系,设动点为(x, y),依据几何条件直接追求x、 y 之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点变换为已知动点.详细地说,就是用所求动点的坐标x、 y来表示已知动点的坐标并代入已知动点知足的曲线的方程,由此即可求得所求动点坐标x、 y 之间的关系式.(3)定义法:假如所给几何条件正好切合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x ,y)的坐标 x , y 所知足的关系式时,借助第三个变量 t ,成立 t 和 x ,t 和 y 的关系式x = φ(t),y = Φ(t),再经过一些条件消掉 t 就间接地找到了 x 和 y 所知足的方程,从而求出动点 P(x , y)所形成的曲线的一般方程.例 3 设点 A 、B OM ⊥ AB ,垂足为是抛物线 y 2=4px (p>0) 上除原点 O 之外的两个动点, 已知 OA ⊥OB ,M ,求点 M 的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、 定值问题是高考命题的一个热门,也是圆锥曲线问题中的一个难点,解决这个难点没有惯例的方法, 但解决这个难点的基本思想是明确的, 定点、定值问题必定是在变化中所表现出来的不变的量,那么就能够用变化的量表示问题的直线方程、数目积、比率关系等,这些直线方程、数目积、比率关系不受变化的量所影响的某个点或值,就是要求的定点、 定值.化解这种问题难点的要点就是引进变化的参数表示直线方程、数目积、比率关系等,依据等式的恒成立、数式变换等找寻不受参数影响的量.2 2例 4 若直线 l :y =kx + m 与椭圆 x 4 +y3 = 1 订交于 A 、B 两点 (A 、B 不是左、 右极点 ),A 2 为椭圆的右极点且 AA 2⊥ BA 2,求证:直线 l 过定点.知识点五圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热门,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主假如运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法成立目标函数解与圆锥曲线相关的最值问题,是惯例方法,其要点是选用适合的变量建立目标函数,而后运用求函数最值的方法确立最值.x2y2例 5已知 A(4,0) ,B(2,2) 是椭圆25+9= 1 内的两定点,点M 是椭圆上的动点,求MA + MB 的最值.例 6已知F、F2y2AB 是过焦点 F的一条动弦,为椭圆 x += 1 的上、下两个焦点,1221求△ABF 2面积的最大值.章末总结要点解读例 1解如下图,设双曲线方程为x2y2a2-b2=1 (a>0,b>0).c∵ e=a= 2,∴ c= 2a.得 |PF1- PF2|= 2a= c,在△ PF1F2中,由余弦定理,得:F1 F22= PF21+ PF22- 2PF1·PF2cos 60 °=(PF1- PF2)2+ 2PF1·PF2(1- cos60 )°,即 4c2= c2+PF1·PF2.①又 S△ PF1F2= 12 3,1∴2PF1·PF2sin 60 =°12 3,即 PF1·PF2= 48.②由①②,得c2= 16, c= 4,则 a= 2, b2= c2- a2= 12,∴所求的双曲线方程为x2-y2= 1.4 12例 2 (1) 解过点P(2,0)且斜率为k 的直线方程为:y= k(x -2) .把 y= k(x - 2)代入 y2=2x,消去 y 得 k2x2- (4k2+ 2)x+ 4k2=0,因为直线与抛物线交于不一样两点,故 k2≠0且=(4k2+2)2-16k4=16k2+4>0,2x1x2= 4, x1+ x2= 4+k2,∵M 、N 两点在抛物线上,∴y21·y22= 4x1·x2= 16,而 y1·y2<0 ,∴ y1y2=- 4.( 2)证明→→, y2),∵OM(x1, y1 ), ON =(x2→ →∴ OM ·ON = x1·x2+ y1·y2= 4- 4= 0.→→∴ OM ⊥ ON,即 OM ⊥ ON.例 3解设直线 OA 的方程为 y= kx (k ≠±1,因为当 k=±1 时,直线 AB 的斜率不存在 ),则直线 OB 的方程为 y=-x, k从而可求 A 4p4p、 B(4pk2,- 4pk)k2,k.于是直线 AB 的斜率为k AB=k2,1- kk2- 1从而 k OM=k,2k - 1∴直线 OM 的方程为y=x,①k-k直线 AB 的方程为y+ 4pk=k2-1(x- 4pk 2).②将①②相乘,得y2+ 4pky=- x(x - 4pk2),即 x2+ y2=- 4pky + 4pk 2x= 4p(k 2x- ky),③2又kx-ky = x,代入③式并化简,222得 (x- 2p) + y = 4p .当 k=±1 时,易求得直线AB 的方程为x=4p.故此时点 M 的坐标为 (4p,0) ,也在 (x- 2p)2+ y2= 4p2 (x ≠ 0)上.∴点 M 的轨迹方程为 (x- 2p)2+ y2= 4p2 (x ≠ 0),∴其轨迹是以 (2p,0)为圆心,半径为 2p 的圆,去掉坐标原点.例 4证明设 A(x 1, y1),B(x 2, y2),y= kx+ m,联立x2y2+= 1,4 3得 (3+ 4k2)x2+ 8mkx + 4(m2- 3)= 0,=64m2k2-16(3 + 4k2)(m 2- 3)>0 ,则x1+x2=-8mk2,3+ 4k4(m2- 3)x1x2=3+4k2 .3+ 4k2- m2>0,即x1+ x2=-8mk2,3+ 4kx1x2=4(m2- 3)3+4k 2 .又 y1y2=(kx 1+ m)(kx 2+ m)= k2x1x2+ mk(x 1+ x2)+m2223(m - 4k )∵椭圆的右极点为 A 2(2,0), AA 2⊥BA 2,∴(x1- 2)(x 2- 2)+ y1y2= 0.∴y1 y2+x1 x2- 2(x1+ x2)+ 4= 0.∴ 3(m 2- 4k2)+ 4(m2- 3)+ 16mk2+ 4=0.24k23+4k3+3+ 4k∴ 7m2+ 16km+4k 2= 0,2k22解得 m1=- 2k, m2=-,且均知足3+ 4k - m >0.当 m1=- 2k 时, l 的方程为 y= k(x -2) ,直线过定点 (2,0) ,与已知矛盾.当 m2=-2k时, l 的方程为 y= k x-2,直线过定点2, 0,777∴直线 l 过定点.例 5 解因为 A(4,0) 是椭圆的右焦点,设A′为椭圆的左焦点,则 A′(-4,0),由椭圆定义知MA + MA′= 10.如下图,则MA + MB = MA + MA′+ MB - MA′=10+ MB - MA′≤ 10+ A′B.当点 M 在 BA′的延伸线上时取等号.因此当 M 为射线 BA′与椭圆的交点时,(MA +MB) max= 10+A′B=10+ 2 10.又如下图,MA + MB = MA + MA′- MA′+ MB =10-(MA′- MB)≥ 10- A′B,当 M 在 A′B的延伸线上时取等号.因此当 M 为射线 A′B与椭圆的交点时,(MA +MB) min= 10- A′B= 10- 2 10.例 6解由题意,F1F2= 2.设直线 AB 方程为 y= kx+ 1,代入椭圆方程2x2+ y2= 2,得 (k2+ 2)x 2+ 2kx - 1= 0,则 x A+ x B=-22k, x A·x B=-21,k+ 2k+ 2∴ |x A- x B|=8(k2+1) k2+ 2.1F1F2·|x A- x B|=2 2×k2+ 1S△ABF 2=22k + 2=2 2×11= 2.≤22×k2+1+12k2+1当 k2+ 1=k 1,即 k= 0 时,2+ 1S△ABF 2有最大面积为 2.。

高中数学苏教版选修1-1学案:第二章 §2.1 圆锥曲线 Word版含答案

高中数学苏教版选修1-1学案:第二章 §2.1 圆锥曲线 Word版含答案

[学习目标]1.了解圆锥曲线的实际背景.2.经历从具体情境中抽象出圆锥曲线的过程.3.掌握椭圆、抛物线的定义和几何图形.4.了解双曲线的定义和几何图形.知识点一椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点.两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义平面内与两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线.[思考](1)若动点M到两个定点F、F2距离之和满足MF1+MF2=F1F2,则动点M轨迹是椭圆1吗?(2)若动点M到两个定点F1、F2距离之差满足MF1-MF2=2a(2a<F1F2),则动点M轨迹是什么?答案(1)不是,是线段F1F2.(2)是双曲线一支.题型一椭圆定义的应用例1在△ABC中,B(-6,0),C(0,8),且sin B,sin A,sin C成等差数列.(1)顶点A的轨迹是什么?(2)指出轨迹的焦点和焦距.解(1)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A.由正弦定理可得AC+AB=2BC. 又BC=10,所以AB+AC=20,且20>BC,所以点A 的轨迹是椭圆(除去直线BC 与椭圆的交点).(2)椭圆的焦点为B 、C ,焦距为10.反思与感悟本题求解的关键是把已知条件转化为三角形边的关系,找到点A 满足的条件.注意A 、B 、C 三点要构成三角形,轨迹要除去两点.跟踪训练1在△ABC 中,BC =24,AC 、AB 边上的中线长之和等于39,求△ABC 的重心的轨迹方程.解有一定长线段BC ,两边上的中线长也均与定点B 、C 和△ABC 的重心有关系,因此考虑以BC 的中点为原点建立坐标系.如图所示,以线段BC 所在直线为x轴、线段BC 的中垂线为y 轴建立直角坐标系.设M 是△ABC 的重心,BD 是AC 边上的中线,CE 是AB 边上的中线,由重心的性质知BM =23BD ,CM = 23CE .于是MB +MC =23BD +23CE =23(BD +CE )=23×39=26>BC =24.根据椭圆的定义知,点M 的轨迹是以B 、C 为焦点的椭圆(除去直线BC 与椭圆的交点).题型二双曲线定义的应用例2已知圆C 1:(x +2)2+y 2=1和圆C 2:(x -2)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹.解由已知得,圆C 1的圆心C 1(-2,0),半径r 1=1,圆C 2的圆心C 2(2,0),半径r 2=3.设动圆M 的半径为r .因为动圆M 与圆C 1相外切,所以MC 1=r +1.①又因为动圆M 与圆C 2相外切,所以MC 2=r +3.②②-①得MC 2-MC 1=2,且2<C 1C 2=4.所以动圆圆心M 的轨迹为双曲线的左支,且除去点(-1,0).反思与感悟设动圆半径为r ,利用动圆M 同时与圆C 1及圆C 2相外切得两个等式,相减后消去r ,得到点M 的关系式.注意到MC 2-MC 1=2中没有绝对值,所以轨迹是双曲线的一支,又圆C 1与圆C 2相切于点(-1,0),所以M 的轨迹不过(-1,0).跟踪训练2在△ABC 中,BC 固定,顶点A 移动.设BC =m ,且|sin C -sin B |=12sin A ,则顶点A 的轨迹是什么?解因为|sin C -sin B |=12sin A , 由正弦定理可得|AB -AC |=12BC =12m ,且12m <BC , 所以点A 的轨迹是双曲线(除去双曲线与BC 的两交点).题型三抛物线定义的应用例3若动圆与定圆(x-2)2+y2=1外切,又与直线x+1=0相切,求动圆圆心的轨迹.解如图所示,设动圆O′的半径为r,则动圆的圆心O′到点(2,0)的距离为r+1,点O′到x=-1的距离为r,从而可知点O′到点(2,0)的距离与到直线x=-2的距离相等,由抛物线定义可知,动圆的圆心O′的轨迹是抛物线.反思与感悟本题借助于平面几何知识,将动点满足的条件合理转化,使之符合抛物线定义,问题从而获解.跟踪训练3点P到点F(4,0)的距离比它到直线l:x=-6的距离小2,则点P的轨迹为________.答案抛物线解析将直线l:x=-6向右平移2个单位,得直线l′:x=-4.依题意知,点P到F(4,0)的距离等于点P到l′:x=-4的距离,可见点P的轨迹是抛物线.1.平面内到两个定点F1(-3,0),F2(3,0)的距离之和为6的点的轨迹是__________.答案线段F1F2解析设动点为P,由题意知,PF1+PF2=F1F2,故点P必在线段F1F2上.2.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是______.答案双曲线解析点(x,y)到点(1,1)及到点(-3,-3)的距离之差的绝对值为4,而(1,1)与(-3,-3)的距离为42,由定义知动点M的轨迹是双曲线.3.到定直线x=-2的距离比到定点(1,0)的距离大1的点的轨迹是____________________.答案抛物线解析到定点(1,0)和定直线x=-1距离相等,所以点的轨迹是以(1,0)为焦点的抛物线.1.一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线;当平面不经过顶点与圆锥面的轴垂直时,截得的图形是一个圆.改变平面的位置,观察截得的图形变化情况,可得到三种重要的曲线,即椭圆、双曲线和抛物线,统称为圆锥曲线.2.椭圆定义中,常数>F1F2不可忽视,若常数<F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是线段F1F2.3.双曲线定义中,若常数>F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.4.抛物线定义中F∉l;若F∈l,则点的轨迹是经过点F且垂直于l的直线.。

苏教版高中数学选修1-1高二每周段段清练习参考答案

苏教版高中数学选修1-1高二每周段段清练习参考答案

高二数学第3周学情检测参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.双曲线22197y x -=的焦点坐标为 (0,4),(0,4)- .2.已知椭圆方程1422=+ky x 的离心率为22,则k 的值为___2或8____.3.离心率31=e ,焦距为4的椭圆标准方程为___2213632x y +=或2213632y x +=_____.4.双曲线过点、,则双曲线的标准方程为 2214x y -= .5.若圆22x y m +=与圆2268110x y x y ++--=相切,则实数m 的值为 1或81 . 6.已知双曲线2255x ky +=的一个焦点为(2,0),则k 的值为 53- .7.在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点)2,则该椭圆的离心率为. 8.若椭圆22125x y m+=与双曲线221515x y -=的焦距相等,则m 的值为 9或41 .9.过点(0,1)P 向圆2246120x y x y +--+=10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为_____x 23+y 22=1____.11.圆心在x 轴上,且与直线y x =相切于点(1,1)的圆的方程为 22(2)2x y -+= .12.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1⊥PF 2.若21F PF ∆的面积为9,则b 的值为____3___.13.椭圆12222=+by a x (a >b >0)的两焦点为F 1、F 2,连接点F 1,F 2为边作正三角形,若椭圆恰好平分1 .14.已知直线l 的方程是60x y +-=,,A B 是直线l 上的两点,且△OAB 是正三角形 (O 为坐标原点),则△OAB 外接圆的方程是 22(2)(2)8x y -+-= .二、解答题:解答应写出必要的文字步骤.15.(本小题满分14分)求以椭圆221169x y +=短轴的两个顶点为焦点,且过点(4,5)A -的双曲线的标准方程.解:由题意可知,双曲线的两焦点为1(0,3)F -,2(0,3)F ,………………………4分设双曲线的方程为22221(0,0)y x a b a b-=>>………………………6分2222251619a ba b ⎧-=⎪⎨⎪+=⎩Q 解得2254a b ⎧=⎨=⎩,………………………12分 所以双曲线的标准方程为22154y x -=………………………14分16.(本小题满分14分)已知方程22142x y m m-=-+(1)若方程表示双曲线,求实数m的取值范围;(2,求实数m 的值. 解:(1)若方程表示双曲线,则(4)(2)0m m -+>,………………………4分∴实数m 的取值范围为(2,4)-………………………6分(2)方程可化为22142x y m m+=---,因为方程表示椭圆,所以4020242m m m m m ->⎧⎪-->⇒<-⎨⎪-≠--⎩………………………8分所以椭圆的焦点在x 轴上………………………10分,所以4(2)4m m --=-,所以实数m 的值为4-.………………………14分17.(本小题满分14分)若椭圆22110x y m +=与双曲线221y x b -=有相同的焦点,且椭圆与双曲线交于点P y ⎫⎪⎪⎝⎭, 求椭圆及双曲线的方程.解:由题意可知b m +=-110,………………………2分2119y m +=,………………………4分 21019y b-=,………………………6分 解得m =1,b =8………………………10分所以椭圆的方程为22110x y +=………………………12分 双曲线的方程为2218y x -=………………………14分18.(本小题满分16分)已知圆1C :22(3)(3)18x y -+-=,过(3,0)A -的直线l 交圆1C 于,M N 两点. (1)若△1C MN 为直角三角形,求直线l 的方程;(2)若圆2C 过点A 且与圆1C 切于坐标原点,求圆2C 的标准方程. 解:(1)当直线l 的斜率不存在时显然不合题意,设l :(3)y k x =+,…1分当190MC N ∠=o 时,圆心2C 到直线l 得距离为3,…3分31==解得:0k =或43k =,……5分 所以,直线方程为:0y =或43120x y -+=.……7分(2)可知圆1C 和圆2C 相外切,……8分圆2C 的圆心在直线32x =-上,……10分同时也在直线y x =上,……12分得233(,)22C --,r 14分圆2C :22339()()222x y ++-=.……16分19.(本小题满分16分)已知A 点坐标为(0,8),直线:240l x y --=与y 轴交于B 点,P 为直线l 上动点. (1)求以AB 为直径的圆C 的标准方程;(2)圆E 过A ,B 两点,截直线l得到的弦长为E 的标准方程; (3)证明:以PA 为直径的动圆必过除A 点外的另一定点,并求出该定点坐标. 解:(1)圆的方程为22(3)25x y +-=………………………2分(2)圆E 的标准方程为22(5)(3)50x y -+-=或22(10)(3)125x y ++-=……………8分 (3)由题意可设动点(24,)P t t +,则以PA 为直径的圆的方程为(24)()(8)0x x t y t y --+--=………………………10分即22(82)(48)0y x t x y x y --++--=………………………12分由228200448080y x x x x y x y y y --===⎧⎧⎧⇒⎨⎨⎨+--===⎩⎩⎩或………………………14分 所以该定点坐标为(4,0)………………………16分20.(本小题满分16分)已知1F ,2F分别为椭圆的左、右两个焦点,椭圆的离心率为3,短轴的一个端点到一个焦点的.设点P 是椭圆上的动点,过点2F 作∠12F PF 的外角平分线PR 的垂线,交1F P 的延长线于E ,垂足为R . (1)求椭圆的标准方程; (2)求点R 的轨迹方程;(3)求证:12RF RF ⋅u u u r u u u r为定值.解:(1)设椭圆的方程为12222=+by a x )0(>>b a ,则222a ca abc ⎧=⎪⎪=⎨⎪⎪=+⎩1a b ⎧=⎪⇒⎨=⎪⎩4分 椭圆的方程为1322=+y x .………………………6分 (2)设R F 2交P F 1于Q ,由题意知直线m 垂直平分线段2F E 得到2PF PE =,又O 为21F F 中点,R 为2F E的中点,11121111()()22222OR F E F P PE F P PF a a ==+=+=⋅==……………………10分 因此所求R 点轨迹方程为223(0)x y y +=≠.………………………12分(3)设),(y x R ,则)0,2(),0,2(21y x RF y x --=---=……………14分1)2(222221=+=+--=⋅y x y x RF RF ………………………16分。

2019-2020学年度最新苏教版高中数学苏教版选修1-1学案:第二章 2-2-1 椭圆的标准方程 -含答案

2019-2020学年度最新苏教版高中数学苏教版选修1-1学案:第二章 2-2-1 椭圆的标准方程 -含答案

2.2.1椭圆的标准方程[学习目标] 1.掌握椭圆的定义,会用椭圆的定义解决实际问题.2.掌握用定义法和待定系数法求椭圆的标准方程.3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.知识点一椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆.两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二椭圆的标准方程[思考]121212件不变,点的轨迹是什么?(2)确定椭圆的方程需要知道哪些量?答案(1)当距离之和等于F1F2时,动点的轨迹就是线段F1F2;当距离之和小于F1F2时,动点的轨迹不存在.(2)a,b的值及焦点所在的位置.题型一 用待定系数法求椭圆的标准方程 例1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点的距离的和是10; (2)焦点在y 轴上,且经过两个点(0,2)和(1,0). 解 (1)因为椭圆的焦点在x 轴上, 所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为2a =10,所以a =5.又因为c =4,所以b 2=a 2-c 2=52-42=9. 故所求椭圆的标准方程为x 225+y 29=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为椭圆经过点(0,2)和(1,0),所以⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,故所求椭圆的标准方程为y 24+x 2=1.反思与感悟 求椭圆的标准方程时,要“先定型,再定量”,即先要判断焦点位置,再用待定系数法设出适合题意的椭圆的标准方程,最后由条件确定待定系数即可.当所求椭圆的焦点位置不能确定时,应按焦点在x 轴上和焦点在y 轴上进行分类讨论,但要注意a >b >0这一条件.当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成Ax 2+By 2=1(A >0,B >0,A ≠B )的形式有两个优点:①列出的方程组中分母不含字母;②不用讨论焦点所在的坐标轴,从而简化求解过程.跟踪训练1 求焦点在坐标轴上,且经过A (3,-2)和B (-23,1)两点的椭圆的标准方程. 解 方法一 (1)当焦点在x 轴上时, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意有⎩⎪⎨⎪⎧ (3)2a 2+(-2)2b2=1,(-23)2a2+12b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.(2)当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b2=1,12a 2+(-23)2b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15.此时不符合a >b >0,所以方程组无解. 故所求椭圆的标准方程为x 215+y 25=1.方法二 设所求椭圆的方程为Ax 2+By 2=1(A >0,B >0且A ≠B ),依题意有⎩⎪⎨⎪⎧3A +4B =1,12A +B =1,解得⎩⎨⎧A =115,B =15.故所求椭圆的标准方程为x 215+y 25=1.题型二 椭圆定义的应用例2 已知两定点F 1(-1,0),F 2(1,0),动点P 满足PF 1+PF 2=2F 1F 2. (1)求点P 的轨迹方程;(2)若∠F 1PF 2=120°,求△PF 1F 2的面积. 解 (1)依题意知F 1F 2=2, PF 1+PF 2=2F 1F 2=4>2=F 1F 2, ∴点P 的轨迹是以F 1、F 2为焦点的椭圆, 且2a =4,2c =2,∴a =2,c =1,b =3, 故所求点P 的轨迹方程为x 24+y 23=1.(2)设m =PF 1,n =PF 2,则m +n =2a =4.在△PF 1F 2中,由余弦定理,得F 1F 22=m 2+n 2-2mn cos ∠F 1PF 2,∴4=(m +n )2-2mn (1+cos 120°),解得mn =12. ∴S △12PF F =12mn sin ∠F 1PF 2=12×12sin 120°=3 3.反思与感悟 在椭圆中,由椭圆上的点与两个焦点组成的焦点三角形引出的问题很多.要解决这些题目,我们经常利用椭圆的定义、正弦定理、余弦定理及三角形面积公式,这就需要我们在解题时,要充分理解题意,分析条件,利用椭圆定义、正弦定理、余弦定理及三角形面积公式之间的联系建立三角形中的边角之间的关系.在解题中,经常把PF 1·PF 2看作一个整体来处理.跟踪训练2 如图所示,已知过椭圆x 225+y 216=1的右焦点F 2的直线AB 垂直于x轴,交椭圆于A ,B 两点,F 1是椭圆的左焦点.求△AF 1B 的周长. 解 如题图所示,由题意知,点A ,B 在椭圆x 225+y 216=1上,所以a =5,故有AF 1+AF 2=2a =10,BF 1+BF 2=2a =10, AF 2+BF 2=AB ,所以△AF 1B 的周长为AF 1+BF 1+AB =AF 1+BF 1+AF 2+BF 2 =(AF 1+AF 2)+(BF 1+BF 2) =2a +2a =20.题型三 与椭圆有关的轨迹问题例3 已知B 、C 是两个定点,BC =8,且△ABC 的周长等于18.求这个三角形的顶点A 的轨迹方程.解 以过B 、C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,如图所示. 由BC =8可知点B (-4,0),C (4,0).由AB +AC +BC =18得AB +AC =10>8=BC ,因此,点A 的轨迹是以B 、C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,但点A 不在x 轴上. 由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).反思与感悟 利用椭圆的定义求轨迹方程,是先由题意找到动点所满足的条件,看其是否符合椭圆的定义,再确定椭圆的方程.跟踪训练3 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,求圆心P 的轨迹方程.解 如图,设圆P 的半径为r ,又圆P 过点B , ∴PB =r .又∵圆P 与圆A 内切,圆A 的半径为10, ∴两圆的圆心距PA =10-r , 即PA +PB =10(大于AB =6).∴圆心P 的轨迹是以A 、B 为焦点的椭圆. ∴2a =10,2c =AB =6.∴a =5,c =3,∴b 2=a 2-c 2=25-9=16. ∴圆心P 的轨迹方程为x 225+y 216=1.分类讨论思想的应用例4 设F 1,F 2为椭圆x 29+y 24=1的两个焦点.P 为椭圆上的一点,已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,求PF 1PF 2的值. 分析 已知P ,F 1,F 2是一个直角三角形的三个顶点,并未指明哪个角是直角,由PF 1>PF 2,知∠PF 2F 1>∠PF 1F 2,因此∠PF 1F 2不会是直角,但是∠F 1PF 2与∠PF 2F 1都有可能为直角,故应分类讨论.解 由题意,得PF 1+PF 2=6,F 1F 2=2 5. 根据直角的不同位置,分两种情况:若∠PF 2F 1为直角,则PF 21=PF 22+F 1F 22, 即PF 21=(6-PF 1)2+20,解得PF 1=143,PF 2=43,故PF 1PF 2=72;若∠F 1PF 2为直角,则F 1F 22=PF 21+PF 22, 即20=PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2(由于PF 1>PF 2, 故舍去PF 1=2,PF 2=4),故PF 1PF 2=2.综上所述,PF 1PF 2的值为72或2.解后反思 分类讨论思想在解决椭圆的有关问题时经常用到,如在求椭圆的标准方程时,常对焦点所在的坐标轴进行分类讨论.1.设F 1,F 2为定点,F 1F 2=6,动点M 满足MF 1+MF 2=6,则动点M 的轨迹是________. 答案 线段解析 ∵MF 1+MF 2=6=F 1F 2, ∴动点M 的轨迹是线段.2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是________. 答案 2解析 由题意得,椭圆标准方程为x 2+y 24k=1,又其一个焦点坐标为(0,1),故4k -1=1, 解得k =2.3.设P 是椭圆x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2的面积为________. 答案 6解析 根据椭圆的定义知PF 1+PF 2=8. 又PF 1-PF 2=2,所以PF 1=5,PF 2=3. 而F 1F 2=4,所以F 1F 22+PF 22=PF 21,所以△12pF F ∆2是直角三角形, 则S △12pF F ∆=12×3×4=6.4.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的__________条件. 答案 充要解析 方程可化为x 21m +y 21n=1.若m >n >0,则0<1m <1n ,可得方程为焦点在y 轴上的椭圆. 若方程表示焦点在y 轴上的椭圆,则1n >1m>0,可得m >n >0.5.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则PF 1·PF 2=________. 答案 48解析 依题意知,a =7,b =26,c =49-24=5,F 1F 2=2c =10. 由于PF 1⊥PF 2,所以由勾股定理得PF 21+PF 22=F 1F 22, 即PF 21+PF 22=100.又由椭圆定义知PF 1+PF 2=2a =14, 所以(PF 1+PF 2)2-2PF 1·PF 2=100, 即196-2PF 1·PF 2=100. 解得PF 1·PF 2=48.1.平面内到两定点F1,F2的距离之和为常数,即MF1+MF2=2a,当2a>F1F2时,轨迹是椭圆;当2a=F1F2时,轨迹是一条线段F1F2;当2a<F1F2时,轨迹不存在.2.求解椭圆的标准方程一般有两种方法:一是待定系数法,二是定义法.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax2+By2=1(A>0,B>0,A≠B)求解,避免分类讨论,达到了简化运算的目的.。

苏教版高中数学选修1-1高二每周段段清练习参考答案.docx

苏教版高中数学选修1-1高二每周段段清练习参考答案.docx

高二数学第3周学情检测参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.双曲线22197y x -=的焦点坐标为 (0,4),(0,4)- .2.已知椭圆方程1422=+ky x 的离心率为22,则k 的值为___2或8____.3.离心率31=e ,焦距为4的椭圆标准方程为___2213632x y +=或2213632y x +=_____.4.双曲线过点(4,3)、5(3,)2,则双曲线的标准方程为 2214x y -= .5.若圆22x y m +=与圆2268110x y x y ++--=相切,则实数m 的值为 1或81 . 6.已知双曲线2255x ky +=的一个焦点为(2,0),则k 的值为 53- . 7.在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点()22,,则该椭圆的离心率为22. 8.若椭圆22125x y m+=与双曲线221515x y -=的焦距相等,则m 的值为 9或41 .9.过点(0,1)P 向圆2246120x y x y +--+=引切线,则切线长为 7 .10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为_____x 23+y 22=1____.11.圆心在x 轴上,且与直线y x =相切于点(1,1)的圆的方程为 22(2)2x y -+= .12.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1⊥PF 2.若21F PF ∆的面积为9,则b 的值为____3___.13.椭圆12222=+by a x (a >b >0)的两焦点为F 1、F 2,连接点F 1,F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 3-1 .14.已知直线l 的方程是60x y +-=,,A B 是直线l 上的两点,且△OAB 是正三角形 (O 为坐标原点),则△OAB 外接圆的方程是 22(2)(2)8x y -+-= .二、解答题:解答应写出必要的文字步骤.15.(本小题满分14分)求以椭圆221169x y +=短轴的两个顶点为焦点,且过点(4,5)A -的双曲线的标准方程.解:由题意可知,双曲线的两焦点为1(0,3)F -,2(0,3)F , ………………………4分设双曲线的方程为22221(0,0)y x a b a b-=>> ………………………6分2222251619ab a b ⎧-=⎪⎨⎪+=⎩解得2254a b ⎧=⎨=⎩, ………………………12分 所以双曲线的标准方程为22154y x -= ………………………14分16.(本小题满分14分)已知方程22142x y m m-=-+(1)若方程表示双曲线,求实数m 的取值范围;(2)若方程表示椭圆,且椭圆的离心率为32,求实数m 的值. 解:(1)若方程表示双曲线,则(4)(2)0m m -+>, ………………………4分∴实数m 的取值范围为(2,4)- ………………………6分(2)方程可化为22142x y m m +=---,因为方程表示椭圆,所以4020242m m m m m ->⎧⎪-->⇒<-⎨⎪-≠--⎩………………………8分所以椭圆的焦点在x 轴上 ………………………10分因为离心率为32,所以4(2)4m m --=-,所以实数m 的值为4-. ………………………14分17.(本小题满分14分)若椭圆22110x y m +=与双曲线221y x b -=有相同的焦点,且椭圆与双曲线交于点10,3P y ⎛⎫ ⎪ ⎪⎝⎭, 求椭圆及双曲线的方程.解:由题意可知b m +=-110, ………………………2分2119y m +=, ………………………4分 21019y b-=, ………………………6分 解得m =1 , b =8 ………………………10分所以椭圆的方程为22110x y += ………………………12分 双曲线的方程为2218y x -= ………………………14分18.(本小题满分16分)已知圆1C :22(3)(3)18x y -+-=,过(3,0)A -的直线l 交圆1C 于,M N 两点. (1)若△1C MN 为直角三角形,求直线l 的方程;(2)若圆2C 过点A 且与圆1C 切于坐标原点,求圆2C 的标准方程. 解:(1)当直线l 的斜率不存在时显然不合题意,设l :(3)y k x =+,…1分 当190MC N ∠=时,圆心2C 到直线l 得距离为3,…3分22|333||21|3111k k k k k -+-=⇒=++解得:0k =或43k =,……5分 所以,直线方程为:0y =或43120x y -+=.……7分(2)可知圆1C 和圆2C 相外切,……8分 圆2C 的圆心在直线32x =-上,……10分同时也在直线y x =上,……12分 得233(,)22C --,322r =,……14分圆2C :22339()()222x y ++-=.……16分19.(本小题满分16分)已知A 点坐标为(0,8),直线:240l x y --=与y 轴交于B 点,P 为直线l 上动点. (1)求以AB 为直径的圆C 的标准方程;(2)圆E 过A ,B 两点,截直线l 得到的弦长为65,求圆E 的标准方程; (3)证明:以PA 为直径的动圆必过除A 点外的另一定点,并求出该定点坐标.解:(1)圆的方程为22(3)25x y +-= ………………………2分 (2)圆E 的标准方程为22(5)(3)50x y -+-=或22(10)(3)125x y ++-= ……………8分 (3)由题意可设动点(24,)P t t +,则以PA 为直径的圆的方程为(24)()(8)0x x t y t y --+--= ………………………10分即22(82)(48)0y x t x y x y --++--= ………………………12分由228200448080y x x x x y x y y y --===⎧⎧⎧⇒⎨⎨⎨+--===⎩⎩⎩或 ………………………14分 所以该定点坐标为(4,0) ………………………16分20.(本小题满分16分)已知1F ,2F 分别为椭圆的左、右两个焦点,椭圆的离心率为63,短轴的一个端点到一个焦点的距离为3.设点P 是椭圆上的动点,过点2F 作∠12F PF 的外角平分线PR 的垂线,交1F P 的延长线于E ,垂足为R . (1)求椭圆的标准方程; (2)求点R 的轨迹方程; (3)求证:12RF RF ⋅为定值.解:(1)设椭圆的方程为12222=+by a x )0(>>b a ,则222363a ca abc ⎧=⎪⎪=⎨⎪⎪=+⎩31a b ⎧=⎪⇒⎨=⎪⎩, ………………………4分椭圆的方程为1322=+y x . ………………………6分 (2)设R F 2交P F 1于Q ,由题意知直线m 垂直平分线段2F E 得到2PF PE =,又O 为21F F 中点,R 为2F E 的中点,11121111()()232222OR F E F P PE F P PF a a ==+=+=⋅==. ……………………10分 因此所求R 点轨迹方程为223(0)x y y +=≠. ………………………12分EROP2F1Fxy(3)设),(y x R ,则)0,2(),0,2(21y x RF y x RF --=---= ……………14分1)2(222221=+=+--=⋅y x y x RF RF ………………………16分。

苏教版高中数学选修1-1高二每周段段清练习参考答案

苏教版高中数学选修1-1高二每周段段清练习参考答案

高二数学第3周学情检测参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.双曲线22197y x -=的焦点坐标为 (0,4),(0,4)- . 2.已知椭圆方程1422=+k y x 的离心率为22,则k 的值为___2或8____. 3.离心率31=e ,焦距为4的椭圆标准方程为___2213632x y +=或2213632y x +=_____. 4.双曲线过点(4,3)、5(3,)2,则双曲线的标准方程为 2214x y -= . 5.若圆22x y m +=与圆2268110x y x y ++--=相切,则实数m 的值为 1或81 .6.已知双曲线2255x ky +=的一个焦点为(2,0),则k 的值为 53- .7.在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点()22,, 则该椭圆的离心率为 22 . 8.若椭圆22125x y m+=与双曲线221515x y -=的焦距相等,则m 的值为 9或41 . 9.过点(0,1)P 向圆2246120x y x y +--+=引切线,则切线长为 7 .10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于 A ,B 两点.若△AF 1B 的周长为43,则C 的方程为_____x 23+y 22=1____. 11.圆心在x 轴上,且与直线y x =相切于点(1,1)的圆的方程为 22(2)2x y -+= .12.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1⊥PF 2. 若21F PF ∆的面积为9,则b 的值为____3___.13.椭圆12222=+by a x (a >b >0)的两焦点为F 1、F 2,连接点F 1,F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 3-1 .14.已知直线l 的方程是60x y +-=,,A B 是直线l 上的两点,且△OAB 是正三角形 (O 为坐标原点),则△OAB 外接圆的方程是 22(2)(2)8x y -+-= .。

苏教版高中数学选修1-1:常见函数的导数

苏教版高中数学选修1-1:常见函数的导数

1
1
(3)(logax)′=__x_lo_g_a_e_=__x_ln_a___(a>0,
且 a≠1);
(4)(ex)′=_e_x_;
1 (5)(lnx)′=__x_;
(6)(sinx)′=_c_o_s_x_;
(7)(cosx)′=_-__s_in__x_.
问题探究 下面的计算过程正确吗?
(sinπ4)′=cosπ4=
可分解为(x-1)(x2+x-2)=0,解得 x1=1,
x2=-2.
∴ 切 线 3x - y - 2 = 0 与 曲 线 C 的 公 共 点 为 (1,1),(-2,-8),这说明切线与曲线C的 公共点除了切点外,还有另外的点.
【名师点评】 曲线的切线与曲线的交点不 一定惟一,可从本例题得证.
自我挑战1 抛物线y=x2在哪一点处的切线 平行于直线y=4x-5? 解:设切点为(x0,x20), ∵y′=2x,y′|x=x0=2x0=4,∴x0=2.
例1 求下列函数的导数:
(1)y=x x;(2)y=x14;(3)y=5 x3;
(4)y=log2x2-log2x;(5)y=-2sinx2(1-2cos2 x4). 【思路点拨】 熟练掌握导数基本公式,
并灵活运用对数性质及三角变换公式,转化 为基本初等函数的导数.
【解】 (1)y′=(x x)′=(x32)′=32x32-1=32 x. (2)y′=x14′=(x-4)′=-4x-4-1=-4x-5=-x45.
导数的运算
常见函数的导数
学习目标 1.能根据定义求函数 y=kx+b,y=c,y
=x,y=x2,y=1x的导数.
2.掌握常见的基本初等函数的导数公式, 并能求简单函数的导数.

2019年苏教版高一数学选修1-1同步课堂精练:2.2.2 椭圆的几何性质 Word版含答案

2019年苏教版高一数学选修1-1同步课堂精练:2.2.2 椭圆的几何性质 Word版含答案

1.椭圆的一个顶点坐标为(0),则椭圆的焦点坐标为__________.22213x y a +=2.已知椭圆(m )上一点M 到两个焦点的距离分别是5和3,则该222217x y m m +=-椭圆的离心率为__________.3.与椭圆9x 2+4y 2=36有相同的焦点,且短轴长为的椭圆方程是__________.4.已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|+|的最小值是__________.1PF 2PF5.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1F 2P 为等腰直角三角形,则椭圆的离心率为__________.6.已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边,则椭圆的方程为__________.7.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,原点与线段MN 中点的连线的斜率,则的值是__________.mn8.点P 是椭圆上一点,以点P 以及焦点F 1,F 2为顶点的三角形的面积等于221259x y +=4,则P 点的纵坐标为______.9.已知椭圆C 1:+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.24x (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,=2,求直线AB 的方程.OB OA参考答案1.答案:(-3,0)和(3,0) 解析:由已知a 2==12,∴c 2=a 2-b 2=9.2又由a 2=12>3,∴椭圆焦点在x 轴上.∴焦点坐标为(-3,0)和(3,0).2. 解析:∵m ,∴m 2>m 2-7>0,c 2=m 2-(m 2-7)=7.∴c .又∵点M 到两焦点的距离为5和3,∴由椭圆定义得2a =5+3=8.∴a =4.∴离心率c e a ==3.答案: 解析:方程9x 2+4y 2=36可化为,则此椭圆的焦点2212520y x +=22149x y +=为(0和(0,).设所求椭圆为(a >b >0),∴c 2=5.22221y x a b+=又∵2b =,∴b 2=20.∴a 2=25.∴所求椭圆方程为.2212520y x +=4.答案:2 解析:由向量加法的几何意义得|+|=2||,1PF 2PF PO∴当|+|取最小值时,即椭圆上一点P 到椭圆中心的距离||最小,而|1PF 2PF PO|min =b .PO又∵x 2+2y 2=2可化为+y 2=1,∴b =1.22x ∴|+|=2||=2b =2.1PF 2PF PO5. 解析:如图,1-Rt△F 1F 2P 中,令PF 2=1,则F 1F 2=1,1PF =由椭圆定义知,PF 1+PF 2+1=2a ,.1c e a ===6.答案:+y 2=1 解析:由已知可设椭圆方程为(a >b >0).22x 22221x ya b+=根据题意,得解得22222,2,,b c b c a b c =⎧⎪+-⎨⎪=+⎩2222,1,1.a b c ⎧=⎪=⎨⎪=⎩∴所求椭圆方程为+y 2=1.22x 7. 解析:由y =1-x 代入mx 2+ny 2=1消去y ,得(m +n )x 2-2nx +n -1=0,∴线段MN的中点坐标为,依题意,有.,1n n m nm n ⎛⎫- ⎪++⎝⎭1nm m n n n m n-+==+8.答案:±1 解析:F 1F 2==8.设P (x 0,y 0),则S =F 1F 2·|y 0|=4,12∴|y 0|=1,∴y 0=±1.9.答案:解:(1)由已知可设椭圆C 2的方程为(a >2),22214yx a +=,则a =4,=故椭圆C 2的方程为.221164y x +=(2)方法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由=2及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,OB OA因此可设直线AB 的方程为y =kx .将y =kx 代入+y 2=1中,得(1+4k 2)x 2=4,24x所以.22414A x k =+将y =kx 代入中,得(4+k 2)x 2=16,221164y x +=所以.22164B x k =+又由=2,得,即,OB OA 224B A x x =221616414k k =++解得k =±1,故直线AB 的方程为y =x 或y =-x .方法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由=2及(1)知,O ,A ,B 三点共线且点A , B 不在y 轴上,OB OA因此可设直线AB 的方程为y =kx .将y =kx 代入+y 2=1中,得(1+4k 2)x 2=4,24x 所以.22414A x k =+由=2,得,,OB OA 22164B x k =+2221614B k y k =+将,代入中,得,2B x 2B y 221164y x +=224114k k+=+即4+k 2=1+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x .。

高中数学苏教版选修1-1学案:第一章 常用逻辑用语 1.1.1 四种命题 Word版含答案

高中数学苏教版选修1-1学案:第一章 常用逻辑用语 1.1.1 四种命题 Word版含答案

1.1.1四种命题[学习目标]1.了解命题的逆命题、否命题与逆否命题的意义.2.会分析四种命题的相互关系.知识点一命题的定义(1)定义:能够判断真假的语句叫做命题.(2)真假命题:命题中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(3)命题的一般形式:命题的一般形式为“若p则q”.通常,命题中的p是命题的条件,q是命题的结论.知识点二四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题. (2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的否命题.(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的逆否命题.知识点三四种命题的真假性的判断原命题为真,它的逆命题不一定为真;它的否命题也不一定为真.原命题为真,它的逆否命题一定为真.题型一命题及其真假的判定例1判断下列语句是不是命题,若是,判断真假,并说明理由.(1)求证3是无理数.(2)若x∈R,则x2+2x+1≥0.(3)你是高二学生吗?(4)并非所有的人都喜欢苹果.(5)一个正整数不是质数就是合数.(6)x+3>0.解(1)祈使句,不是命题.(2)是真命题,因为x2+2x+1=(x+1)2≥0.对于x∈R,不等式恒成立.(3)是疑问句,不能判断真假,不是命题.(4)是真命题.(5)是假命题,正整数1既不是质数,也不是合数.(6)不是命题.不能判断真假.反思与感悟要判断一个命题是真命题,一般需要经过严格的推理论证,在判断时,要有理有据,有时应综合各种情况作出正确的判断.而判断一个命题是假命题,只需举出一个反例即可. 跟踪训练1判断下列语句是不是命题,若是,判断其真假,并说明理由.(1)函数y=sin2x-cos2x的最小正周期是π.(2)若x=4,则2x+1<0.(3)垂直于同一条直线的两直线平行吗?(4)一个等比数列的公比大于1时,该数列为递增数列.(5)求证:x∈R时,方程x2-x+1=0无实数根.解(1)(2)(4)是命题.(3)(5)不是命题.命题(1)中,y=sin2x-cos2x=-cos2x,显然其最小正周期为π,是真命题.命题(2)中,当x=4,2x+1>0,是假命题.(3)是一个疑问句,不是命题.命题(4)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(5)是一个祈使句,没有作出判断,不是命题.题型二四种命题的概念例2写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)若m·n<0,则方程mx2-x+n=0有实数根;(2)弦的垂直平分线经过圆心,且平分弦所对的弧;(3)若m≤0或n≤0,则m+n≤0;(4)在△ABC中,若a>b,则∠A>∠B.解(1)逆命题:若方程mx2-x+n=0有实数根,则m·n<0,假命题.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根,假命题.逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0,真命题.(2)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线,真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧,真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线,真命题.(3)逆命题:若m+n≤0,则m≤0或n≤0,真命题.否命题:若m>0且n>0,则m+n>0,真命题.逆否命题:若m+n>0,则m>0且n>0,假命题.(4)逆命题:在△ABC中,若∠A>∠B,则a>b,真命题.否命题:在△ABC中,若a≤b,则∠A≤∠B,真命题.逆否命题:在△ABC中,若∠A≤∠B,则a≤b,真命题.反思与感悟(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.跟踪训练2判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若x2+y2=0,则x,y全为零;(2)若在二次函数y=ax2+bx+c(a≠0)中,b2-4ac<0,则该函数图象与x轴有交点.解(1)该命题为真命题.逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.(2)该命题为假命题.逆命题:若二次函数y=ax2+bx+c(a≠0)的图象与x轴有交点,则b2-4ac<0,假命题.否命题:若在二次函数y=ax2+bx+c(a≠0)中,b2-4ac≥0,则该函数图象与x轴无交点,假命题.逆否命题:若二次函数y=ax2+bx+c(a≠0)的图象与x轴无交点,则b2-4ac≥0,假命题.题型三四种命题的关系例3下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四条边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________.答案①②③解析①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四条边相等的四边形是正方形”的否命题是“四条边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③. 反思与感悟要判断四种命题的真假:首先,要熟练掌握四种命题的相互关系,注意它们之间的相互性;其次,利用其他知识判断真假时,一定要对有关知识熟练掌握.跟踪训练3下列命题中为真命题的是________.(填序号)①“正三角形都相似”的逆命题;②“若m>0,则x2+2x-m=0有实根”的逆否命题;③“若x-2是有理数,则x是无理数”的逆否命题.答案②③解析①原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”,故为假命题.②原命题的逆否命题为“若x2+2x-m=0无实根,则m≤0”.∵方程无实根,∴判别式Δ=4+4m<0,∴m<-1,即m≤0成立,故为真命题.③原命题的逆否命题为“若x不是无理数,则x-2不是有理数”.∵x不是无理数,∴x是有理数.又2是无理数,∴x-2是无理数,不是有理数,故为真命题.正确的命题为②③.题型四等价命题的应用例4判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”的真假.解原命题的逆否命题为“已知a,x为实数,若a≥2,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集”.判断真假如下:函数y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,因为a≥2,所以4a-7>0,即抛物线与x轴有交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,故原命题的逆否命题为真.所以原命题为真.反思与感悟因为原命题与它的逆否命题的真假性相同,所以我们可以利用这一点,通过证明原命题的逆否命题的真假性来肯定原命题的真假性.这种证明方法叫做逆否证法,它也是一种间接的证明方法.跟踪训练4判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解∵m>0,∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.化归思想的应用例5判断命题“若x2-y2≠0,则x-y,x+y中至少有一个不等于0”的真假.分析原命题的真假性不容易判断,可以找出其逆否命题,若其逆否命题的真假性容易判断,则根据互为逆否的两个命题的真假性之间的关系,就可以解决原命题的真假性问题了.解原命题的逆否命题:若x-y,x+y都等于0,则x2-y2=0.由x-y=0,x+y=0,得x2-y2=(x+y)(x-y)=0.因此,原命题的逆否命题是真命题.所以原命题是真命题.解后反思条件与结论都含有否定词的命题在判断其真假时,会有一定的困难,这时最好转化为判断其逆否命题的真假,这种化归的思想是解题的重要思想方法.根据已知集合求参数范围例6已知p:M={x|x2-2x-80≤0},q:N={x|x2-2x+1-m2≤0,m>0}.如果“若p,则q”为真,且“若q,则p”为假,求实数m的取值范围.分析先求不等式的解集,再根据条件建立不等式组求解即可.解p:M={x|x2-2x-80≤0}={x|-8≤x≤10},q :N ={x |x 2-2x +1-m 2≤0,m >0}={x |1-m ≤x ≤1+m ,m >0}.因为“若p ,则q ”为真,且“若q ,则p ”为假,所以M N ,所以⎩⎪⎨⎪⎧ m >0,1-m ≤-8,1+m >10或⎩⎪⎨⎪⎧ m >0,1-m <-8,1+m ≥10, 即⎩⎪⎨⎪⎧ m >0,m ≥9,m >9或⎩⎪⎨⎪⎧ m >0,m >9,m ≥9,解得m >9,即实数m 的取值范围是{}m |m >9.解后反思由“若p ,则q ”为真,“若q ,则p ”为假,得M ⊆N ,但N M ,故M N ,即“1-m 与-8”和“1+m 与10”不能同时取等号.事实上,当m =9时,两个集合相等.1.下列语句不是命题的个数为________.①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.答案1解析①③④可以判断真假,是命题,②不能判断真假,所以不是命题.2.命题“若a >b ,则a -1>b -1”的否命题是________.答案若a ≤b ,则a -1≤b -1解析直接按否命题的构成改写.3.命题“若平面向量a ,b 共线,则a ,b 方向相同”的逆否命题是______________________________,它是________命题(填“真”或“假”).答案若平面向量a ,b 的方向不相同,则a ,b 不共线假4.给出以下命题:①“若a ,b 都是偶数,则a +b 是偶数”的否命题;②“正多边形都相似”的逆命题;③“若m >0,则x 2+x -m =0有实根”的逆否命题.其中为真命题的是________.答案③解析①否命题是“若a ,b 不都是偶数,则a +b 不是偶数”.假命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题.③∵Δ=1+4m ,m >0时,Δ>0,∴x 2+x -m =0有实根,即原命题为真.∴逆否命题为真.5.“若sin α=12,则α=π6”的逆否命题是“__________________”,逆否命题是________命题(填“真”或“假”).答案若α≠π6,则sin α≠12假 解析逆否命题是“若α≠π6,则sin α≠12”是假命题.1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题需要给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p ,则q ”的形式.含有大前提的命题写成“若p ,则q ”的形式,大前提应保持不变,且不写在条件p 中.3.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p 和结论q ;(2)写出条件p 的否定非p 和结论q 的否定非q ;(3)按照四种命题的结构写出所有命题.4.每一个命题都有条件和结论组成,要分清条件和结论.5.判断命题的真假可以根据互为逆否命题的真假性相同来判断,这也是反证法的理论基础.。

2018-2019学年苏教版选修1-1《2.1圆锥曲线》讲学案(含答案).doc

2018-2019学年苏教版选修1-1《2.1圆锥曲线》讲学案(含答案).doc

2. 1 圆 _锥 _曲_线椭圆的定义取一条定长的无弹性的细绳,把它的两端分别固定在图板的两点F1、 F2处,套上铅笔,拉紧绳子,移动笔尖.问题 1:若绳长等于两点F1、 F2的距离,画出的轨迹是什么曲线?提示:线段 F 1F 2.问题 2:若绳长L 大于两点F1、F 2的距离.移动笔尖(动点 M)满足的几何条件是什么?提示: MF 1+ MF 2= L.平面内与两个定点F1,F2的距离的和等于常数(大于 F 1F 2)的点的轨迹叫做椭圆.(1)焦点:两个定点F1, F 2叫做椭圆的焦点.(2)焦距:两个焦点间的距离叫做椭圆的焦距.双曲线的定义2011 年 3 月 16 日,中国海军第7 批、第 8 批护航编队“温州号”导弹护卫舰,“马鞍山”号导弹护卫舰在亚丁湾东部海域高船集结点附近正式会合,共同护航,某时,“马鞍山”舰哨兵监听到附近海域有快艇的马达声,与“马鞍山”舰哨兵相距 1 600 m 的“温州号”舰, 3 s 后也监听到了马达声 (声速 340 m/s),用 A、B 分别表示“马鞍山”舰和“温州号”舰所在的位置,点 M 表示快艇的位置.问题 1:“温州号”舰比“马鞍山”舰距离快艇远多少米?提示: MB - MA= 340×3= 1 020(m) .问题 2:把快艇作为一个动点,它的轨迹是双曲线吗?提示:不是.平面内与两个定点 F1, F 2的距离的差的绝对值等于常数 (小于 F1F2的正数 )的点的轨迹叫做双曲线.(1)焦点:两个定点F1, F 2叫做双曲线的焦点.(2)焦距:两焦点间的距离叫做双曲线的焦距.抛物线的定义如图,我们在黑板上画一条直线EF ,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在 C 点,将三角板的另一条直角边贴在直线 EF 上,在拉锁 D 处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题 1:画出的曲线是什么形状?提示:抛物线.问题 2: DA 是点 D 到直线 EF 的距离吗?为什么?提示:是. AB 是 Rt△的一条直角边.问题 3:点 D 在移动过程中,满足什么条件?提示: DA = DC .1.一般地,平面内到一个定点 F 和一条定直线l(F 不在 l 上 )的距离相等的点的轨迹叫做抛物线,定点 F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2.椭圆、双曲线、抛物线统称为圆锥曲线.1.圆锥曲线定义用集合语言可描述为:(1)椭圆 P= { M|MF 1+ MF2= 2a,2a>F1F2} ;(2)双曲线 P= { M||MF 1- MF 2|= 2a,2a<F1F 2} ;(3)抛物线 P= { M|MF = d, d 为 M 到直线 l 的距离 } .2.在椭圆定义中,当 2a= F1F2时, M 的轨迹为线段 F 1F 2,在双曲线定义中,当2a=F1F 2 时, M 的轨迹为两条射线.3.过抛物线焦点向准线作垂线,垂足为N,则 FN 的中点为抛物线顶点,FN 所在直线为抛物线对称轴.4.对于椭圆、双曲线,两焦点的中点是它们的对称中心,两焦点所在直线及线段 F 1F 2 的垂直平分线是它们的对称轴.[ 对应学生用书 P19]圆锥曲线定义的理解[例 1]平面内动点M 到两点 F 1(- 3,0),F 2(3,0) 的距离之和为3m,问 m 取何值时M 的轨迹是椭圆?[思路点拨 ] 若 M 的轨迹是椭圆,则MF 1+MF 2为常数,但要注意这个常数大于F1F2 .[精解详析 ] ∵ MF 1+ MF2= 3m,∴M 到两定点的距离之和为常数,当3m 大于 F1F 2时,由椭圆定义知,M 的轨迹为椭圆,∴3m>F1F2=3+ 3 2+ 0- 0 2= 6,∴m>2,∴当 m>2 时, M 的轨迹是椭圆.[一点通 ]深刻理解圆锥曲线的定义是解决此类问题的前提,一定要注意定义中的约束条件:(1)在椭圆中,和为定值且大于 F 1F2;(2)在双曲线中,差的绝对值为定值且小于 F 1F2;(3)在抛物线中,点 F 不在定直线上.1.命题甲:动点P 到两定点A、 B 的距离之和PA+ PB= 2a(a> 0, a 为常数 );命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.解析:若 P 点轨迹是椭圆,则PA+ PB= 2a(a> 0,常数 ),∴甲是乙的必要条件.反过来,若PA+PB = 2a(a> 0,常数 )是不能推出P 点轨迹是椭圆的.这是因为:仅当2a>AB 时, P 点轨迹才是椭圆;而当2a= AB 时, P 点轨迹是线段AB;当 2a<AB 时, P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要而不充分条件.答案:必要不充分2.动点P 到两个定点A(- 2,0), B(2,0) 构成的三角形的周长是10,则点P 的轨迹是________.解析:由题意知: PA+ PB+ AB= 10,又 AB= 4,∴PA+ PB= 6>4.∴点 P 的轨迹是椭圆.答案:椭圆圆锥曲线的应用[例 2]设F1,F2是双曲线的两个焦点,Q 是双曲线上任一点,从某一焦点引∠ F 1QF 2的平分线的垂线,垂足是P,那么点P 的轨迹是什么曲线?[思路点拨 ]利用双曲线的定义,结合平面图形的性质判断.[精解详析 ] 如图所示,点Q 在双曲线的右支上,有QF1- QF2=2a.①延长 F1P、 QF2交于 L .∵∠ F 1QP=∠ LQP, QP⊥ F1P,∴F 1Q=QL ,代入①,则QL -QF 2=2a,即 F2L = 2a.取线段 F 1F2中点 O,则由 P 是 F1 L 中点有1 1PO=2F 2L =2·2a= a.∴P 的轨迹是以 O 为圆心,以 a 为半径的圆.[一点通 ] 当点在圆锥曲线上时,点一定满足圆锥曲线的定义,如本题中,点 Q 在双曲线上,则有QF1- QF2= 2a,这是定义的要求.另外利用平面图形的性质解题是解析几何中很常见的解题思想.3.平面内到两定点F1(- 1,0)和 F 2(1,0)的距离的和为 3 的点的轨迹是________.解析: F 1F2= 2< 3,∴点 P 的轨迹是椭圆.答案:椭圆4.已知圆 C1:(x+ 3)2+y2=1 和圆 C2:(x- 3)2+ y2= 9,动圆 M 同时与圆 C1和圆 C2相外切,试判断动圆圆心 M 的轨迹.解:设圆 M 的半径为r ,由题意,得MC 1= 1+ r,MC 2=3+ r.∵MC 2- MC 1=2<C1C2,∴圆心 M 的轨迹是以C1, C2为焦点的双曲线的左支.5.已知定点 P(0,3) 和定直线 l : y+ 3=0,动圆 M 过 P 点且与直线 l 相切.求证:圆心 M 的轨迹是一条抛物线.解:∵直线 y+3= 0 与圆相切,∴圆心M 到直线 y+3= 0 的距离为圆的半径r.又圆过点P(0,3) ,∴r =MP ,∴动点 M 到点 P(0,3) 的距离等于到定直线y+ 3= 0 的距离,∴动点 M 的轨迹是以点P(0,3) 为焦点,以直线y+ 3= 0 为准线的抛物线.椭圆定义中常数为动点到两焦点的距离之和,由三角形中两边之和大于第三边知,应要求常数大于焦距.双曲线定义中常数为动点到两焦点的距离之差的绝对值,由三角形中两边之差小于第三边知,应要求常数小于焦距.[对应课时跟踪训练(七)]1 .平面内到一定点F和到一定直线l(F在l上)的距离相等的点的轨迹是________________________ .答案:过点 F 且垂直于l 的直线2.设 F 1、 F2为定点, PF 1-PF 2= 5,F 1F 2= 8,则动点P 的轨迹是 ________.解析:∵5< 8,满足双曲线的定义,∴轨迹是双曲线.答案:双曲线3.以 F 1、 F2为焦点作椭圆,椭圆上一点 P1到 F 1、 F 2的距离之和为 10,椭圆上另一点 P2满足 P2F1= P2F2,则 P2F1= ________.解析:∵P2在椭圆上,∴ P2F 1+ P2F2= 10,又∵P2F 1= P2F 2,∴P2 F1= 5.答案: 54.平面内动点P 到两定点 F 1(- 2,0),F2(2,0)的距离之差为m,若动点 P 的轨迹是双曲线,则m 的取值范围是 ________.解析:由题意可知,|m|< 4,且 m≠0,∴- 4<m<4,且 m≠0.答案: (- 4,0)∪ (0,4)5.已知椭圆上一点P 到两焦点F1、F 2的距离之和为20,则 PF 1·PF 2的最大值为 ________.解析:∵PF 1+PF 2= 20,PF 1+PF 2 2= ( 20 2∴PF1·PF2≤ ( 2 ) 2 ) = 100.答案: 1006.已知抛物线的焦点为 F ,准线为 l ,过 F 作直线与抛物线相交于A、B 两点,试判断以AB 为直径的圆与l 的位置关系.解:如图,取AB 的中点 O2,过 A、 B、O2分别作 AA1⊥l ,BB 1⊥ l, O2O1⊥ l,根据抛物线的定义,知AA1= AF, BB1=BF ,AA1+ BB1 AF +BF AB∴O2O1= 2 = 2 =2=R(R 为圆的半径 ),∴以 AB 为直径的圆与l 相切.7.动点 P(x,y)的坐标满足x- 2 2+ y2+x+ 2 2+ y2= 8.试确定点 P 的轨迹.解:设 A(2,0),B(- 2,0),则 x- 2 2+ y2表示 PA,x+ 2 2+ y2表示 PB,又 AB= 4,∴PA+ PB= 8> 4,∴点 P 的轨迹是以A、 B 为焦点的椭圆.8.在相距 1 600 m 的两个哨所A, B,听远处传来的炮弹爆炸声,已知当时的声速是340 m/s,在 A 哨所听到爆炸声的时间比在 B 哨所听到时间早 3 s.试判断爆炸点在怎样的曲线上?解:由题意可知点P 离 B 比离 A 远,且PB -PA=340× 3= 1 020 m,而AB = 1 600 m> 1 020 m,满足双曲线的定义,∴爆炸点应在以A, B 为焦点的双曲线的靠近 A 的一支上.。

高考数学课本回归6课本题精选(含解析)苏教版选修1-1(2021学年)

高考数学课本回归6课本题精选(含解析)苏教版选修1-1(2021学年)

江苏省赣榆县高考数学课本回归6 课本题精选(含解析)苏教版选修1-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省赣榆县高考数学课本回归6 课本题精选(含解析)苏教版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省赣榆县高考数学课本回归6 课本题精选(含解析)苏教版选修1-1的全部内容。

课本回归6 选修1—1课本题精选一、填空题1.(选修1—1 P16练习2(1))题目:三角形的内角和是180o 的否定是 。

解析:这是一个全称命题,否定为不是所有的三角形的内角和都是180o 。

2.(选修1-1 P19复习题6(3))题目:“f (0)=0”是“函数f(x)是R 上的奇函数”的 .(从“充分不必要条件”、“必要不充分条件”、“充要条件"、“既不充分也不必要条件”中选择一个)解析: f(0)=0不能保证f(x)是偶函数,例如f (x )=x2. 函数f(x )是R 上的奇函数可以得到f(0)=0,故应该填必要不充分条件。

3.(选修1-1 P 40练习4)题目:已知双曲线2214x y k-=的离心率(1,2)e ∈则实数k 的取值范围是 . 解析:()241,44ke +=∈,得(0,12)k ∈ 4.(选修1-1 P74习题12(2)))课本改编题目:如图1,直线l 是曲线()y f x =在4x =处的切线,则(4)(4)f f '+的值为 .解析:如图可知f (4)=5, '(4)f 的几何意义是表示在x=4处切线的斜率, 故531(4)402f -'==-。

故'(4)(4)f f +=5。

高中数学选修1_1全册习题(答案详解)

高中数学选修1_1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

高中数学选修1-1各章节作业练习题(附答 案解析)

高中数学选修1-1各章节作业练习题(附答 案解析)

第一章常用逻辑用语§1.1 命题及其关系1.1.1命题课时目标 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句中,能作为命题的是()A.3比5大B.太阳和月亮C.高年级的学生D.x2+y2=03.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行题号123456答案7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是__________________________,结论q 是________________________________.9.下列语句是命题的是________. ①求证3是无理数; ②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数; ⑤若x ∈R ,则x 2+4x +7>0. 三、解答题10.把下列命题改写成“若p ,则q ”的形式,并判断真假. (1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.11.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.能力提升12.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .313.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题. 2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.第一章 常用逻辑用语 §1.1 命题及其关系1.1.1 命题答案知识梳理1.真假 陈述句 真 假 2.条件 结论 作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [判断一个语句是不是命题,关键在于能否判断其真假.“3比5大”是一个假命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D 7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形. 8.若一个函数是奇函数 这个函数的图象关于原点对称 9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题.11.解 若命题p 为真命题,可知m ≤1; 若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2.故m 的取值范围是1<m <2.12.D [①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.]13.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m 、n 相交于一点这一条件,故不正确; ③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确. 综上所述知,③,④正确.]1.1.2四种命题课时目标 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:________________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数题号123456答案二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________________;逆命题是______________________;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.11.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.能力提升12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题答案知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.11.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.12.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]13.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.1.1.3四种命题间的相互关系课时目标1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a 2+b 2=0 (a ,b ∈R ),则a =b =0”的逆否命题是( ) A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0 B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题 题号 1 2 3 4 5 6 答案 二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是______________________________________,它是______(填“真”“或”“假”)命题.8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”或“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.能力提升12.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为() A.0B.1C.2D.313.a、b、c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a、b、c的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系答案知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.] 2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.B[①用“分部分式”判断,具体:a1+a≥b1+b⇔1-11+a≥1-11+b⇔11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2 (x>0,y>0),取x=m,y=n-m,知本命题为真.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.]13.解能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.§1.2充分条件与必要条件课时目标 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的____________,q是p 的____________.2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的______________条件,简称________条件,实际上p与q互为________条件.如果p⇒q且q⇒p,则p是q的________________________条件.一、选择题1.“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件题号123456答案7.用符号“⇒”或“⇒”填空.(1)a>b________ac2>bc2;(2)ab≠0________a≠0.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.三、解答题10.下列命题中,判断条件p 是条件q 的什么条件: (1)p :|x |=|y |,q :x =y .(2)p :△ABC 是直角三角形,q :△ABC 是等腰三角形; (3)p :四边形的对角线互相平分,q :四边形是矩形.11.已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},若x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.能力提升12.记实数x 1,x 2,…,x n 中的最大数为max {}x 1,x 2,…,x n ,最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ,则“l =1”是“△ABC 为等边三角形”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件13.已知数列{a n }的前n 项和为S n =(n +1)2+c ,探究{a n }是等差数列的充要条件.1.判断p 是q 的什么条件,常用的方法是验证由p 能否推出q ,由q 能否推出p ,对 于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A 的充要条件为B ”的命题的证明:A ⇒B 证明了必要性;B ⇒A 证明了充分性.“A 是B 的充要条件”的命题的证明:A ⇒B 证明了充分性;B ⇒A 证明了必要性.§1.2 充分条件与必要条件 答案知识梳理1.充分条件 必要条件2.p ⇔q 充分必要 充要 充要 既不充分又不必要 作业设计1.A [对于“x >0”⇒“x ≠0”,反之不一定成立. 因此“x >0”是“x ≠0”的充分而不必要条件.] 2.A [∵q ⇒p ,∴綈p ⇒綈q ,反之不一定成立,因此綈p 是綈q 的充分不必要条件.]3.B [因为N M .所以“a ∈M ”是“a ∈N ”的必要而不充分条件.]4.A [把k =1代入x -y +k =0,推得“直线x -y +k =0与圆x 2+y 2=1相交”;但“直线x -y +k =0与圆x 2+y 2=1相交”不一定推得“k =1”.故“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分而不必要条件.]5.A [l ⊥α⇒l ⊥m 且l ⊥n ,而m ,n 是平面α内两条直线,并不一定相交,所以l ⊥m 且l ⊥n 不能得到l ⊥α.]6.B [当a <0时,由韦达定理知x 1x 2=1a<0,故此一元二次方程有一正根和一负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当a =0时,该方程仅有一根为-12,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的充分不必要条件.]7.(1) ⇒ (2)⇒ 8.a >2解析 不等式变形为(x +1)(x +a )<0,因当-2<x <-1时不等式成立,所以不等式的解为-a <x <-1.由题意有(-2,-1)(-a ,-1),∴-2>-a ,即a >2.9.b ≥-2a解析 由二次函数的图象可知当-b2a≤1,即b ≥-2a 时,函数y =ax 2+bx +c 在[1,+∞)上单调递增.10.解 (1)∵|x |=|y |⇒x =y , 但x =y ⇒|x |=|y |,∴p 是q 的必要条件,但不是充分条件.(2)△ABC 是直角三角形⇒△ABC 是等腰三角形. △ABC 是等腰三角形⇒△ABC 是直角三角形. ∴p 既不是q 的充分条件,也不是q 的必要条件. (3)四边形的对角线互相平分⇒四边形是矩形. 四边形是矩形⇒四边形的对角线互相平分. ∴p 是q 的必要条件,但不是充分条件. 11.解 由题意知,Q ={x |1<x <3},Q ⇒P , ∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得-1≤a ≤5. ∴实数a 的取值范围是[-1,5].12.A [当△ABC 是等边三角形时,a =b =c ,∴l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1.∴“l =1”是“△ABC 为等边三角形”的必要条件.∵a ≤b ≤c ,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ca .又∵l =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ac,即a b =a c 或b c =a c, 得b =c 或b =a ,可知△ABC 为等腰三角形,而不能推出△ABC 为等边三角形. ∴“l =1”不是“△ABC 为等边三角形”的充分条件.] 13.解 当{a n }是等差数列时,∵S n =(n +1)2+c ,∴当n≥2时,S n-1=n2+c,∴a n=S n-S n-1=2n+1,∴a n+1-a n=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c,∵{a n}是等差数列,∴a2-a1=2,∴1-c=2.∴c=-1,反之,当c=-1时,S n=n2+2n,可得an=2n+1 (n≥1)为等差数列,∴{an}为等差数列的充要条件是c=-1.§1.3简单的逻辑联结词课时目标 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作__________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作________或____________.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q綈p真真真真假真假真假假假真真假真假假假假真一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是()A.“p∨q”为真,“綈q”为假B.“p∧q”为假,“綈p”为真C.“p∧q”为假,“綈p”为假D.“p∨q”为真,“綈p”为真2.已知p:∅{0},q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈q”,“p∧q”,“p∨q”中,真命题有()A.1个B.2个C.3个D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有()A.0个B.1个C.2个D.3个4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是() A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为假D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形题号123456答案二、填空题7.“2≤3”中的逻辑联结词是________,它是________(填“真”,“假”)命题.8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.三、解答题10.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.11.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.能力提升12.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y =|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真13.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A或x∈B ⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.§1.3简单的逻辑联结词答案知识梳理1.(1)p∧q“p且q”(2)p∨q“p或q”(3)綈p“非p”“p的否定”作业设计1.C[p假q真,根据真值表判断“p∧q”为假,“綈p”为真.]2.B[∵p真,q假,∴綈q真,p∨q真.]3.C[①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.]4.C[因为命题“綈(p∨q)”为假命题,所以p∨q为真命题.所以p、q一真一假或都是真命题.又因为p∧q为假,所以p、q一真一假或都是假命题,所以p、q中有且只有一个为假.] 5.C[命题p、q均为假命题,∴p∨q为假.]6.D[A中的命题是p∨q型命题,B中的命题是假命题,C中的命题是綈p的形式,D中的命题为p∧q型,且为真命题.]7.或真8.[1,2)解析x∈[2,5]或x∈(-∞,1)∪(4,+∞),即x∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x<2,即x∈[1,2).9.綈p解析对于p,当a>0,b>0时,|a|+|b|=|a+b|,故p假,綈p为真;对于q,抛物线y=x2-x+1的对称轴为x=12,故q假,所以p∨q假,p∧q假.这里綈p应理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.10.解(1)p为假命题,q为真命题.p或q:1是质数或是方程x2+2x-3=0的根.真命题.p且q:1既是质数又是方程x2+2x-3=0的根.假命题.綈p:1不是质数.真命题.(2)p为假命题,q为假命题.p 或q :平行四边形的对角线相等或互相垂直.假命题. p 且q :平行四边形的对角线相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题. (3)∵0∉∅,∴p 为假命题,又∵x 2-3x -5<0,∴3-292<x <3+292,∴{x |x 2-3x -5<0} =⎩⎨⎧⎭⎬⎫x |3-292<x <3+292⊆R 成立. ∴q 为真命题.∴p 或q :0∈∅或{x |x 2-3x -5<0}⊆R ,真命题, p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题,綈p :0∉∅,真命题.(4)显然p :5≤5为真命题,q :27不是质数为真命题,∴p 或q :5≤5或27不是质数,真命题,p 且q :5≤5且27不是质数,真命题,綈p :5>5,假命题.11.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3,即q :1<m <3.因p 或q 为真,所以p 、q 至少有一个为真. 又p 且q 为假,所以p 、q 至少有一个为假.因此,p 、q 两命题应一真一假,即p 为真,q 为假,或p 为假,q 为真.所以⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2.12.D [当a =-2,b =2时,从|a |+|b |>1不能推出|a +b |>1,所以p 假,q 显然为真.] 13.解 对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题, 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1. 综上所述,a 的取值范围是(-3,0]∪[1,+∞).§1.4 全称量词与存在量词课时目标 1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.会判定全称命题和特称命题的真假.3.能正确的对含有一个量词的命题进行否定.4.知道全称命题的否定是特称命题,特称命题的否定是全称命题.1.全称量词和全称命题(1)短语“______________”“____________”在逻辑中通常叫做全称量词,并用符号“______”表示,常见的全称量词还有“对一切”“对每一个”“任给”“所有的”等.(2)含有______________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.2.存在量词和特称命题(1)短语“______________”“________________”在逻辑中通常叫做存在量词,并用符号“________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(2)含有______________的命题,叫做特称命题.(3)特称命题:“存在M中的一个x0,有p(x0)成立”,可用符号简记为____________.3.含有一个量词的命题的否定(1)全称命题p:∀x∈M,p(x),它的否定綈p:____________;(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:____________.4.命题的否定与否命题命题的否定只否定________,否命题既否定______,又否定________.一、选择题1.下列语句不是全称命题的是()A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小2.下列命题是特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于33.下列是全称命题且是真命题的是()A.∀x∈R,x2>0 B.∀x∈Q,x2∈QC.∃x0∈Z,x20>1 D.∀x,y∈R,x2+y2>04.下列四个命题中,既是特称命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x20>0C.任一无理数的平方必是无理数D.存在一个负数x0,使1x0>25.已知命题p:∀x∈R,sin x≤1,则()A.綈p:∃x0∈R,sin x0≥1B.綈p:∀x∈R,sin x≥1C.綈p:∃x0∈R,sin x0>1D.綈p:∀x∈R,sin x>16.“存在整数m0,n0,使得m20=n20+2 011”的否定是()A.任意整数m,n,使得m2=n2+2 011B.存在整数m0,n0,使得m20≠n20+2 011C.任意整数m,n,使得m2≠n2+2 011D.以上都不对题号123456答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档