东南大学 2002 年数学分析试题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学2002年数学分析试题解答
一、叙述定义(5分+5分=10分)
1.()+∞=−∞
→x f x lim . 解:M x f E x E M >−<∀>∃>∀)( , ,0 ,0.
2.当+→a x 时,)(x f 不以A 为极限.
解:
二、计算(9分×7=63分)
1.求曲线210 ),1ln(2≤
≤−=x x y 的弧长. 解:dx x f s ∫+=βα 2)]('[1
∫∫∫−=−++−=−+=−−+=21 0 21
0 222
1
0 22
213ln )11111(11)12(1dx x x dx x x dx x x . 2.设x y z e x g z y x f u y sin ,0),,( ),,,(2===,g f ,具有一阶连续偏导数,
0≠∂∂z g ,求dx
du . 解:由0),,(2=z e x g y 得02321=++dz g dy g e dx xg y
,从而 x
z z f x y y f x f dx du ∂∂⋅∂∂+∂∂⋅∂∂+∂∂==32121)cos 2(cos f g e x xg f x f y ⋅++⋅+. 3.求∫dx x
x 2ln ( 解:令dt e dx e x x t t t === , ,ln ,
∫=dx x x 2)ln (∫⋅dt e e t t t 22
=∫
=−dt e t t 2t t te e t −−−−22C e t +−−2 C x
x x +++−=2ln 2)(ln 2. 4.求()2
0lim x a x a x
x x −+→()0>a . 解:()2
0lim x a x a x
x x −+→
2222
2220)]()(ln 2ln 1[)}(]11)[(ln 2ln 1{lim x
x o a x a x x o a a x a x x +++−+++++=→ 12a a
+=. 5.计算第二型曲面积分
∫∫++S dxdy z dzdx y dydz x ,222其中S 是曲面22y x z +=夹于0=z 与1=z 之间的部分,积分沿曲面的下侧
解:记222),,(,),,(,),,(z z y x R y z y x Q x z y x P ===,θθsin ,cos r y r x ==,
则2
r z =,且,10≤≤r πθ20≤≤.
∫∫++S dxdy z dzdx y dydz x 222=∫∫++S dxdydz z y x )(2 πθθθπ
=++=∫∫dr r r r r d 2 0 1
0 2)sin cos (2. 6.求常数λ
,使得曲线积分22 0, L x x r dx r dy r y y
λλ−==∫v 滑闭曲线L 成立.
解:
7.在曲面)0,0,0(,142
2
2>>>=++z y x z y x 上求一点,使过该点的切平面在三个坐标轴上的截距的平方和最小.
解:设14),,(2
2
2−++=z y x z y x F ,则2,2,2z z F y y F x x F =∂∂=∂∂=∂∂,所求切平面方程为: 0)(2
)(2)(2=−+−+−z Z z y Y y x X x , 求得在三个坐标轴上的截距分别为:
,44 ,444 ,4442
22222222z
z y x Z y z y x Y x z y x X ++=++=++= )1161161()44(2
222222222z y x z y x Z Y X d ++++=++==2221611z y x ++. 令)14(1611),,(2
22222−+++++=z y x z
y x z y x P λ,则由 02132,022,022333=+−=∂∂=+−=∂∂=+−=∂∂λλλz z
z P y y y P x x x P ,
,1422
2=++z y x 解得==y x ,16,2,21==λz =min d 16. 三、证明题(6分+7分+7分+7分=27分)
1.判定级数∑∫∞=+1 0 1sin n n dx x
x π的敛散性. 解:原级数为正项级数,据积分中值定理, 0sin (sin )ln 1ln 11n
x dx x n n n ππππξ⎛⎞⎛⎞=+≤+⎜⎟⎜⎟+⎝⎠⎝⎠
∫, 又级数1ln 1n n n π
π∞=⎛⎞+⎜⎟⎝⎠∑收敛,所以原级数收敛. 2.设)(x f 在区间[2,0]上具有二阶连续导数,且对一切]2,0[∈x ,均有 1)('' ,1)(<<x f x f ,证明:对一切]2,0[∈x ,成立2)('<x f . 解:,)0(2
)('')0)((')()0(2x f x x f x f f −+−+=ξ 2)2(2
)('')2)((')()2(x f x x f x f f −+−+=η, ])('')2)((''[2
1)('2)0()2(22x f x f x f f f ⋅−−+=−ξη, ])('')2)((''[2
1)0()2()('222x f x f f f x f ⋅−−−−=ξη, ])('')2)((''[2
1)0()2(21)('22x f x f f f x f ⋅−−+−=ξη ++≤
)0(21)2(21f f 22)(''2
1)2()(''21x f x f ⋅+−⋅ξη 2221)2(211x x +−+≤2)1(2+−≤x , '()2f x ≤.
3.证明积分∫∞
+− 0 dy xe xy 在),0(+∞上不一致收敛.
4.证明函数x x x f ln )(=
在),1[+∞上一致连续. 证明:x x x x x x
x f 22ln ln 21)('+=+=,1)(' ,1 ,021ln 21)(''max ===−−=x f x x x x x f 由拉格郎日中值定理,
1212121212,[1,), , ()()'()x x x x f x f x f x x x x δξ∀∈+∞−<−=⋅−≤−。