高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第二章 2.5
2021届步步高数学大一轮复习讲义(理科)第二章 2.7函数的图象
§2.7函数的图象1.描点法作图方法步骤:(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.图象变换 (1)平移变换(2)对称变换①y =f (x )―――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )―――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ); ②y =f (x )―――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|; ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x)的图象关于直线x=a对称,你能得到f (x)解析式满足什么条件?提示 f (a+x)=f (a-x)或f (x)=f (2a-x).2.若函数y=f (x)和y=g(x)的图象关于点(a,b)对称,则f (x),g(x)的关系是______________.提示g(x)=2b-f (2a-x)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( × ) (2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × )(3)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( × ) (4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数y =f (x )的图象关于直线x =1对称.( √ )题组二 教材改编2.函数f (x )=x +1x 的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案 C解析 函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,故选C.3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x)的图象为折线ACB,则不等式f (x)≥log2(x+1)的解集是__________.答案(-1,1]解析在同一坐标系内作出y=f (x)和y=log2(x+1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.函数f (x)=ln(x2+1)的图象大致是()答案 A解析依题意,得函数定义域为R,且f (-x)=ln(x2+1)=f (x),所以函数f (x)为偶函数,即函数f (x)的图象关于y轴对称,故排除C.因为函数f (x)过定点(0,0),排除B,D,故选A. 6.将函数f (x)=(2x+1)2的图象向左平移一个单位后,得到的图象的函数解析式为________.答案y=(2x+3)2作函数的图象分别作出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.思维升华 图象变换法作函数的图象(1)熟练掌握几种初等函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本初等函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.函数图象的辨识例1 (1)(2020·四川绵阳诊断)函数f (x )=x ln |x |的大致图象是( )答案 A解析 ∵函数f (x )=x ln |x |, 可得f (-x )=-f (x ),f (x )是奇函数, 其图象关于原点对称,排除C ,D ; 当x >0时,f ′(x )=ln x +1, 令f ′(x )>0,得x >1e,得出函数f (x )在⎝⎛⎭⎫1e ,+∞上是增函数,排除B.(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 B解析 y =f (x )―――――――――→作关于y 轴对称的图象y =f (-x )―――――――→向右平移2个单位y =f (2-x )――――――――→作关于x 轴对称的图象 y =-f (2-x ).选B.思维升华 函数图象的辨识可从以下方面入手(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象.跟踪训练1 (1)(2020·贵阳一中、云南师大附中、南宁三中联考)函数f (x )=⎝⎛⎭⎫x +1x ln |x |图象的大致形状为( )答案 D解析 函数f (x )的定义域为{x |x ≠0},∵f (-x )=⎝ ⎛⎭⎪⎫-x +1-x ln |-x |=-⎝⎛⎭⎫x +1x ln |x |=-f (x ), ∴f (x )是奇函数,关于(0,0)对称,排除A ,B ; 当x =2时,f (2)=52ln 2>0,排除C ,故选D.(2)(2019·贵州七校联考)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln |x |xB .f (x )=e xxC .f (x )=1x 2-1D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.函数图象的应用命题点1 研究函数的性质例2 (1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,单调递增区间是(0,+∞) B .f (x )是偶函数,单调递减区间是(-∞,1) C .f (x )是奇函数,单调递减区间是(-1,1) D .f (x )是奇函数,单调递增区间是(-∞,0) 答案 C解析 将函数f (x )=x |x |-2x去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图所示,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)定义max{a ,b ,c }为a ,b ,c 中的最大值,设y =max{2x ,2x -3,6-x },则y 的最小值是( ) A .2 B .3 C .4 D .6 答案 C解析 画出y =max{2x ,2x -3,6-x }的示意图,如图所示.由图可知,y 的最小值为22=6-2=4,故选C.命题点2 确定零点个数、解不等式例3 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.答案 5解析 方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.对本例中函数f (x ),不等式f (x )≤1的解集为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =0或110≤x ≤10 解析 由图象可知f (0)=1,当110≤x ≤10时,f (x )≤1.∴不等式f (x )≤1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =0或110≤x ≤10.命题点3 求参数的取值范围例4 已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.若f (x )>g (x )恒成立,则实数k 的取值范围是________. 答案 ⎣⎡⎭⎫-1,12 解析 如图作出函数f (x )的图象,当-1≤k<1时,2直线y=kx的图象恒在函数y=f (x)的下方.思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)已知f (x)=2x-1,g(x)=1-x2,规定:当|f (x)|≥g(x)时,h(x)=|f (x)|;当|f (x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案 C解析画出y=|f (x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f (x)|≥g(x),故h(x)=|f (x)|;在A,B之间,|f (x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图象是图中的实线部分,因此h(x)有最小值-1,无最大值.(2)使log2(-x)<x+1成立的x的取值范围是______.答案(-1,0)解析在同一坐标系内作出y=log2(-x),y=x+1的图象,知满足条件的x∈(-1,0).(3)设函数f (x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f (x)≥g(x)恒成立,则实数a 的取值范围是__________.答案[-1,+∞)解析如图作出函数f (x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f (x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).x2ln |x|1.(2020·四川乐山诊断)函数y=|x|的图象大致是()答案 D解析 从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增.由此可知应选D. 2.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 方法一 先画出函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.方法二 由已知函数 f (x )的解析式,得y =f (1-x )=⎩⎪⎨⎪⎧31-x ,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.3.将函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )等于( ) A .e x +1 B .e x -1 C .e-x +1 D .e-x -1答案 D解析 与曲线y =e x 关于y 轴对称的图象对应的函数为y =e -x ,将函数y =e -x 的图象向左平移1个单位长度即得y =f (x )的图象,∴y =f (x )=e -(x +1)=e -x -1.4.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 答案 C解析 ∵y =lg x +310=lg(x +3)-1.∴选C.5.(2019·成都诊断)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是( )A .(-∞,-1)B .(-∞,-1]C .(1,+∞)D .[1,+∞)答案 A解析 当x >0时,f (x )=1-2-x >0. 又f (x )是定义在R 上的奇函数,所以f (x )<-12的解集和f (x )>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1,即x >1,则f (x )<-12的解集是(-∞,-1).故选A.6.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 答案 C解析 由f (x )=ax +b(x +c )2及图象可知,x ≠-c ,-c >0,则c <0.当x =0时,f (0)=bc 2>0,所以b >0,当y =0时,ax +b =0⇒x =-ba >0.所以a <0,选C.7.已知偶函数y =f (x ),x ∈R 满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为________. 答案 3解析 y =f (x )-g (x )的零点个数即为函数y =f (x )和y =g (x )的图象交点个数,作出两函数图象,如图所示,共有三个交点.8.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a+b +c 的取值范围是__________. 答案 (2,2 021)解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a+b=1,而1<c<2 020,所以2<a+b+c<2 021.9.函数f (x)的定义域为[-1,1],图象如图1所示,函数g(x)的定义域为[-1,2],图象如图2所示,若集合A={x|f (g(x))=0},B={x|g(f (x))=0},则A∩B中元素的个数为________.答案 3解析由图可知,当f (x)=0时,x=-1,x=0,x=1,由g(x)=-1,g(x)=0,g(x)=1得,x=-1,x=0,x=1,x=2,即A={-1,0,1,2},当g(x)=0时,x=0,x=2,由f (x)=0,f (x)=2得,x=-1,x=0,x=1,所以B={-1,0,1},所以A∩B={-1,0,1},所以A∩B中有3个元素.10.已知f (x)是以2为周期的偶函数,当x∈[0,1]时,f (x)=x,且在[-1,3]内,关于x的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是__________. 答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的图象如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象在[-1,3]内有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.11.设a 为实数,且1<x <3,试讨论关于x 的方程x 2-5x +3+a =0的实数解的个数. 解 原方程即a =-x 2+5x -3.作出函数y =-x 2+5x -3=-⎝⎛⎭⎫x -522+134(1<x <3)的图象,得当a >134或a ≤1时,原方程的实数解的个数为0;当a =134或1<a ≤3时,原方程的实数解的个数为1;当3<a <134时,原方程的实数解的个数为2.综上,a >134或a ≤1时有0个解;a =134或1<a ≤3时有1个解;3<a <134时有2个解.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解 (1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,即原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,即原方程有两个实数解. (2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )答案 B解析 函数f (x -1)的图象向左平移1个单位长度,即可得到函数f (x )的图象; ∵函数f (x -1)是定义在R 上的奇函数, ∴函数f (x -1)的图象关于原点对称,∴函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,选B.14.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a 的取值范围为________. 答案 (-∞,1)解析 当x ≤0时,f (x )=2-x -1,0<x ≤1时,-1<x -1≤0,f (x -1)=2-(x -1)-1. 故x >0时,f (x )是周期函数,如图所示.若方程f (x)=x+a有两个不同的实数根,则函数f (x)的图象与直线y=x+a有两个不同交点,故a<1,即a的取值范围是(-∞,1).15.函数y=f (x)的定义域为(-∞,-1)∪(1,+∞),其图象上任一点P(x,y)满足x2-y2=1,则给出以下四个命题:①函数y=f (x)一定是偶函数;②函数y=f (x)可能是奇函数;③函数y=f (x)在(1,+∞)上单调递增;④若y=f (x)是偶函数,其值域为(0,+∞).其中正确的序号为________.(把所有正确的序号都填上)答案②解析 由题意可得,函数y =f (x )的图象是双曲线x 2-y 2=1的一部分. 由函数的定义可知,该函数的图象可能是如图所示的四种情况之一.其中,图(1)(4)表示的函数为偶函数,图(2)(3)表示的函数是奇函数,所以命题②正确,命题①错误;由图(2)(4)可知函数y =f (x )可以在区间(1,+∞)上单调递减,故命题③错误; 由图(4)可知,该函数的值域也可能为(-∞,0),所以命题④错误. 综上可知,填②.16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,求实数k 的取值范围.解 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min . 观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,的图象可知,当x =12时,函数f (x )max =14. 因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14, 解得k ≤74或k ≥94. 故实数k 的取值范围是⎝⎛⎦⎤-∞,74∪⎣⎡⎭⎫94,+∞.。
【步步高】2018版高考数学(理)(苏教版,江苏专用)大一轮教师文档讲义:第二章2.8函数与方程
1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系有关函数零点的结论(1)若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=12x -(12)x 的零点个数为 .答案 1解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点.2.(教材改编)已知f (x )=ax 2+bx +c 的零点为1,3,则函数y =ax 2+bx +c 的对称轴是 . 答案 x =2解析 ∵y =a (x -1)(x -3)=a (x -2)2-a , ∴对称轴为x =2.3.(2016·长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是 .①(1e ,1); ②(1,2); ③(2,e);④(e ,3).答案 ③解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x-2的零点所在区间是(2,e).4.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是 . 答案 ⎝⎛⎭⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得 f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝⎛⎭⎫13,1.5.(教材改编)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是 .答案 (-2,0)解析 结合二次函数f (x )=x 2+x +a 的图象知⎩⎪⎨⎪⎧ f (0)<0f (1)>0,故⎩⎪⎨⎪⎧a <01+1+a >0,所以-2<a <0.题型一 函数零点的确定 命题点1 确定函数零点所在区间例1 (1)(2016·盐城调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是 .(填序号) ①(0,1); ②(1,2); ③(2,3);④(3,4).(2)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是 . 答案 (1)③ (2)(1,2)解析 (1)∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)为增函数, 又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0,f (3)=ln 3-⎝⎛⎭⎫121>0, ∴x 0∈(2,3).(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是 . 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是 .(填序号) ①(0,1); ②(1,2); ③(2,4);④(4,+∞).(2)(教材改编)已知函数f (x )=2x -3x ,则函数f (x )的零点个数为 . 答案 (1)③ (2)2解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)令f (x )=0,则2x =3x ,在同一平面直角坐标系中分别作出y =2x 和y =3x 的图象,如图所示,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f (x )的零点个数为2.题型二 函数零点的应用例3 (1)函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是 .(2)已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是 . 答案 (1)(0,3) (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3. (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例(2)中,若f (x )=a 恰有四个互异的实数根,则a 的取值范围是 . 答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.(1)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为 .(2)(2016·江苏前黄中学调研)若函数f (x )=|x |x -1-kx 2有4个零点,则实数k 的取值范围是 .答案 (1)(-2,0) (2)(-∞,-4) 解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.(2)令f (x )=0,则方程|x |x -1=kx 2有4个不同的实数根,显然,x =0是方程的一个实数根.当x ≠0时,方程可化为1k =|x |(x -1),设h (x )=1k,g (x )=|x |(x -1),由题意知h (x )与g (x )图象(如图所示)有三个不同的交点,由g (x )=⎩⎪⎨⎪⎧x (x -1),x >0,-x (x -1),x <0,结合图象知-14<1k<0,所以k <-4.题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0, ∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).思维升华 解决与二次函数有关的零点问题(1)利用一元二次方程的求根公式.(2)利用一元二次方程的判别式及根与系数之间的关系. (3)利用二次函数的图象列不等式组.(2016·江苏泰州中学质检)关于x 的一元二次方程x 2+2(m +3)x +2m +14=0有两个不同的实根,且一根大于3,一根小于1,则m 的取值范围是 . 答案 (-∞,-214)解析 设f (x )=x 2+2(m +3)x +2m +14,由题设可得⎩⎪⎨⎪⎧f (3)<0,f (1)<0,所以m <-214.利用转化思想求解函数零点问题典例 (1)若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是 . (2)若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围为 .思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,即方程a x -x -a =0有两个根,即函数y =a x 与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图(1)所示,此时只有一个交点. 当a >1时,图象如图(2)所示,此时有两个交点. ∴实数a 的取值范围为(1,+∞).(2)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.答案 (1)(1,+∞) (2)(-∞,2-22]1.(2016·江苏东海中学期中)若函数f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为 . 答案 1+2或1解析 题目转化为求方程f (x )=x 的根,所以⎩⎪⎨⎪⎧ x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x ,解得x =1+2或x =1,所以g (x )的零点为1+2或1.2.若函数f (x )=log 3x +x -3的零点所在的区间是(n ,n +1)(n ∈Z ),则n = . 答案 2解析 由f (2)=log 32-1<0,f (3)=1>0,知f (x )=0的根在区间(2,3)内,即n =2.3.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为 . 答案 a <c <b解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x +x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0, 且h (x )为(0,+∞)上的增函数, ∴h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x =-x ;由h (x )=0得log 2x =-x ,作出函数y =2x , y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是 . 答案 2解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≤0),x -2+ln x (x >0)的零点个数为 .答案 2解析 当x ≤0时,令f (x )=0,得x 2-1=0,∴x =-1,此时f (x )有一个零点;当x >0时,令f (x )=0,得x -2+ln x =0,在同一个坐标系中画出y =2-x 和y =ln x 的图象(图略),观察其图象可知函数y =2-x 和y =ln x 的图象在(0,+∞)上的交点个数是1,所以此时函数f (x )有一个零点,所以f (x )的零点个数为2.6.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x -a (x ≠0)有且仅有3个零点,则实数a 的取值范围是 .答案 ⎝⎛⎦⎤34,45∪[43,32)解析 当0<x <1时,f (x )=[x ]x -a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x -a =2x -a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,如图所示,通过数形结合可知a ∈(34,45]∪[43,32).7.(2016·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为 .答案 x =0解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12, 又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0.8.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是 .答案 (-∞,0)∪(1,+∞)解析 令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象(图略)可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).9.(2016·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0 (a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x3恰有两个不相等的实数解,则a 的取值范围是 .答案 ⎣⎡⎭⎫13,23解析 因为函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧02+(4a -3)·0+3a ≥f (0),3-4a 2≥0,0<a <1.解得13≤a ≤34.作出函数y =|f (x )|,y =2-x3的图象如图.由图象可知,在[0,+∞)上,|f (x )|=2-x 3有且仅有一个解;在(-∞,0)上,|f (x )|=2-x3同样有且仅有一个解,所以3a <2,即a <23.综上可得13≤a <23,所以a 的取值范围是⎣⎡⎭⎫13,23.*10.若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为 . 答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称, 所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2, 所以m +n =4. 又m >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×mn)=1. 当且仅当n m =mn ,即m =n =2时等号成立.所以1m +1n的最小值为1.11.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实根是α,β,且有1<α<2<β<3,则实数a 的取值范围是 . 答案 (2,115)解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧f (1)>0,f (2)<0,f (3)>0,即⎩⎪⎨⎪⎧1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115,所以实数a 的取值范围为(2,115).12.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 显然x =0不是方程x 2+(m -1)x +1=0的解, 0<x ≤2时,方程可变形为1-m =x +1x,又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增,∴y =x +1x 在(0,2]上的取值范围是[2,+∞),∴1-m ≥2,∴m ≤-1, 故m 的取值范围是(-∞,-1].13.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0, ∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).*14.已知二次函数f (x )的最小值为-4,关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数.解 (1)∵f (x )是二次函数且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a 且a >0. 又∵a >0,f (x )=a [(x -1)2-4]≥-4,且f (1)=-4a , ∴f (x )min =-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x=x -3x-4ln x -2(x >0),∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的变化情况如下表:↗↘↗当0<x g (x )在(3,+∞)上单调递增, g (3)=-4ln 3<0,取x =e 5>3,又g (e 5)=e 5-3e 5-20-2>25-1-22=9>0.故函数g (x )只有1个零点且零点x 0∈(3,e 5).。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第二章 2.1
§2.1函数及其表示1.函数2.函数的三要素(1)定义域在函数y=f (x),x∈A中,x叫做自变量,所有的输入值x组成的集合A叫做函数y=f (x)的定义域.(2)值域对于A中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域.(3)对应法则f:A→B.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.概念方法微思考1.分段函数f (x )的对应法则用两个式子表示,那么f (x )是两个函数吗? 提示 分段函数是一个函数.2.请你概括一下求函数定义域的类型.提示 (1)分式型;(2)根式型;(3)指数式型、对数式型;(4)三角函数型. 3.请思考以下常见函数的值域: (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为⎣⎡⎭⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .(3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的函数.(×)(2)若两个函数的定义域与值域相同,则这两个函数相等.(×)(3)已知f (x)=5(x∈R),则f (x2)=25.(×)(4)函数f (x)的图象与直线x=1最多有一个交点.(√)题组二教材改编2.以下属于函数的有________.(填序号)①y=±x;②y2=x-1;③y=x-2+1-x;④y=x2-2(x∈N).答案④3.函数y=f (x)的图象如图所示,那么,f (x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.答案[-3,0]∪[2,3][1,5][1,2)∪(4,5]题组三易错自纠4.下列图形中可以表示以M={x|0≤x≤1}为定义域,N={y|0≤y≤1}为值域的函数的图象是()答案 C解析 A 选项中的值域不满足,B 选项中的定义域不满足,D 选项不是函数的图象,由函数的定义可知选项C 正确.5.(多选)(2019·山东省济南市历城第二中学月考)下列各组函数是同一函数的是( ) A.f (x )=x 2-2x -1与g (s )=s 2-2s -1 B.f (x )=-x 3与g (x )=x -x C.f (x )=x x 与g (x )=1x 0D.f (x )=x 与g (x )=x 2 答案 AC6.函数y =x -2·x +2的定义域是________. 答案 [2,+∞)7.已知f (x )=x -1,则f (x )=____________. 答案 x 2-1(x ≥0)解析 令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).8.(2019·湖北黄石一中模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -1,x >0,则f (f (0))的值为________;方程f (-x )=1的解是________. 答案 1 0或-1解析 ∵f (0)=1,∴f (f (0))=f (1)=1.当-x ≤0时,f (-x )=-x +1=1,解得x =0;当-x >0时,f (-x )=2-x -1=1,解得x =-1.第1课时函数的概念及表示法函数的概念1.下列各曲线表示的y与x之间的关系中,y不是x的函数的是()答案 C2.(2019·武汉模拟)下列五组函数中,表示同一函数的是________.(填序号) ①f (x )=x -1与g (x )=x 2-1x +1;②f (x )=lg x 2与g (x )=2lg x ;③f (x )=x +2,x ∈R 与g (x )=x +2,x ∈Z ; ④f (u )=1+u1-u与f (v )=1+v1-v; ⑤y =f (x )与y =f (x +1). 答案 ④3.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的是________. 答案 ①②③④解析 对于⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.思维升华 (1)函数的定义要求第一个数集A 中的任何一个元素在第二个数集B 中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B 中有可能存在与A 中元素不对应的元素.(2)构成函数的三要素中,定义域和对应法则相同,则值域一定相同.求函数的解析式例1 求下列函数的解析式:(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫x 2+1x 2=x 4+1x4,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式; (4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求f (x )的解析式. 解 (1)(换元法)设1-sin x =t ,t ∈[0,2], 则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x , ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2]. 即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f ⎝⎛⎭⎫x 2+1x 2=⎝⎛⎭⎫x 2+1x 22-2, ∴f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)因为f (x )是一次函数, 可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17. 即ax +(5a +b )=2x +17,∴⎩⎪⎨⎪⎧ a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7. ∴f (x )的解析式是f (x )=2x +7.(4)(消去法)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).跟踪训练1 (1)(2020·济南月考)若f ⎝⎛⎭⎫1x =x 1-x ,则当x ≠0,且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-x D.1x -1 答案 B解析 f (x )=1x1-1x=1x -1(x ≠0且x ≠1).(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________. 答案 12x 2-32x +2解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x -1,求f (x ). 解 已知2f (x )+f ⎝⎛⎭⎫1x =3x -1,①以1x 代替①中的x (x ≠0),得 2f ⎝⎛⎭⎫1x +f (x )=3x-1,② ①×2-②,得3f (x )=6x -3x -1,故f (x )=2x -1x -13(x ≠0).分段函数命题点1 求分段函数的函数值例2 (1)已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x <2,x 2+ax ,x ≥2,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=-6,则实数a 的值为________,f (2)=________. 答案 -5 -6解析 由题意得,f ⎝⎛⎭⎫23=3·23+1=3, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (3)=9+3a =-6, 所以a =-5,f (2)=4-5×2=-6.(2)已知f (x )=⎩⎪⎨⎪⎧cos πx 2,x ≤0,f (x -1)+1,x >0,则f (2)=________.答案 3解析 f (2)=f (1)+1=f (0)+2=cos ⎝⎛⎭⎫π2×0+2=1+2=3.命题点2 分段函数与方程、不等式问题例3 设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为__________.答案 ⎩⎨⎧⎭⎬⎫-1,2,22 解析 由题意知,若x ≤0,则2x =12,解得x =-1;若x >0,则|log 2x |=12,解得x =122 或x =122-.故所求x 的集合为⎩⎨⎧⎭⎬⎫-1,2,22. 本例中,则使f (x )>12的x 的集合为________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪-1<x <22或x >2 解析 当x ≤0时,由2x >12得-1<x ≤0;当x >0时,由|log 2x |>12得0<x <22或x > 2.综上,所求x 的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪-1<x <22或x >2.思维升华 (1)分段函数的求值问题的解题思路①求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.跟踪训练2 (1)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,12x ,x <0,则f (f (-1))=________.答案 3解析 ∵f (-1)=12-1=2,∴f (f (-1))=f (2)=3.(2)(2018·全国Ⅰ改编)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________. 答案 (-∞,0)解析 方法一 ①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x , 解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).方法二 ∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.下列集合A到集合B的对应f是函数的是()A.A={-1,0,1},B{-1,0,1},f:A中的数的平方B.A={0,1},B={-1,0,1},f:A中的数求平方根C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值答案 A解析选项B中A中元素出现一对多的情况;选项C,D中均出现元素0无对应元素的情况.2.下列图象中不能作为函数图象的是()答案 B解析 B 项中的图象与垂直于x 轴的直线可能有两个交点,显然不满足函数的定义,故选B. 3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.-74 B.74 C.43 D.-43答案 B解析 令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1, 所以f (a )=4a -1=6,即a =74.4.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (3))等于( )A.43B.23C.-43 D.-3 答案 A解析 因为f (3)=1-log 23=log 223<0,所以f (f (3))=f ⎝⎛⎭⎫log 223=22log 132+=432log 2=43. 5.(2019·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为( )A.-1B.1C.-1或1D.-1或-13答案 C解析由条件可知,当x0≥0时,f(x0)=2x0+1=3,所以x0=1;当x0<0时,f(x0)=3x20=3,所以x0=-1.所以实数x0的值为-1或1.6.如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P 在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f (x)的大致图象是()答案 A解析 观察可知阴影部分的面积y 的变化情况为:(1)当0<x ≤1时,y 随x 的增大而增大,而且增加的速度越来越快.(2)当1<x <2时,y 随x 的增大而增大,而且增加的速度越来越慢.分析四个答案中的图象,只有选项A 符合条件.7.(多选)下列四组函数中,f (x )与g (x )相等的是( ) A.f (x )=ln x 2,g (x )=2ln x B.f (x )=x ,g (x )=(x )2 C.f (x )=x ,g (x )=3x 3D.f (x )=x ,g (x )=log a a x (a >0且a ≠1) 答案 CD解析 对于选项A,f (x )的定义域为{x |x ≠0},g (x )的定义域为{x |x >0},两个函数的定义域不相同,不是相等函数;对于选项B,f (x )的定义域为R ,g (x )的定义域为{x |x ≥0},两个函数的定义域不相同,不是相等函数;对于选项C,g (x )=3x 3=x ,两函数的定义域和对应法则相同,是相等函数; 对于选项D,g (x )=log a a x =x ,x ∈R ,两个函数的定义域和对应法则相同,是相等函数. 8.(多选)函数f (x )=x1+x 2,x ∈(-∞,0)∪(0,+∞),则下列等式成立的是( ) A.f (x )=f ⎝⎛⎭⎫1xB.-f (x )=f ⎝⎛⎭⎫1xC.1f (x )=f ⎝⎛⎭⎫1x D.f (-x )=-f (x )答案 AD解析 根据题意得f (x )=x 1+x 2,所以f ⎝⎛⎭⎫1x =1x1+⎝⎛⎭⎫1x 2=x1+x 2, 所以f (x )=f ⎝⎛⎭⎫1x ;f (-x )=-x 1+(-x )2=-x 1+x 2=-f (x ), 所以f (-x )=-f (x ).9.已知函数f (x )的定义域为(0,+∞),且f (x )=3x ·f ⎝⎛⎭⎫1x +1,则f (x )=______________. 答案 -38x -18(x >0)解析 在f (x )=3x ·f ⎝⎛⎭⎫1x +1中,将x 换成1x ,则1x 换成x ,得f ⎝⎛⎭⎫1x =31x·f (x )+1,将该方程代入已知方程消去f ⎝⎛⎭⎫1x ,得f (x )=-38x -18(x >0). 10.(2020·福州质检)函数 f (x )满足 f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则 f (f (15))的值为________.答案22解析 由函数f (x )满足f (x +4)=f (x )(x ∈R ),可知函数f (x )的周期是4,所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12,所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22.11.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________. 答案 2解析 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得,f (1)=2.12.已知函数f (x )=⎩⎪⎨⎪⎧3+log 2x ,x >0,x 2-x -1,x ≤0,则不等式f (x )≤5的解集为________.答案 [-2,4]解析 由于f (x )=⎩⎪⎨⎪⎧3+log 2x ,x >0,x 2-x -1,x ≤0,当x >0时,令3+log 2x ≤5, 即log 2x ≤2=log 24,解得0<x ≤4; 当x ≤0时,令x 2-x -1≤5, 即(x -3)(x +2)≤0,解得-2≤x ≤3,∴-2≤x ≤0.∴不等式f (x )≤5的解集为[-2,4].13.(2019·湖北宜昌一中模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b 等于( ) A.1 B.78 C.34 D.12答案 D解析 f ⎝⎛⎭⎫56=3×56-b =52-b , 当52-b ≥1,即b ≤32时,f ⎝⎛⎭⎫52-b =5-22b , 即5-22b =4=22,得到52-b =2,即b =12;当52-b <1,即b >32时,f ⎝⎛⎭⎫52-b =152-3b -b =152-4b ,即152-4b =4,得到b =78<32,舍去. 综上,b =12,故选D.14.已知函数f (x )=⎩⎪⎨⎪⎧-2x ,x <0,x 2-2x ,x ≥0,若f (f (-2))>f (t ),则实数t 的取值范围是____________.答案 (-4,4)解析 f (-2)=4,f (4)=8,不等式f (f (-2))>f (t )可化为f (t )<8.当t <0时,-2t <8,得-4<t <0;当t ≥0时,t 2-2t <8,即(t -1)2<9,得0≤t <4.综上所述,t 的取值范围是(-4,4).15.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称f (x )为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是____________.(填序号) 答案 ①③解析 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上,满足“倒负”变换的函数是①③.16.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,则c =________,A=________. 答案 60 16解析 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30,② 联立①②解得c =60,A =16.第2课时 函数的定义域与值域函数的定义域求下列函数的定义域: (1)y =12-|x |+x 2-1;(2)y =25-x 2+lg cos x ; (3)y =x -12x -log 2(4-x 2); (4)y =1log 0.5(x -2)+(2x -5)0.解 (1)由⎩⎪⎨⎪⎧2-|x |≠0,x 2-1≥0,得⎩⎪⎨⎪⎧x ≠±2,x ≤-1或x ≥1.所以函数的定义域为{x |x ≤-1或x ≥1且x ≠±2}.(2)由⎩⎪⎨⎪⎧25-x 2≥0,cos x >0,得⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2(k ∈Z ).所以函数的定义域为⎣⎡⎭⎫-5,-32π∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. (3)要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,解得-2<x <0或1≤x <2,∴函数的定义域为(-2,0)∪[1,2).(4)由⎩⎪⎨⎪⎧log 0.5(x -2)>0,2x -5≠0得⎩⎪⎨⎪⎧2<x <3,x ≠52,∴函数的定义域为⎝⎛⎭⎫2,52∪⎝⎛⎭⎫52,3. 思维升华 (1)给定函数的解析式,求函数的定义域的依据是使解析式有意义,如分式的分母不等于零,偶次根式的被开方数为非负数,零指数幂的底数不为零,对数的真数大于零且底数为不等于1的正数以及三角函数的定义域等.(2)求函数的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助数轴,并且要注意端点值或边界值.函数的值域例1 (2019·长沙月考)求下列函数的值域: (1)y =x 2-2x +3,x ∈[0,3); (2)y =2x +1x -3;(3)y =2x -x -1; (4)y =x +1+x -1.解 (1)(配方法)y =x 2-2x +3=(x -1)2+2, 由x ∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).(2)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,∴y ≠2.故函数的值域为(-∞,2)∪(2,+∞). (3)(换元法)设t =x -1,则x =t 2+1,且t ≥0, ∴y =2(t 2+1)-t =2⎝⎛⎭⎫t -142+158, 由t ≥0,再结合函数的图象(如图②所示),可得函数的值域为⎣⎡⎭⎫158,+∞. (4)函数的定义域为[1,+∞),∵y =x +1与y =x -1在[1,+∞)上均为增函数, ∴y =x +1+x -1在[1,+∞)上为单调递增函数, ∴当x =1时,y min =2,即函数的值域为[2,+∞).结合本例(4)求函数y =x +1-x -1的值域.解 函数的定义域为[1,+∞), y =x +1-x -1=2x +1+x -1,由本例(4)知函数y =x +1+x -1的值域为[2,+∞), ∴0<1x +1+x -1≤22,∴0<2x +1+x -1≤2,∴函数的值域为(0,2].思维升华 求函数值域的一般方法(1)分离常数法;(2)反解法;(3)配方法;(4)不等式法;(5)单调性法;(6)换元法;(7)数形结合法;(8)导数法.跟踪训练1 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ; (3)y =2x 2-x +12x -1⎝⎛⎭⎫x >12. 解 (1)方法一 y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].方法二 由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y1+y≥0.所以-1<y ≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t ≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t ≥0), 所以y ≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12,因为x >12,所以x -12>0,所以x -12+12x -12≥2⎝⎛⎭⎫x -12·12⎝⎛⎭⎫x -12=2,当且仅当x -12=12x -12,即x =1+22时取等号.所以y ≥2+12,即原函数的值域为⎣⎡⎭⎫2+12,+∞.定义域与值域的应用例2 (1)(2020·广州模拟)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 答案 -92解析 函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,a +ab +b =0,4a +2ab +b =0,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.(2)已知函数y =x 2+ax -1+2a 的值域为[0,+∞),求a 的取值范围.解 令t =g (x )=x 2+ax -1+2a ,要使函数y =t 的值域为[0,+∞),则说明[0,+∞)⊆{y |y =g (x )},即二次函数的判别式Δ≥0,即a 2-4(2a -1)≥0,即a 2-8a +4≥0,解得a ≥4+23或a ≤4-23,∴a 的取值范围是{a |a ≥4+23或a ≤4-23}.思维升华 已知函数的定义域、值域求参数问题.可通过分析函数解析式的结构特征,结合函数的图象、性质、转化为含参数的方程、不等式(组),然后求解.跟踪训练2 (1)若函数 f (x )=ax -2 021在[2 021,+∞)上有意义,则实数a 的取值范围为________. 答案 [1,+∞)解析 由于函数f (x )=ax -2 021在[2 021,+∞)上有意义,即ax -2 021≥0在[2 021,+∞)上恒成立,即a ≥2 021x 在[2 021,+∞)上恒成立,而0<2 021x ≤1,故a ≥1.(2)已知函数f (x )=12(x -1)2+1的定义域与值域都是[1,b ](b >1),则实数b =________.答案 3解析 f (x )=12(x -1)2+1,x ∈[1,b ]且b >1,则f (1)=1,f (b )=12(b -1)2+1,∵f (x )在[1,b ]上为增函数, ∴函数值域为⎣⎡⎦⎤1,12(b -1)2+1. 由已知得12(b -1)2+1=b ,解得b =3或b =1(舍).我们把不给出具体解析式,只给出函数的特殊条件或特征的函数称为抽象函数,一般用y =f (x )表示,抽象函数问题可以全面考查函数的概念和性质,将函数定义域、值域、单调性、奇偶性、周期性、图象集于一身,是考查函数的良好载体. 一、抽象函数的函数值例1 (1)设函数y =f (x )的定义域为(0,+∞),f (xy )=f (x )+f (y ),若f (8)=3,则f (2)=________. 答案 12解析 因为f (8)=3,所以f (2×4)=f (2)+f (4)=f (2)+f (2×2)=f (2)+f (2)+f (2)=3f (2)=3,所以f (2)=1.因为f (2)=f (2×2)=f (2)+f (2)=2f (2),所以2f (2)=1,所以f (2)=12.(2)设函数f (x )的定义域为R ,对于任意实数x 1,x 2,都有f (x 1)+f (x 2)=2f ⎝⎛⎭⎫x 1+x 22·f⎝⎛⎭⎫x 1-x 22,f (π)=-1,则f (0)=________. 答案 1解析 令x 1=x 2=π,则f (π)+f (π)=2f (π)f (0),∴f (0)=1. 二、抽象函数的定义域例2 (1)(2019·皖南八校模拟)已知函数f (x )=ln(-x -x 2),则函数f (2x +1)的定义域为________. 答案 ⎝⎛⎭⎫-1,-12 解析 由题意知,-x -x 2>0,∴-1<x <0,即f (x )的定义域为(-1,0). ∴-1<2x +1<0,则-1<x <-12.(2)若函数f (2x )的定义域是[-1,1],则f (log 2x )的定义域为________. 答案 [2,4]解析 对于函数y =f (2x ),-1≤x ≤1, ∴2-1≤2x ≤2.则对于函数y =f (log 2x ),2-1≤log 2x ≤2, ∴2≤x ≤4.故y =f (log 2x )的定义域为[2,4].1.函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B.(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) 答案 C解析 由题意可知x 满足(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝⎛⎭⎫0,12∪(2,+∞). 2.下列函数中,与函数y =13x 定义域相同的函数为( ) A.y =1sin x B.y =ln x xC.y =x e xD.y =sin x x 答案 D解析 因为y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ∈Z },y =ln x x 的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin x x的定义域为{x |x ≠0},故D 正确. 3.函数y =x -1+1的值域为( )A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞) 答案 D解析 函数y =x -1+1,定义域为[1,+∞),根据幂函数性质可知,该函数为增函数,当x =1时,该函数取得最小值1,故函数y =x -1+1的值域为[1,+∞).4.(2019·衡水中学调研)函数f (x )=-x 2-3x +4lg (x +1)的定义域为( ) A.(-1,0)∪(0,1]B.(-1,1]C.(-4,-1)D.(-4,0)∪(0,1] 答案 A解析 要使函数f (x )有意义,应有⎩⎪⎨⎪⎧ -x 2-3x +4≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤1,故选A.5.函数y =1+x -1-2x 的值域为( )A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎦⎤-∞,32 C.⎝⎛⎭⎫32,+∞D.⎣⎡⎭⎫32,+∞ 答案 B解析 设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝⎛⎦⎤-∞,32,故选B. 6.(2019·佛山模拟)函数f (x )=3x3x +2x的值域为( ) A.[1,+∞)B.(1,+∞)C.(0,1]D.(0,1)答案 D解析 f (x )=3x3x +2x =11+⎝⎛⎭⎫23x ,∵⎝⎛⎭⎫23x >0,∴1+⎝⎛⎭⎫23x>1,∴0<11+⎝⎛⎭⎫23x<1.7.(多选)下列函数中值域为R 的有( )A.f (x )=3x -1B.f (x )=lg(x 2-2)C.f (x )=⎩⎪⎨⎪⎧ x 2,0≤x ≤22x ,x >2D.f (x )=x 3-1答案 ABD解析 A 项,f (x )=3x -1为增函数,函数的值域为R ,满足条件;B 项,由x 2-2>0得x >2或x <-2,此时f (x )=lg(x 2-2)的值域为R ,满足条件;C 项,f (x )=⎩⎪⎨⎪⎧ x 2,0≤x ≤2,2x ,x >2,当x >2时,f (x )=2x >4,当0≤x ≤2时,f (x )=x 2∈[0,4],所以f (x )≥0,即函数的值域为[0,+∞),不满足条件;D 项,f (x )=x 3-1是增函数,函数的值域为R ,满足条件.8.(多选)若函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],则实数m 的值可能为() A.2 B.3 C.4 D.5答案 ABC解析 函数y =x 2-4x -4的对称轴方程为x =2,当0≤m ≤2时,函数在[0,m ]上单调递减,x =0时,取最大值-4,x =m 时,有最小值m 2-4m -4=-8,解得m =2.则当m >2时,最小值为-8,而f (0)=-4,由对称性可知,m ≤4.∴实数m 的值可能为2,3,4.9.(2019·江苏)函数y =7+6x -x 2的定义域是________.答案 [-1,7]解析 要使函数有意义,则7+6x -x 2≥0,解得-1≤x ≤7,则函数的定义域是[-1,7].10.函数f (x )=3x +2x,x ∈[1,2]的值域为________. 答案 [5,7]解析 令g (x )=3x +2x=3⎝⎛⎭⎫x +23x ,x >0, 易证g (x )在⎣⎡⎭⎫23,+∞上是增函数, ∴f (x )在[1,2]上为增函数,从而得f (x )的值域为[5,7].11.(2020·石家庄模拟)若函数f (x )=x -2+2x ,则f (x )的定义域是________,值域是________. 答案 [2,+∞) [4,+∞)解析 x -2≥0⇒x ≥2,所以函数f (x )的定义域是[2,+∞);因为函数y =x -2,y =2x 都是[2,+∞)上的单调递增函数,故函数f (x )=x -2+2x 也是[2,+∞)上的单调递增函数,所以函数f (x )的最小值为f (x )min =f (2)=4,故函数f (x )=x -2+2x 的值域为[4,+∞).12.函数y =x 2+2x +3x -1(x >1)的值域为________. 答案 [26+4,+∞)解析 令x -1=t >0,∴x =t +1.∴y =(t +1)2+2(t +1)+3t =t 2+4t +6t =t +6t+4 ≥2 6+4,当且仅当t =6t即t =6时等号成立. ∴函数的值域为[26+4,+∞).13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A.[0,1)B.[0,1]C.[0,1)∪(1,4]D.(0,1) 答案 A解析 函数y =f (x )的定义域是[0,2],要使函数g (x )有意义,可得⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1,故选A.14.定义新运算“★”:当m ≥n 时,m ★n =m ;当m <n 时,m ★n =n 2.设函数f (x )=(2★x )x -(4★x ),x ∈[1,4],则函数f (x )的值域为____________.答案 [-2,0]∪(4,60]解析 由题意知,f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[1,2],x 3-4,x ∈(2,4], 当x ∈[1,2]时,f (x )∈[-2,0];当x ∈(2,4]时,f (x )∈(4,60],故当x ∈[1,4]时,f (x )∈[-2,0]∪(4,60].15.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,0≤x ≤5,1-⎝⎛⎭⎫14x ,a ≤x <0的值域为[-15,1],则实数a 的取值范围是( ) A.(-∞,-2]B.[-2,0)C.[-2,-1]D.{-2} 答案 B解析 当0≤x ≤5时,f (x )=-x 2+2x =-(x -1)2+1,所以-15≤f (x )≤1;当a ≤x <0时,f (x )=1-⎝⎛⎭⎫14x 为增函数,所以1-⎝⎛⎭⎫14a ≤f (x )<0,因为f (x )的值域为[-15,1],所以⎩⎪⎨⎪⎧ 1-⎝⎛⎭⎫14a ≥-15,a <0,故-2≤a <0,故选B. 16.(多选)若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同值函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同值函数”,给出下面四个函数,其中能够被用来构造“同值函数”的是( )A.y =[x ]([x ]表示不超过x 的最大整数,例如[0.1]=0)B.y =x +x +1C.y =1x-log 3x D.y =⎪⎪⎪⎪x +1x +1 答案 AD解析 根据题意,“同值函数”需满足:对于同一函数值,有不同的自变量与其对应.因此,能够被用来构造“同值函数”的函数必须满足在其定义域内不单调.对于选项A,y =[x ],定义域为R ,在定义域内不是单调函数,有不同的自变量对应同一函数值,故A 可以构造“同值函数”;对于选项B,y =x +x +1,为定义在[-1,+∞)上的单调增函数,故B 不可以构造“同值函数”;对于选项C,y =1x-log 3x ,为定义在(0,+∞)上的单调减函数,故C 不可以构造“同值函数”; 对于选项D,y =⎪⎪⎪⎪x +1x +1,不是定义域上的单调函数,有不同的自变量对应同一函数值,故D 可以构造“同值函数”.所以能够被用来构造“同值函数”的是A,D.。
步步高大一轮复习讲义第课时PPT学习教案
【高考佐证2】 (2010·全国Ⅱ·20)频率
不同的两束单色光1和2以相同的入射
角从同一点射入一厚玻璃板后,其光
路如图9所示,下列说法正确的是( )
图9
A.单色光1的波长小于单色光2的波长
B.在玻璃中单色光1的传播速度大于单色光2的传播速度
C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板
________(填“能”、“不能”或“无法确定能否”)发生全
反射.
第20页/共49页
解析 (1)如图所示,单色光照射到EF弧面
上时刚好发生全反射,由全反射的条件得
C=45°
①
由折射定律得
n=ssinin9C0°
②
联立①②式得
n= 2.
(2)能
答案 (1) 2 (2)能
第21页/共49页
题型互动探究
第19页/共49页
【高考佐证3】 (2010·山东理综·37(2))如图10
所示,一段横截面为正方形的玻璃棒,中间
部分弯成四分之一圆弧形状,一细束单色光
由MN端面的中点垂直射入,恰好能在弧面
EF上发生全反射,然后垂直PQ端面射出.
图10
(1)求该玻璃棒的折射率.
(2)若将入射光向N端平移,当第一次射到弧面EF上时
介质射向 光疏
介质.
(2)入射角 大于
临界角.
3.临界角:折射角等于90°时的入射角.设光线从 某介质
射向 空气
时的临界角为C,则sin C=n1.
第4页/共49页
五、棱镜 1.常用的棱镜是横截面为三角形或梯形的三棱镜,通常简
称为棱镜. 2.棱镜对光线的控制作用
让一束单色光从空气射向玻璃 棱镜的一个侧面,光线经过棱 镜两次折射从另一侧面射出时, 将向棱镜的底部方向偏折,如
【步步高】高中数学 第二章 §2.3.2方差与标准差配套课件 苏教版必修3
乙
研一研·问题探究、课堂更高效
问题1 由于两个样本的平均数均为125,不好比较钢筋的质量好 坏,如果把它们标在数轴上(如下图),
你能发现什么?
答 发现甲的数据相对比较集中,乙的数据比较分散.
问题2 抽取的甲、乙数据的最大值与最小值有什么差别?这种差别 能说明什么问题? 答 乙样本的最小值100低于甲样本的最小值110,乙样本的最
2.3.2
【学习要求】
方差与标准差
1.正确理解样本数据方差与标准差的意义和作用,会计算数据 的标准差; 2.能根据实际问题的需要合理地选取样本,从样本数据中提取 基本的数字特征(如平均数、标准差),并做出合理的解释; 3.会用样本的基本数字特征估计总体的基本数字特征. 【学法指导】 通过方差和标准差的学习,形成用随机抽样的方法和样本估计 总体的思想解决一些简单的实际问题的意识,在解决统计问题 的过程中,进一步体会用样本估计总体的思想,理解数形结合 的数学思想和逻辑推理的数学方法.
答 看抗拉强度谁比较稳定.
问题4
怎样说明一组数据比较稳定?
答
问题5
如果一组数据与其平均值的离散程度较小,我们就说它比较稳定.
什么样的数能反映一组数据与其平均值的离散程度?
答 我们可以用“先平均,再求差,然后平方,最后再平均”得到的结 果表示一组数据偏离平均值的情况.这个结果通常称为方差. 问题6
答
方差与原始数据的单位相同吗?为什么?如何找到一个量和原始
研一研·问题探究、课堂更高效
小结
方差或标准差用来表示稳定性,方差或标准差越大,数
据的离散程度就越大,也就越不稳定;方差或标准差越小,数 据的离散程度就越小,也就越稳定.
研一研·问题探究、课堂更高效
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第二章 2.10
§2.10函数模型及其应用1.几类函数模型2.三种函数模型的性质概念方法微思考请用框图概括解函数应用题的一般步骤. 提示解函数应用题的步骤题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × )(2)函数y =2x 的函数值比y =x 2的函数值大.( × )(3)已知a >0且a ≠1,则不存在x 0,使0xa <x n0<log a x 0.( × )(4)“指数爆炸”是指数型函数y =ab x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )题组二 教材改编2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________. 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y , 则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件. 答案 18解析 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.已知某物体的温度Q (单位:摄氏度)随时间t (单位:分钟)的变化规律为Q =m ·2t +21-t (t ≥0,且m >0).若物体的温度总不低于2摄氏度,则m 的取值范围是________. 答案 ⎣⎡⎭⎫12,+∞ 解析 由题意得,m ·2t +21-t ≥2恒成立(t ≥0,且m >0), 又m ·2t +21-t ≥22m ,∴22m ≥2,∴m ≥12.题组三 易错自纠5.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg 2≈0.301,lg 3≈0.477)( ) A.6 B.9 C.8 D.7 答案 BC解析 设经过n 次过滤,产品达到市场要求, 则2100×⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120, 由n lg 23≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2≈7.4,故选BC.6.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为____________. 答案(p +1)(q +1)-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.7.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到________只. 答案 200解析 由题意知100=a log 3(2+1), ∴a =100,∴y =100log 3(x +1). 当x =8时,y =100log 39=200.用函数图象刻画变化过程1.(2019·武汉月考)高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f (h)的大致图象是()答案 B解析v=f (h)是增函数,且曲线的斜率应该是先变大后变小,故选B.2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+bB.y=a+b xC.y=a·b xD.y=ax2+bx+c答案 B解析根据散点图可知,选择y=a+b x最适合.思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.已知函数模型的实际问题例 (1)(2020·广州模拟)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元. 答案 2 500解析 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500.则当Q =300时,L (Q )取得最大值为2 500万元.(2)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝⎛⎭⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________________________________________________________________________. ②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 答案 ①y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝⎛⎭⎫116t -0.1,t >0.1②0.6解析 ①设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =⎝⎛⎭⎫116t -a 过点(0.1,1),得1=⎝⎛⎭⎫1160.1-a , 解得a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1). ②由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.思维升华 求解所给函数模型解决实际问题的关键点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练 (1)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. 答案 4.24解析 ∵m =6.5,∴[m ]=6,则f (6.5)=1.06×(0.5×6+1)=4.24.(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系: Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 答案 ①120 ②80解析 因为随着时间的增加,种植成本先减少后增加,而且当t =60和t =180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎪⎨⎪⎧ a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎪⎨⎪⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.命题点1 构造二次函数模型例1 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A.[4,8] B.[6,10] C.[4%,8%]D.[6%,10%]解析 根据题意,要使附加税不少于128万元,需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].命题点2 构造指数函数、对数函数模型例2 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? 解 (1)设每年砍伐面积的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭. (2)设经过m 年剩余面积为原来的22, 则a (1-x )m =22a ,即11021122m⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 即m 10=12,解得m =5. 故到今年为止,该森林已砍伐了5年.若本例的条件不变,试计算:今后最多还能砍解 设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 1012n ⎛⎫ ⎪⎝⎭≥3212⎛⎫⎪⎝⎭,即n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.命题点3 构造“对勾函数”模型例3 (1)(2019·福州月考)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.命题点4 构造分段函数模型例4 共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h (x )=⎩⎪⎨⎪⎧400x -12x 2,0<x ≤400,80 000,x >400,其中x 是新样式单车的月产量(单位:辆),利润=总收益-总成本. (1)试将自行车厂的利润y (单位:元)表示为关于月产量x 的函数; (2)当月产量为多少辆时自行车厂的利润最大?最大利润是多少? 解 (1)依题设知,总成本为(20 000+100x )元,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x ≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12(x -300)2+25 000,故当x =300时,y max =25 000;当x>400时,y=60 000-100x是减函数,故y<60 000-100×400=20 000.所以当月产量为300辆时,自行车厂的利润最大,最大利润为25 000元.素养提升数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.函数模型的建立主要是理清变量间的关系,将它们用数学语言表示.1.(2019·厦门月考)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()答案 A解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C 图象符合要求,而后3年年产量保持不变,故选A.2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的一个是( )A.y =2x -2B.y =12(x 2-1)C.y =log 2xD.y =12log x答案 B解析 由题表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大得越来越快,分析选项可知B 符合,故选B.3.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2≈0.301 0,lg 3≈0.477 1)( ) A.5.2 B.6.6 C.7.1 D.8.3 答案 B解析 设这种放射性元素的半衰期是x 年, 则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg 12lg 0.9=-lg 22lg 3-1≈-0.301 02×0.477 1-1≈6.6(年).故选B.4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A.13 m 3B.14 m 3C.18 m 3D.26 m 3 答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +(x -10)·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.5.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A.x =15,y =12B.x =12,y =15C.x =14,y =10D.x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.检验符合题意.6.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况答案 B解析设该股民购进股票的资金为a,则交易结束后,所剩资金为a(1+10%)n·(1-10%)n=a·(1-0.01)n=a·0.99n<a.7.(多选)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y(单位:千克)与时间x(单位:小时)的函数图象,则以下关于该产品生产状况的正确判断是()A.在前三小时内,每小时的产量逐步增加B.在前三小时内,每小时的产量逐步减少C.最后一小时内的产量与第三小时内的产量相同D.最后两小时内,该车间没有生产该产品答案BD解析由该车间5小时来某种产品的总产量y(千克)与时间x(小时)的函数图象,得前三小时的年产量逐步减少,故A错误,B正确;后两小时均没有生产,故C错误,D正确.8.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品广告销售的收入R与广告费A之间满足关系R=a A(a为常数),广告效应为D=a A-A.那么精明的商人为了取得最大的广告效应,投入的广告费应为________.(用常数a表示)答案1 4a2解析 令t =A (t ≥0),则A =t 2, ∴D =at -t 2=-⎝⎛⎭⎫t -12a 2+14a 2, ∴当t =12a ,即A =14a 2时,D 取得最大值.9.(2019·皖南八校联考)某购物网站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________. 答案 3解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v202 km,那么这批物资全部到达灾区的最少时间是______ h.(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间, 因此,t =36×⎝⎛⎭⎫v202+400v =36v 400+400v ≥236v 400×400v=12, 当且仅当36v 400=400v ,即v =2003时取等号.故这些汽车以2003km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.11.(2019·咸宁质检)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年. (1)当0<x ≤20时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值. 解 (1)由题意得当0<x ≤4时,v =2;当4≤x ≤20时,设v =ax +b ,a ≠0, 显然v =ax +b 在[4,20]内是减函数,由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎨⎧a =-18,b =52,所以v =-18x +52,故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,x ∈N *-18x +52,4<x ≤20,x ∈N *.(2)设年生长量为f (x )千克/立方米,依题意并由(1)可得 f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20.当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+252,f (x )max =f (10)=12.5.所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 12.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y (ppm)与排气时间t (分钟)之间存在函数关系y =c ⎝⎛⎭⎫12mt(c ,m 为常数). (1)求c ,m 的值;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?解 (1)由题意可列方程组⎩⎨⎧64=c ⎝⎛⎭⎫124m ,32=c ⎝⎛⎭⎫128m ,两式相除,解得⎩⎪⎨⎪⎧c =128,m =14. (2)由题意可列不等式1411282t ⎛⎫⎪⎝⎭≤0.5, 所以1411282t ⎛⎫⎪⎝⎭≤⎝⎛⎭⎫128,即14t ≥8,解得t ≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入-前n 年的总费用支出-投资额]答案 5解析 由题意知f (n )=26n -⎣⎡⎦⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15,所以从第5年开始盈利.14.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )12t h⎛⎫ ⎪⎝⎭,其中T a 称为环境温度,h 称为半衰期.现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.答案 8解析 由题意知T a =21 ℃.令T 0=85 ℃,T =37 ℃,得37-21=(85-21)·1612h⎛⎫ ⎪⎝⎭,∴h =8. 令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·812t ⎛⎫ ⎪⎝⎭,∴t =8.15.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.答案 5-12解析 由题意得x =c -a b -a,(c -a )2=(b -c )(b -a ), ∵b -c =(b -a )-(c -a ),∴(c -a )2=(b -a )2-(b -a )(c -a ),两边同除以(b -a )2,得x 2+x -1=0,解得x =-1±52.∵0<x <1,∴x =5-12. 16.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?解 (1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),书商所获得的总利润为5×(100-32)=340(万元). (2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0, 解得0<x <150.依题意,单套丛书利润P =x -⎝⎛⎭⎫30+1015-0.1x =x -100150-x-30, 所以P =-⎣⎡⎦⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20, 当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第一章 1.4
§1.4 不等关系与不等式1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =b a -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b <1⇔a <b(a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b的大小关系确定吗?提示 不确定.若a >b ,ab >0,则1a <1b ,即若a 与b 同号,则分子相同时,分母大的反而小;若a >0>b ,则1a >1b ,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示 可以相加但不一定能相乘,例如2>-1,-1>-3.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若ab>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >bc .( √ )题组二 教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件答案 A 解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但a 2-b 2>0⇏a -b >0.3.若a >b >0,c <d <0,则一定有( ) A.a c -bd >0 B.a c -b d <0 C.a d >b c D.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c , 又0<b <a ,∴-bd <-ac ,即bd >ac , 又∵cd >0,∴bd cd >ac cd ,即b c >ad .题组三 易错自纠4.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a+b >3且ab >2”的充分不必要条件.故选A. 5.(多选)下列命题为真命题的是( ) A.若a >b >0,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2 C.若a >b >0且c <0,则c a 2>cb 2D.若a >b 且1a >1b ,则ab <0答案 BCD解析 当c =0时,不等式不成立,∴A 命题是假命题;⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ,⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,∴B 命题是真命题;a >b >0⇒a 2>b 2>0⇒0<1a 2<1b 2,∵c <0,∴c a 2>cb 2,∴C 命题是真命题;1a >1b ⇒1a -1b >0⇒b -a ab >0,∵a >b ,∴b -a <0,ab <0,∴D 命题是真命题,∴本题选BCD.6.(2019·北京市海淀区育英学校期中)若实数a, b 满足0<a <2, 0<b <1,则a -b 的取值范围是________. 答案 (-1,2)解析 ∵0<b <1,∴-1<-b <0, ∵0<a <2,∴-1<a -b <2.比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为( )A.p <qB.p ≤qC.p >qD.p ≥q答案 B解析 (作差法)p -q =b 2a +a 2b -a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2)·⎝⎛⎭⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小. 解 ∵a a b b a b b a =a a -b b a -b =⎝⎛⎭⎫a b a -b,又a >b >0,故ab >1,a -b >0,∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为a a b b >a b b a . 思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.跟踪训练1 (1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________. 答案 M >N解析 因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则( ) A.77a a <7a a 7 B.77a a =7a a 7 C.77a a >7a a 7D.77a a 与7a a 7的大小不确定 答案 C解析 77a a 7a a7=77-a a a -7=⎝⎛⎭⎫7a 7-a ,则当a >7时,0<7a <1,7-a <0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7; 当0<a <7时,7a >1,7-a >0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7. 综上,77a a >7a a 7.不等式的基本性质例2 (1)(2020·武汉部分市级示范高中联考)下列命题中正确的是( ) A.若a >b ,则ac 2>bc 2 B.若a >b ,c <d ,则a c >bdC.若a >b ,c >d ,则a -c >b -dD.若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误;当a =1,b =0,c =-2,d =-1时,a c <bd ,故B 选项错误;当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误,故D 选项正确. (2)(多选)若1a <1b <0,则下列结论正确的是( )A.a 2<b 2B.ab <b 2C.a +b <0D.|a |+|b |>|a +b |答案 ABC解析 由题意可知b <a <0,所以A,B,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误.思维升华判断不等式的常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)(多选)(2019·天津市河北区模拟)若a,b,c∈R,给出下列命题中,正确的有()A.若a>b,c>d,则a+c>b+dB.若a>b,c>d,则b-c>a-dC.若a>b,c>d,则ac>bdD.若a>b,c>0,则ac>bc答案AD解析∵a>b,c>d,由不等式的同向可加性得a+c>b+d,故A正确;由A正确,可知B不正确;取4>-2,-1>-3,则4×(-1)<(-2)×(-3),故C不正确;∵a>b,c>0,∴ac>bc.故D 正确.综上可知,只有AD正确.故选AD.(2)已知a,b,c满足c<b<a,且ac<0,那么下列选项中一定成立的是()A.ab>acB.c(b-a)<0C.cb2<ab2D.ac(a-c)>0答案 A解析由c<b<a且ac<0,知c<0且a>0.由b>c,得ab>ac一定成立.不等式性质的综合应用命题点1判断不等式是否成立例3(2019·北京师范大学附属中学期中)若b<a<0,则下列不等式:①|a|>|b|;②a+b<ab;③a2b<2a-b中,正确的不等式有()A.0个B.1个C.2个D.3个答案 C解析 对于①,因为b <a <0,所以|b |>|a |,故①错误;对于②,因为b <a <0,所以a +b <0,ab >0,a +b <ab ,故②正确;对于③,a 2b -2a +b =a 2-2ab +b 2b =(a -b )2b <0,a 2b <2a -b ,故③正确.故选C.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 思维升华 (1)判断不等式是否成立的方法 ①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断. (2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围. 跟踪训练3 (1)设b >a >0,c ∈R ,则下列不等式中不一定成立的是( ) A.1122<a b B.1a -c >1b -c C.a +2b +2>ab D.ac 2<bc 2答案 D解析 因为y =12x 在(0,+∞)上是增函数,所以1122<a b ; 因为y =1x -c 在(0,+∞)上是减函数,所以1a -c >1b -c ;因为a +2b +2-a b =2(b -a )(b +2)b >0,所以a +2b +2>ab ;当c =0时,ac 2=bc 2,所以D 不成立.故选D.(2)已知π<α+β<5π4,-π<α-β<-π3,则2α-β的取值范围是________.答案 ⎝⎛⎭⎫-π,π8 解析 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,∴⎩⎨⎧m =12,n =32,即2α-β=12(α+β)+32(α-β),∵π<α+β<5π4,-π<α-β<-π3,∴π2<12(α+β)<5π8,-3π2<32(α-β)<-π2, ∴-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,∴2α-β的取值范围是⎝⎛⎭⎫-π,π8.1.(2019·张家界期末)下列不等式中,正确的是( )A.若ac 2>bc 2,则a >bB.若a >b ,则a +c <b +cC.若a >b ,c >d ,则ac >bdD.若a >b ,c >d ,则a c >b d答案 A解析 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c <b d所以C,D 错,故选A.2.若a ,b ∈R ,且a >|b |,则( )A.a <-bB.a >bC.a 2<b 2D.1a >1b答案 B 解析 由a >|b |得,当b ≥0时,a >b ,当b <0时,a >-b ,综上可知,当a >|b |时,则a >b 成立,故选B.3.若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B.a 2<abC.|b ||a |<|b |+1|a |+1 D.a n >b n答案 C解析 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A,B,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.4.已知c 3a <c 3b <0,则下列选项中错误的是( )A.|b |>|a |B.ac >bcC.a -b c >0D.ln a b >0答案 D解析 c 3a <c 3b <0,当c <0时, 1a >1b >0,即b >a >0,∴|b |>|a |, ac >bc, a -b c >0成立,即A,B,C 成立;此时0<a b <1,∴ln a b <0,D 错误.同理,当c >0时,A,B,C 也正确.故选D.5.设M =3x+3y 2,N =(3)x +y ,P =其中0<x <y ),则M ,N ,P 的大小顺序是() A.P <N <M B.N <P <MC.P <M <ND.M <N <P答案 A解析 M =3x +3y 2>3x +y =(3)x +y =N ,又N =(3)x +y =23x y>P ,∴M >N >P .6.(2020·天津模拟)若α,β满足-π2<α<β<π2,则2α-β的取值范围是( ) A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π 答案 C解析 ∵-π2<α<π2,∴-π<2α<π. ∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2. 7.(多选)若a <b <0,则下列不等式关系中,正确的有( )A.1a >1bB.1a >1a -bC.2233>a bD.1a 2>1b 2 答案 ABC解析 对于A,∵a <b <0,∴1a >1b,故A 正确;对于B,∵a <b <0 ,∴a <a -b <0,两边同时除以a (a -b )可得1a >1a -b,故B 正确;根据幂函数的单调性可知C 正确;对于D,∵a <b <0,∴a 2>b 2>0,∴1a 2<1b 2,故D 错误. 8.(多选)已知a ,b ∈(0,1),若a >b ,则下列所给命题中错误的为( ) A.1(1-)>(1-)aa b b B.2(1-)>(1-)a a b bC.(1+b )b >(1+a )aD.(1-b )b >(1-a )a答案 ABC解析 因为a ,b ∈(0,1)且a >b ,所以1>1-b >1-a >0,因为指数函数y =a x (0<a <1)单调递减,1>a >b >0,所以1a >a ,a >a 2,故A,B 错误. (1+b )b <(1+a )b <(1+a )a ,故C 错误.(1-b )b >(1-b )a >(1-a )a ,故D 正确.9.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系是________. 答案a b 2+b a 2≥1a +1b 解析 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 10.已知有三个条件:①ac 2>bc 2;②a c >b c;③a 2>b 2,其中能成为a >b 的充分条件的是________.(填序号)答案 ①解析 由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d; (2)已知c >a >b >0,求证:a c -a >b c -b. 证明 (1)∵bc ≥ad ,bd >0,∴c d ≥a b, ∴c d +1≥a b +1,∴a +b b ≤c +d d. (2)∵c >a >b >0,∴c -a >0,c -b >0.∵a >b >0,∴1a <1b, 又∵c >0,∴c a <c b ,∴c -a a <c -b b,又c -a >0,c -b >0,∴a c -a >bc -b .12.已知1<a <4,2<b <8,试求a -b 与a b 的取值范围.解 因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为18<1b <12,所以18<a b <42=2,即18<a b <2.故a -b 的取值范围为(-7,2),a b 的取值范围为⎝⎛⎭⎫18,2.13.已知a ,b ,c ,d 为实数,则“a >b 且c >d ”是“ac +bd >bc +ad ”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 因为c >d ,所以c -d >0.又a >b ,所以两边同时乘(c -d ),得a (c -d )>b (c -d ),即ac +bd >bc +ad .若ac +bd >bc +ad ,则a (c -d )>b (c -d ),也可能a <b 且c <d ,所以“a >b 且c >d ”是“ac +bd >bc +ad ”的充分不必要条件.14.若a =ln 33,b =ln 44,c =ln 55,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 B解析 方法一 对于函数y =f (x )=ln x x (x >e),y ′=1-ln xx 2,易知当x >e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二 易知a ,b ,c 都是正数,因为b a =3ln 44ln 3=log 8164<1,所以a >b ;因为b c =5ln 44ln 5=log 6251 024>1,所以b >c .即c <b <a .15.(2019·抚州临川第一中学模拟)设m =log 0.30.6,n =12log 20.6,则() A.m -n >mn >m +n B.m -n >m +n >mnC.mn >m -n >m +nD.m +n >m -n >mn答案 B解析 因为m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,所以mn <0,m -n >0,因为-1n =-2log 0.62=log 0.60.25>0,1m =log 0.60.3>0,而log 0.60.25>log 0.60.3,所以-1n >1m>0,即可得m +n >0, 因为(m -n )-(m +n )=-2n >0,所以m -n >m +n ,所以m -n >m +n >mn .故选B.16.设0<b <a <1,则下列不等式成立的是( )A.a ln b >b ln aB.a ln b <b ln aC.a e b <b e aD.a e b =b e a答案 B解析 观察A,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a,B 正确.对于C,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e x x在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e b b ,所以a e b >b e a ,故选B.。
【步步高】2018版高考数学(理)(苏教版,江苏专用)大一轮教师文档讲义:第二章2.5指数与指数函数
1.分数指数幂(1)我们规定正数的正分数指数幂的意义是mna=n a m(a>0,m,n∈N*,且n>1).正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定mna =1mna(a>0,m,n∈N*,且n>1).0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t=a s+t,(a s)t=a st,(ab)t=a t b t,其中s,t∈Q,a>0,b>0.2.指数函数的图象与性质1.指数函数图象画法的三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),(-1,1a ).2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂m na 可以理解为mn个a 相乘.( × )(3)24(1)-=12(1)-=-1.( × ) (4)函数y =a -x 是R 上的增函数.( × )(5)函数y =21x a +(a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.(教材改编)若函数f (x )=a x (a >0且a ≠1)的图象经过点P (2,12),则f (-1)=________.答案2解析 由题意知12=a 2,所以a =22,所以f (x )=(22)x ,所以f (-1)=(22)-1= 2. 2.(2016·苏州模拟)已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为________. 答案 (2,3)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3).3.已知113344333(),(),()552a b c ---===,则a ,b ,c 的大小关系是______________.答案 c <b <a解析 ∵y =(35)x 是减函数,11034333()()(),555--∴>>即a >b >1,又c =343()2-<(32)0=1,∴c <b <a .4.计算:133()2-×⎝⎛⎭⎫-760+148×42________.答案 2解析 原式=132()3×1+131344222()3⨯-=2.5.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.题型一 指数幂的运算 例1 化简下列各式:(1)122.553[(0.064)]--3338-π0;(2)41233322338(4a a b aab a--÷-+.解 (1)原式=121553326427{[()]}()110008---1521()33523343[()][()]1102⨯-⨯=--=52-32-1=0. (2)原式=11111213333333321111111223333352[()(2)]2()()(2)(2)()a a b a b a a aa ab b a a --⋅÷⨯+⋅+⋅ 51116333111336(2)2a a a a b a ba=-⨯⨯-12233.a a a a =⨯⨯=思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.化简132113321()4(0.1)()a b---⋅⋅⋅=________.答案85解析原式=2×333223322210a ba b--⋅⋅⋅⋅=21+3×10-1=85.题型二指数函数的图象及应用例2已知f(x)=|2x-1|.(1)求f(x)的单调区间;(2)比较f(x+1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x2的零点的个数.解(1)由f(x)=|2x-1|=⎩⎪⎨⎪⎧2x-1,x≥0,1-2x,x<0可作出函数的图象如图所示.因此函数f(x)在(-∞,0)上递减,在(0,+∞)上递增.(2)在同一坐标系中,分别作出函数f(x)、f(x+1)的图象如图所示.由图象知,当0012112x x+-=-,即x=log223时,两图象相交,由图象可知,当x<log223时,f(x)>f(x+1);当x =log 223时,f (x )=f (x +1);当x >log 223时,f (x )<f (x +1).(3)将g (x )=f (x )-x 2的零点个数问题转化为函数f (x )与y =x 2的图象的交点个数问题,在同一坐标系中,分别作出函数f (x )=|2x -1|和y =x 2的图象(图略),有四个交点,故g (x )有四个零点. 思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.已知函数f (x )=⎩⎪⎨⎪⎧x +1(0≤x <1),2x -12(x ≥1),设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是______. 答案 [34,2)解析 函数的图象如图所示.因为a >b ≥0,f (a )=f (b ),所以0.5≤b <1且1.5≤f (a )<2.所以0.75≤bf (a )<2.题型三 指数函数的性质及应用 命题点1 指数函数单调性的应用例3 (1)(2016·徐州模拟)下列各式比较大小正确的是________. ①1.72.5>1.73;②0.6-1>0.62;③0.8-0.1>1.250.2;④1.70.3<0.93.1.(2)设函数f (x )=⎩⎪⎨⎪⎧(12)x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.答案 (1)② (2)(-3,1)解析 (1)②中,∵y =0.6x 是减函数, ∴0.6-1>0.62.(2)当a <0时,不等式f (a )<1可化为(12)a -7<1,即(12)a <8,即(12)a <(12)-3, 所以a >-3.又a <0,∴-3<a <0. 当a ≥0时,不等式f (a )<1可化为a <1. 所以0≤a <1,综上,a 的取值范围为(-3,1). 命题点2 复合函数的单调性 例4 (1)已知函数f (x )=|2|2x m -(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.(2)函数2211()()2x x f x -++=的单调减区间为________________________________________________________________________. 答案 (1)(-∞,4] (2)(-∞,1]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)设u =-x 2+2x +1,∵y =⎝⎛⎭⎫12u在R 上为减函数,∴函数f (x )=2211()2x x -++的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 引申探究函数f (x )=4x -2x +1的单调增区间是________. 答案 [0,+∞)解析 设t =2x ,则y =t 2-2t 的单调增区间为[1,+∞), 令2x ≥1,得x ≥0, ∴函数f (x )=4x -2x+1的单调增区间是[0,+∞).命题点3 函数的值域(或最值)例5 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________. 答案 (1)⎣⎡⎦⎤34,57 (2)13或3 解析 (1)因为x ∈[-3,2], 所以若令t =⎝⎛⎭⎫12x,则t ∈⎣⎡⎦⎤14,8, 故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数的值域为⎣⎡⎦⎤34,57. (2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a ,a ],又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增, 所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a ],又函数y =(t +1)2-2在[a ,1a ]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上,a =3或a =13.思维升华 (1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解.(1)已知函数f (x )=⎩⎪⎨⎪⎧-(12)x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)[-3,0) (2)0解析 (1)当0≤x ≤4时,f (x )∈[-8,1], 当a ≤x <0时,f (x )∈[-(12)a ,-1),所以[-12a ,-1)[-8,1],即-8≤-12a <-1,即-3≤a <0,所以实数a 的取值范围是[-3,0).(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.2.指数函数底数的讨论典例 (2016·南京模拟)已知函数22xxy b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.错解展示解析 令t =x 2+2x =(x +1)2-1, ∵-32≤x ≤0,∴-1≤t ≤0.∵1a ≤a t ≤1,∴b +1a ≤b +a t ≤b +1, 由⎩⎪⎨⎪⎧b +1a =52,b +1=3,得⎩⎪⎨⎪⎧a =2,b =2.答案 2,2 现场纠错解析 令t =x 2+2x =(x +1)2-1, ∵x ∈[-32,0],∴t ∈[-1,0].①若a >1,函数f (x )=a t 在[-1,0]上为增函数, ∴a t ∈[1a ,1],22x xb a ++∈[b +1a,b +1],依题意得⎩⎪⎨⎪⎧ b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2. ②若0<a <1,函数f (x )=a t 在[-1,0]上为减函数,∴a t ∈[1,1a], 则22x x b a ++∈[b +1,b +1a], 依题意得⎩⎨⎧ b +1a =3,b +1=52, 解得⎩⎨⎧ a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧ a =2,b =2或⎩⎨⎧ a =23,b =32.答案 2,2或23,32纠错心得 与指数函数、对数函数的单调性有关的问题,要对底数进行讨论.1.(2016·苏州模拟)设2x =8y +1,9y =3x -9,则x +y 的值为________. 答案 27解析 ∵2x =8y +1=23(y +1),∴x =3y +3, ∵9y =3x -9=32y ,∴x -9=2y ,解得x =21,y =6,∴x +y =27.2.函数f(x)=2|x-1|的图象是________.答案②解析∵|x-1|≥0,∴f(x)≥1,排除③、④.又x=1时,|f(x)|min=1,排除①.3.已知a=40.2,b=0.40.2,c=0.40.8,则a,b,c的大小关系为__________.答案a>b>c解析由0.2<0.8,底数0.4<1知,y=0.4x在R上为减函数,所以0.40.2>0.40.8,即b>c. 又a=40.2>40=1,b=0.40.2<1,所以a>b,综上,a>b>c.4.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为__________. 答案[1,9]解析由f(x)过定点(2,1)可知b=2,因为f(x)=3x-2在[2,4]上是增函数,所以f(x)min=f(2)=1,f(x)max=f(4)=9.5.(2015·山东改编)若函数f(x)=2x+12x-a是奇函数,则使f(x)>3成立的x的取值范围为__________.答案(0,1)解析∵f(x)为奇函数,∴f(-x)=-f(x),即2-x +12-x -a =-2x +12x -a ,整理得(a -1)(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3, 当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).6.(2016·浙江改编)已知函数f (x )满足f (x )≥2x ,x ∈R .若f (a )≤2b ,则a ,b 的大小关系为________. 答案 a ≤b解析 依题意得f (a )≥2a ,若f (a )≤2b ,则2a ≤f (a )≤2b ,∴2a ≤2b ,又y =2x 是R 上的增函数,∴a ≤b .7.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,13x ,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.答案 (-∞,8]解析 当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1时恒成立; 当x ≥1时,由13x ≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.8.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.答案 (0,12) 解析 (数形结合法)由图象可知0<2a <1,∴0<a <12.9.(2016·镇江模拟)已知y =f (x )是定义在R 上的奇函数且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.答案 [-14,14] 解析 设t =12x ,当x ≥0时,2x ≥1,∴0<t ≤1, f (t )=-t 2+t =-(t -12)2+14. ∴0≤f (t )≤14,故当x ≥0时,f (x )∈[0,14]. ∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈[-14,0]. 故函数的值域为[-14,14]. 10.已知函数f (x )=2ax +2(a 为常数), (1)求函数f (x )的定义域;(2)若a >0,试证明函数f (x )在R 上是增函数;(3)当a =1时,求函数y =f (x ),x ∈(-1,3]的值域.(1)解 函数f (x )=2ax +2对任意实数都有意义,所以定义域为实数集R .(2)证明 任取x 1,x 2∈R ,且x 1<x 2,由a >0,得ax 1+2<ax 2+2.因为y =2x 在R 上是增函数,所以有122222ax ax ++,即f (x 1)<f (x 2).所以函数f (x )在R 上是增函数.(3)解 由(2)知,当a =1时,f (x )=2x +2在(-1,3]上是增函数.所以f (-1)<f (x )≤f (3),即2<f (x )≤32.所以函数f (x )的值域为(2,32].11.已知函数f (x )=(23)|x |-a . (1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值. 解 (1)令t =|x |-a ,则f (x )=(23)t , 不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =(23)t 是单调递减的, 因此f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞).(2)由于f (x )的最大值是94且94=(23)-2, 所以g (x )=|x |-a 应该有最小值-2,即g (0)=-2,从而a =2.12.已知函数f (x )=2431()3ax x -+.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=2431()3xx --+, 令t =-x 2-4x +3,由于函数t =-x 2-4x +3在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1, 即当f (x )有最大值3时,a 的值为1.*13.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2). (1)若λ=32,求函数f (x )的值域; (2)若函数f (x )的最小值是1,求实数λ的值.解 (1)f (x )=14x -λ2x -1+3 =(12)2x -2λ·(12)x +3(-1≤x ≤2). 设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2).当λ=32时,g (t )=t 2-3t +3 =(t -32)2+34(14≤t ≤2). 所以g (t )max =g (14)=3716,g (t )min =g (32)=34. 所以f (x )max =3716,f (x )min =34, 故函数f (x )的值域为[34,3716]. (2)由(1)得g (t )=t 2-2λt +3=(t -λ)2+3-λ2(14≤t ≤2), ①当λ≤14时,g (t )min =g (14)=-λ2+4916, 令-λ2+4916=1,得λ=338>14,不符合舍去; ②当14<λ≤2时,g (t )min =g (λ)=-λ2+3, 令-λ2+3=1,得λ=2(λ=-2<14,不符合舍去); ③当λ>2时,g (t )min =g (2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合舍去. 综上所述,实数λ的值为 2.14.(2017·江苏淮阴中学月考)已知f (x )=23x+1+m ,m 是实常数. (1)当m =1时,写出函数f (x )的值域;(2)当m =0时,判断函数f (x )的奇偶性,并给出证明;(3)若f (x )是奇函数,不等式f (f (x ))+f (a )<0有解,求a 的取值范围.解 (1)当m =1时,f (x )=23x +1+1,定义域为R , 3x +1∈(1,+∞),则23x +1∈(0,2), 所以f (x )=23x +1+1∈(1,3), 即当m =1时,函数f (x )的值域为(1,3).(2)当m =0时,f (x )为非奇非偶函数.证明如下 :当m =0时,f (x )=23x+1,f (1)=24=12, f (-1)=213+1=32, 因为f (-1)≠f (1),所以f (x )不是偶函数;又因为f (-1)≠-f (1),所以f (x )不是奇函数.故f (x )为非奇非偶函数.(3)因为f (x )是奇函数,所以f (-x )=-f (x )恒成立,即23-x +1+m =-23x +1-m 对x ∈R 恒成立, 化简整理得-2m =2×3x 1+3x +23x +1,即-2m =2,所以m =-1. 下面用定义法研究f (x )=23x +1-1的单调性. 任取x 1,x 2∈R 且x 1<x 2,f (x 1)-f (x 2)=1222113131x x --+++ 21212(33)0(31)(31)x x x x -=++>,所以f(x1)>f(x2),所以函数f(x)在R上单调递减.所以f(f(x))+f(a)<0有解,且函数f(x)为奇函数,所以f(f(x))<-f(a)=f(-a),又因为函数f(x)在R上单调递减,所以f(x)>-a有解,又易求函数f(x)=23x+1-1的值域为(-1,1),所以-a<1,即a>-1.。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第五章 5.3
§5.3 平面向量的数量积1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π].2.平面向量的数量积定义:已知两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b .3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ).(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.概念方法微思考两个向量的数量积大于0,则夹角一定为锐角吗?提示不一定.当夹角为0°时,数量积也大于0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)由a ·b =0可得a =0或b =0.( × ) (3)(a ·b )c =a (b ·c ).( × )(4)若a·b <0,则a 和b 的夹角为钝角.( × ) 题组二 教材改编2.已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 答案5π6解析 cos θ=a ·b |a ||b |=-632×6=-32,又因为0≤θ≤π,所以θ=5π6.题组三 易错自纠4.已知a ,b 为非零向量,则“a ·b >0”是“a 与b 的夹角为锐角”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件答案 B解析 根据向量数量积的定义可知,若a ·b >0,则a 与b 的夹角为锐角或零角,若a 与b 的夹角为锐角,则一定有a ·b >0,所以“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件,故选B.5.已知矩形ABCD 中,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20 B.15 C.9 D.6 答案 C解析 因为ABCD 为矩形,建系如图.A (0,0),M (6,3),N (4,4).则AM →=(6,3),NM →=(2,-1), AM →·NM →=6×2-3×1=9.6.(多选)在△ABC 中,AB →=c ,BC →=a ,CA →=b ,在下列命题中,是真命题的为( ) A.若a ·b >0,则△ABC 为锐角三角形 B.若a ·b =0,则△ABC 为直角三角形 C.若a ·b =c ·b ,则△ABC 为等腰三角形D.若(a +c -b )·(a +b -c )=0,则△ABC 为直角三角形 答案 BCD解析 ①若a ·b >0,则∠BCA 是钝角,△ABC 是钝角三角形,A 错误;②若a ·b =0,则BC →⊥CA →,△ABC 为直角三角形,B 正确;③若a ·b =c ·b ,b ·(a -c )=0,CA →·(BC →-AB →)=0,CA →·(BC →+BA →)=0,取AC 的中点D ,则CA →·BD →=0,所以BA =BC ,即△ABC 为等腰三角形,C 正确;④若(a +c -b )·(a +b -c )=0,则a 2=(c -b )2,即b 2+c 2-a 2=2b ·c ,即b 2+c 2-a 22|b ||c |=-cos A ,由余弦定理可得cos A =-cos A ,即cos A =0,即A =π2,即△ABC 为直角三角形,D 正确,综上真命题为BCD.7.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3解析 方法一 |a +2b |=(a +2b )2 =a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12 =12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.平面向量数量积的基本运算例1如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=π4,若AB→·AC→=2AB→·AD→,则AD→·AC→=________.答案 12解析 方法一 (几何法) 因为AB →·AC →=2AB →·AD →, 所以AB →·AC →-AB →·AD →=AB →·AD →, 所以AB →·DC →=AB →·AD →,因为AB ∥CD ,CD =2,∠BAD =π4,所以2|AB →|=|AB →|·|AD →|cos π4,化简得|AD →|=2 2.故AD →·AC →=AD →·(AD →+DC →)=|AD →|2+AD →·DC → =(22)2+22×2cos π4=12.方法二 (坐标法)如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n ,0),其中m >0,n >0, 则由AB →·AC →=2AB →·AD →, 得(n ,0)·(m +2,m )=2(n ,0)·(m ,m ), 所以n (m +2)=2nm ,化简得m =2.故AD →·AC →=(m ,m )·(m +2,m )=2m 2+2m =12. 思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)利用数量积的几何意义求解.跟踪训练1 (1)在正三角形ABC 中,D 是BC 上的点,若AB =3,BD =1,则AB →·AD →=________. 答案152解析 如图所示,AB →·AD →=AB →·(AB →+BD →)=9+3×cos 120°=152.(2)已知梯形ABCD 中,AB ∥CD ,AB =2CD ,且∠DAB =90°,AB =2,AD =1,若点Q 满足AQ →=2QB →,则QC →·QD →等于( ) A.-109 B.109 C.-139 D.139答案 D解析 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系,如图所示,则B (2,0),C (1,1),D (0,1), 又AQ →=2QB →,∴Q ⎝⎛⎭⎫43,0, ∴QC →=⎝⎛⎭⎫-13,1,QD →=⎝⎛⎭⎫-43,1,∴QC →·QD →=49+1=139.故选D.平面向量数量积的应用命题点1 求向量的模例2 (1)(2020·遵义统考)已知两个单位向量a 和b 的夹角为120°,k ∈R ,则|k a +b |的最小值为( )A.34B.32C.1D.32 答案 B解析 |k a +b |2=k 2a 2+2k a ·b +b 2 因为a 和b 是单位向量,且夹角为120°, 所以|k a +b |2=k 2a 2+2k a ·b +b 2 =k 2|a |2+2k |a ||b |cos 〈a ,b 〉+|b |2 =k 2-k +1 =⎝⎛⎭⎫k -122+34≥34, 所以|k a +b |≥32, 所以|k a +b |的最小值为32. (2)(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA →|=________.答案 132解析 ∵M 为BC 的中点,∴AM →=12(AB →+AC →), ∴|MA →|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, ∴|MA →|=132. 命题点2 求向量的夹角例3 (1)(2020·昆明一中检测)已知向量a =⎝⎛⎭⎫12,32,|b |=2,且a ·b =1,则a 与b 的夹角为( ) A.30° B.45° C.60° D.90°答案 C解析 |a |=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1, ∴cos 〈a ,b 〉=a ·b |a ||b |=12, ∴a 与b 的夹角为60°.(2)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.答案 33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0, |3e 1-e 2|=(3e 1-e 2)2 =3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 思维升华 (1)求解平面向量模的方法 ①利用公式|a |=x 2+y 2.②利用|a |=a 2.(2)求平面向量的夹角的方法①定义法:cos θ=a·b |a||b |,θ的取值范围为[0,π]. ②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.③解三角形法:把两向量的夹角放到三角形中.跟踪训练2 (1)(2019·江西省临川一中模拟)已知向量a =(3,4),b =(-1,k ),且a ⊥b ,则a +4b 与a 的夹角为________.答案 π4解析 因为a ⊥b ,故a ·b =0,所以-3+4k =0,故k =34,故a +4b =(-1,7), 设a +4b 与a 的夹角为θ,则cos θ=-3+2850×25=2552×5=22, 因θ∈[0,π],故θ=π4. (2)(2019·日照模拟) 已知向量a ,b ,c 满足|a |=4,|b |=22,〈a ,b 〉=π4,(c -a )·(c -b )= -1,则|c -a |的最大值为________.答案 2+1解析 设OA →=a ,OB →=b ,OC →=c ,以OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),∵|a |=4,|b |=22,a 与b 的夹角为π4, 则A (4,0),B (2,2),设C (x ,y ),∵(c -a )·(c -b )=-1,∴x 2+y 2-6x -2y +9=0,即(x -3)2+(y -1)2=1,∴点C 在以(3,1)为圆心,1为半径的圆上,|c -a |表示点A ,C 的距离,即圆上的点与A (4,0)的距离,∵圆心到A 的距离为2,∴|c -a |的最大值为2+1.平面向量与三角函数、解三角形例4 (2019·石家庄模拟)已知向量a =(sin x ,cos x ),b =(3cos x ,cos x ),f (x )=a ·b .(1)求函数f (x )=a ·b 的最小正周期;(2)在△ABC 中,BC =7,sin B =3sin C ,若f (A )=1,求△ABC 的周长.解 (1)f (x )=3sin x cos x +cos 2x =32sin 2x +12cos 2x +12, f (x )=sin ⎝⎛⎭⎫2x +π6+12, 所以f (x )的最小正周期T =2π2=π. (2)由题意可得sin ⎝⎛⎭⎫2A +π6=12, 又0<A <π,所以π6<2A +π6<13π6,所以2A +π6=5π6,故A =π3. 设角A ,B ,C 的对边分别为a ,b ,c ,则a 2=b 2+c 2-2bc cos A .所以a 2=b 2+c 2-bc =7,又sin B =3sin C ,所以b =3c .故7=9c 2+c 2-3c 2,解得c =1.所以b =3,△ABC 的周长为4+7.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.跟踪训练3 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎫cos B ,2cos 2C 2-1,n =(c ,b -2a ),且m ·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解 (1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得,sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而C ∈(0,π),所以∠C =π3. (2)由AD →=DB →知,CD →-CA →=CB →-CD →,所以2CD →=CA →+CB →,两边平方得4|CD →|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB ,所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =2 3.1.(2019·江西省临川第一中学模拟)已知向量a =(2,1),b =(m ,-1),且a ⊥(a -b ),则m 的值为( )A.1B.3C.1或3D.4答案 B解析 因为a =(2,1),b =(m ,-1),所以a -b =(2-m ,2),因为a ⊥(a -b ),则a ·(a -b )=2(2-m )+2=0,解得m =3.故选B.2.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( )A.-3B.-2C.2D.3答案 C解析 因为BC →=AC →-AB →=(1,t -3),所以|BC →|=1+(t -3)2=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2,故选C.3.(2020·拉萨模拟)已知向量a ,b 的夹角为π2,且a =(2,-1),|b |=2,则|a +2b |等于( ) A.2 3 B.3 C.21 D.41答案 C解析 由已知|a |=22+(-1)2=5,a ·b =|a ||b |cos π2=0, ∴|a +2b |2=(a +2b )2=a 2+4a ·b +4b 2=(5)2+4×22=21,∴|a +2b |=21.故选C.4.(2019·湖南省桃江县第一中学模拟)已知向量a ,b 满足|a |=2,|b |=1,且|b +a |=2,则向量a 与b 的夹角的余弦值为( ) A.22 B.23 C.28 D.24答案 D解析 由题意可知,|b +a |2=b 2+2a ·b +a 2=3+2a ·b =4,解得a ·b =12,∴cos 〈a ,b 〉=a ·b |a ||b |=122=24,故选D. 5.(2019·东莞模拟)已知非零向量m ,n 满足|n |=4|m |,且m ⊥(2m +n ),则m ,n 的夹角为( ) A.π6 B.π3 C.π2 D.2π3答案 D解析 ∵|n |=4|m |,且m ⊥(2m +n ),∴m ·(2m +n )=2m 2+m ·n =2|m |2+|m ||n |cos 〈m ,n 〉=0,且|m |≠0,|n |≠0,∴2|m |+|n |cos 〈m ,n 〉=0,∴cos 〈m ,n 〉=-2|m ||n |=-12, 又0≤〈m ,n 〉≤π,∴〈m ,n 〉=2π3.故选D. 6.已知向量a =(sin θ,3),b =(1,cos θ),|θ|≤π3,则|a -b |的最大值为( ) A.2 B. 5 C.3 D.5答案 B解析 由已知可得|a -b |2=(sin θ-1)2+(3-cos θ)2=5-4sin ⎝⎛⎭⎫θ+π3.因为|θ|≤π3,所以0≤θ+π3≤2π3,所以当θ=-π3时,|a-b|2的最大值为5-0=5,故|a-b|的最大值为 5.7.(多选)设a,b是两个非零向量.则下列命题为假命题的是()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|答案ABD解析对于A,若|a+b|=|a|-|b|,则|a|2+|b|2+2a·b=|a|2+|b|2-2|a||b|,得a·b=-|a||b|≠0,a与b不垂直,所以A为假命题;对于B,由A解析可知,若a⊥b,则|a+b|≠|a|-|b|,所以B为假命题;对于C,若|a+b|=|a|-|b|,则|a|2+|b|2+2a·b=|a|2+|b|2-2|a||b|,得a·b=-|a||b|,则cos θ=-1,则a与b反向,因此存在实数λ,使得b=λa,所以C为真命题.对于D,若存在实数λ,使得b=λa,则a·b=λ|a|2,-|a||b|=λ|a|2,由于λ不能等于0,因此a·b≠-|a||b|,则|a+b|≠|a|-|b|,所以D不正确.故选ABD.8.(多选)设a,b,c是任意的非零平面向量,且相互不共线,则下列命题中的真命题是()A.(a·b)c-(c·a)b=0B.|a|-|b|<|a-b|C.(b·c)a-(a·c)b不与c垂直D.(3a+2b)·(3a-2b)=9|a|2-4|b|2答案BD解析由于b,c是不共线的向量,因此(a·b)c与(c·a)b相减的结果应为向量,故A错误;由于a,b不共线,故a,b,a-b构成三角形,因此B正确;由于[(b·c)a-(c·a)b]·c=(b·c)(a·c)-(c·a)(b·c)=0,故C中两向量垂直,故C错误;根据向量数量积的运算可以得出D是正确的.故选BD.9.(2020·景德镇模拟)已知两个单位向量a,b的夹角为30°,c=m a+(1-m)b,b·c=0,则m=________.答案 4+2 3解析 b ·c =b ·[m a +(1-m )b ]=m a ·b +(1-m )b 2=m |a ||b |cos 30°+(1-m )|b |2=32m +1-m =0, 所以m =4+2 3.10.(2019·镇江模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点E ,F 分别在边AD ,DC 上,BE →=12(BA →+BD →),DF →=13DC →,则BE →·BF →=________. 答案 223 解析 连接AC ,BD 交于点O ,以O 为原点,以OC →,OD →的方向分别为x 轴、y 轴的正方向建立直角坐标系,如图所示,∵菱形边长为2,∠ABC =60°,∴A (-1,0),B (0,-3),C (1,0),D (0,3),∵BE →=12(BA →+BD →), ∴E 为AD 的中点,∴E ⎝⎛⎭⎫-12,32, ∵DF →=13DC →,∴F ⎝⎛⎭⎫13,233, ∴BE →=⎝⎛⎭⎫-12,332,BF →=⎝⎛⎭⎫13,533, ∴BE →·BF →=-16+152=223.11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a·b -27=61,所以a·b =-6,所以cos θ=a·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13.(3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0,于是tan x =-33. 又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.(2019·衡阳模拟)在△ABC 中,∠A =120°,AB →·AC →=-3,点G 是△ABC 的重心,则|AG →|的最小值是( ) A.23 B.63 C.23 D.53答案 B解析 设BC 的中点为D ,因为点G 是△ABC 的重心,所以AG →=23AD →=23×12(AB →+AC →)=13(AB →+AC →), 再令|AB →|=c ,|AC →|=b ,则AB →·AC →=bc cos 120°=-3,所以bc =6,所以|AG →|2=19(|AB →|2+2AB →·AC →+|AC →|2) =19(c 2+b 2-6)≥19(2bc -6)=23, 所以|AG →|≥63, 当且仅当b =c =6时取等号,故选B.14.(多选)如图所示,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2,CD =1,BC =a (a >0),P 为线段AD (含端点)上一个动点,设AP →=xAD →,PB →·PC →=y ,对于函数y =f (x ),以下四个结论中正确的是( )A.当a =2时,函数的值域为[1,4]B.∀a ∈(0,+∞),都有f (1)=1成立C.∀a ∈(0,+∞),函数f (x )的最大值都等于4D.若f (x )在(0,1)上单调递减,则a ∈(0,2]答案 BCD解析 如图所示,建立直角坐标系.∵在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2,CD =1,BC =a (a >0),∴B (0,0),A (-2,0),D (-1,a ),C (0,a ).∵AP →=xAD →(0≤x ≤1).∴BP →=BA →+AP →=(-2,0)+x (1,a )=(x -2,xa ),PC →=PB →+BC →=-(x -2,xa )+(0,a )=(2-x ,a -xa ).∴y =f (x )=PB →·PC →=(2-x ,-xa )·(2-x ,a -xa )=(2-x )2-ax (a -xa )=(a 2+1)x 2-(4+a 2)x +4(0≤x ≤1).当a =2时,y =f (x )=5x 2-8x +4=5⎝⎛⎭⎫x -452+45, ∵0≤x ≤1,∴当x =45时,f (x )取得最小值45; 又f (0)=4,f (1)=1,∴f (x )max =f (0)=4.综上可得,函数f (x )的值域为⎣⎡⎦⎤45,1,因此A 不正确.由y =f (x )=(a 2+1)x 2-(4+a 2)x +4.可得∀a ∈(0,+∞),都有f (1)=1成立,因此B 正确;由y =f (x )=(a 2+1)x 2-(4+a 2)x +4.可知对称轴x 0=4+a 22(a 2+1). 当0<a ≤2时,x 0≥1,∴函数f (x )在[0,1]上单调递减,因此当x =0时,函数f (x )取得最大值4.当a >2时,0<x 0<1,函数f (x )在[0,x 0)上单调递减,在(x 0,1]上单调递增.又f (0)=4,f (1)=1,∴f (x )max =f (0)=4.因此C 正确.f (x )在(0,1)上单调递减,则a ∈(0,2],因此D 正确.故选BCD.15.若向量a ,b ,c 满足a ≠b ,c ≠0,且(c -a )·(c -b )=0,则|a +b |+|a -b ||c |的最小值是( ) A. 3 B.2 2 C.2 D.32答案 C解析 设向量a =OA →,b =OB →,c =OC →,则由(c -a )·(c -b )=0得AC →·BC →=0,即C 的轨迹为以AB 为直径的圆,圆心为AB 的中点M ,半径为12|AB →|, 因此|c |=|OC →|≤|OM →|+r =12|OA →+OB →|+12|AB →| =12|OA →+OB →|+12|OA →-OB →| =12|a +b |+12|a -b |, 从而|a +b |+|a -b ||c |≥2,故选C. 16.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O为坐标原点.(1)若θ=3π4,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎡⎦⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值. 解 (1)设D (t ,0)(0≤t ≤1),由题意知C ⎝⎛⎭⎫-22,22, 所以OC →+OD →=⎝⎛⎭⎫-22+t ,22, 所以|OC →+OD →|2=⎝⎛⎭⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝⎛⎭⎫2θ+π4, 因为θ∈⎣⎡⎦⎤0,π2,所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2,即θ=π8时,sin ⎝⎛⎭⎫2θ+π4取得最大值1,即m ·n 取得最小值1- 2. 所以m ·n 的最小值为1-2,此时θ=π8.。
【步步高】高三数学大一轮复习讲义 第2章 函数的图象学案 苏教版
学案10 函数的图象导学目标: 1.掌握作函数图象的两种基本方法:描点法,图象变换法.2.掌握图象变换的规律,能利用图象研究函数的性质.自主梳理1.应掌握的基本函数的图象有:一次函数、二次函数、幂函数、指数函数、对数函数等.2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性);④画出函数的图象.3.利用基本函数图象的变换作图: (1)平移变换:函数y =f (x +a )的图象可由y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到;函数y =f (x )+a 的图象可由函数y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到.(2)伸缩变换:函数y =f (ax ) (a >0)的图象可由y =f (x )的图象沿x 轴伸长(0<a <1)或缩短(____)到原来的1a倍得到;函数y =af (x ) (a >0)的图象可由函数y =f (x )的图象沿y 轴伸长(____)或缩短(______)为原来的____倍得到.(可以结合三角函数中的图象变换加以理解)(3)对称变换:①奇函数的图象关于______对称;偶函数的图象关于____轴对称; ②f (x )与f (-x )的图象关于____轴对称; ③f (x )与-f (x )的图象关于____轴对称; ④f (x )与-f (-x )的图象关于______对称;⑤f (x )与f (2a -x )的图象关于直线______对称;⑥曲线f (x ,y )=0与曲线f (2a -x,2b -y )=0关于点______对称;⑦|f (x )|的图象先保留f (x )原来在x 轴______的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;⑧f (|x |)的图象先保留f (x )在y 轴______的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.自我检测1.(·北京改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点向(填“左”或“右”)________平移________个单位长度,再向(填“上”或“下”)________平移________个单位长度.2.(·烟台一模)已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是________(填序号).①y =f (|x |);②y =|f (x )|;③y =f (-|x |);④y =-f (-|x |).3.函数f (x )=1x-x 的图象关于________对称.4.使log 2(-x )<x +1成立的x 的取值范围是________.5.(·淮安模拟)已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________(填序号).探究点一 作图例1 (1)作函数y =|x -x 2|的图象;(2)作函数y =x 2-|x |的图象;(3)作函数y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 作函数y =1|x |-1的图象.探究点二 识图 例2 (1)函数2log 2xy =|的图象大致是________(填入正确的序号).(2)函数f (x )的部分图象如图所示,则函数f (x )的解析式是下列四者之一,正确的序号为________.①f (x )=x +sin x ;②f (x )=cos xx;③f (x )=x cos x ;④f (x )=x ·(x -π2)·(x -3π2).变式迁移2 已知y =f (x )的图象如图所示,则y =f (1-x )的图象为________(填序号).探究点三 图象的应用例3 若关于x 的方程|x 2-4x +3|-a =x 至少有三个不相等的实数根,试求实数a 的取值范围.变式迁移3 (·全国Ⅰ)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.数形结合思想例 (5分)(·北京东城区一模)定义在R 上的函数y =f (x )是减函数,且函数y =f (x -1)的图象关于(1,0)成中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4时,ts的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤-12,1 解析 因函数y =f (x -1)的图象关于(1,0)成中心对称,所以该函数的图象向左平移一个单位后的解析式为y =f (x ),即y =f (x )的图象关于(0,0)对称,所以y =f (x )是奇函数.又y =f (x )是R 上的减函数,所以s 2-2s ≥t 2-2t ,令y =x 2-2x =(x -1)2-1,图象的对称轴为x =1,当1≤s ≤4时,要使s 2-2s ≥t 2-2t ,即s -1≥|t -1|,当t ≥1时,有s ≥t ≥1,所以14≤ts≤1;当t <1时,即s -1≥1-t ,即s +t ≥2,问题转化成了线性规划问题,画出由1≤s ≤4,t <1,s +t ≥2组成的不等式组的可行域.t s为可行域内的点到原点连线的斜率,易知-12≤ts<1.【突破思维障碍】当s ,t 位于对称轴x =1的两边时,如何由s 2-2s ≥t 2-2t 判断s ,t 之间的关系式,这时s ,t 与对称轴x =1的距离的远近决定着不等式s 2-2s ≥t 2-2t 成立与否,通过数形结合判断出关系式s -1≥1-t ,从而得出s +t ≥2,此时有一个隐含条件为t <1,再结合1≤s ≤4及要求的式子的取值范围就能联想起线性规划,从而突破了难点.要画出s ,t 所在区域时,要结合t s的几何意义为点(s ,t )和原点连线的斜率,确定s 为横轴,t 为纵轴.【易错点剖析】当得到不等式s 2-2s ≥t 2-2t 后,如果没有函数的思想将无法继续求解,得到二次函数后也容易只考虑s ,t 都在二次函数y =x 2-2x 的增区间[1,+∞)内,忽略考虑s ,t 在二次函数对称轴两边的情况,考虑了s ,t 在对称轴的两边,也容易漏掉隐含条件t <1及联想不起来线性规划.1.掌握作函数图象的两种基本方法(描点法,图象变换法),在画函数图象时,要特别注意到用函数的性质(如单调性、奇偶性等)解决问题.2.合理处理识图题与用图题(1)识图.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性.(2)用图.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具,要重视数形结合解题的思想方法,常用函数图象研究含参数的方程或不等式解集的情况.(满分:90分)一、填空题(每小题6分,共48分)1.(·重庆改编)函数f (x )=4x+12x 的图象关于______对称.2.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围为__________________.3.(·北京海淀区一模)在同一坐标系中画出函数y =log a x ,y =a x,y =x +a 的图象,可能正确的是________(填序号).4.设函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0x 2-2x +1, x >0,若关于x 的方程f 2(x )-af (x )=0恰有四个不同的实数解,则实数a 的取值范围为________.5.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为________.6.为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x的图象向________平移________个单位长度.7.(·连云港模拟)若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有2个公共点,则a 的取值范围为________.8.如图所示,向高为H 的水瓶A 、B 、C 、D 同时以等速注水,注满为止.(1)若水量V 与水深h 函数图象是下图的(a),则水瓶的形状是________;(2)若水深h 与注水时间t 的函数图象是下图的(b),则水瓶的形状是________. (3)若注水时间t 与水深h 的函数图象是下图的(c),则水瓶的形状是________; (4)若水深h 与注水时间t 的函数的图象是图中的(d),则水瓶的形状是________.二、解答题(共42分)9.(14分)(·无锡模拟)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.10.(14分)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.11.(14分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.答案 自主梳理3.(1)左 右 |a | 上 下 |a | (2)a >1 a >1 0<a <1 a (3)①原点 y ②y ③x ④原点 ⑤x =a ⑥(a ,b ) ⑦上方 ⑧右方 自我检测1.左 3 下 1 2.③3.坐标原点解析 ∵f (-x )=-1x +x =-⎝ ⎛⎭⎪⎫1x -x =-f (x ),∴f (x )是奇函数,即f (x )的图象关于原点对称.4.(-1,0)解析 作出y =log 2(-x ),y =x +1的图象知满足条件的x ∈(-1,0).5.②解析 由f (4)·g (-4)<0得a 2·log a 4<0, ∴0<a <1. 课堂活动区例1 解 (1)y =⎩⎪⎨⎪⎧x -x 2, 0≤x ≤1,-(x -x 2),x >1或x <0, 即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎫x -122-14, x >1或x <0,其图象如图所示.(2)y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -122-14,x ≥0,⎝ ⎛⎭⎪⎫x +122-14,x <0,其图象如图所示.(3)作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,加上y =⎝ ⎛⎭⎪⎫12x的图象中x >0的部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 解 定义域是{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).例2 解题导引 对于给定的函数的图象,要能从图象的左右、上下分布范围、变化 趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.答案 (1)③ (2)③解析 (1)y =2|log 2x |=⎩⎪⎨⎪⎧1x(0<x <1)x (x >1),所以图象画法正确的应为③.(2)由图象知f (x )为奇函数,排除④;又0,±π2,±32π为方程f (x )=0的根,故应为③.变式迁移2 ①解析 因为f (1-x )=f (-(x -1)),故y =f (1-x )的图象可以由y =f (x )的图象按照如下变换得到:先将y =f (x )的图象关于y 轴翻折,得y =f (-x )的图象,然后将y =f (-x )的图象向右平移一个单位,即得y =f (-x +1)的图象.故应为①.例3 解题导引 原方程重新整理为|x 2-4x +3|=x +a ,将两边分别设成一个函数并作出它们的图象,即求两图象至少有三个交点时a 的取值范围.方程的根的个数问题转化为函数图象交点个数问题,体现了《考纲》中函数与方程的重要思想方法.解 原方程变形为|x 2-4x +3|=x +a ,于是,设y =|x 2-4x +3|,y =x +a ,在同一坐标系下分别作出它们的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a y =-x 2+4x -3,得,x 2-3x +a +3=0, 由Δ=9-4(a +3)=0,得a =-34.由图象知当a ∈[-1,-34]时方程至少有三个根.变式迁移3 (1,54)解析 y =x 2-|x |+a =⎩⎪⎨⎪⎧(x -12)2+a -14, x ≥0,(x +12)2+a -14, x <0.当其图象如图所示时满足题意.由图知⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.课后练习区 1.y 轴解析 f (x )=2x +2-x,因为f (-x )=f (x ),所以f (x )为偶函数.所以f (x )图象关于y 轴对称. 2.(-1,0)∪(1,+∞)解析 当x ∈(0,+∞)时,f (x )=lg x ,可以画出函数f (x )在(0,+∞)上的图象.又f (x )为R 上的奇函数,其图象关于原点对称,根据对称性,画出函数在(-∞,0)上的图象.如图.由图象可知,f (x )>0的解集为(-1,0)∪(1,+∞). 3.④解析 ①、②、③中直线方程中的a 的范围与对数函数中的a 的范围矛盾. 4.0<a <1解析 由f 2(x )-af (x )=0可得f (x )=0或f (x )=a ,画出函数y =f (x )的图象如图所示,显然当f (x )=0时,只有一个实数解,所以f (x )=a 时应有三个实数解. 结合图象不难得到0<a <1. 5.-1解析 ∵b >0,∴前两个图象不是给出的二次函数图象,又后两个图象的对称轴都在y 轴右边,∴-b2a>0,∴a <0,又∵图象过原点,∴a 2-1=0,∴a =-1. 6.右 1解析 ∵y =3×(13)x =(13)x -1,∴y =(13)x 向右平移1个单位便得到y =(13)x -1.7.(0,12)解析 规范作图如下:由图知0<2a <1,所以a ∈(0,12).8.(1)A (2)D (3)B (4)C9.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.…………………………………………(3分) (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4, x ≥4,-x (x -4)=-(x -2)2+4, x <4.………………………………………………(7分) f (x )的图象如图所示.(3)由图可知,f (x )的减区间是[2,4].……………………………………………………(9分) (4)由图象可知f (x )>0的解集为{x |0<x <4或x >4}.………………………………………………………………………(12分) (5)∵f (5)=5>4,由图象知,函数在[1,5)上的值域为[0,5).……………………………………………(14分)10.解 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,由图象知显然不成立.……………………………………………………(5分)当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方, 只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log 2a ≥1.………………………………………………………………(12分) ∴1<a ≤2.………………………………………………………………………………(14分)11.解 (1)方法一 ∵x >0,∴g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),……………………………………………………………(4分) 因而只需m ≥2e ,则g (x )=m 就有根.…………………………………………………(6分)方法二 作出g (x )=x +e2x的图象如图:……………………………………………………………………………………………(4分) 可知若使g (x )=m 有根,则只需m ≥2e.………………………………………………(6分)方法三 解方程由g (x )=m ,得x 2-mx +e 2=0.此方程有大于零的根,故⎩⎪⎨⎪⎧m 2>0Δ=m 2-4e 2≥0…………………………………………(4分)等价于⎩⎪⎨⎪⎧m >0m ≥2e 或m ≤-2e ,故m ≥2e.…………………………………………………(6分)(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.其对称轴为x =e ,开口向下,最大值为m -1+e 2.……………………………………………………………………(10分)故当m -1+e 2>2e ,即m >-e 2+2e +1时, g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).………………………………………………(14分)。
高2021届高2018级苏教版步步高大一轮高三数学复习课件第二章 2.9
(√ )
题组二 教材改编
2.函数f (x)=ex+3x的零点个数是
√ A.0 B.1
C.2
D.3
解析 由f′(x)=ex+3>0,得f(x)在R上单调递增, 又 f(-1)=1e-3<0,f(0)=1>0, 因此函数f (x)有且只有一个零点.
思维升华
SI WEI SHENG HUA
判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数 的零点区间问题,往往要结合图象进行分析,一般是转化为两函数图象的交点, 分析其横坐标的情况进行求解.
题型二 师生共研 函数零点个数的判定
例1 (1)函数f(x)=x2-2,x≤0, 的零点个数是____2____. 2x-6+ln x,x>0
3.若函数f (x)=x2-4x+a存在两个不同的零点,则实数a的取值范围是 _(_-__∞__,4_)_____.
题组三 易错自纠
4.已知函数f (x)=x-x (x>0),g(x)=x+ex,h(x)=x+ln x(x>0)的零点分别为
x1,x2,x3,则
A.x1<x2<x3
√C.x2<x3<x1
2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系
Δ>0
Δ=0
二次函数y=ax2+bx+c (a>0)的图象
与x轴的交点 零点个数
_(_x_1,_0_),_(_x2_,_0_) __ 2
__(x_1_,0_)__ 1
Δ<0
无交点 0
高2021届高2018级苏教版步步高大一轮高三数学复习课件第三章 3.3
概念方法微思考
1. 对 于 可 导 函 数 f (x),“f′(x0) = 0” 是 “ 函 数 f (x) 在 x = x0 处 有 极 值 ” 的 _必__要__不__充__分___条件.(填“充要”“充分不必要”“必要不充分”) 2.函数的最大值一定是函数的极大值吗? 提醒 不一定,函数的最值可能在极值点或端点处取到.
大一轮复习讲义
§3.3 导数与函数的极值、最值
INDEX
基础落实 回扣基础知识 训练基础题目
知识梳理
1.函数的极值与导数
f′(x0)=0
条件
x0附近的左侧f′(x)>0,右侧 x0附近的左侧f′(x)<0,右侧
f′(x)<0
f′(x)>0
图象
极值 极值点
f (x0)为_极__大__值__ x0为_极__大__值__点__
√B.-1是函数y=f(x)的最小值点
C.y=f (x)在区间(-3,1)上单调递增
√D.y=f(x)在x=0处切线的斜率小于零
解析 根据导函数的图象可知当x∈(-∞,-3)时,f′(x)<0, 当x∈(-3,+∞)时,f′(x)≥0, ∴函数y=f (x)在(-∞,-3)上单调递减,在(-3,+∞)上单调递增, 则-3是函数y=f(x)的极值点, ∵函数y=f (x)在(-3,+∞)上单调递增, ∴-1不是函数y=f(x)的最小值点, ∵函数y=f (x)在x=0处的导数大于0, ∴y=f (x)在x=0处切线的斜率大于零. 故错误的命题为BD.
所以当x变化时,f′(x),f(x)的变化情况如下表:
x (0, a)
a ( a,+∞)
f′(x) -
0
+
f (x)
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第五章 5.1
§5.1平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算3.向量共线定理向量b与非零向量a共线的充要条件是:有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量λa.提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a 反方向;当λ=0或a为零向量时,λa为零向量.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)向量不能比较大小,但向量的模可以比较大小.( √ ) (2)若a ∥b ,b ∥c ,则a ∥c .( × )(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之亦成立.( √ ) 题组二 教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在四边形ABCD 中,对角线AC 与BD 交于点O ,若2OA →+OC →=2OD →+OB →,则四边形ABCD 的形状为________. 答案 梯形解析 ∵2OA →+OC →=2OD →+OB →, ∴2(OA →-OD →)=OB →-OC →,即2DA →=CB →, ∴DA →∥CB →,且|DA →|=12|CB →|,∴四边形ABCD 是梯形. 题组三 易错自纠4.对于非零向量a ,b ,“a +2b =0”是“a ∥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件答案 A解析 若a +2b =0,则a =-2b ,所以a ∥b . 若a ∥b ,则a +2b =0不一定成立, 故前者是后者的充分不必要条件. 5.(多选)下列四个命题中,错误的是( ) A.若a ∥b ,则a =b B.若|a |=|b |,则a =b C.若|a |=|b |,则a ∥b D.若a =b ,则|a |=|b |答案 ABC6.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa+b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.7.在△ABC 中,点E ,F 满足AE →=12AB →,CF →=2F A →,若EF →=xAB →+yAC →,则x +y = _____.答案 -16解析 依题意有EF →=EA →+AF →=-12AB →+13AC →,所以x =-12,y =13,所以x +y =-16.平面向量的概念1.(多选)给出下列命题,不正确的有( ) A.若两个向量相等,则它们的起点相同,终点相同B.若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形 C.a =b 的充要条件是|a |=|b |且a ∥b D.已知λ,μ为实数,若λa =μb ,则a 与b 共线 答案 ACD解析 A 错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 故选ACD.2.若a 0为单位向量,a 为平面内的某个向量,下列命题中: ①若a 为平面内的某个向量,则a =|a |·a 0; ②若a 与a 0平行,则a =|a |a 0; ③若a 与a 0平行且|a |=1,则a =a 0, 假命题的个数是( ) A.0 B.1 C.2 D.3 答案 D解析 ①②③均为假命题. 思维升华 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.平面向量的线性运算命题点1 向量加、减法的几何意义例1 (2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥b D.|a |>|b |答案 A解析 方法一 利用向量加法的平行四边形法则. 在▱ABCD 中,设AB →=a ,AD →=b ,由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.方法二 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.命题点2 向量的线性运算例2 (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → 答案 A解析 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →.故选A. 命题点3 根据向量线性运算求参数例3 (2019·江西省名校联考)在△ABC 中,BD →=DC →,AP →=2PD →,BP →=λAB →+μAC →,则λ+μ等于( )A.-13B.13C.-12D.12答案 A解析 因为BD →=DC →,AP →=2PD →, 所以AD →=12AB →+12AC →=32AP →,所以AP →=13AB →+13AC →,所以BP →=AP →-AB →=-23AB →+13AC →,因为BP →=λAB →+μAC →,所以λ=-23,μ=13,所以λ+μ=-13.故选A.思维升华 平面向量线性运算问题的常见类型及解题策略 (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和或差.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1 (1)(2020·河北省衡水中学模拟)如图,在等腰梯形ABCD 中,DC =12AB ,BC =CD =DA ,DE ⊥AC 于点E ,则DE →等于( )A.12AB →-12AC → B.12AB →+12AC →C.12AB →-14AC →D.12AB →+14AC →答案 A解析 因为DC =12AB ,BC =CD =DA ,DE ⊥AC ,所以E 是AC 的中点,可得DE →=12DA →+12DC →=12(DC →+CA →)+12DC →=DC →-12AC →=12AB →-12AC →,故选A.(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝⎛⎭⎫x +y 2AB →+⎝⎛⎭⎫x 2+y AD →, 所以⎩⎨⎧x +y2=1,x2+y =0,解得⎩⎨⎧x =43,y =-23,所以x -y =2.共线定理的应用例4 已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明 (1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), ∴OP →-OB →=m (OA →-OB →), 即BP →=mBA →,∴BP →与BA →共线.又∵BP →与BA →有公共点B ,则A ,P ,B 三点共线. (2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, ∴OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0. ∵O ,A ,B 不共线,∴OA →,OB →不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1. 思维升华 利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线,即A ,B ,C 三点共线⇔AB →,AC →共线. (3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1. 跟踪训练2 (1)设两个非零向量a 与b 不共线. 若k a +b 与a +k b 共线,则k =________. 答案 ±1解析 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.(2)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交AB ,AC 所在直线于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A.1B.2C.3D.4 答案 B解析 方法一 连结AO ,则AO →=12(AB →+AC →)=m 2AM →+n 2AN →, 因为M ,O ,N 三点共线, 所以m 2+n2=1,所以m +n =2.方法二 连结AO (图略).由于O 为BC 的中点,故AO →=12(AB →+AC →),MO →=AO →-AM →=12(AB →+AC →)-1m AB →=⎝⎛⎭⎫12-1m AB →+12AC →, 同理,NO →=12AB →+⎝⎛⎭⎫12-1n AC →. 由于向量MO →,NO →共线,故存在实数λ使得MO →=λNO →, 即⎝⎛⎭⎫12-1m AB →+12AC →=λ⎣⎡⎦⎤12AB →+⎝⎛⎭⎫12-1n AC →. 由于AB →,AC →不共线,故得12-1m =12λ且12=λ⎝⎛⎭⎫12-1n , 消掉λ,得(m -2)(n -2)=mn , 化简即得m +n =2.1.(2019·湖北省黄冈、华师附中等八校联考)已知线段上A ,B ,C 三点满足BC →=2AB →,则这三点在线段上的位置关系是( )答案 A解析 根据题意得到BC →和AB →是共线同向的,且BC =2AB ,故选A.2.(2019·山东省师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案 B解析 由a =2b 可知,a ,b 方向相同,a |a |,b |b | 表示 a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之不成立.故选B.3.已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A.A ,B ,C 三点共线 B.A ,B ,D 三点共线 C.A ,C ,D 三点共线 D.B ,C ,D 三点共线 答案 B解析 ∵BD →=BC →+CD →=2a +6b =2AB →, ∴BD →与AB →共线,由于BD →与AB →有公共点B , 因此A ,B ,D 三点共线,故选B.4.(2019·沈阳东北育才学校模拟)向量a ,b ,c 在正方形网格中的位置如图所示.若向量λa +b 与c 共线,则实数λ等于( )A.-2B.-1C.1D.2 答案 D解析 由题中所给图象可得,2a +b =c ,又c =μ(λa +b ),所以λ=2.故选D.5.(2020·南京模拟)在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n 等于( ) A.2 B.-2 C.1 D.-1 答案 D解析 ∵ GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0, ∴OG →=13(OA →+OB →+OC →)=16BC →=16(OC →-OB →),可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1,故选D.6.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为( )A.911B.511C.311D.211 答案 B解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.7.(多选)在△ABC 中,下列命题正确的是( ) A.AB →-AC →=BC →B.AB →+BC →+CA →=0C.若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D.若AC →·AB →>0,则△ABC 为锐角三角形 答案 BC解析 由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B 对; ∵(AB →+AC →)·(AB →-AC →)=AB →2-AC →2=0, ∴AB →2=AC →2,即AB =AC ,∴△ABC 为等腰三角形,故C 对; ∵AC →·AB →>0,∴角A 为锐角,但三角形不一定是锐角三角形. 故选BC.8.(多选)设点M 是△ABC 所在平面内一点,则下列说法正确的是( )A.若AM →=12AB →+12AC →,则点M 是边BC 的中点B.若AM →=2AB →-AC →,则点M 在边BC 的延长线上 C.若AM →=-BM →-CM →,则点M 是△ABC 的重心D.若AM →=xAB →+yAC →,且x +y =12,则△MBC 的面积是△ABC 面积的12答案 ACD解析 若AM →=12AB →+12AC →,则点M 是边BC 的中点,故A 正确;若AM →=2AB →-AC →,即有AM →-AB →=AB →-AC →, 即BM →=CB →,则点M 在边CB 的延长线上,故B 错误; 若AM →=-BM →-CM →,即AM →+BM →+CM →=0, 则点M 是△ABC 的重心,故C 正确; 如图,AM →=xAB →+yAC →,且x +y =12,可得2AM →=2xAB →+2yAC →, 设AN →=2AM →, 则M 为AN 的中点,则△MBC 的面积是△ABC 面积的12,故D 正确.故选ACD.9.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案 2 3解析 因为|AB →|=|AC →|=|AB →-AC →|=2, 所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍, 所以|AB →+AC →|=2 3.10.(2019·钦州质检)已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________. 答案 -4解析 因为M ,N ,P 三点共线, 所以存在实数k 使得MN →=kNP →, 所以2e 1-3e 2=k (λe 1+6e 2), 又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧2=kλ,-3=6k ,解得λ=-4.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 如图,取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点, ∴S △ABC =2S △OAC ,∴△ABC 与△AOC 面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线, 可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎨⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎨⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 方法二 因为D ,F 分别是AB ,AC 的中点,所以O 为△ABC 的重心,延长AO 交BC 于点E (图略),则E 为BC 的中点,所以AO →=23AE →=23×12(AB →+AC →)=13(a +b ).13.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA→+μOB →(λ,μ∈R ),则λ+μ的取值范围是( )A.(0,1)B.(1,+∞)C.(1,2]D.(-1,0)答案 B解析 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1,故选B.14.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝⎛⎭⎫2OA →+12OB →+12OC →,则点P 一定为△ABC 的( ) A.BC 边中线的中点B.BC 边中线的三等分点(非重心)C.重心D.BC 边的中点答案 B解析 设BC 的中点为M ,则12OC →+12OB →=OM →, ∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,也就是MP →=2P A →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点.15.设a 是已知的平面向量,向量a ,b ,c 在同一平面内且两两不共线,有如下四个命题: ①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ;④若|a |=2,存在单位向量b ,c 和正实数λ,μ,使a =λb +μc ,则3λ+3μ>6.其中真命题是__________.答案 ①②④解析 给定向量b ,总存在向量c ,使a =b +c ,即a -b =c .显然存在c .所以①正确.由平面向量的基本定理可得②正确.给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ,当a 分解到c 方向的向量长度大于μ时,向量a 没办法按b ,c 分解,所以③不正确.存在单位向量b ,c 和正实数λ,μ,由于a =λb +μc ,向量b ,c 的模为1,由三角形的三边关系可得λ+μ>2.由3λ+3μ≥23λ+μ>6.所以④成立.16.(2019·成都模拟)已知G 为△ABC 的重心,过点G 的直线与边AB ,AC 分别相交于点P ,Q .若AP→=λAB →,△ABC 与△APQ 的面积之比为209,求实数λ的值. 解 设AQ →=xAC →,∵P ,G ,Q 三点共线,∴可设AG →=μAP →+(1-μ)AQ →,∴ AG →=λμAB →+(1-μ)xAC →,∵G 为△ABC 的重心,∴ AG →=13(AB →+AC →), ∴ 13AB →+13AC →=λμAB →+(1-μ)xAC →,∴ ⎩⎨⎧ 13=λμ,13=(1-μ)x ,两式相乘得19=λxμ(1-μ),① ∵ S △ABC S △APQ =12|AB →||AC →|sin ∠BAC 12|AP →||AQ →|sin ∠BAC , ∴λx =920,② ②代入①即2081=μ(1-μ), 解得μ=49或59,即λ=35或34.。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第一章 1.5
§1.5一元二次不等式及其解法一元二次不等式的解集概念方法微思考1.一元二次不等式ax2+bx+c>0(a>0)的解集与其对应的函数y=ax2+bx+c的图象有什么关系?提示ax2+bx+c>0(a>0)的解集就是其对应函数y=ax2+bx+c的图象在x轴上方的部分所对应的x的取值范围.2.一元二次不等式ax2+bx+c>0(<0)恒成立的条件是什么?提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (3)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(4)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A.{x |-2<x <3} B.{x |-2≤x ≤3} C.{x |x <-2或x >3} D.{x |x ≤-2或x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}. 故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.(多选)关于x 的不等式(ax -1)(x +2a -1)>0的解集中恰有3个整数,则a 的值可以为( ) A.-12 B.1 C.-1 D.2答案 AC解析 由题意知a <0,则排除B,D ; 对于A 项,当a =-12时,⎝⎛⎭⎫-12x -1(x -2)>0, 即(x +2)(x -2)<0,解得-2<x <2,恰有3个整数,符合题意;对于C 项,当a =-1时,(-x -1)(x -3)>0,即(x +1)(x -3)<0,解得-1<x <3,恰有3个整数,符合题意,故选AC. 5.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0,得-4<x <1.6.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.7.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是________.答案 (-2,2]解析 当a -2≠0时,由⎩⎪⎨⎪⎧a -2<0,Δ<0,得-2<a <2;当a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.即实数a 的取值范围是(-2,2].一元二次不等式的求解命题点1 不含参的不等式例1 (2019·济宁模拟)已知全集U =R ,集合A ={x |x 2-3x +2≥0},则∁R A 等于( ) A.(1,2)B.[1,2]C.(-∞,1]∪[2,+∞)D.(-∞,1)∪(2,+∞)答案 A解析 由题意可得,∁R A ={x |x 2-3x +2<0}={x |1<x <2},表示为区间形式即(1,2).故选A. 命题点2 含参不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 思维升华 对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(2020·北京市海淀区期末)不等式x 2+2x -3<0的解集为( ) A.{x |x <-3或x >1} B.{x |x <-1或x >3} C.{x |-1<x <3} D.{x |-3<x <1}答案 D解析 由x 2+2x -3<0得(x +3)(x -1)<0,解得-3<x <1.故选D.(2)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.答案 {x |x ≥3或x ≤2}解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧a ×⎝⎛⎭⎫-122-b ×⎝⎛⎭⎫-12-1=0,a ×⎝⎛⎭⎫-132-b ×⎝⎛⎭⎫-13-1=0,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.(3)解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.一元二次不等式恒成立问题命题点1 在R 上的恒成立问题例3 已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围?解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3]时,⎝⎛⎭⎫6x 2-x +1max =6,得m ≥6, 即m 的取值范围为[6,+∞).若将“f (x )<5-m 恒成立”改为“存在x ,使f(x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5 若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0, 解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32. 思维升华 解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.跟踪训练2 函数f (x )=x 2+ax +3.(1)若当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)若当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)若当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,∴实数a 的取值范围是[-6,2].(2)由题意可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立,则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g ⎝⎛⎭⎫-a 2=-a 24-a +3≥0,解得-6≤a ≤2,∴-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,∴-7≤a <-4.综上可得,满足条件的实数a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3. 当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).设方程ax 2+bx +c =0(a ≠0,Δ>0)有不相等的两根为x 1,x 2,且x 1<x 2,相应的二次函数为f (x )=ax 2+bx +c ,方程的根即为二次函数的图象与x 轴交点的横坐标,它们的分布情况见下面各表(每种情况对应的均是充要条件).表一:(两根与0的大小比较即根的正负情况)表二:(两根与k的大小比较)表三:(根在区间上的分布)根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1<m,x2>n,(图形分别如下)需满足的条件是(1)a >0时,⎩⎪⎨⎪⎧ f (m )<0,f (n )<0;(2)a <0时,⎩⎪⎨⎪⎧f (m )>0,f (n )>0.对以上的根的分布表中,两根有且仅有一根在(m ,n )内有以下特殊情况:(ⅰ)若f (m )=0或f (n )=0,则此时f (m )·f (n )<0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间(m ,n )内,从而可以求出参数的值.如方程mx 2-(m +2)x +2=0在区间(1,3)上有一根,因为f (1)=0,所以mx 2-(m +2)x +2=(x -1)(mx -2),另一根为2m ,由1<2m <3得23<m <2即为所求;(ⅱ)方程有两个相等的根,且这个根在区间(m ,n )内,即Δ=0,此时由Δ=0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数.如方程x 2-4mx +2m +6=0有且只有一根在区间(-3,0)内,求m 的取值范围.分析:①由f (-3)·f (0)<0即(14m +15)(m +3)<0得出-3<m <-1514;②由Δ=0即16m 2-4(2m +6)=0得出m =-1或m =32,当m =-1时,根x =-2∈(-3,0),即m =-1满足题意;当m =32时,根x =3∉(-3,0),故m =32不满足题意.综上分析,得出-3<m <-1514或m =-1.例1 已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围. 解 设f (x )=(2m +1)x 2-2mx +(m -1), 由(2m +1)·f (0)<0 ,即(2m +1)(m -1)<0, 解得-12<m <1,即m 的取值范围为⎝⎛⎭⎫-12,1. 例2 已知方程2x 2-(m +1)x +m =0有两个不等正实根,求实数m 的取值范围.解 设f (x )=2x 2-(m +1)x +m ,由⎩⎪⎨⎪⎧Δ>0,--(m +1)2×2>0,f (0)>0⇒ ⎩⎪⎨⎪⎧(m +1)2-8m >0,m >-1,m >0⇒⎩⎪⎨⎪⎧m <3-22或m >3+22,m >0⇒0<m <3-22或m >3+22,即m 的取值范围为(0,3-22)∪(3+22,+∞).例3 已知二次函数f (x )=(m +2)x 2-(2m +4)x +3m +3与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围. 解 由(m +2)·f (1)<0 ,即(m +2)·(2m +1)<0 ⇒-2<m <-12,即m 的取值范围为⎝⎛⎭⎫-2,-12.1.(2019·武汉调研)已知集合A ={x |x 2-x -2<0},B ={x |x 2+3x <0},则A ∩B 等于( ) A.(0,2) B.(-1,0) C.(-3,2) D.(-1,3)答案 B解析 A ={x |-1<x <2},B ={x |-3<x <0},∴A ∩B =(-1,0).故选B.2.(2020·黄冈调研)关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( ) A.(-∞,1)∪(2,+∞) B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞) 答案 C解析 关于x 的不等式ax +b >0的解集是(1,+∞), ∴a >0,且-ba=1,∴关于x 的不等式(ax +b )(x -2)<0可化为⎝⎛⎭⎫x +ba (x -2)<0,即(x -1)(x -2)<0, ∴不等式的解集为{x |1<x <2}.故选C.3.“不等式x 2-x +m >0在R 上恒成立”的充要条件是( ) A.m >14B.m <14C.m <1D.m >1 答案 A解析 ∵不等式x 2-x +m >0在R 上恒成立, ∴Δ=(-1)2-4m <0,解得m >14,又∵m >14,∴Δ=1-4m <0,∴“m >14”是“不等式x 2-x +m >0在R 上恒成立”的充要条件.故选A.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A.[-4,1] B.[-4,3] C.[1,3] D.[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.5.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A.(13,+∞) B.(5,+∞) C.(4,+∞) D.(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4], 当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立, 即m >f (x )min ,∴m >5.故选B.6.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A.(-3,5) B.(-2,4) C.[-1,3] D.[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或-1≤a <1, 所以实数a 的取值范围是a ∈[-1,3],故选C. 7.(多选)下列四个解不等式,正确的有( ) A.不等式2x 2-x -1>0的解集是{x |x >2或x <1}B.不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥12C.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为-1 答案 BCD解析 对于A,∵2x 2-x -1=(2x +1)(x -1), ∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x >1或x <-12,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <-12.故A 错误; 对于B,∵-6x 2-x +2≤0,∴6x 2+x -2≥0, ∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23.故B 正确;对于C,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根.∴a -8a +21=0,∴a =3.故C 正确;对于D,依题意q,1是方程x 2+px -2=0的两根, q +1=-p ,即p +q =-1,故D 正确.8.(多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( ) A.若不等式的解集为{x |x <-3或x >-2},则k =-25B.若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k ,则k =66 C.若不等式的解集为R ,则k <-66D.若不等式的解集为∅,则k ≥66答案 ACD解析 对于A,∵不等式的解集为{x |x <-3或x >-2},∴k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴4k +4+6k =0,解得k =-25.故A 正确;对于B,∵不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k , ∴⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.故B 错误; 对于C,由题意,得⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66.故C 正确;对于D,由题意,得⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.故D 正确.9.(2019·北京市顺义区模拟)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是________. 答案 (-2,-1)(答案不唯一)解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,则满足条件的一组有序实数对(a ,b )的值可以是(-2,-1).10.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-12,32 解析 由题意,可知不等式(x -a )⊗(x +a )<1对任意实数x 都成立, 又由(x -a )⊗(x +a )=(x -a )(1-x -a ), 即x 2-x -a 2+a +1>0对任意实数x 都成立, 所以Δ=1-4(-a 2+a +1)<0,即4a 2-4a -3<0, 解得-12<a <32.11.已知关于x 的不等式-x 2+ax +b >0. (1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧-16-4a +b =0,-4+2a +b =0,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅; 当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1); 当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅;当a >-2时, 不等式的解集为(-1,a +1).12.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,则甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x≥0,即5x 2-14x -3≥0, 又1≤x ≤10,可解得3≤x ≤10.故要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10].(2)设利润为y 元,则y =900x·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故当x =6时,y max =457 500.故甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元.13.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A.12B.13C.14D.22答案 C解析 由题意知a <0,a <b ,则①当b <0时,∀x ∈(a ,b ),2x +b <0,所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立可转化为∀x ∈(a ,b ),a ≤-4x 2,所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14; ②当b >0时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意;③当b =0时,由题意知x ∈(a,0),(4x 2+a )2x ≥0恒成立,所以4x 2+a ≤0,所以-14≤a <0,所以0<b -a ≤14. 综上所述,b -a 的最大值为14. 14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.答案 (1,5]解析 设f (x )=x 2-2(a -2)x +a ,当Δ=4(a -2)2-4a <0,即1<a <4 时,f (x )>0 对x ∈R 恒成立,符合题意;当a =1时,f (-1)=0,不符合题意;当a =4时,f (x )=x 2-4x +4=(x -2)2>0对x ∈(-∞,1)∪(5,+∞)恒成立,符合题意;当Δ>0 时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,得⎩⎪⎨⎪⎧ a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.若集合A ={x ∈Z |x 2-(a +2)x +2-a <0}中有且只有一个元素,则正实数a 的取值范围是________.答案 ⎝⎛⎦⎤12,23解析 f (x )=x 2-(a +2)x +2-a <0,即x 2-2x +1<a (x +1)-1,分别令y 1=x 2-2x +1,y 2=a (x +1)-1,易知y 2过定点(-1,-1),在同一坐标系中画出两个函数的图象,如图所示,若集合A ={x ∈Z |f (x )<0}中有且只有一个元素,结合图象可得,即点(0,1)和点(2,1)在直线上或者在直线上方,点(1,0)在直线下方,∴⎩⎪⎨⎪⎧ a -1≤1,2a -1>0,3a -1≤1,解得12<a ≤23. 16.(2020·南京六校联考)已知函数f (x )=x 2-2ax +2a -1.若对任意的a ∈(0,3),存在x 0∈[0,4],使得t ≤|f (x 0)|成立,求实数t 的取值范围.解 ∵f (x )=x 2-2ax +2a -1的对称轴为x =a ,且a ∈(0,3),∴函数f (x )=x 2-2ax +2a -1在[0,a ]上是减函数,在[a,4]上是增函数;∴函数f (x )=x 2-2ax +2a -1在[0,4]上的最小值为f (a )=-(a -1)2∈(-4,0],|f (a )|=(a -1)2, ①当2≤a <3时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =0时取得最大值,且最大值为2a -1,由于此时2≤a <3,则3≤2a -1<5,易知当2≤a <3时,(a -1)2<2a -1,所以|f (x )|max =max{|f (a )|,|f (0)|}=|f (0)|=2a -1∈[3,5).∴t ≤3.②当0<a <2时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =4时取得最大值,且最大值为42-8a +2a -1=15-6a ,由于此时0<a <2,所以3<15-6a <15,且15-6a >(a -1)2,|f (x )|max =max{|f (a )|,|f (4)|}=|f (4)|=15-6a ∈(3,15),∴t ≤3.综上, t 的取值范围是(-∞,3].。
高中数学步步高大一轮复习讲义二示范课公开课一等奖课件省赛课获奖课件
函数零点个数的判断
【例 2】 若定义在 R 上的偶函数 f(x)满足 f(x+2)=f(x),且当 x∈[0,1]时,f(x)=x,则函数 y = f(x) - log3|x| 的 零 点 个 数 是
____4____.
思维启迪
解析 答案 探究提高
基础知识
题型分类
思想方法
19
练出高分
题型分类·深度剖析
看其交点的个数,其
(ⅰ)若 f(c)=0,则 c 就是函数的零点; (ⅱ)若 f(a)·f(c)<0,则令 b=c(此时零点 x0∈(a,c)); (ⅲ)若 f(c)·f(b)<0,则令 a=c(此时零点
中交点的横坐标有 几个不同的值,就有 几个不同的零点.
x0∈(c,b)). ④判断是否达到精度 ε:即若|a-b|<ε,则
D.(1,2)
解析
∵f′(x)=2xln 2+3>0,
∴f(x)=2x+3x 在 R 上是增函数. 而 f(-2)=2-2-6<0,f(-1)=2-1-3<0,
f(0)=20=1>0,f(1)=2+3=5>0,f(2)=22+6=10>0, ∴f(-1)·f(0)<0.故函数 f(x)在区间(-1,0)上有零点.
基础知识
题型分类
思想方法
2
练出高分
基础知识·自主学习
要点梳理
难点正本 疑点清源
2.二次函数 y=ax2+bx+c (a>0)的图像 2.函数零点的存在性定
与零点的关系
理只能判断函数在
二次函数 y =ax2+bx +c (a>0)
的图像 与x轴 的交点
Δ>0 Δ=0 Δ<0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.5指数与对数1.根式(1)根式的概念(2)两个重要公式①na n=⎩⎨⎧a (n 为奇数),|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0)(n 为偶数);②(na )n =a (注意a 必须使na 有意义). 2.有理指数幂 (1)分数指数幂的表示①正数的正分数指数幂是m na =na m (a >0,m ,n ∈N *,n >1); ②正数的负分数指数幂是mn a-=1m na=1na m(a >0,m ,n ∈N *,n >1);③0的正分数指数幂是0,0的负分数指数幂没有意义. (2)有理指数幂的运算性质 ①a s a t =a s +t (a >0,t ,s ∈Q ); ②(a s )t =a st (a >0,t ,s ∈Q ); ③(ab )t =a t b t (a >0,b >0,t ∈Q ). 3.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N =N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1,N >0);②log a b =1log b a(a ,b 均大于零且不等于1). (3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ); ④log m na M =n mlog a M .概念方法微思考根据对数的换底公式,(1)思考log a b 与log b a 的关系; (2)化简log m na b .提示 (1)log a b ·log b a =1; (2)log m na b =n m log a b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a (n ∈N *).( × )(2)分数指数幂mna 可以理解为mn 个a 相乘.( × )(3)2a ·2b =2ab .( × )(4)若MN >0,则log a (MN )=log a M +log a N .( × ) (5)若lg x 2=1,则x =10.( × ) 题组二 教材改编2.计算:1294⎛⎫⎪⎝⎭+(-9.6)0-23278-⎛⎫ ⎪⎝⎭×⎝⎛⎭⎫322=________. 答案 323.计算:(lg 5)2+lg 2×lg 50=________. 答案 14.已知lg 6=a ,lg 12=b ,那么用a ,b 表示lg 24=________. 答案 2b -a 题组三 易错自纠5.计算:3(1+2)3+4(1-2)4=________. 答案 2 2 6.下列各式:①na n =a ;②(a 2-2a -3)0=1;③3-3=6(-3)2;④log 318-log 32=2. 其中正确的是________.(填序号) 答案 ④ 解析na n =⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数,①错误;当a 2-2a -3≠0时,(a 2-2a -3)0=1,②错误;3-3=-33,6(-3)2=632=33,③错误;log 318-log 32=log 39=2,④正确.7.(多选)下列运算结果中,一定正确的是( ) A.a 3a 4=a 7 B.(-a 2)3=a 6 C.8a 8=a D.5(-π)5=-π答案 AD解析 a 3a 4=a 3+4=a 7,故A 正确; 当a =1时,显然不成立,故B 不正确;8a 8=|a |,故C 不正确; 5(-π)5=-π,D 正确.指数幂的运算1.a 3a ·5a 4(a >0)的值是________.答案 1710a 解析a 3a ·5a 4=34152·a a a=14325a--=1710a.2.计算23×31.5×612=________. 答案 6解析 原式=111362323122⎛⎫⨯⨯⨯ ⎪⎝⎭1111133632=233232-⨯⨯⨯⨯⨯11111236332326.++-+⨯⨯==3.12133214(0.1)()a b --⎛⎫⎪⎝⎭⋅⋅________. 答案 85解析 原式=33322233222410a b a b--⋅=85. 4.若1122+=3x x -,则33222232x x x x --+-+-=________. 答案 13解析 由1122+=3x x-,两边平方,得x +x -1=7,再平方得x 2+x -2=47. ∴x 2+x -2-2=45.3322+x x -=11113312222()+()=(+)(1+)x x x x x x ----=3×(7-1)=18.33222231=23x x x x --+-.+-∴思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加; ②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.对数的运算1.设2a =5b =m ,且1a +1b =2,则m =________.答案10解析 由已知,得a =log 2m ,b =log 5m ,则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10.2.计算:⎝⎛⎭⎫lg 14-lg 25÷12100-=________.答案 -20解析 原式=(lg 2-2-lg 52)×12100=lg ⎝⎛⎭⎫122×52×10=lg 10-2×10=-2×10=-20.3.计算:(1-log 63)2+log 62·log 618log 64=________.答案 1 解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.4.(2019·北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1 D.10-10.1答案 A解析 两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,令m 2=-1.45,m 1=-26.7,lg E 1E 2=25·(m 2-m 1)=25(-1.45+26.7)=10.1, 所以E 1E 2=1010.1.思维升华 对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.指数与对数的综合运算例 (1)已知均不为1的正数a ,b ,c 满足a x =b y =c z ,且1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =k . 由已知k >0且k ≠1, 于是x lg a =y lg b =z lg c =lg k , 故1x =lg a lg k ,1y =lg b lg k ,1z =lg c lg k . 因为1x +1y +1z=0,所以lg a +lg b +lg c lg k =0,即lg (abc )lg k=0. 故lg(abc )=0,得abc =1.(2)设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.解 由题意,得⎩⎪⎨⎪⎧log a C +log b C =3,log a C ·log b C =1,即⎩⎨⎧1log Ca +1log Cb =3,1log Ca ·log Cb=1,于是有⎩⎪⎨⎪⎧log C a +log C b =3,log C a ·log C b =1,(log C a -log C b )2=(log C a +log C b )2-4log C a ·log C b =32-4=5,故log C a -log C b =±5.于是log a bC =⎝⎛⎭⎫log C a b -1=1log C a -log C b=±55. 思维升华 指数、对数的综合运算,要充分利用指数、对数的定义、运算性质、换底公式,建立已知条件和所求式子间的联系.跟踪训练 (1)(2019·南京模拟)若a log 23=1,b log 35=1,则9a +5b =________. 答案 7解析 a =log 32,b =log 53, 于是9a +5b =353log 2log 32log 29533+=+=3log 43+3=4+3=7.(2)方程33x -56=3x -1的实数解为________.答案 x =log 32解析 原方程可化为2(3x )2+5·3x -18=0, 即(3x -2)(2·3x +9)=0,3x =2(2·3x =-9舍去), 得x =log 32.(3)若log 2log 3x =log 3log 2y =log 2log 2z =1,则x 2,y 3,z 4从小到大的排列为________. 答案 x 2<z 4<y 3解析由题设得log3x=2,log2y=3,log2z=2, 即x=32,y=23,z=22,故x2=34,y3=29,z4=28, 所以x2<z4<y3.1.设a>0,将a2a3a2表示成指数幂的形式,其结果是()A.12a B.56a C.1 D.32a答案 C解析a2a3a2=31222a--=a0=1.2.化简(a-1)2+(1-a)2+3(1-a)3的结果是()A.1-aB.2(1-a)C.a-1D.2(a-1)答案 C解析 ∵a -1有意义,∴a -1≥0,即a ≥1,∴(a -1)2+(1-a )2+3(1-a )3=(a -1)+(a -1)+(1-a )=a -1. 3.(2020·苏州模拟)若a +b =13m ,ab =2316m (m >0),则a 3+b 3等于( ) A.0 B.m 2 C.-m 2 D.3m 2答案 B解析 a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ] =1223331·=22mm m m ⎛⎫-. ⎪⎝⎭4.如果x =1+2b ,y =1+2-b ,那么用x 表示y ,则y 等于() A.x +1x -1 B.x +1x C.x -1x +1 D.xx -1答案 D解析 y =1+2-b =1+12b =1+2b 2b =xx -1.5.若12log x =3,则x 等于( )A.18B.19C.8D.9答案 A解析 ∵12log x =3,∴x =⎝⎛⎭⎫123=18.6.在b =log 3a -1(3-2a )中,实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫32,+∞B.⎝⎛⎭⎫13,23∪⎝⎛⎭⎫23,32C.⎝⎛⎭⎫13,32D.⎝⎛⎭⎫23,32答案 B解析 要使式子b =log 3a -1(3-2a )有意义,则⎩⎪⎨⎪⎧ 3a -1>0,3a -1≠1,3-2a >0,解得13<a <23或23<a <32. 7.(2019·扬州期末)lg 2-lg 15-e ln 2-1214-⎛⎫ ⎪⎝⎭+(-2)2的值为( )A.-1B.12C.3D.-5 答案 A解析 原式=lg 2+lg 5-2-2+2=lg 10-2=1-2=-1.8.(多选)下列各式中正确的是( )A.lg(lg 10)=0B.lg(ln e)=0C.若10=lg x ,则x =100D.若log 25x =12,则x =±5 答案 AB解析 对A,因为lg 10=1,lg 1=0,所以lg(lg 10)=lg 1=0,故A 正确;对B,因为ln e =1,lg 1=0,所以lg(ln e)=lg 1=0,故B 正确;对C,因为10=lg x ⇔1010=x ,故C 错误;对D,因为log 25x =12⇔1225=x ⇔x =5,故D 错误. 9.若3x =4y =36,则2x +1y=________. 答案 1解析 3x =4y =36,两边取以6为底的对数,得x log 63=y log 64=2,∴2x =log 63,2y =log 64,即1y=log 62, 故2x +1y =log 63+log 62=1.10.(2019·徐州、连云港、宿迁检测)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,4x ,x ≤0,则f (f (-1))的值为________. 答案 -2解析 因为f (-1)=4-1=14, 所以f (f (-1))=f ⎝⎛⎭⎫14=log 214=-2. 11.化简下列各式:(1)⎝⎛⎭⎫2790.5+0.1-2+2310227-⎛⎫ ⎪⎝⎭-3π0+3748;解 (1)原式=1223225164373+90.12748-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭- =53+100+916-3+3748=100.(2) =3a 2÷3a -2=43a .12.若lg(x -y )+lg(x +2y )=lg 2+lg x +lg y ,求x y的值. 解 由已知得lg[(x -y )(x +2y )]=lg(2xy ),则(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0,也即(x -2y )(x +y )=0.因为x >0,y >0,所以x +y >0,于是有x =2y ,即x y =2.13.若a >1,b <0,且a b +a -b =22,则a b -a -b =________.答案 -2解析 ∵a >1,b <0,∴0<a b <1,a -b >1.又(a b +a -b )2=a 2b +a-2b +2=8, ∴a 2b +a -2b=6, ∴(a b -a -b )2=a 2b +a-2b -2=4,∴a b -a -b =-2. 14.已知log a 18=p ,log a 24=q ,用p ,q 表示log a 1.5.解 依题意有⎩⎪⎨⎪⎧ log a 18=p ,log a 24=q ,即⎩⎪⎨⎪⎧log a (2×32)=p ,log a (23×3)=q . 变形为⎩⎪⎨⎪⎧ log a 2+2log a 3=p ,3log a 2+log a 3=q ,解得⎩⎨⎧ log a 2=2q -p 5,log a 3=3p -q 5.所以log a 1.5=log a 32=log a 3-log a 2 =3p -q 5-2q -p 5=4p -3q 5, 即log a 1.5=4p -3q 5.15.(多选)若实数a ,b 满足log a 2<log b 2,则下列关系中可能成立的是( )A.0<b <a <1B.0<a <1<bC.a >b >1D.0<b <1<a 答案 ABC解析 根据题意,实数a ,b 满足log a 2<log b 2,对于A,若a ,b 均大于0小于1,依题意,必有0<b <a <1,故A 有可能成立; 对于B,若log b 2>0>log a 2,则有0<a <1<b ,故B 有可能成立; 对于C,若a ,b 均大于1,由log a 2<log b 2,知必有a >b >1,故C 有可能成立; 对于D,当0<b <1<a 时,log a 2>0,log b 2<0,log a 2<log b 2不能成立.16.已知m ,n 为正整数,a >0,a ≠1,且 log a (m +n )=log a m +log a n ,求m ,n 的值. 解 log a (m +n )=log a m +log a n =log a (mn ).比较真数得m +n =mn ,即(m -1)(n -1)=1.∵m ,n 为正整数,∴⎩⎪⎨⎪⎧ m -1=1,n -1=1,解得⎩⎪⎨⎪⎧ m =2,n =2.。