结构计算简图
12结构的计算简图及简化要点
杆件不能转动,但水平方向能移动;
有两个支座反力。
绪论 1.2 结构的计算简图及简化要点—Sept 6
5. 材料性质的简化(simplification of material property)
连续性(continuity);
均匀性(homogeneity);
各向同性(isotropy);
完全弹性(complete elasticity); 小变形(infinitesimal deformation)。
1.2.3 举例
单层工业厂房(one-storey industrial-type buildings)
Pin-jointed bent truss
计 算 简 图
1.2 结构的计算简图及简化要点
1.2.1 结构的计算简图 1.2.2 结构的简化 1.2.3 举例
绪论 1.2 结构的计算简图及简化要点—Sept 6
1.2 结构的计算简图及简化要点 1.2.1结构的计算简图(computing model)
实际结构工程结构计算简图
简化原则(principle of simplification) 必须要反映实际结构的主要特性; 分清主次,略去细节,便于分析。
1. 结构体系的简化(simplification of structure system)
实际结构
空间结构
计算简图
空间结构 平面结构
绪论 1.2 结构的计算简图及简化要点—Sept 6
2. 杆件的简化(simplification of member)
杆件(member):由横截面尺寸远小于长度的构件组成
刚结点(rigid node)
各杆既不能相对转动,也 不能相对移动
第二章结构计算简图
刚结点对与之相连的各杆件的转动有 约束作用,转动时各杆间的夹角保持不 变,杆端除产生轴力和剪力外,还产生 弯矩,同时某杆件上的弯矩也可以通过 结点全部传递给其它杆件。
组合结点是由两种不同的结点组合而 成的一种结点,这种结点的一部分具有 铰结点的特征,而另一部分具有刚结点 的性质。
--
--
支座的简化
第二章 结构计算简图
§2-1 约束与约束力 §2-2 结构计算简图 §2-3 物体受力分析
--
力Force的概念
1.定义:力是物体间的相互机械作用,这种作用可以改变物 体的运动状态。
2. 力的效应: ①运动效应(外效应) ②变形效应(内效应)。
3. 力的三要素:大小,方向,作用点 力的单位: 国际单位制:牛顿(N)
--
光滑铰链约束Constraint Of Smooth Cylindrical Pin
--
--
--
中间铰
(Hinge)
铰
--
中间铰 -- 销钉
约束力表示:
简化表示:
--
固定铰支座
上摆 销钉
下摆
--
固定铰支座
--
固定铰支座
--
固定铰支座
铰
--
固定铰支座
--
活动铰支座Sliding Hinged- Support (辊轴支座)
FR
FR'
--
光滑面约束Smooth Surface Constraint
--
光滑面约束Smooth Surface Constraint
滑槽与销钉(双面约束)
--
光滑面约束Smooth Surface Constraint Smooth surface
第14章:结构的计算简图
结构与支承物连接的简化: 以理想支座代替结构与其支承物(一般是大地)
之间的连结 。 1)活动铰支座:
允许沿支座链杆垂直方向的微小移动。沿支座链 杆方向产生约束力。 2)固定铰支座:
允许饶固定铰铰心的微小转动。过铰心产生任意 方向的约束力(分解成水平和竖直方向的两个力)。 3)固定支座:
不允许有任何方向的移动和转动,产生水平、竖 直及限制转动的约束力。计算简图的概念 2、结构计算简图的简化原则是:
1)计算简图要能反映实际结构的主要受力和变 形特点,即要使计算结果安全可靠;
2)便于计算,即计算简图的简化程度要与计算 手段以及对结果的要求相一致。
图14---1
3、结构计算简图的几个要点:
空间杆件结构的平面简化 杆件构件的简化:以杆件的轴线代替杆件; 杆件之间连接的简化:理想结点代替杆件与杆件 之间的连接。 1)铰结点: 汇交于一点的杆端是用一个完全无磨擦的光滑铰 连结。铰结点所连各杆端可独自绕铰心自由转动, 即各杆端之间的夹角可任意改变。 2)刚结点: 汇交于一点的杆端是用一个完全不变形的刚性结 点连结,形成一个整体。刚结点所连各杆端相互之 间的夹角不能改变。 3)组合结点(半铰): 刚结点与铰结点的组合体。
组合结构:由梁式构件和拉压构件构成。 拱:一般由曲杆构成。在竖向荷载作用下有水平 支座反力。
2、按计算方法分类: 静定结构, 超静定结构。
§14-2 杆件结构的分类
1、按结构的受力特点分类: 梁:由水平(或斜向)放置杆件构成。梁构件主
要承受弯曲变形,是受弯构件。 刚架:不同方向的杆件用结点(一般都有刚结点)
连接构成。刚架杆件以受弯为主,所以又叫梁式构 件。
桁架:由若干直杆在两端用铰结点连接构成。桁 架杆件主要承受轴向变形,是拉压构件。
结构力学 第1章结构的计算简图
计算简图的简化通常包含下述四方面的简化:
(1)平面简化 (2)杆件的简化
结构力学
(3)结点的简化 结构中杆件的相互连 接处称为结点,根据 实际构造,结点的计 算简图分为两种基本 类型,即铰结点和刚 结点。
图1.1(a)(b)是屋架结 点的简化,图1.1(c) (d)是框架梁和柱结点 的简化。
图1.5
结构力学
(3) 拱
桁架由直杆组成,杆与杆之间
的连接点为铰结点。当荷载作用
于结点(即结点荷载)时,各杆只
受轴力(图1.6)
(4) 刚架
图1.6
刚架通常由若干直杆组成,杆件间的结点多为刚结点,如图
1.7(a)(b)。杆件内力一般有弯矩、剪力和轴力,以弯矩为主。
图1.7
结构力学
(5) 组合结构 组合结构是由桁架杆件和梁等组合而成的结构,如图1.8
(a)、(b)所示。
图1.8
结构力学
1.3 荷载的分类
1.按作用时间的久暂
荷载按其作用时间的久暂可分为恒荷载和活荷载。 (1)恒荷载(简称恒载)—长期作用于结构上的不变荷载,如结 构的自重、固定于结构上的设备的重量等。这种荷载的大小 、方向和作用位置是不变的。 (2)活荷载(简称活载)又称可变荷载——暂时作用于结构上的 荷载,如吊车荷载、结构上的人群、风、雪等荷载。
图1.3
结构力学
1.2 杆件结构的分类
杆件结构的分类,实际就是计算简图的分类。杆件结构通 常可分为下列几类。
(1) 梁
梁是一种受弯构件。可分为单跨梁(图1.4(a)和(b))和多跨梁( 图1.4(c)和(d))。
图1.4
结构力学
(2) 拱
拱的轴线为曲线,在竖向荷载作用下有水平推力H(图 1.5(a)和(b))。水平推力大小改变了拱的受力特征。
《结构力学》第1章:结构的计算简图
超静定结构分析方法
力法
力法是以多余约束力为基 本未知量,通过建立和求 解力法方程来求解超静定 结构的方法。
位移法
位移法是以节点位移为基 本未知量,通过建立和求 解位移法方程来求解超静 定结构的方法。
混合法
混合法是结合力法和位移 法的优点,同时以多余约 束力和节点位移为基本未 知量进行求解的方法。
超静定结构计算简图绘制
明确计算目的
在绘制结构计算简图之前,需要明确计算的目的 和要求,从而确定需要简化的结构和保留的细节 。
保持结构几何不变性
在简化结构时,需要保持结构的几何不变性,即 简化后的结构在几何形状上应与原结构保持一致 。
合理简化结构
在绘制结构计算简图时,需要对结构进行合理的 简化,忽略对计算结果影响较小的细节,突出主 要受力构件和节点。
01
深入研究结构力学的基本原理和方法,为结构计算简图的发展
提供坚实的理论基础。
推动技术创新与应用
02
鼓励和支持新技术、新方法的研究与应用,提高结构计算简图
的精度和效率。
加强人才培养与交流
03
重视结构力学领域的人才培养和技术交流,推动行业技术的不
断进步和发展。
THANKS FOR WATCHING
感谢您的观看
机械工程中的应用
确定机械零件的承载能力和变形特性
通过结构计算简图,可以对机械零件进行受力分析,从而确定零件在不同荷载作用下的承载能力 和变形特性,为机械设计和制造提供依据。
优化机械设计方案
利用结构计算简图,可以对不同的机械设计方案进行比较和分析,从而选择最优的设计方案,提 高机械的可靠性和经济性。
未来展望与挑战
展望
未来结构计算简图将更加注重实时性、动态性和可视化,能够更好地模拟实际结 构的受力情况和变形过程,为工程设计和施工提供更加可靠的依据。
第二章结构计算简图物体受力分析1工程力学
一个位移及一个转角的约束及约束反力 • (7)定向支座:将杆件用两根相邻的等长、平行链杆
与地面相连接的支座。
FN M
• [思考]根据约束(限制)的位移与相应的约束
力可以将7种约束形式归纳为以下4类: (1).一个位移的约束及约束反力 (2).两个位移的约束及约束反力 (3).三个位移的约束及约束反力 (4).一个位移及一个转角的约束及约束反力
习题2-1a、b,2-3a、b,2-5,2-11
谢谢观赏
正时假设方向就是实际方向,为负时假设方向与实际方向 相反。 (5)分离体内力不能画出。 (6)作用力与反作用力方向相反,需分别画在相互作用的两 个不同的隔离体上。 分离体受力图不能错,否则皆错。
本章要点:
1.约束四种形式的性质及对应的约束力; 2.受力分析的步骤:
• 取分离体 • 画受力图
第二章作业
第二章结构计算简图物体受力分 析1工程力学
§2.1 约束与约束反力
• 自由体:在空间可以自由运动而获得任意位移的物体。 • 非自由体:因受周围物体的阻碍、限制而不能任意运动的物
体。
• 约束:限制非自由体位移的其他物体称作非自由体的约束。 • 约束反力,约束力,反力:由约束体产生的阻碍非自由体运 • 动的力,方向总是和所限制的位移方向(或位移趋势)相反。 • 主动力:系统所受的约束力以外的所有力,统称主动力。
• 一般所说的支座或支承,约束是相对的,a对b有一
方向的约束,则b对a就有同一方向相反的约束与约 束相对应的约束力也是相对的。
• 一物体(例为一刚性杆件)在平面内确定其位置需
要两个垂直方向的坐标(一般取水平x,竖直y)和 杆件的转角。 因此对应的约束力是两个力与一个 力偶。
约束类型
土木工程力学12-结构的计算简图及分类
5
学习探究
画受力图的步骤
① 选研究对象,画脱离体图;
受 力
② 首先画上主动力;
图 ③ 明确研究对象所受周围的约束,根据
约束类型,然后再画约束力;
④ 检查是否含有二力杆,如果有首先分析二
力杆;必要时用二力平衡公理、三力平衡汇交
定理确定某些约束力的指向。
2021/5/22
6
学习探究
一、结构的计算简图
屋架
柱
2021/5/22
基础
14
学习探究
32 杆件的简化 ——以轴线(粗实线)表示
柱
2021/5/22
15
学习探究
32 杆件的简化 ——以轴线(粗实线)表示 实例2—刚架
两铰刚架
2021/5/22
16
学习探究
32 杆件的简化 ——以轴线(粗实线)表示 实例3—刚架
三铰刚架
2021/5/22
17
2.固定铰支座
Fx
Fy
可以转动,但不能竖向移动和水平移动。 提供竖向和水平约束反力。
固定铰支座
2021/5/22
30
学习探究
3.固定端支座
M
Fx Fy
不能竖向移动、水平移动和转动。 提供竖向、水平约束反力和约束力矩
2021/5/22
31
学习探究
预制钢筋混凝土柱插入杯形基础的两种施工方法
2021/5/22
142020824杆件的简化基础屋架实例1屋架152020824杆件的简化32以轴线粗实线表示162020824两铰刚架实例2刚架杆件的简化32以轴线粗实线表示172020824三铰刚架实例3刚架杆件的简化32以轴线粗实线表示182020824节点杆件之间的连接杆件与基础的连接支座杆件间连接的简化33节点的简化192020824杆件间连接的简化33节点的简化铰节点刚节点202020824杆件间连接的简化33节点的简化铰节点实例上图的木屋架通过预埋在柱子或墙内的螺栓不柱或墙相连接屋架不柱丌能发生相对位秱但仍然有可能发生微小的相对转动故常把这种节点简化为铰节点
结构计算简图
(3) 支座总是有一定宽度的,并不像计算简图中那样只集中 在一点上,所以要对支座弯矩和剪力进行调整。
(4) 链杆支座没有竖向位移,假定成链杆实质上就是忽略了 次梁的竖向变形对板的影响,也忽略了主梁的竖向变形对 次梁的影响。
建筑结构概论
板承受均布荷载,由于沿板长边方向的荷载相 同,取1m宽度的单位板宽;板支承在次梁或墙上, 其支座按不动铰支座考虑。
次梁承受由板传来的荷载和次梁自重,也是均 布荷载;次梁支撑在主梁上,其支座按不动铰支 座考虑。
主梁承受次梁传下的荷载以及主梁自重,次梁传下的荷 载是集中荷载,主梁的。当主梁支撑在砖柱(墙) 上时,其支座按铰支考虑;当主梁与钢筋混凝土柱整浇时, 若梁柱的线刚度比大于5,则主梁支座也可视为不动铰支 座(从而板、次梁、主梁都可按连续板或连续梁计算); 若非如此,则应按弹性嵌固于柱上的框架梁计算。
次梁、主梁a<0.05ln时, l0 ln b / 2 0.025ln
3. 计算跨数 对于连续梁、板的某一跨来说,作用在其它跨
上的荷载都会对该跨内力产生影响,但作用在与 它相隔两跨以上的其余跨内的荷载对他的影响较 小,可以忽略。所以,对于等截面且等跨度的连 续梁、板,当实际跨数超过五跨时,可按五跨计 算。
2. 计算跨度
梁、板的计算跨度是在内力计算时所采用的跨 间长度。从理论上来讲,某一跨的计算跨度应取 该跨两端支座反力合力作用点之间的距离。但在 梁板设计中,当按弹性理论计算时,根据边支座 的支承形式,板和次梁边跨的计算跨度取值与中 间跨不同。
(1) 当边跨端支座为固定支座时,边跨和中间跨的 计算跨度都取为支座中到中,即
结构计算简图
结构计算简图
东北财经大学金广建 设管理学院 杜贵成
建筑力学 结构计算简图
结构及荷载简化
横向荷载下的简化 P Q
P
水平荷载下的简化
Q
东北财经大学金广建 设管理学院 杜贵成
建筑力学 结构计算简图
桥梁及其荷载简化
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
l
东北财经大学金广建 设管理学院 杜贵成
单层工业厂房的计算简图
建筑力学 结构计算简图
取一榀计算,并化为平面体系。
东北财经大简图
↓↓↓↓↓↓↓↓↓↓↓
细石混凝土填充
东北财经大学金广建 设管理学院 返回 杜贵成
结构力学(1-2-1)--1-2结构力学计算简图及简化要点
结构的计算简图及简化要点Computing Models of Structures and the Main Point of Their Simplification 1.2 结构的计算简图及简化要点教学目标:教学内容:n 结构体系的简化 n 杆件的简化n 杆件间连接的简化n 结构与基础间连接的简化n 荷载的简化n 材料性质的简化n 了解简化原则。
n 理解杆件、结点、支座、荷载等的简化方法。
1. 定义与原则结构计算简图的定义:用一个简化的图形来代替实际结构选取计算简图的原则:反映实际 便于计算空间结构平面结构计算简图2. 简化方法Ø杆件的简化Ø杆件间连接的简化Ø结构与基础间连接的简化Ø荷载的简化计算简图Ø 杆件简化杆件——用轴线表示;杆件连接区——用结点表示;杆长——用结点间的距离表示;荷载——作用点移到轴线上。
计算简图Ø 杆件间连接的简化杆件间连接区简化为结点(铰结点和刚结点)(1) 铰结点(Hinge joint):被连接的杆件在连接处不能相对移动,但可相对转动。
(2) 刚结点(Rigid joint)被连接的杆件在连接处既不能相对移动,又不能相对转动。
预埋钢板焊缝柱屋架柱计算简图梁2. 简化方法Ø 结构与基础间连接的简化结构与基础的连接区简化为支座(support)按受力特征,一般简化为以下四种情况:(1) 滚轴支座(2) 铰支座(3) 定向支座(4) 固定支座(1) 滚轴支座梁 砖墙F y 被支承的部分可以转动和水平移动,但不能竖向移动。
计算简图:用一根支杆表示。
砖墙 (2) 铰支座梁被支承的部分可以转动,但不能移动。
计算简图:用两根相交的支杆表示。
F y F x(3) 定向支座M被支承的部分不能转动,但可以沿一个方向平行滑动。
计算简图:用两根平行支杆表示。
Fy(4) 固定支座M被支承的部分完全被固定。
计算简图:按图表示。
结构计算简图
图2-46
建筑力学
的反力分布是很复杂的,而且有一定的分布长度。 为了简化计算,可假定反力是均匀分布的,反力的合力就通过支承
面的中心。合力的位置确定后,即可用合力代替分布的反力。这一代替 仅在支撑接触处的局部位置,与实际情况不同,对整个梁并无大的影响。
图2-39
可见,梁端在墙内的嵌固程度有限,起不了固定端支座的作用,介 于固定端支座和固定铰支座之间。为了便于计算可将梁两端的支承简化 成一端为固定反映出支座的情况、荷载大小和计算跨度。 对于图2-45所示的简支梁、板,其计算跨度l0。可取下列各l0值的
较小者。
图2-45
1)实心板: l0 ln a l0 ln h l0 1.1ln 2)空心板和简支梁: l0 ln a l0 1.05 ln
图2-43
图2-44
又如图2-44a所示钢筋1昆凝土框架顶层的结点,梁与柱用混凝土 整体浇筑,因梁端与柱端之间不能发生相对移动,也不能发生相对转 动,故可将此结点简化为刚结点,如图2-44b所示。
1.3 荷载的简化 作用于实际结构土的荷载,有结构自重、水压力、土压力、人群重
量以及附属物的重量等,一般分为体积力和表面力两大类。
本来两端支承情况相同,严格地说,应简化为相同支座,但是为了 简化计算,通常将其一端简化为固定铰支座、另一端简化为可动铰支座。 梁本身由其轴线代替。这样便得到梁的结构计算简图,如图2-39b所示。
图2-39
图2-40a、c表示预制柱与杯形基础的两种连接方法。杯口四 周用细石混凝土填实时,柱不能转动,所以可简化为固定端支座, 如图2-40b所示。杯口四周用沥青麻丝填实时,柱端能发生微小 转动,所以可简化为固定铰支座,如图2-40d所示。
结构的计算简图
THANKS.
根据结构体系和结构单元的受力特性,确定合适的支撑方式,如拉撑、压撑、 固定支撑等。
确定连接方式
根据结构单元之间的相互作用力和位移要求,选择合适的连接方式,如焊接、 螺栓连接、铰接等。
绘制计算简图
绘制结构示意图
根据确定的体系、单元、支撑和连接方式,绘制结构的示意图,标明各部分的位 置和尺寸。
标注受力信息
计算简图的重要性
01
02
03
提高计算效率
通过简化结构,减少不必 要的计算量,提高计算效 率。
保证计算精度
在简化过程中,保持关键 的受力特性和结构特征, 确保计算精度。
促进结构优化
简化结构有助于发现结构 中的冗余部分,进一步优 化结构设计。
计算简图的分类
几何计算简图
根据结构的几何形状和尺 寸,简化结构为简单的几 何形状,如梁、柱、板等。
提高结构效率
优化材料利用
根据计算和分析结果,优化材料 利用,避免浪费,降低结构成本。
减轻结构自重
通过合理的结构和材料选择,减 轻结构自重,降低基础承载要求
和地震作用。
提高结构耐久性
采取有效的防腐、防火、防震等 措施,提高结构的耐久性,延长
结构使用寿命。
计算简图的应用实例
05
高层建筑的计算简图
高层建筑由于其高度和规模,需要考虑风载、地震等水平作用,因此计算简图需要 详细模拟建筑物的抗侧力体系,如框架、剪力墙等。
计算简图的优化与改
04
进
优化结构体系
选择合理的结构体系
根据工程需求和结构特点,选择合适的结构 体系,如框架结构、剪力墙结构、筒体结构 等,以满足建筑功能和抗震、抗风等性能要 求。
绘制受力图—结构计算简图(建筑力学)
经过上述简化,即可得到厂房横向平面单元的计算简图,如图所示。 单层工业厂房及其计算简图如图
例: 试选取图示三角形屋架的计算简图。
解: 此屋架由木材和圆钢制成。上、下弦杆和斜撑由木材制成,拉杆使用圆钢, 对其进行简化时各杆用其轴线代替;各杆间允许有微小的相对转动,故各结点均简 化为铰结点;屋架两端搁置在墙上或柱上,不能相对移动,但可发生微小的相对转 动,因此屋架的一端简化为固定铰支座,另一端简化为活动铰支座。作用于屋架上 的荷载通过静力等效的原则简化到各结点上,这样不仅计算方便,而且基本符合实 际情况。通过以上简化可以得出屋架的计算简图(图b)。
干个平面结构。
二、杆件结构的简化
二、杆件结构的简化
在选取杆件结构的计算简图时,杆件的简化 杆件用其轴线表示。直杆简化为直线,曲杆简化为曲线。
3. 结点的简化 结构中各杆件间的相互连接处称为结点。
(1)铰结点
铰结点的特征是所连各杆都可以绕结点中心相对转动,即在结点处各杆之间的 夹角可以改变。
图c所示屋架的端部支承在柱上,
并将预埋在屋架和柱上的两块钢板焊接
起来,它可以阻止屋架的移动,但因焊
接的长度有限,屋架仍可作微小的转动,
(c)
因此可简化为固定铰支座。
(d)
(e)
(f)
图d、e所示插入杯形基础内的钢筋混凝土柱,若用沥青麻丝填实(图d), 则柱脚的移动被限制,但仍可作微小的转动,因此可简化为固定铰支座;若用细 石混凝土填实(图e),当柱插入杯口深度符合一定要求时,则柱脚的移动和转 动都被限制,因此可简化为固定端支座。图f所示悬挑阳台梁,其插入墙体内的 部分有足够的长度,梁端的移动和转动都被限制,因此可简化为固定端支座。
例如,在图a所示木结构的结点构造中,是用钢板和螺栓将各杆端连接起来的, 各杆之间不能有相对移动,但允许有微小的相对转动,故可作为铰结点处理,其简 图如图b所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、受力图上只画外力,不画内力。
一个力,属于外力还是内力,因研究对象的不同,有 可能不同。当物体系统拆开来分析时,原系统的部分 内力,就成为新研究对象的外力。
6 、同一系统各研究对象的受力图必须整体与局部一致,相
互协调,不能相互矛盾。 对于某一处的约束反力的方向一旦设定,在整体、局 部或单个物体的受力图上要与之保持一致。
同时又要便于分析和计算。 • 合理的计算简图的建立需要具备较深厚的力学知 识和清晰的概念,并能与工程实践相结合,最后 还能经受实践的检验。 • 本课程只讨论(典型)计算简图。
平面杆系结构的分类
(1)梁 :杆件轴线为直线。单跨梁、多跨梁 受力点:受弯构件。 (2)拱:由曲杆构成。 受力特点:竖向荷载作用下,支座产生水平反力。 (3)刚架:梁、柱组成。具有刚结点。 (4)桁架:直杆用铰链连接组成的结构。 (5)组合结构:桁架和梁或刚架组合在一起形成的结构。 含有组合结点。
• 习题2-2(a) • 作ab杆的受力图。图中接触面均为光滑面。 • 习题2-2解答如图。 • a点受拉力t,沿柔索方向; • b点受支撑反力n,指向圆心c。
• 受力分析应注意柔索、光滑面约束性质。 • 注意约束力的方向: • 柔索约束力为沿索线方向的拉力; • 光滑面约束力为压力,方向为光滑面的法
• 根据约束(限制)的位移与相应的约束力可以将
7种约束形式归纳为以下4类: (1).一个位移的约束及约束反力 (2).两个位移的约束及约束反力 (3).三个位移的约束及约束反力 (4).一个位移及一个转角的约束及约束反力
§2-2
结构计算简图
• 计算简图是实际结构的简化模型。 • 选用原则:要能反映实际结构的主要受力特性;
二、受力图
画物体受力图主要步骤为:
①选研究ห้องสมุดไป่ตู้象;
②取分离体;
③画上主动力; ④画出约束反力
三、画受力图应注意的问题
1、不要漏画力 除重力、电磁力外,物体之间只有通过接触 才有相互机械作用力,要分清研究对象(受 力体)都与周围哪些物体(施力体)相接触, 接触处必有力,力的方向由约束类型而定。
• • • •
习题2-1(d), 指出受力图中的错误和不妥之处。 受力图见教材15页。 受力图中的错误和不妥之处: (1)如整体受力图所示,Xc、Yc应视为作用于c点的集中 力(主动力)。 但如本图分析,Xc、Yc表示的是内力,所以原图中不应 画 (2)本图中Yc、Yc’为作用力与反作用力,应设为相反方 向; Xc、Xc’所设方向正确,但Xc画在杆右侧更准确。
线方向,即指向圆心c。注意这里不是沿杆 轴方向。
本章要点:
1.约束四种形式的性质及对应的约 束力; 2.受力分析的步骤: • 取分离体 • 画受力图
第二章作业
习题2-1,2-3a、b ,2-5,2-10,2-12
• 主动力:系统所受的约束力以外的所有力,统称主动力。
约束反力特点:
①大小常常是未知的;
②方向总是与约束限制的物体的位移方向相反;
③作用点在物体与约束相接触的那一点。
N1
G G
N2
主动力
主动力和约束反力
• 二、约束类型:
• 根据约束(限制)的位移与相应的约束力可以将
7种约束形式归纳为以下4类: (1).一个位移的约束及约束反力 (2).两个位移的约束及约束反力 (3).三个位移的约束及约束反力 (4).一个位移及一个转角的约束及约束反力
§2-3
物体受力分析
物体受力分析包含两个步骤:(1)取分离体,(2)画 受力图。P12 1.取分离体:是把所要研究的物体解除约束,即解除研 究对象与其它部分的联系; 2.画受力图(1)约束反力:用相应的约束反力代替解除 的约束对研究对象的作用;(2)主动力:画出分离体 上受到的主动力(外荷载)。 注:受力图是画出分离体上所受的全部外力,即主动力 与约束力。主动力是荷载产生的力,实际作用的力;约 束反力是解除联系后作用力。例题2-1、2-2、2-3
7 、正确判断二力构件。
• 习题2-11 按图示系统作(1)杆CD、轮O、绳索及重物
所组成系统的受力图。(2)折杆AB的受力图。(3) 折杆GE的受力图。(4)系统整体的受力图。
E B
G
O YG
A
XG
F NF
D
C
NA
W
XD
T XC YC
YD
NE
W
NB
T’
XD’ YD’ NF XD’ YD’ YC’ XC’ NA
• (b)固定铰支座约束:固定铰支座是用两个不平行的
链杆约束与地面相连接的支座;滚动铰支座是将杆件用 铰链约束连接在支座上,支座用滚轴支持在光滑面上。
4.一个位移及一个转角的约束及约束反力
• 定向支座:将杆件用两根相邻的等长、平行链杆与地面
相连接的支座。
FN M
• 二、约束类型:
要注意力是物体之间的相互机械作用。因此对 2、不要多画力 于受力体所受的每一个力,都应能明确地指出 它是哪一个施力体施加的。
3、不要画错力的方向 约束反力的方向必须严格地按照约束的类型来画,不
能单凭直观或根据主动力的方向来简单推想。在分析
两物体之间的作用力与反作用力时,要注意,作用力 的方向一旦确定,反作用力的方向一定要与之相反, 不要把箭头方向画错。未知力不能判定实际方向的先 假设方向,经计算结果为正时假设方向就是实际方向, 为负时假设方向与实际方向相反。 4、受力图上不能再带约束。 即受力图一定要画在分离体上。
第二章 结构计算简图、物体受力分析
§2-1 约束与约束反力 §2-2 结构计算简图 §2-3 物体受力分析
§2.1 约束与约束反力
• 一.基本概念 • 自由体:在空间可以自由运动而获得任意位移的物体。 • 非自由体:因受周围物体的阻碍、限制而不能任意运动的物
体。 • 约束:施加在非自由体上使其位移受到一定限制的条件, 它一般通过与周围物体的相互接触而构成。 (这里,约束是名词,而不是动词的约束。) • 约束体:构成约束的周围物体称为约束体,也简称约束。 • 约束反力:注意方向