2019年全国各地中考数学解析汇编33规律探索型问题

合集下载

2019年全国各地中考数学解析汇编33 规律探索型问题

2019年全国各地中考数学解析汇编33 规律探索型问题

2019年全国各地中考数学解析汇编33 规律探索型问题12.(2018山东省滨州,12,3分)求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…+22018,因此2S ﹣S=22018﹣1.仿照以上推理,计算出1+5+52+53+…+52018的值为( )A .52018﹣1 B .52018﹣1 C .D .【解析】设S=1+5+52+53+…+52018,则5S=5+52+53+54+…+52018,因此,5S ﹣S=52018﹣1,S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值. (2018广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2019年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2018个数是___________【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2018个数的绝对值是2018,值偶数项是负数,故填-2018. 【答案】-2018【点评】本题是找规律的问题,确定符号是本题的难点.20.(2018贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。

解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n 个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n 个图案中共有1+3+5+…+(2n-1)=2)121(-+n n =n 2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n 个图案的正方形的个数的表达式是解题的关键.18.(2018贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()n a b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b +=++++,故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2018山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A 2018在射线 上. 【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环,2018=16×125+12,所以点A2018所在的射线和点12A所在的直线一样。

2019年中考数学复习考点解密 规律探索性问题(含解析)

2019年中考数学复习考点解密 规律探索性问题(含解析)

2019年中考数学二轮复习考点解密 规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。

二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。

三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。

例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n [])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n[])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440. (2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。

2019年中考真题规律问题分类汇编(PDF版含解析)

2019年中考真题规律问题分类汇编(PDF版含解析)

知识点44规律问题2019一、选择题.(2019·河南)如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)【答案】D【解题过程】延长DA交x轴于点M∵A(-3,4),B(3,4),∴AB=6,AB∥x轴∵四边形ABCD为正方形∴AD=AB=6,∠DAB=90°∴∠DM0=∠DAB=90°连结OD,Rt△DMO中,MO=3DM=10则D点的坐标为(-3,10)将△OAB和正方形ABCD绕点O每次顺时针旋转90°,Rt△DMO也同步绕点O每次顺时针旋转90°当图形绕点O顺时针第一次旋转90°后,D点的坐标为(10,3),当图形绕点O顺时针第二次旋转90°后,D点的坐标为(3,-10),当图形绕点O顺时针第三次旋转90°后,D点的坐标为(-10,-3),当图形绕点O顺时针第四次旋转90°后,D点的坐标为(-3,10),当图形绕点O顺时针第五次旋转90°后,D点的坐标为(10,3),······每四次为一个循环∵70÷4=17 (2)∴旋转70次后,D点的坐标为(3,-10)故选D【知识点】正方形的性质图形旋转的性质点的坐标变化规律.(2019·鄂州)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y 上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1 C.22n﹣2 D.22n﹣3【答案】D【解析】∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y 与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2 ,B2B3=2 ,…,B n B n+1=2n ,∴S1 1× S2 2×2 2 ,…,S n 2n﹣1×2n th ;故选:D.【知识点】规律型:点的坐标;一次函数的图象(2019·菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)【答案】C【解析】A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…,2019÷4=504…3,所以A 2019的坐标为(504×2+1,0),则A 2019的坐标是(1009,0),故选C .【知识点】点的坐标规律.(2019·毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A .上方B .右方C .下方D .左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选C .【知识点】规律型:图形的变化类;生活中的旋转现象.二、填空题.(2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______.【答案】0,2【思路分析】由题中规则进行列举,找到规律后进行计算即可.【解题过程】根据题目的规则,0,1,1,0,-1,-1,0,1,1,0,-1,-1,……,每6个数是一个循环单位,∴前6个数的和是0,2019÷6=336…3,∴这2019个数的和=0+1+1=2.【知识点】找规律.(2019·齐齐哈尔)如图,直线l:y=133+x 分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线L 于点A 2;过点A 2作A 2B 2⊥l,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线L 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则Sn=【答案】191663-n (【解析】由题意知OA=1,则OB 1=33,∴S 1=63;∴A 2(33,34),∴A 2B 1=34,B 1B 2=394,∴S 2=63916⨯;∴A 3(937,916),∴A 2B 1=916,B 1B 2=32716,∴S 2=632916)(⨯;...∴Sn=191663-n )(【知识点】一次函数图像,锐角三角函数,直角三角形,(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043L L L L则第20行第19个数是_____________________【答案】625【思路分析】根据题目中的数据和各行的数字个数的特点,可以求得第20行第19个数是多少。

2019中考数学规律探索题(中考找规律题目-有答案)

2019中考数学规律探索题(中考找规律题目-有答案)

中考规律探索1一.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .72. 把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2013=( ) A .(45,77) B .(45,39) C .(32,46) D .(32,23)3.下表中的数字是按一定规律填写的,表中a 的值应是 .1 2 3 5 8 13 a (2)358132134…4.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8 cm 2,第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为( )A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A 、(1,4)B 、(5,0)C 、(6,4)D 、(8,3)6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1)7.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足12-=i (即方程12-=x 有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).2.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 .图① 图② 图③···(第8题图)4.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6 .如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8.如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.9.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.11.将连续的正整数按以下规律排列,则位于第7行、第7列的数x是__ __.12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有 个正方形;13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.14.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 . 15、我们知道,经过原点的抛物线的解析式可以是y =ax 2+bx (a ≠0) (1)对于这样的抛物线:当顶点坐标为(1,1)时,a =__________;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是__________;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x 上,横坐标依次为1,2,…,n (为正整数,且n ≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则顶点3A 的坐标是 ,22A 的坐标是 .xy A 9A 6A 3A 8A 7A 5A 4A 2A 1O第16题图••••••①② ③17.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .18、如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为 (用n 表示)19.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)20. (2013•衢州4分)如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2,43a ,65a ,87a ,….则第n 个式子是________ 22.观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 .23.如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为.24.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、(n+1)2 2、(8052,0) 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、[10(n-1)+5]2=100n(n-1)+25 11、85 12、91 13、46 14、2n 15、(1)-1;a =-1m(或am +1=0); (2)解:∵a ≠0 ∴y =ax 2+bx =a (x +2b a)2-24b a∴顶点坐标为(-2ba ,-24b a )∵顶点在直线y =kx 上∴k (-2ba )=-24b a∵b ≠0∴b =2k(3)解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为(n ,n ),点D n 所在的抛物线顶点坐标为(t ,t )由(1)(2)可得,点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为(2n ,n ) ∴-1t(2n )2+2×2n =n∴4n =3t∵t 、n 是正整数,且t ≤12,n ≤12∴n =3,6或9∴满足条件的正方形边长为3,6或916、(0,31-),(-8,-8). 17、()()201340260,40,2或(注:以上两答案任选一个都对)18、(2n ,1) 19、n 2+4n 20、20;21、221na n (n 为正整数)22、-128a 8 23、(884736,0) 24、6n+2规律探索21、 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。

2019全国中考数学真题分类汇编之32:规律探索(含答案)

2019全国中考数学真题分类汇编之32:规律探索(含答案)
2019年全国中考数学真题分类汇编:规律探索
一、选择题 1. (2019年山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原 点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度, 其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An, 则点A2019的坐标是( )
用其中规律,写出第n个数an=
(用含n的式子表示)
【考点】规律探索、同底数幂的乘法
【解答】解:观察分母,3,5,9,17,33,…,可知规律为2n+1,
观察分子的,1,3,6,10,15,…,可知规律为

∴an=


故答案为

2. (2019年山东省枣庄市)观察下列各式:
=1+
=1+(1﹣ ),
=1+
9. (2019年黑龙江省伊春市)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1
为边作第二个正方形OA1A2B2,连接AA2,得到△ AA1A2;再以对角线OA2为边作第
三个正方形OA2A3B3,连接A1A3,得到△ A1A2A3;再以对角线OA3为边作第四个正方
形,连接A2A4,得到△ A2A3A4……记△ AA1A2、△ A1A2A3、△ A2A3A4的面积分别为S1、
(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中
顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则 的值为________ .
(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1 , 摆放第三个“7”字图形
得顶点F2 , 依此类推,…,摆放第a个“7”字图形得顶点Fn-1 , …,则顶点F2019的坐

【中考专题】2019年中考数学 探索规律题型 专题复习(含答案)

【中考专题】2019年中考数学 探索规律题型 专题复习(含答案)

2019年中考数学探索规律题型专题复习一、选择题1.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是()A.2019x2019B.4037x2018C.4037x2019D.4039x20192.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)3.如图,将n个边长都为2的正方形按如图所示摆放,点A,A2,…A n分别是正方形的中心,则这n个正方1形重叠部分的面积之和是()A.nB.n﹣1C.()n﹣1D.n4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是 ( )A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+15.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)6.在平面直角坐标系中,对于点P(x,y),我们把点P/(-y+1,x+1)叫做点P伴随点.已知点A的伴随点为A2,1点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2017的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)7.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 018次运动后,动点的坐标是()A.(2018,0)B.(2018,1)C.(2018,2)D.(2017,0)8.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形AB1C1D1;把正方形A1B1C1D1边1长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…,则正方形A n B n C n D n的面积为()A.()nB.5nC.5n﹣1D.5n+19.如图,点O(0,0),A(0,1)是正方形OAAB的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正1方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,-21009)10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955B.4955C.-4950D.495011.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36B.45C.55D.6612.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A.3n B.3n(n+1) C.6n D.6n(n+1)13.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.214.观察算式,探究规律:当n=1时,S1=13=1=12;当n=2时,;当n=3时,;当n=4时,;…那么S n与n的关系为()A. B. C. D.15.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形AB1C1D1,再顺次连结四边形A1B1C1D11各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为( )A.14B.10C.5D.2.5二、填空题16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是______.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为 .18.用长度相等的小棒按一定规律摆成如图所示的图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.(用含n的代数式表示)19.如图,动点P在坐标系中按图中所示箭头方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是.20.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第n个四边形的周长为.21.如图,将△ABC第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连1结A1、B1、C1,得到△A1B1C1,第二次操作:分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2、B2、C2,得到△A2B2C2…按此规律,若△A3B3C3的面积是686,则△ABC的面积为______.22.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,则a n=______.23.如图,在直角坐标系中,第一次将△OAB变换成△OAB1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B21变换成△OA3B3,已知A(1,3),A1(2,3),A2(3,3),A3(4,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)仔细观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA3B3变换成△OA4B4,则A4的坐标是_________,B4的坐标是_________.(2)若按第(1)题的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测:A n的坐标是_________,B n的坐标是_________ .24.如图,在平面直角坐标系中,点A,A2,A3,…,A n在x轴的正半轴上,且OA1=2,OA2=2OA1,OA3=2OA2,…,1OA n=2OA n﹣1,点B1,B2,B3,…,B n在第一象限的角平分线l上,且A1B1,A2B2,…,A n B n都与射线l垂直,则B1的坐标是,B3的坐标是,B n的坐标是.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt△AC1C2的面积记为S2,…,以此类推,则S n= (用含n的式子表示)26.观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52= ;②请用一个含n的算式表示这个规律:12+22+32…+n2= ;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002= .27.正整数按如图的规律排列.请写出第20行,第21列的数字.28.已知,如图,∠MON=45°,OA=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记1作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n= .29.设,,,…,设,则S=_________ (用含n的代数式表示,n为正整数).30.即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.答案1.C.2.B3.B;4.B;解析:∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.5.D;6.D7.A8.B;9.B;10.B11.B;解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.12.B13.D14.C15.D.16.答案为:4n+1.17.答案为:9n+3.18.答案为:5n+1;19.答案为:(2018,0);20.答案为:4()n.21.答案为:2.22.答案为:()n﹣1.23.答案为:⑴(5,3);(32,0);⑵(n+1,0);24.答案为:(1,1), (4,4). (2n﹣1,2n﹣1)25.解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=0.5AB=2,∴AC=BC=2,∴S△ABC=0.5•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC1═0.5AC=,∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴=()2=()2=,∴S1=•S△ABC,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为.26.答案为:(1);(2);(3)295425;27.答案为:420;28.答案为:2n+1.29.答案为:.30.答案为:1946.解析:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946.第11 页共11 页。

2019年全国各地中考数学解析汇编32 概率初步

2019年全国各地中考数学解析汇编32 概率初步

2019年全国各地中考数学解析汇编32 概率初步(2018山东省聊城,3,3分)“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件解析:抛一枚均匀硬币,落地后有可能正面朝上、也有可能反面朝上.答案:B点评:必然事件与不可能事件属于确定事件,事先可以确定是否发生;而随机事件事先无法预料能否发生.(2018四川省资阳市,2,3分)下列事件为必然事件的是A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【解析】必然事件是指一定会发生的事件,A是随机事件,B是随机事件,C是随机事件,D是必然事件.【答案】D【点评】本题考查了必然事件和随机事件的概念.要注意必然事件和随机事件属于可能事件,还有一类是不可能事件.难度较小.(2018江苏泰州市,5,3分)有两个事件,事件A:367人中至少有两人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件【解析】必然事件是一定会发生的事件,A是必然事件,事件B是随机事件【答案】D【点评】本题考查了必然事件和随机事件的概念.要注意必然事件和随机事件属于可能事件,还有一类是不可能事件.(2019年四川省德阳市,第8题、3分.)下列事件中,属于确定事件的个数是⑴打开电视,正在播广告;⑵投掷一枚普通的骰子,掷得的点数小于10;⑶射击运动员射击一次,命中10环;⑷在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【解析】(1)和(3)都是不确定事件;(2)是一定会发生的,(4)是一定不会发生的;所以(2)和(4)是确定事件。

【答案】C.【点评】必然事件和不可能事件统称为确定事件。

规律探究型问题2019中考数学高端精品(解析版)

规律探究型问题2019中考数学高端精品(解析版)

专题03 规律探究型问题【考点综述评价】规律探究性问题指的是给出一组具有某种特定关系的数、式、图形,题目的情景给出有限的几项,或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所蕴涵的规律,进而归纳或猜想出共同特征,或者发现变化的趋势,在解答过程中需要经历观察、归纳、猜想、试验、证明等数学活动,以加深学生对相关数学知识的理解,认识数学知识之间的联系.【考点分类总结】考点1:数字规律探究【典型例题】(2017四川省凉山州)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 . 【答案】5050.【分析】设第n 个三角形数为a n ,分析给定的三角形数,根据数的变化找出变化规律“a n =1+2+…+n =(1)2n n +”,依此规律即可得出结论.【方法归纳】解答数字规律问题的关键是仔细分析数表中或行列中前后各数之间的关系,从而发现其中所蕴涵的规律,利用规律解题. 【变式训练】(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .【分析】由题意可得下边三角形的数字规律为:2nn +,继而求得答案.学+科+-网考点2:数式规律探究【典型例题】(2017四川省内江市)观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++;第三个等式:3332342111322(2)2121a ==-+⨯+⨯++; 第四个等式:4442452111322(2)2121a ==-+⨯+⨯++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n = = ; (3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果); (4)计算:a 1+a 2+…+a n .【答案】(1)666221322(2)+⨯+⨯,67112121-++;(2)221322(2)n n n +⨯+⨯,1112121n n +-++;(3)1443;(4)11223(21)n n ++-+. 【分析】(1)根据已知4个等式可得; (2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得; (4)根据已知等式规律,列项相消求解可得.【方法归纳】解答数式规律问题的常用方法是:(1)将所给每个数据化为有规律的代数式或等式; (2)按规律顺序排列这些式子;(3)将发现的规律用代数式或等式表示出来; (4)用题中所给数据验证规律的正确性. 【变式训练】(2017安徽省)【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为22223(123)n ++++== ,因此,2222123n ++++= .【解决问题】根据以上发现,计算:222212320171232017++++++++的结果为 .【答案】【规律探究】2n +1,(1)(21)2n n n ++,(1)(21)6n n n ++;【解决问题】1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案; 【解决问题】运用以上结论,将原式变形,化简计算即可得.【解决问题】原式=12017(20171)(220171)612017(20171)2⨯⨯+⨯⨯+⨯⨯+=13×(2017×2+1)=1345,故答案为:1345.考点3:循环规律探究【典型例题】(2017衢州)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO 沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是,翻滚2017次后AB中点M经过的路径长为.【答案】B3(5),896)π.【分析】如图作B3E⊥x轴于E,易知OE=5,B3E3三次一个循环,一个循环点M的+1201180π⨯+1201180π⨯=)π,由2017÷3=672…1,可知翻滚2017次后AB中点M经过的路径长为672π=896)π.【方法归纳】根据前面所给的一些特殊数据,进行排序,找到循环的规律. 【变式训练】(2017南宁)如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为 .【答案】(6053,2).【分析】首先求出P 1~P 5的坐标,探究规律后,利用规律解决问题.考点4:图形特征规律探究【典型例题】(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C .【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【方法归纳】在规律探索题中,往往把有几何背景的问题如三角形、特殊四边形、圆和图形的变换等作为素材,不是简单的数数来探究规律,而是要利用几何的性质、定理通过计算来探索规律. 【变式训练】(2017临沂)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是( )A .11B .12C .13D .14 【答案】B .【分析】根据小圆个数变化规律进而表示出第n 个图形中小圆的个数,进而得出答案. 【解答】第1个图形有1个小圆; 第 2个图形有1+2=3个小圆; 第 3个图形有1+2+3=6个小圆; 第 4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=(1)2n n+个小圆;∵第n个图形中“○”的个数是78,∴78=(1)2n n+,解得:n1=12,n2=﹣13(不合题意舍去),故选B.考点5:数形结合规律探究【典型例题】(2017内蒙古呼和浩特市)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)【答案】4nm.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出式子,可得答案.【方法归纳】解决这类问题的关键是,仔细分析前后两个图形中基础图案的数量关系,从而发现其数字变化规律.即先根据图形写出数字规律,然后将每一个数字改写为等式,再比较各等式的相同点和不同点,分析不同点(数字)与等式序号之间的关系,从而得到一般规律.学..科网【变式训练】(2016湖南省岳阳市)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.【答案】(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.考点6:几何图形规律探究【典型例题】(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=13.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=16;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1 10;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .【答案】2(1)(2)n n ++.【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=12AB ,可得△CD 1E 1∽△CBA ,且11111DE DE BF AB ==12,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD 1E 1=14S △ABC =14,依据E 1是BC 的中点,即可得出S △D 1E 1F 1=13S △BD 1E 1=13×14=112,据此可得S 1=13;运用相同的方法,依次可得S 2=16,S 3=110;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =22111(1)(1)11n n n n +⨯⨯++++,最后化简即可.【方法归纳】根据各图形的边、角关系,寻求其规律.【变式训练】(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.0【答案】A.【分析】根据题意求得OA1=4,OA2=OA3=2,OA4=OA5=2,OA6=0,OA7=4,…于是得到A2017与A1重合,即可得到结论.考点7:函数规律探究=-与x轴交于点B1,【典型例题】(2017山东省东营市)如图,在平面直角坐标系中,直线l:y x以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A 2017的横坐标是 .【答案】2017212-.【分析】先根据直线l :33y x =-与x 轴交于点B 1,可得B 1(1,0),OB 1=1,∠OB 1D =30°,再,过A 1作A 1A ⊥OB 1于A ,过A 2作A 2B ⊥A 1B 2于B ,过A 3作A 3C ⊥A 2B 3于C ,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A 1的横坐标为1212-,A 2的横坐标为2212-,A 3的横坐标为3212-,进而得到A n 的横坐标为212n -,据此可得点A 2017的横坐标.学/+科-网A 2C =12A 2B 3=2,即A 3的横坐标为12+1+2=72=3212-,同理可得,A 4的横坐标为12+1+2+4=152=4212-,由此可得,A n 的横坐标为212n -,∴点A 2017的横坐标是2017212-,故答案为:2017212-.【方法归纳】根据平面直角坐标上点的坐标变化和函数关系式之间的规律进行探索,从而找到存在的规律性的变化。

2019中考数学试题分类汇编考点33命题与证明含解析.doc

2019中考数学试题分类汇编考点33命题与证明含解析.doc

2019中考数学试题分类汇编:考点33 命题与证明一.选择题(共19小题)1.(2019•包头)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个B.3个C.2个D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.2.(2019•嘉兴)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内 B.点在圆上C.点在圆心上D.点在圆上或圆内【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.【解答】解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.故选:D.3.(2019•通辽)下列说法错误的是()A.通过平移或旋转得到的图形与原图形全等B.“对顶角相等”的逆命题是真命题C.圆内接正六边形的边长等于半径D.“经过有交通信号灯的路口,遇到红灯”是随机事件【分析】根据平移、旋转的性质、对顶角的性质、圆内接多边形的性质、随机事件的概念判断即可.【解答】解:通过平移或旋转得到的图形与原图形全等,A正确,不符合题意;“对顶角相等”的逆命题是相等的角是对顶角,是假命题,B错误,符合题意;圆内接正六边形的边长等于半径,C正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,不符合题意;故选:B.4.(2019•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.5.(2019•台州)下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.6.(2019•台湾)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.7.(2019•嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.8.(2019•荆门)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.【解答】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.9.(2019•滨州)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.10.(2019•荆门)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.11.(2019•广安)下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1 B.2 C.3 D.4【分析】直接利用切线长定理以及平行四边形的判定合一元二次方程根的判别式分别判断得出答案.【解答】解:①如果a>b,那么a2>b2,错误;②一组对边平行,另一组对边相等的四边形是平行四边形,错误;③从圆外一点可以引圆的两条切线,它们的切线长相等,正确;④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1且a≠0,故此选项错误.故选:A.12.(2019•重庆)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分【分析】根据平行四边形的对角线互相平分;矩形的对角线平分且相等;菱形的对角线互相平分且垂直;正方形的对角线互相垂直平分进行分析即可.【解答】解:A、平行四边形的对角线互相垂直平分,是假命题;B、矩形的对角线互相垂直平分,是假命题;C、菱形的对角线互相平分且相等,是假命题;D、正方形的对角线互相垂直平分,是真命题;故选:D.13.(2019•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.14.(2019•淄博)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.0【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.15.(2019•贵港)下列命题中真命题是()A. =()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.16.(2019•怀化)下列命题是真命题的是()A.两直线平行,同位角相等B.相似三角形的面积比等于相似比C.菱形的对角线相等D.相等的两个角是对顶角【分析】根据平行线的性质、相似三角形的性质、菱形的性质、对顶角的概念判断即可.【解答】解:两直线平行,同位角相等,A是真命题;相似三角形的面积比等于相似比的平方,B是假命题;菱形的对角线互相垂直,不一定相等,C是假命题;相等的两个角不一定是对顶角,D是假命题;故选:A.17.(2019•重庆)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.18.(2019•衡阳)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补【分析】根据正多边形的内角和的计算公式、矩形的性质、菱形的判定、圆内接四边形的性质判断即可.【解答】解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.19.(2019•眉山)下列命题为真命题的是()A.两条直线被一组平行线所截,所得的对应线段成比例B.相似三角形面积之比等于相似比C.对角线互相垂直的四边形是菱形D.顺次连结矩形各边的中点所得的四边形是正方形【分析】根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.【解答】解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;故选:A.二.填空题(共5小题)20.(2019•无锡)命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等,故答案为:菱形的四条边相等.21.(2019•达州)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为2.【分析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.【解答】解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC﹣CE=CF﹣CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2.故答案为2.22.(2019•宿迁)如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A、B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0).将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°…),当点B第一次落在x轴上时,则点B运动的路径与两坐标轴围成的图形面积是.【分析】利用三角函数能把三角形ABC各边长度解出,画出几个旋转过程,点B运动的轨迹,结合图形分析可得所求面积转化为扇形面积与三角形面积之和.【解答】解:由点A的坐标为(1,0).得OA=1,又∵∠OAB=60°,∴AB=2,∵∠ABC=30°,AB=2,∴AC=1,BC=,在旋转过程中,三角板的长度和角度不变,∴点B运动的路径与两坐标轴围成的图形面积=.故答案:23.(2019•北京)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= 1 ,b= 2 ,c= ﹣1 .【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.24.(2019•恩施州)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π+.(结果不取近似值)【分析】先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,第三部分为△ABC的面积;然后根据扇形的面积公式计算点B 所经过的路径与直线l所围成的封闭图形的面积.【解答】解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;第三部分为△ABC的面积;∴点B所经过的路径与直线l所围成的封闭图形的面积=++•1•=+.故答案为π+.三.解答题(共2小题)25.(2019•无锡)如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若=﹣1,求的值.【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出==,可得CE=由=﹣1推出=,推出A1C=•,推出BH=A1C==•,可得m2﹣n2=6•,可得1﹣=6•,由此解方程即可解决问题;【解答】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).26.(2019•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.【分析】(1)作OH⊥BC于H,如图2,利用等腰三角形的性质得BH=CH,在Rt△OBH中利用余弦定义计算出BH,从而得到BC的长,然后计算AB﹣BC即可;(2)先判断△OBC为等边三角形得到∠OBC=60°,再根据圆的定义得到点O在此过程中运动路径是以B 点为圆心,BO为半径,圆心角为60°的弧,然后根据弧长公式计算即可.【解答】解:(1)作OH⊥BC于H,如图2,∵OB=OC,∴BH=CH,在Rt△OBH中,∵cos∠OBH=,∴BH=60•cos50°=60×0.64=38.4,∴BC=2BH=2×38.4=76.8,∴AC=AB﹣BC=120﹣76.8=43.2.答:AC的长为43.2cm;(2)∵OB=OC=60,而BC=60,∴△OBC为等边三角形,∴∠OBC=60°,∴当点C从点A向右运动60cm时,点O在此过程中运动路径是以B点为圆心,BO为半径,圆心角为60°的弧,∴点O在此过程中运动的路径长==20π≈62.8(cm).。

2019中考数学高频考点剖析专题3 代数之规律探索问题—解析卷

2019中考数学高频考点剖析专题3 代数之规律探索问题—解析卷

备考2019中考数学高频考点剖析专题三代数之规律探索问题考点扫描☆聚焦中考规律探索问题,是每年中考的压轴性问题之一这种问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题,考查的知识点主要包括数与式变化规律、图形变化规律、点阵位置规律和规律猜想应用四个方面,总体来看,难度较大,主要以填空题压轴为主,选择题也涉及不少。

也有少量的解析题。

解析题主要以规律猜想为主。

结合2018年全国各地中考的实例,我们从三方面进行规律探索问题的探讨:(1)数与式变化规律;(2)图形变化规律;(3)点阵位置规律.(4)规律猜想应用考点剖析☆典型例题(2018·广西梧州·3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.2018·重庆市B卷)(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.2018·辽宁省抚顺市)(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O2018的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O2018的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O2018的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点评】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.2018·广东·3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.考点过关☆专项突破类型一数与式变化规律1. (2018·云南省·4分)按一定规律排列的单项式:a ,﹣a 2,a 3,﹣a 4,a 5,﹣a 6,……,第n 个单项式是( ) A .a nB .﹣a nC .(﹣1)n+1a nD .(﹣1)n a n【分析】观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:a ,﹣a 2,a 3,﹣a 4,a 5,﹣a 6,……,(﹣1)n+1•a n. 故选:C .【点评】考查了单项式,数字的变化类,注意字母a 的系数为奇数时,符号为正;系数字母a 的系数为偶数时,符号为负.2. (2018·湖北随州·3分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m ,最大的 “正方形数”为n ,则m+n 的值为( )A .33B .301C .386D .571【分析】由图形知第n 个三角形数为1+2+3+…+n=(1)2n n +,第n 个正方形数为n 2,据此得出最大的三角形 数和正方形数即可得.【解答】解:由图形知第n 个三角形数为1+2+3+…+n=(1)2n n +,第n 个正方形数为n 2, 当n=19时,(1)2n n +=190<200,当n=20时,(1)2n n +=210>200,所以最大的三角形数m=190;当n=14时,n 2=196<200,当n=15时,n 2=225>200, 所以最大的正方形数n=196, 则m+n=386,故选:C .【点评】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=(1)2n n,第n个正方形数为n2.3. (2018·湖北荆州·3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.4. (2018·湖北省孝感·3分)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24 .【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.5.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.6. (2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.类型二图形变化规律1. (2018•山东烟台市•3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即 可求得相应的n 的值,从而可以解答本题. 【解答】解:由图可得,第n 个图形有玫瑰花:4n , 令4n=120,得n=30,故选:C .【点评】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律. 2.(2018•山东济宁市•3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A . B. C .D .【解答】解:由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有故选:C .3. (2018湖南张家界3.00分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则2+22+23+24+25+…+21018的末位数字是( ) A .8B .6C .4D .0【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2018÷4=504…2,得出22018的 个位数字与22的个位数字相同是4,进而得出答案.【解答】解:∵2n的个位数字是2,4,8,6四个一循环,2018÷4=504…2, ∴22018的个位数字与22的个位数字相同是4,故2+22+23+24+25+…+21018的末位数字是2+4+8+6+…+2+4的尾数, 则2+22+23+24+25+…+21018的末位数字是:2+4=6. 故选:B .4.(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案. 【解答】解: 观察图形可知:第1个图形共有:1+1×3, 第2个图形共有:1+2×3, 第3个图形共有:1+3×3, …,第n 个图形共有:1+3n ,∴第2018个图形共有1+3×2018=6055, 故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化. 类型三 点阵位置规律1.(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A ,B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则S 1+S 2+S 3+…+S n﹣1= ﹣ .【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S1=,S2=,∴S1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2.(2018·辽宁省葫芦岛市) 如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM 交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2.A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3.A3,以A 3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为()2n﹣2×.(用含正整数n的代数式表示)【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.3.如图,已知四边形ABCD的顶点为A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N第2017次相遇时的坐标为(﹣1,﹣1).【解答】解:∵A(1,2),B(﹣1,2),C(﹣1,﹣2),D(1,﹣2),∴AB=2,BC=4.设点M和点N第2017次相遇时的时间为x,根据题意得:(1+2)x=2017×2×(4+2),解得:x=8068,∴M和点N第2017次相遇时,点M走过的路程为x=8068.∵矩形ABCD的周长为12,8068=672×12+4,∴M和点N第2017次相遇时的位置在距离点E逆时针方向的4个单位长度.∵BC=4,BE=1,∴点M和点N第2017次相遇时的位置为线段CF的中点,即点(﹣1,﹣1).故答案为:(﹣1,﹣1).4. (2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.5. (2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.6. (2018·山东潍坊·3分)如图,点A 1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.7. (2018·湖北江汉·3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1.P2.P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1.P2.P3作x轴的垂线段,垂足分别为点C.D.E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9.S2=×3×=、S3=××=、……∴S2018=,故答案为:.类型四规律猜想应用1. (2018·辽宁大连·9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为:625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为:a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为:900.2.(2018·山东青岛·10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22 条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 4 .拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320 条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为 m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是 s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为60×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;【点评】本题考查规律型﹣图形变化类问题,解题的关键是理解题意,学会用分类讨论的思想解决问题,属于中考填空题中的压轴题.3. (2018重庆)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【分析】(1)先直接利用“极数”的意义写出三个,设出四位数n的个位数字和十位数字,进而表示出n,即可得出结论;(2)先确定出四位数m,进而得出D(m),再再根据完全平方数的意义即可得出结论.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∴D(m)==3(100﹣10y﹣x),而m是四位数,∴99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.【点评】此题主要考查了完全平方数,新定义的理解和掌握,整除问题,掌握新定义和熟记300以内的完全平方数是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不变的规律,此类问题的排列通常是具有周期性,按照周期循环,本题难度适中
.
16、( 2018,黔东南州, 16)如图,第( 1)个图有 2 个相同的小正方形,第( 1)个图有 2 个相同的小正
方形,第( 2)个图有 6 个相同的小正方形,第( 3)个图有 12 个相同的小正方形,第( 4)个图有 20 个
10 个图
点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第
n 个图案
的正方形的个数的表达式是解题的关键.
18. (2018 贵州六盘水, 18, 4 分 ) 图 7 是我国古代数学家杨辉最早发现的,称为“杨辉三角形”
. 它的发
现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!
图,写出 (a b)4 的展开式 . (a b)4
▲.
分析:该题属规律型,通过观察可发现第五行的系数是:
1、4、 6、 4、 1,再根据例子中字母的排列规律
即得到答案.
解答:解:由题意, (a b) 4 a4 4a3b 6a2b2 4ab3 b4 ,
故填 a 4 4 a3b 6a2b 2 4ab3 b 4 .
( 2018 广东肇庆, 15, 3)观察下列一组数:
那么这一组数的第 k 个数是
▲.
2 , 4 , 6 , 8 , 10 ,…… ,它们是按一定规律排列的, 3 5 7 9 11
【解析】通过观察不难发现,各分数的分子与分母均相差
1,分子为连续偶数,分母为连续奇数.
2k
【答案】
2k 1
【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.
18. ( 2019 年四川省巴中市 ,18,3) 观察下列面一列数: 1, -2 , 3, -4 ,5, -6 ,…根据你发现的规律,第
2018 个数是 ___________
【解析】 观察知 : 下列面一列数中 , 它们的绝对值是连续正整数 , 第 2018 个数的绝对值是 2018, 值偶数项是
根据表格中点的排列规律,可以得到点的坐标是每
16 个点排列的位置一循环,
2018=16× 125+12,所以点 A2018所在的射线和点 A12 所在的直线一样。
因为点 A12 所在的射线是射线 AB,所以点点 A2018 在射线 AB 上.
【答案】 AB
【点评】本题是一个规律探索题,可以列出点的排列规律从中得到规律,在变化的点中找到其排列直线的
年份
1896
1900
1904

2018
届数
1
2
3

n
表中 n 等于 __________ . 【解析】有表格可知,每四年举办一次奥运会,由此可得
(2018-1896) ÷ 4+1=30
【答案】 30 【点评】考查了规律型:数字的变化,此题属于规律性题目,解答此题的关键是根据题目中的已知条件找
相同的小正方形,……,按此规律,那么第(
n )个图有
个相同的小正方形。
( 1) 解析:因为
(2)
( 3)
( 4)
2 1 2 1 1 1 ,6 2 3 2 2 1 ,12 3 4 3 3 1 ,20 4 5 4 4 1 ,故第( n )个
图有 n 2 n 个小正方形 .
答案: n 2 n 或 n( n+1)

A. 52018﹣ 1
B. 5 ﹣ 2018 1
C.
D.
【解析】设 S=1+5+52+53+…+52018,则 5S=5+52+53+54+…+5 , 2018 因此, 5S﹣S=52018﹣ 1,
S=

【答案】选 C.
【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.
2019 年全国各地中考数学解析汇编 33 规律探索型问题
12.( 2018 山东省滨州, 12,3 分)求 1+2+22+23+…+22018 的值,可令 S=1+2+22+23+…+2 2018,则
2S=2+22+23+24+…+22018,因此 2S﹣S=22018﹣1.仿照以上推理,计算出 1+5+52+53+…+52018 的值为(
点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.
17. ( 2018 山东莱芜, 17 , 4 分) 将正方形 ABCD的各边按如图所示延长,从射线
线上标记点 A1 , A2 , A3 … ., 按此规律,则点 A2018 在射线
上.
【解析】
AB开始,分别在各射
点评:本题是探索规律题,解题的关键是从已知图形中找规律,难度中等
.
射线名称
CD BC DA









A1
A3
A10
A12
A17
A19
A26
A28

A2
A4
A9
A11
A18
A20
A25
A27

A5
A7
A14
A16
A21
A23
A30
A32

A6
A8
A13
A15
A22
A24
A29
A31

15.( 2018,湖北孝感, 15,3 分) 2008 年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英 国伦敦举行,奥运会的年份与届数如下表所示:
“杨辉三角形”中
有许多规律,如它的每一行的数字正好对应了
( a b) n ( n 为非负整数)的展开式中 a 按次数从大到小排
列的项的系数 . 例如 (a b) 2 a2 2ab b2 展开式中的系数 1、2、1 恰好对应图中第三行的数字;再入,
(a b)3 a3 3a2b 3ab2 b3 展开式中的系数 1、 3、3、 1 恰好对应图中第四行的数字 . 请认真观察此
负数 , 故填 -2018.
【答案】 -2018
【点评】本题是找规律的问题 , 确定符号是本题的难点 .
20. ( 2018 贵州省毕节市, 20, 5 分)在下图中,每个图案均由边 长为 1 的小 正方形按一定的规律堆叠而
成,照此规律,第 10 个图案中共有
个中的正方形按照从上到下成奇数列排布, 然后利用求和公式写出表达式,再把 n=10 代入进行计算即可得解.
写出第 n 个图案的正方形的个数,
答案:解:第 1 个图案中共有 1 个小正方形, 第 2 个图案中共有 1+3=4 个小正方形, 第 3 个图案中共有 1+3+5=9
个小正方形,…,第 n 个图案中共有 1+3+5+…+( 2n-1 )= n(1 2n 1) =n2 个小正方形,所以,第 2
案中共有 102=100 个小正方形.故答案为: 100.
相关文档
最新文档