2014湖南省数学(理)卷文档版(有答案)-2014年普通高等学校招生统一考试

合集下载

2014年高考湖南理科数学试题及答案解析版

2014年高考湖南理科数学试题及答案解析版

2014年普通高等学校招生全国统一考试(湖南卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年湖南,理1,5分】满足ii z z+=(i 为虚数单位)的复数z =( )(A )11i 22+ (B )11i 22- (C )11i 22-+ (D )11i 22--【答案】B【解析】由题意()i i 11i i i 1i i i 1i 22z z z z z z +-=⇒+=⇒-=-⇒==--,故选B .(2)【2014年湖南,理2,5分】对一个容量为N 的总体抽取容量为m 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ) (A )123p p p =< (B )231p p p =< (C )132p p p =< (D )123p p p == 【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D . (3)【2014年湖南,理3,5分】已知()f x ,()g x 分别是定义R 在上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +( )(A )-3(B )-1 (C )1 (D )3 【答案】C 【解析】分别令1x =和1x =-可得()()113f g -=且()()111f g ---=,则()()()()()()1131211111f g f f g g ⎧-=⎧=⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩()()111f g ⇒+=,故选C .(4)【2014年湖南,理4,5分】51(2)2x y -的展开式中23x y 的系数是( )(A )-20 (B )-5 (C )5 (D )20 【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351121022022nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭g ,故选A .(5)【2014年湖南,理5,5分】已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )(A )①③ (B )①④ (C )②③ (D )②④ 【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C .(6)【2014年湖南,理6,5分】执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B )[]5,1-- (C )[]4,5- (D )[]3,6- 【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-U ,故选D .(7)【2014年湖南,理7,5分】一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-=,故选B .(8)【2014年湖南,理8,5分】某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年的生产总值的年平均增长率为( )(A )2p q +(B )(1)(1)12p q ++- (C(D1【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒,故选D .(9)【2014年湖南,理9,5分】已知函数发()()sin f x x ϕ=-,且230()0x f x dx =⎰,则函数()f x 的图象的一条对称轴是( )(A )56x π= (B )712x π= (C )3x π= (D )6x π=【答案】A【解析】解法一:函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,因为()232sin 0cos cos 03x dx ππϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰sin 03πϕ⎛⎫⇒-= ⎪⎝⎭, 所以23k πϕπ=+或423k ππ+,则56x π=是其中一条对称轴,故选A . 解法二:由定积分的几何性质与三角函数图象可知,03π⎛⎫⎪⎝⎭是函数()sin()f x x ϕ=-的一个对称中心,所以sin()03πϕ-=,所以3k πϕπ=+,故选A .(10)【2014年湖南,理10,5分】已知函数21()(0)2x f x x e x =+-<与2()ln()g x x x a =++的图像上存在关于y轴对称的点,则a 的取值范围是( )(A )(,)-∞(B )(,-∞ (C)((D)(【答案】B【解析】由题可得函数()f x 的图像上存在点020001(,)(0)2x P x x e x +-<关于y 轴对称的点02001(,)2x Q x x e -+-在函数2()ln()g x x x a =++的图像上,从而有()0220001ln()2x x e x x a +-=-+-+,即001ln()02x e x a --+-=.问题等价于函数1()ln()2x h x e x a =--+-在(),0x ∈-∞存在零点.解法一:1'()0x h x e x a=+>-+,()h x 在(),0x ∈-∞单调递增,当x →-∞时,()h x →-∞,要使()h x 在(),0-∞存在零点,则1(0)1ln 02h a =-->,从而a <B .解法二: 问题等价于函数1()2x x e φ=-与()ln()x x a ϕ=-+的图象在(),0-∞有交点,在同一坐标系中作出这两个函数的图象,当()ln()x x a ϕ=-+的图象在左右平移的过程中,(0)(0)h ϕ>即可,即a e <,故选B .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题:在11,12,13三题中任选两题作答,如果全做,则按全两题记分. (11)【2014年湖南,理11,5分】在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :1sin x C y αα=+⎧⎨=+⎩(α为参数)交于,A B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标 系,则直线l 的极坐标方程是 .【答案】2sin 4πρθ⎛⎫-=- ⎪⎝⎭【解析】曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l 的距离0d =,所以圆心在直线l 上,故1y x =-2sin cos 1sin 4πρθρθρθ⎛⎫⇒=-⇒-=- ⎪⎝⎭.(12)【2014年湖南,理12,5分】如图3,已知,AB AC 是O e 的两条弦,,3AO BC AB ⊥=,22BC =则O e的半径等于 . 【答案】32【解析】设线段AO 交BC 于点D 延长AO 交圆与另外一点E ,则2BD DC ==,由三角形ABD 的勾股定理可得1AD =,由双割线定理可得2BD DC AD DE DE =⇒=g g ,则直径332AE r =⇒=.(13)【2014年湖南,理13,5分】若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a = .【答案】3-【解析】由题可得52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-.(二)必做题(14~16题)(14)【2014年湖南,理14,5分】若变量,x y 满足约束条件4y xx y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为6-,则k = . 【答案】2- 【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且,4y x x y ≤+≤的可行域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=,因为2k ≤,所以2k =-.(15)【2014年湖南,理15】如图,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线经过,C F 两点,则ba= .【答案】21+【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩21a b ⇒=+.(16)【2014年湖南,理16,5分】在平面直角坐标系中,O 为原点,(1,0),(0,3),(3,0)A B C -,动点D 满足1CD =u u u r ,则OA OB OD ++u u u r u u u r u u u r的最大值是 . 【答案】17+【解析】动点D 的轨迹是以C 为圆心,1为半径的圆,可设D 的坐标为(3cos ,sin )θθ+,则(2cos ,3sin )OA OB OD θθ++=++u u u r u u u r u u u r .()()222cos 3sin OA OB OD θθ++=+++u u u r u u u r u u u r()822cos 3sin θθ=++()87sin θϕ=++,其中43sin ,cos 77ϕϕ==,当()sin 1θϕ+=时,OA OB OD ++u u u r u u r的取到最大值17+.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2014年湖南,理17,12分】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现 安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.解:记{E =甲组研发新产品成功},{F =乙组研发新产品成功}.由题意知2132(),(),(),()3355P E P E P F P F ====, 且E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记{E =至少有一种新产品研发成功},则H EF =,于是122()()()3515P H P E P F ==⋅=,故所求的概率为13()1()15P H P H =-=.(2)设企业可获利润为X ,则X 的可能取值为0,100,120,220.因122(0)()3515P X P EF ===⋅=,133224236(100)(),(120)(),(220)().351535153515P X P EF P X P EF P X P EF ===⋅====⋅====⋅=X0 100 120 220 P215 315 415 615 数学期望为:()0120100220151555E X =⨯+⨯+⨯+⨯14015==.(18)【2014年湖南,理18,12分】如图,在平面四边形ABCD 中,1,2,7AD CD AC ===.(1)求cos CAD ∠的值;(2)若7cos BAD ∠=-,21sin CBA ∠=,求BC 的长.解:(1)在ADC ∆中,由余弦定理,得:222cos 2AC AD CD CAD AC AD +-∠=⋅,故由题设知,27cos .27CAD ∠==. (2)设BAC α∠=,则BAD CAD α=∠-∠,因为27cos CAD ∠=,7cos BAD ∠=-,所以221sin 1cos CAD CAD ∠=-∠=, 2221sin 1cos BAD BAD ∠=-∠=, 于是()3sin sin sin cos cos sin BAD CAD BAD CAD BAD CAD α=∠-∠=∠∠-∠∠= 在ABC ∆中,由正弦定理,sin sin BC AC CBAα=∠,故37sin 23sin 21AC BC CBA α⋅⋅===∠. (19)【2014年湖南,理19,13分】如图,四棱柱1111ABCD A B C D -的所有棱长都相等,11111,AC BD O AC B D O ==I I ,四边形11ACC A 和四边形11BDD B 为矩形.(1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.解:(1)如图(a ),因为四边形11ACC A 为矩形,所以1CC AC ⊥,同理1DC BD ⊥.因为11//CC DD ,所以1CC BD ⊥,而AC BD O =I ,因此1CC ⊥平面ABCD , 由题设知11//O O C C ,故1O O ⊥平面ABCD . (2)解法一: 如图(a ),过1O 作11O H B C ⊥于H ,连接1C H .由(1)知,1O O ⊥平面ABCD ,所以1O O ⊥平面1111A B C D ,于是111O O AC ⊥,又四棱柱1111-ABCD A B C D 的所有棱长都相等,所以1111A B C D 是菱形,因此1111AC B D ⊥,从而11AC ⊥平面11B BDD ,所以111AC OB ⊥,于是1OB ⊥平面11O HC ,进而11OB C H ⊥,所以11O HC ∠为二面角11C OB D --的平面角,不妨设2AB =, 因为060CBA ∠=,所以11,OB OC OB === 在11Rt OO B ∆中,易知11111O O O H B O B O =⋅=,又111O C =.于是1C H ===故1111cos O H O HC C H ∠====11C OB D --. 解法二:因为四棱柱1111-ABCD A B C D 的所有棱长都相等,所以ABCD 是菱形,因此 AC BD ⊥,又1O O ⊥平面ABCD ,从而1,,OB OC OO 两两垂直.如图(b ),以1,,OB OC OO 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系O xyz -,不妨设2AB =,因为060CBA ∠=,所以1OB OC =.于是相关各点的坐标为11(0,0,0),(0,1,2)O B C ,易知,1(0,1,0)=n 是平面 平面11B BDD 的一个法向量.设2(,,)x y z =n 是平面11OB C 的一个法向量,则212100OB OC ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u u rn n ,即2020z y z +=+=⎪⎩,取z =2,x y == 所以2=n .设二面角11C OB D --的大小为,易知是锐角,于是 121212cos cos ,θ⋅=<>===⋅n n n n n n .二面角11C OB D -- (20)【2014年湖南,理20,13分】已知数列{}n a 满足111,,*n n n a a a p n N +=-=∈.(1)若数列{}n a 是递增数列,且123,2,3a a a 成等差数列,求p 的值;(2)若12p =,且{}2+1n a 是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式. 解:(1)因为数列{}n a 是递增数列,11nn n n n a a a a p ++-=-=,而11a =,因此2231,1a p a p p =+=++,又123,2,3a a a 成等差数列,所以21343a a a =+,因而得230p p -=.解得1,03p p ==.当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾,故13p =.(2){}2+1n a 是递增数列,因而2+1210n n a a -->,于是()()2+122210n n n n a a a a --+-> ① 但2211122n n -<,所以2+12221n n n n a a a a --<- ② 由①,②知,2210n n a a -->,因此()221221211122n n n n n a a ----⎛⎫-== ⎪⎝⎭③ 因为{}2n a 是递减数列,同理可得2120n n a a +-<,故()21221221122n nn n na a ++-⎛⎫-=-=⎪⎝⎭④图a 1A OC B D1C 1B 1D A1O H1由③,④知,()1112n n n na a ++--==,于是121321()()()n n n a a a a a a a a -=+-+-++-L()()()11211111111412111222233212n n nnnn -+-----=+-++=+=+⋅+L .数列{}n a 的通项公式为()1141332nn n a --=+⋅.(21)【2014年湖南,理21,13分】如图,O 为坐标原点,椭圆221221(0)x y C a b a b+=>>:的左右焦点分别为12,F F ,离心率为1e ;双曲线222221(0)x yC a b a b-=>>:的左右焦点分别为34,F F ,离心率为2e ,已知123e e =,且2431F F =-.(1)求12C C ,的方程;(2)若1F 过作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值. 解:(1)因为123e e =,所以2222311b b a a -+=g ,即4434a b -=,因此222a b =,从而24(,0),(3,0)F b F b ,24331b b F F -==-,所以1b =,22a =,椭圆1C 方程为2212x y +=,双曲线2C 的方程为2212x y -=. (2)因为直线AB 不垂直于y 轴且过点()11,0F -,故课设直线AB 的方程为1x my =-.由22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=.易知此方程的判别式大于0.设1122(,),(,)A x y B x y ,则12,y y 是上述方程的两个实根,所以12122221,22m y y y y m m -+=⋅=++,因此()12122422x x m y y m -+=+-=+,AB 的中点为222,22m M m m -⎛⎫ ⎪++⎝⎭,故直线PQ 的斜率为2m -,PQ 的方程为2m y x =-,即20mx y +=. 由22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得()2224m x -=,222222420,,22m m x y m m ∴->==--,2222+4222m PQ x y m ∴=+=- 设点A 到直线PQ 的距离为d ,则B 点到直线PQ 的距离也为d ,所以112222224mx y mx y d m +++=+因为点,A B 在直线20mx y +=的异侧,所以()()1122220mx y mx y +++<, 于是112211222222mx y mx y mx y mx y +++=+--,从而()2122224my y d m +-=+又因为()22121212222144m y y y y y y m +-=+-=+,所以2222124m d m +=+四边形APBQ 面积222122132221222m S PQ d m m+=⋅==-+-- 而2022m <-<,故当0m =时,S 取得最小值2.四边形APBQ 面积的最小值为2.(22)【2014年湖南,理22,13分】已知常数0a >,函数2()ln(1)2xf x ax x =+-+.(1)讨论()f x 在区间(0,)+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且12()()0f x f x +>,求a 的取值范围.解:(1)()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x +-=++,(*)因为()()2120ax x ++>, 所以当10a -≤时,当1a ≥时,()'0f x ≥,此时,函数()f x 在()0,+∞单调递增,当01a <<时,()12'0f x x x =⇒==-,当1(0,)x x ∈时,()'0f x <;当1(,)x x ∈+∞时,()'0f x <. 故()f x 在区间1(0,)x 单调递减,在1(,)x +∞单调递增的. 综上所述:当1a ≥时,()'0f x ≥,此时,函数()f x 在()0,+∞单调递增,当01a <<时, ()f x 在区间10,2a a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在12a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增的. (2)由(*)式知,当1a ≥时,()'0f x ≥函数()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<,又()f x 的极值点只可能是1x =2x =-,且由()f x 的定义可知,1x a >-且2x ≠-,所以1a ->-,2--,解得12a ≠-,此时,(*)式知1x ,2x 分别是()f x 的极小值点和极大值点,而1212121222()()ln(1)ln(1)22x x f x f x ax ax x x +=+-++-++ ()()()121221212121244ln 1224x x x x a x x a x x x x x x ++⎡⎤=+++-⎣⎦+++()()()22412ln 21ln 2122121a a a a a -=--=-+---. 令21a x -=,由01a <<且12a ≠-知当102a <<时,10x -<<;当112a <<时,01x <<.记22()ln 2g x x x =+-.(ⅰ)当10x -<<时,()2()2ln 2g x x x =-+-,所以222222'()x g x x x x -=-=,因此,()g x 在()1,0-上单调递减,从而()(1)40g x g <-=-<,故当102a <<时,12()()0f x f x +<.(ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以222222'()x g x x x x-=-=,因此,()g x 在()0,1上单调递减, 从而()(1)0g x g >=,故当112a <<时,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围是为1,12⎛⎫⎪⎝⎭.。

数学高考真题-2014湖南卷理科

数学高考真题-2014湖南卷理科

2014年普通高等学校招生全国统一考试(湖南卷)数 学(理科)第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足z +i z =i(i 为虚数单位)的复数z =( ) A. 12+12i B. 12-12i C .-12+12i D .-12-12i 2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 33.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .34.⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .205.已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(┑q );④(┒p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④6.执行如图所示的程序框图.如果输入的t ∈[-2,2],则输出的S 属于( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]7. 一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-19.已知函数f (x )=sin(x -φ),且∫2π30f(x)d x =0,则函数f(x)的图像的一条对称轴是( ) A .x =5π6 B .x =7π12 C .x =π3 D .x =π610.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 第Ⅱ卷二、填空题(本大题共6小题,考生作答5小题,每小题5分,共25分)(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题计分)11. 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.12.如图所示,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.13.若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x -53<x <13,则a =________. (二)必做题(14~16题)14. 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.15.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a<b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.16.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18.(本小题满分12分)如图所示,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长. 19.(本小题满分12分)如图所示,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1­OB 1­D 的余弦值.20.(本小题满分13分)已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *.(1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式. 21.(本小题满分13分)如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1. (1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.22.(本小题满分13分)已知常数a>0,函数f(x)=ln(1+ax)-2x x+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.。

2014年高考理科数学湖南卷(含答案解析)

2014年高考理科数学湖南卷(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足ii z z +=(i 为虚数单位)的复数z =( )A .11i 22+B .11i 22-C .11i 22-+D .11i 22--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽 样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( ) A .123p p p =< B .231p p p =< C .132p p p =<D .123p p p ==3.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则 (1)(1)f g +=( )A .3-B .1-C .1D .3 4.51(2)2x y -的展开式中23x y 的系数是( )A .20-B .5-C .5D .205.已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )A .①③B .①④C .②③D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 ( )A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-7.一块石材表示的几何体的三视图如图2所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .48.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A .2p q+ B .(1)(1)12p q ++-CD19.已知函数()sin()f x x ϕ=-,且2π30()d 0f x x =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x = 10.已知函数21()e (0)2x f x x x =+-<与2()ln()g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos ,1sin ,x y αα=+⎧⎨=+⎩(α为参数)交于A ,B 两点,且||2AB =.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图3,已知AB ,BC 是O 的两条弦,AO BC ⊥,ABBC =则O 的半径等于 .13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = . (二)必做题(14~16题)14.若变量x ,y 满足约束条件,4,,y x x y y k ⎧⎪+⎨⎪⎩≤≤≥且2z x y =+的最小值为6-,则k = .15.如图4,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过C ,F 两点,则ba= .16.在平面直角坐标系中,O 为原点,(1,0)A -,(0,3)B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的最大值是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120 万元;若新产品B 研发成功,预计企业可获利润100 万元,求该企业可获利润的分布列和数学期望.-----在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------姓名________________ 准考证号_____________图1图2图3图418.(本小题满分12分)如图5,在平面四边形ABCD 中,1AD =,2CD =,AC = (Ⅰ)求cos CAD ∠的值;(Ⅱ)若cos BAD ∠=sin 6CBA ∠=, 求BC 的长.19.(本小题满分12分)如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形. (Ⅰ)证明:1O O ⊥底面ABCD ;(Ⅱ)若60CBA ∠=,求二面角11C OB D --的余弦值.20.(本小题满分13分)已知数列{}n a 满足11a =,1||n n n a a p +-=,*n ∈N .(Ⅰ)若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (Ⅱ)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式.21.(本小题满分13分)如图7,O 为坐标原点,椭圆1C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线2C :22221x y a b -=的左、右焦点分别为3F ,4F ,离心率为2e .已知12e e =,且241F F =-. (Ⅰ)求1C ,2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.(本小题满分13分)已知常数0a >,函数2()ln(1)2xf x ax x =+-+. (Ⅰ)讨论()f x 在区间(0+)∞,上的单调性;(Ⅱ)若()f x 存在两个极值点1x ,2x ,且12()()0f x f x +>,求a 的取值范围.图5图6图72014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析一、选择题 1.【答案】B【解析】由题意可知i i z z +=,所以i ()1z z =+,令z a bi =+,经化简可知1a ba b =-⎧⎨=+⎩,所以12a =,12b =-,即11i 22z =-,故选B.【提示】根据复数的基本运算即可得到结论. 【考点】复数的四则运算 2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,系统抽样和分层抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.故选D.【提示】根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论. 【考点】随机抽样的概率 3.【答案】C【解析】因为()f x 为偶函数,()g x 为奇函数,所以()()f x f x -=,()()g x g x =--,即()()()()f x f x g x g x =-⎧⎨-=-⎩,联立3232()()1()()1f xg x x x f x g x x x ⎧-=++⎪⎨---=-++⎪⎩,得出2()1f x x =+,3()g x x =-,所以(1)(1)211f g +=-=,故选C.【提示】因为()f x 为偶函数,()g x 为奇函数,所以()()f x f x -=,()()g x g x =--,联立方程得出()f x 和()g x 的解析式,再令1x =即可. 【考点】对数奇偶性 4.【答案】A【解析】根据()()555122rr rr r C x y --⎛⎫- ⎪⎝⎭,所以23x y 的系数为23351(2)202C ⎛⎫-=- ⎪⎝⎭,故选A.【提示】利用二项式定理的展开式的通项公式,求解所求项的系数即可. 【考点】二项式定理 5.【答案】C【解析】根据不等式的性质可知,若x y >,则x y -<-成立,即p 为真命题,当1x =,1y =-时,满足x y >,但22x y >不成立,即命题q 为假命题,则①p q ∧为假命题;②p q ∨为真命题;③()p q ∧⌝为真命题;④()p q ⌝∨为假命题,故选:C.【提示】根据不等式的性质分别判定命题p ,q 的真假,利用复合命题之间的关系即可得到结论.【考点】非、或、且,真假命题 6.【答案】D【解析】当[2,0)t ∈-时,运行程序如下,221(1,9]t t =+∈,(26]3,S t -=∈-,当[0,2]t ∈时,[,1]33S t ∈--=-,则(2,6][3,1][3,6]S ∈---=-,故选D.【提示】根据程序框图,结合条件,利用函数的性质即可得到结论. 【考点】循环结构流程图 7.【答案】B【解析】由图可知该几何体的为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则628r r r -+=-,故选B.【提示】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r .【考点】几何体的体积 8.【答案】D【解析】由题意可知:设平均增长率为x ,由2(1)(1)(1)p q x ++=+,1x +=所以1x =,故选D.【提示】根据增长率之间的关系,建立方程关系即可得到结论. 【考点】增长率 9.【答案】A 【解析】由2π30⎰()0f x dx =,可以得出2πcos cos()3ϕϕ⎛⎫-=- ⎪⎝⎭,即π3ϕ=,所以()s i n 3f x x π⎛⎫=- ⎪⎝⎭,因此一条对称轴为πππ32x k -=+(k ∈Z )所以5π6x =,故选A. 【提示】由2π3⎰()0f x dx =,可以得到ϕ的值,可以知道对称轴x 从而求得x 的值.【考点】积分,对称轴,三角函数 10.【答案】B【解析】由题可得函数()f x 的图象上存在020001,e (0)2x P x x x ⎛⎫+-< ⎪⎝⎭关于y 轴对称的点02001,e 2x Q x x ⎛⎫-+- ⎪⎝⎭在函数2()l n ()g x x x a =++的图象上,从而0220001e ()ln()2x x x x a +-=-+-+,即001e ln()02x x a --+-=,问题等价于函数001()e ln()2xh x x a =--+-在(,0)x ∈-∞存在零点.即(a ∈-∞【提示】由题意可得001e ln()02xx a ---+=有负根,采用数形结合的方法可判断出a 的取值范围. 【考点】对称性 二、填空题11.【答案】(cos sin )1p θθ-=【解析】设直线方程y x b =+,联立22(2)(1)1x y y x b ⎧-+-=⎨=+⎩得出2222(3)420x x b b b --++-=,由韦达定理212422b b x x +-=,123x x b +=-,又有||2AB ===所以最后得出1b =-,故直线方程1x y -=,所以极坐标方程为(cos sin )1p θθ-=【提示】由题意可得直线l 的方程为y x b =+,曲线方程化为直角坐标,表示一个圆,由于弦长正好等于直径,可得圆心(2,1)在直线l 上,由此求得b 的值,可得直线的方程. 【考点】直线与参数方程的位置关系,极坐标12.【答案】32【解析】设线段AO 与BC 于点D 延长AO 交圆与另外一点E,则BD DC =,由ABD △的勾股定理可得1AD =,由双隔线定理可得2BD DC AD DE DE =⇒=,则直线332AE r =⇒=,故填32.【提示】设垂足为D ,O 的半径等于R ,先计算AD ,再计算R 即可. 【考点】勾股定理,双割线定理 13.【答案】3-【解析】由题可得523231233aa a ⎧--=⎪⎪⇒=-⎨⎪-=⎪⎩,故填:3- 【提示】由题可得52321233aa ⎧--=⎪⎪⎨⎪-=⎪⎩,可得a 的值.【考点】绝对值不等式 14.【答案】2-【解析】作出不等式组4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩表示的区域,可以得出三条直线的交点(),k k ,(4),k k -,(2)2,,且y x ≤,4x y +≤的可行域,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当(4),k k -为最优解时,2(4)614k k k -+=-⇒=,因为2k ≤,所以2k =-,故填2-.【提示】做出不等式对应的平面区域,利用线性规划的知识,确定k 的值即可. 【考点】线性规划 15.1【解析】由,2a C a ⎛⎫- ⎪⎝⎭,,2a F b b ⎛⎫+ ⎪⎝⎭,则22122a pab a a b p b ⎧=⎪⇒=⎨⎛⎫=+ ⎪⎪⎝⎭⎩1. 【提示】可先由图中的点与抛物线的位置关系,写出C ,F 两点的坐标,再将坐标代入抛物线方程中,消去参数p 后,得到a ,b 的关系式,再寻求ba 的值.【考点】抛物线16.【答案】1]【解析】动点D 的轨迹为以C 为圆心的单位圆,设为(3cos ,sin )θθ+([0,2π))θ∈,则||OA OB OD ++==,因为2c o s 3s i nθθ的取值范围为[[=,827(11+=+1=,所以||OA OB OD ++的取值范围为1]+.【提示】由题意设点D 的坐标为(3c o s θθ+,求得||8OA OB OD ++=+.根据2cos sin θθ的取值范围,可得||OA OB OD ++的最大值.【考点】平面向量的基本运算 三、解答题 17.【答案】(Ⅰ)1315(Ⅱ)140【解析】(Ⅰ)记{}E =甲组研发新产品成功,{}F =乙组研发新产品成功.由题设知2()3P E =,1()3P E =,3()5P F =,2()5P F =,故所求的概率为13()()()()()()15P P F P E P E P F P E P F =++=. (Ⅱ)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因122(0)()3515P X P EF ===⨯=,133(100)()3515P X P EF ===⨯=,224(120)()3515P X P EF ===⨯=,236(220)()3515P X P EF ===⨯=,数学期望为30048013202100()0100120220140151515151515E X ++=⨯+⨯+⨯+⨯===. 【提示】(Ⅰ)利用对立事件的概率公式,计算即可, (Ⅱ)求出企业利润的分布列,再根据数学期望公式计算即可.【考点】分布列和数学期望,概率 18.【答案】(Ⅱ)3【解析】(Ⅰ)在ADC △中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠=故由题设知,cos CAD ∠==(Ⅱ)sin 14BAD ∠== 于是sin sin()BAC BAD CAD ∠=∠-∠sin cos cos sin BAD CAD BAD CAD =∠∠-∠∠27721⎛⎫=-- ⎪ ⎪⎝⎭ . 在ABC △中,由正弦定理,sin sin BC ACBAC CBA=∠∠,故37sin 3sin AC BACBC CBA∠===∠. 【提示】(Ⅰ)利用余弦定理,利用已知条件求得cos CAD ∠的值.(Ⅱ)根据cos CAD ∠,cos BAD ∠的值分别,求得sin BAD ∠和sin CAD ∠,进而利用两角和公式求得sin BAC ∠的值,最后利用正弦定理求得BC . 【考点】解三角形,余弦定理,正弦定理19.【答案】(Ⅰ)如图,因为四边形11ACC A 为矩形,所以1CC AC ⊥. 同理1DD BD ⊥.因为11CC DD ∥,所以1CC BD ⊥. 而ACBD O =,因此1C C B D C A ⊥底面.由题设知,11O O C C ∥. 故1C O B D O A ⊥底面.(Ⅱ)如图2,过1O 作11O H OB ⊥于H ,连接1HC . 由(Ⅰ)知,1C O B D O A ⊥底面, 所以11111O O A B C D ⊥底面, 于是111O O AC ⊥.又因为四棱柱1111A B ABC C D D -的所有棱长都相等, 所以四边形1111A B C D 是菱形,因此1111AC B D ⊥,从而1111AC BDD B ⊥平面, 所以111AC OB ⊥,于是111OB O HC ⊥平面, 进而11OB C H ⊥.故11C HO ∠是二面角11C OB D --的平面角. 不妨设2AB =.因为60CBA ∠=︒,所以OB =1OC =,1OB =. 在11Rt OO B △中,易知11111OO O B O H OB ==而111O C =,于是1C H故1111cos O H C HO C H∠==. 即二面角11C OB D --【提示】(Ⅰ)由已知中,四棱柱1111ABCD A B C D -的所有棱长都相等,ACBD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形.可得111O O CC BB ∥∥且1CC AC ⊥,1BB BD ⊥,进而1OO AC ⊥,1OO BD ⊥,再由线面垂直的判定定理得到1O O ABCD ⊥底面;(Ⅱ)由线面垂直,线线垂直推得111AC OB ⊥,11OB C H ⊥,所以11C HO ∠是二面角11C OB D --的平面角.再由三角函数求得二面角11C OB D --的余弦值.【考点】线线关系、线面关系,二面角20.【答案】(Ⅰ)13p =(Ⅱ)141(1)332nn n a --=+ 【解析】解(Ⅰ)因为{}n a 是递增数列,所以11||nn n n n a a a a p ++-=-=.而11a =,因此又1a ,22a ,33a 成等差数列, 所以21343a a a =+,因而230p p -=,解得13p =,0p =,当0p =时,1n n a a +=, 这与{}n a 是递增数列矛盾.故13p =.(Ⅱ)由于21{}n a -是递增数列,因而21210n n a a +-->,于是212221()()0n n n n a a a a +--+->①,但2211122n n -<,所以212221||||n n n n a a a a +--<-②, 由①②知,2210n n a a -->,因此21221221(1)122n nn nn a a ---⎛⎫⎪⎝⎭--==③, 因为{}n a 是递减数列,同理可得,2120n n a a +-<,故22121221(1)22nn n n na a ++⎛⎫ ⎪⎝⎭--=-=④,由③④即知,11(1)2n n n na a ++--=.于是 121321()()...()n n n a a a a a a a a ----=++++2111(1)1222nn --=+-++112121()1121n ---=++ 141(1)332nn --=+. 故数列{}n a 的通项公式为141(1)332nn n a --=+. 【提示】(Ⅰ)根据条件去掉式子的绝对值,分别令1n =,2代入求出2a 和3a ,再由等差中项的性质列出关于p 的方程求解,利用“{}n a 是递增数列”对求出的p 的值取舍;(Ⅱ)根据数列的单调性和式子“1||nn n a a p +-=”、不等式的可加性,求出221n n a a --和1n n a a +-,再对数列{}n a 的项数分类讨论,利用累加法和等比数列前n 项和公式,求出数列{}n a 的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来. 【考点】等差、等比数列,数列的单调性,通项公式21.【答案】(Ⅰ)1C 的方程为2212x y +=2C的方程为2212xy -=(Ⅱ)2【解析】(Ⅰ)因为12e e =,22a b +=44434a b a -=,因此222a b =,从而2(,0)F b,4,0)F , 24||1b F F -==, 所以1b =,22a =.故1C ,2C 的方程分别为2212x y +=,2212x y -=.(Ⅱ)因AB 不垂直于y 轴,且过点1(1,0)F -,故可设直线AB 的方程为1x my =-.由22112x my x y =-⎧⎪⎨+=⎪⎩,得22(2)210m y my +--=,易知此方程的判别式大于0. 设11(,)A x y ,22(,)B x y ,则1y ,2y 是上述方程的两个实根,所以12222m y y m +=+,12212y y m =-+,因此121224()22x x m y y m -+=+-=+,于是AB 的中点为222,22m M m m -⎛⎫ ⎪++⎝⎭, 故直线PQ 的斜率为2m-,PQ 的方程为2m y x =-,即20mx y +=.由22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得22(2)4m x -=, 所以220m ->,且2242x m =-,2222m y m=-,从而||PQ ==设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =. 因为点A 、B 在直线20mx y +=的异侧, 所以1122(2)(2)0mx y mx y ++<,于是11221122|2||2||22|mx y mx y mx y mx y +++=+--,从而22d =,又因为21221||m y y +-=,所以2212m d +=.故四边形APBQ 的面积22212213||2221222mS PQ d mm+===-+--. 而2022m <-≤,故当0m =时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.【提示】(Ⅰ)由斜率公式写出1e ,2e 把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入三角形面积公式得四边形APBQ 的面积,再由关于n 的函数的单调性求得最值.【考点】曲线标准方程,焦点、离心率,直线与曲线的位置关系,最值22.【答案】(Ⅰ)当1a ≥时,()f x 在区间(0,)+∞上单调递增当01a <<时,()f x 在区间⎛ ⎝上单调递减,在区间⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增 (Ⅱ)1,12⎛⎫⎪⎝⎭【解析】(Ⅰ)2222(2)24(1)()1(2)(1)(2)a x x ax a f x ax x ax x +-+-'=-=++++, 当1a ≥时,此时()f x 在区间(0,)+∞上单调递增.当01a <<时,由()0f x '<得1x =2x =-舍去). 当1(0,)x x ∈时()0f x '<;当11(,)x x ∈+∞时,()0f x '>, 故()f x 在区间1(0,)x 上单调递增,在区间1(,)x +∞上单调递增. 综上所述:当1a ≥时,()f x 在区间(0,)+∞上单调递增;当01a <<时,()f x 在区间⎛ ⎝上单调递减,在区间⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (Ⅱ)由(Ⅰ)式知.当1a ≥,()0f x '>,此时()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<. 又()f x 的极值点只可能是1x =2x =-,且由()f x 的定义可知,1x a >-且2x ≠-,所以1a -.2≠-,解得12a ≠. 此时,由上式易知,1x ,2x 分别是()f x 的极小值点和极大值点,而1221222()()ln(1)ln(1)22x xf x f x ax ax x x +=+-++-++ 21212ln[1()]a x x a x x =+++-1212121244()2()4x x x x x x x x +++++24(1)ln(21)21a a a -=--- 22ln(21)221a a =-+--, 令21a x -=,由01a <<且12a ≠知:当102a <<时,10x -<<;当112a <<时,01x <<. 记22()ln 2g x x x=+-.(ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以222222()0x g x x x x -'=-=<. 因此,()g x 在区间(10)-,上单调递减,从而()(1)40g x g <-=-<, 故当102a <<时,12()()0f x f x +<.(ⅱ)当10x <<时,2()2ln 2g x x x =+-,所以222()0g x x x '=-<,因此.()g x 在区间(0)1,上单调递减,从而()(1)0g x g >=. 故当112a <<时,12()()0f x f x +>,综上所述.满足条件的a的取值范围为1,12⎛⎫ ⎪⎝⎭.【提示】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决. 【考点】函数单调性,极值,导数的性质与应用。

14年高考真题——理科数学(湖南卷)

14年高考真题——理科数学(湖南卷)

2014年普通高等学校招生全国统一考试(湖南)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的)1.满足z i i z+=(i 为虚数单位)的复数z =( ) (A )1122i + (B )1122i - (C )1122i -+ (D )1122i -- 2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,p p p ,则( )(A )123p p p =< (B )231p p p =< (C )132p p p =< (D )123p p p ==3.()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +=( ) (A )3- (B )1- (C )1 (D )34.5122x y ⎛⎫- ⎪⎝⎭的展开式中23x y 的系数是( ) (A )20- (B )5-0 (C )5 (D )205.已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >。

在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是( )(A )①③ (B )①④(C )②③ (D )②④6.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B )[]5,1--(C )[]4,5- (D )[]3,6-7.一块石材表示的几何何的三视图如图2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )(A )1 (B )2 (C )3 (D )48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )(A )2p q + (B )()()1112p q ++- (C(D1 9.已知函数()()sin f x x ϕ=-,且()2300f x dx π⎰=,则函数()f x 的图象的一条对称轴是( ) (A )56x π= (B )712x π= (C )3x π= (D )6x π= 10.已知函数()()2102x f x x e x =+-<与()()2ln g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( )(A )(-∞(B )(-∞(C)(-(D)( 二.填空题(本大题共6小题,考生作答5小题,每小题5分,共25分)(一)选做题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前两题计分)11.在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :1sin x C y αα=+⎧⎨=+⎩(α为参数)交于,A B 两点,且||2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是_________________。

2014年湖南省数学(理)高考真题含答案(超完美word版)

2014年湖南省数学(理)高考真题含答案(超完美word版)

2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的1.满足(z ii i z +=为虚数单位)的复数z = A .1122i + B .1122i - C .1122i -+ D .1122i--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、zxxk 系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,,p p p 则A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p == 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++(1)(1)f g +则=A .-3B .-1C .1D .34.51(2)2x y -的展开式中23x y 的系数是zxxk A .-20 B .-5 C .5 D .205.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题 ①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是 A .①③ B .①④ C .②③ D .②④6.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 A .[6,2]-- B .[5,1]-- C .[4,5]- D .[3,6]-7.一块石材表示的几何何的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于A .1B .2C .3D .48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 A .2p q + B .(1)(1)12p q ++- C .pq D .(1)(1)1p q ++-9.已知函数230()sin(),()0,f x x f x dx πϕ=-=⎰且则函数()f x 的图象的一条对称轴是A .56x π=B .712x π=C .3x π=D .6x π= 10.已知函数zxxk 221()(0)()ln()2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a的取值范围是 A .1(,)e -∞ B .(,)e -∞ C .1(,)e e - D .1(,)e e- 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :,(1sin x C y ααα=+⎧⎨=+⎩为参数)交于A B ,两点,则AB ||=2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 12.如图,已知,AB BC 是O 的两条弦,,3,22,AO BC AB BC ⊥==则O 的半径等于13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = (二)必做题(14-16题)14.若变量,x y 满足约束条件4y xx y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k =15.如图,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则16.在平面直角坐标系中,O 为原点,(1,0),(0,3),(3,0),A B C -动点D 满足||1,CD OA OB OD =++则||的最大值是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为2335和.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. 求至少有一种新产品研发成功的概率; 若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18. (本小题满分12分)如图,在平面四边形ABCD 中,127.AD CD AC =,=,= 求cos CAD ∠的值; 若721cos ,sin ,146BAD CBA ∠=-∠=求zxxk BC 的长.19. (本小题满分12分) 如图,四棱柱1111ABCD A BC D -的所有棱长都相等,11111,,AC BD O AC B D O == 四边形1111ACC A BDD B 和四边形均为矩形. 证明:1;O O ABCD ⊥底面若1160,CBA C OB D ∠=-- 求二面角的余弦值.20. (本小题满分13分)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; 若12p =,且{21n a -}是递增数列,{2n a }是递减数列,zxxk 求数列{n a }的通项公式.21. (本小题满分13分)如图,O 为坐标原点,椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为1e ;双曲线22222:1x y C a b -=的左、右焦点分别为34,F F ,离心率为2e .已知123,2e e =且24||3 1.F F =-求12,C C 的方程;过1F 作1C 的不垂直于y 轴的弦AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.22. (本小题满分13分)已知常数20,()ln(1).2xa f x ax x >=+-+函数 讨论()f x 在区间(0,)+∞上的单调性;若()f x 存在两个极值点12,,x x 且12()()0,f x f x +>求a 的zxxk 取值范围.2014年普通高等学校招生全国统一考试(湖南卷)数学理科参考答案 一.选择题. 1.【答案】B 【解析】由题可得()111122z i i i z i zi z i i z i z i +-=⇒+=⇒-=-⇒==--,故选B. 【考点定位】复数2.【答案】D 【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查3.【答案】C【解析】分别令1x =和1x =-可得()()113f g -=且()()111f g ---=()()111f g ⇒+=,则()()()()()()1131211111f g f f g g -==⎧⎧⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩()()111f g ⇒+=,故选C.【考点定位】奇偶性4.【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭, 则2n =时, ()()2532351121022022nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A. 【考点定位】二项式定理5.【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C. 【考点定位】命题真假 逻辑连接词6.【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=- ,故选D.【考点定位】程序框图 二次函数7.【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则2286862r r r -+-=+⇒=,故选B.【考点定位】三视图 内切圆 球8.【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++()()111x p q ⇒=++-,故选D.【考点定位】实际应用题9.【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,因为()232sin 0cos cos 03x dx ππϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰sin 03πϕ⎛⎫⇒-= ⎪⎝⎭, 所以23k πϕπ=+或423k ππ+,则56x π=是其中一条对称轴,故选A.【考点定位】三角函数图像 辅助角公式10.【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()0220001ln 2xx e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,当0x 取决于负无穷小时,()001ln 2xe x a --+-趋近于-∞,因为函数()1ln 2x y e x a =--+-在定义域内是单调递增的,所以()01ln 002e a -+->ln ln a e a e ⇒<⇒<,故选B.【考点定位】指对数函数 方程二.填空题.11.【答案】2sin 42πρθ⎛⎫-=- ⎪⎝⎭ 【解析】曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l的距离0d =,所以圆心在直线l上,故1y x =-2sin cos 1sin 42πρθρθρθ⎛⎫⇒=-⇒-=- ⎪⎝⎭,故填2sin 42πρθ⎛⎫-=- ⎪⎝⎭. 【考点定位】极坐标 参数方程12.【答案】32【解析】设线段AO 交BC 于点D 延长AO 交圆与另外一点E ,则2BD DC ==,由三角形ABD 的勾股定理可得1AD =,由双割线定理可得2BD DC AD DE DE =⇒= ,则直径332AE r =⇒=,故填32.【考点定位】勾股定理 双割线定理13.【答案】3-【解析】由题可得52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-,故填3-. 【考点定位】绝对值不等式14.【答案】2-【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且,4y x x y ≤+≤的可行域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=, 因为2k ≤,所以2k =-,故填2-.【考点定位】线性规划15.【答案】21+【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩21a b ⇒=+,故填21+. 【考点定位】抛物线16.【答案】23【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3c o s,s i n 0,2θθθπ+∈,则()()223cos 1sin 3OA OB OD θθ++=+-++ ()82cos 3sin θθ=++,因为cos 3sin θθ+的最大值为2,所以OA OB OD ++的最大值为1223=,故填23.【考点定位】参数方程 圆 三角函数17.某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B .设甲,乙两组的研发是相互独立的. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得120万元,若新产品B 研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望. 17.【答案】(1)1315(2)详见解析 【解析】(1)解:设至少有一组研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功,因为甲,乙成功的概率分别为23,35, 则()2312211353515P B ⎛⎫⎛⎫=-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,再根据对立事件概率之间的公式可得()()13115P A P B =-=,所以至少一种产品研发成功的概率为1315. (2)由题可得设该企业可获得利润为ξ,则ξ的取值有0,1200+,1000+,120100+,即0,120,100,220ξ=,由独立试验的概率计算公式可得:()2320113515P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭;()23412013515P ξ⎛⎫==⨯-= ⎪⎝⎭;()2311001355P ξ⎛⎫==-⨯= ⎪⎝⎭;()232220355P ξ==⨯=;所以ξ的分布列如下:ξ0 120 100 220 ()P ξ215 41515 25则数学期望24120120100220151555E ξ=⨯+⨯+⨯+⨯322088130=++=. 【考点定位】分布列 期望 独立试验的概率18.如图5,在平面四边形ABCD 中,1,2,7AD CD AC ===. (1)求cos CAD ∠的值; (2)若7cos 14BAD ∠=-,21sin 6CBA ∠=,求BC 的长.18.【答案】(1) 27cos 7CAD ∠=(2)67【解析】解:(1)由DAC ∆关于CAD ∠的余弦定理可得222cos 2AD AC DC CAD AD AC +-∠= 174217+-=⨯⨯277=,所以27cos 7CAD ∠=. (2)因为BAD ∠为四边形内角,所以s i n 0BAD ∠>且sin 0CAD ∠>,则由正余弦的关系可得sin BAD ∠=21891cos 14BAD -∠=且221sin 1cos 7CAD CAD ∠=-∠=,再有正弦的和差角公式可得()sin sin sin cos sin cos BAC BAD CAD BAD CAD CAD BAD ∠=∠-∠=∠∠-∠∠18927217147714⎛⎫=⨯-⨯- ⎪ ⎪⎝⎭=333714+37=,再由ABC ∆的正弦定理可得 sin sin AC BC CBA BAC =∠∠737216BC ⇒=⨯⎛⎫ ⎪⎝⎭67=. 【考点定位】正余弦定理 正余弦之间的关系与和差角公式19.如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,11111,AC BD O AC B D O == ,四边形11ACC A 和四边形11BDD B 为矩形. (1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.19.【答案】(1) 详见解析 (2)25719【解析】(1)证明: 四棱柱1111ABCD A BC D -的所有棱长都相等 ∴四边形ABCD 和四边形1111A B C D 均为菱形11111,AC BD O AC B D O == ∴1,O O 分别为11,BD B D 中点四边形11ACC A 和四边形11BDD B 为矩形 ∴1//OO 11//CC BB 且11,CC AC BB BD ⊥⊥ 11,OO BD OO AC ∴⊥⊥又 AC BD O = 且,AC BD ⊆底面ABCD 1OO ∴⊥底面ABCD .(2)过1O 作1B O 的垂线交1B O 于点E ,连接11,EO EC .不妨设四棱柱1111ABCD A BC D -的边长为2a . 1OO ⊥底面ABCD 且底面ABCD //面1111A B C D 1OO ∴⊥面1111A B C D 又11O C ⊆ 面1111A B C D 111OC OO ∴⊥四边形1111A B C D 为菱形 1111O C O B ∴⊥ 又111OC OO ⊥ 且1111OO O C O = ,111,O O O B ⊆面1OB D 11O C ∴⊥面1OB D 又1B O ⊆ 面1OB D 111B O OC ∴⊥又11BO O E ⊥ 且1111O C O E O = ,111,O C O E ⊆面11O EC 1B O ∴⊥面11O EC∴11O EC ∠为二面角11C OB D --的平面角,则1111cos O EO EC EC ∠= 060CBA ∠= 且四边形ABCD 为菱形 11O C a ∴=,113,BO a =22111112,7OO a B O B O OO a ==+=, 则1111111112221sin 377O O a O E B O O B O B O a a B O a=∠===再由11O EC ∆的勾股定理可得22221111121977EC O E O C a a a =+=+=, 则1111cos O E O EC EC ∠=221257719197a a ==,所以二面角11C OB D --的余弦值为25719. 【考点定位】线面垂直 二面角20.已知数列{}n a 满足111,nn n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值;(2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列n a 的通项公式. 20.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩ 为奇数为偶数【解析】解:(1)因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=⇒-=,分别令1,2n =可得22132,a a p a a p -=-=2231,1a p a p p ⇒=+=++,因为123,2,3a a a 成等差数列,所以21343a a a =+()()224113130p p p p p ⇒+=+++⇒-=13p ⇒=或0,当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为 (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a +-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-,则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-= ,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+-- 22141332m m a -⇒=+ .当21n m =+时, 2132432122321111,,,,2222m m m a a a a a a a a +-=-=--=-=- ,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭ 2122211111111224224113321144m m m ---=-=--- 21241332m m a +=- ,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩ 为奇数为偶数. 【考点定位】叠加法 等差数列 等比数列21.如图7,O 为坐标原点,椭圆1:C ()222210x y a b a b+=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b -=的左右焦点分别为34,F F ,离心率为2e ,已知1232e e =,且2431F F =-. (1)求12,C C 的方程;(2)过1F 点的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.21.【答案】(1) 2212x y += 2212x y -= (2)4 【解析】解:(1)由题可得2212221,1b b e e a a=-=+,且22122F F a b =-,因为1232e e =,且222224F F a b a b =+--,所以22223112b b a a -+= 且222231a b a b +--=-2a b ⇒=且1,2b a ==,所以椭圆1C 方程为2212x y +=,双曲线2C 的方程为2212x y -=. (2)由(1)可得()21,0F -,因为直线AB 不垂直于y 轴,所以设直线AB 的方程为1x ny =-,联立直线与椭圆方程可得()222210n y ny +--=,则222A B n y y n +=+,则22m n y n =+,因为(),M M M x y 在直线AB 上,所以2222122M n x n n -=-=++,因为AB 为焦点弦,所以根据焦点弦弦长公式可得21222222222M n AB e x n =+=++()224212n n +=+,则直线PQ 的方程为2M M y n y x y x x =⇒=-,联立直线PQ 与双曲线可得22202n x x ⎛⎫---= ⎪⎝⎭2284x n ⇒=-,22224n y n =-则24022n n ->⇒-<<,所以,P Q 的坐标为2222228282,,,4444n n n n n n ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,则点,P Q 到直线AB 的距离为22212281441n n n nd n +---=+ ,22222281441n n n nd n -----=+ ,因为点,Q P 在直线AB 的两端所以()222221222222282244411n n n n n n d d n n ++---+==++ ,则四边形APBQ 面积()1212S AB d d =+= 22184n n +-25814n =--,因为2440n ≥->,所以当242n n =⇒=±时, 四边形APBQ 面积取得最小值为4.【考点定位】弦长 双曲线 椭圆 最值22.已知常数0a >,函数()()2ln 12x f x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围.【答案】(1)详见解析【解析】解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时, ()()21'0a a f x x a -=⇒=±,则函数()f x 在区间()210,a a a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在()21a a a ⎛⎫- ⎪+∞ ⎪⎝⎭单调递增的. (2) 解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时, ()()21'0a a f x x a -=⇒=±,则函数()f x 在区间()210,a a a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在()21a a a ⎛⎫- ⎪+∞ ⎪⎝⎭单调递增的. (2)函数()f x 的定义域为1,a ⎛⎫-+∞ ⎪⎝⎭,由(1)可得当01a <<时,()()21'0a a f x x a-=⇒=±,则()21a a a --1a >-⇒ 12a ≠,则()21a a a-±为函数()f x 的两个极值点, ()()()()()12ln 121ln 12141f x f x a a a a a a ⎡⎤⎡⎤+=+-+--+-⎣⎦⎣⎦()()ln 14141a a a a =--+-⎡⎤⎣⎦,因为112a <<或102a <<,则()1012a a <-<,则设()1t a a =-102t ⎛⎫<< ⎪⎝⎭,则()()()212ln 144f x f x t t +=-+,设函数()()2ln 144g x x x =-+102t ⎛⎫<< ⎪⎝⎭, 后续有待更新!!! 【考点定位】导数 含参二次不等式 对数。

2014年高考湖南理科数学精彩试题及问题详解(详解纯word版)

2014年高考湖南理科数学精彩试题及问题详解(详解纯word版)

2014年普通高等学校招生全国统一考试(湖南卷)数 学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 满足i z iz =+(i 为虚数单位)的复数=z A. i 2121+ B. i 2121- C. i 2121+- D. i 2121--2. 对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则 A. 321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p ==3. 已知分别)(x f ,)(x g 是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g fA. 3-B. 1-C. 1D. 34. 5)221(y x -的展开式中32y x 的系数是A. 20-B. 5-C. 5D. 205. 已知命题:p 若y x >, 则y x -<-;命题:q 若y x >,则22y x > . 在命题① q p ∧; ② q p ∨; ③ )(q p ⌝∧;④ q p ∨⌝)(中,真命题是A. ①③B. ①④C. ②③D. ②④6. 执行如图1所示的程序框图. 如果输入的]2,2[-∈t ,则输出的S 属于 A. ]2,6[-- B. ]1,5[-- C. ]5,4[- D. ]6,3[-7. 一块石材表示的几何体的三视图如图2所示. 将该石材切割、打磨,加工成球,则能得到最大球的半径等于A. 1B. 2C. 3D. 48. 某市生产总值连续两年持续增加. 第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为A.2q p + B. 21)1)(1(-++q p C. pq D. 1)1)(1(-++q p9. 已知函数)sin()(ϕ-=x x f ,且⎰=3200)(πdx x f ,则函数)(x f 的图象的一条对称轴是A. 65π=x B. 127π=x C. 3π=x D. 6π=x 10. 已知函数)0(21)(2<-+=x e x x f x与)ln()(2a x x x g ++=的图象上存在关于y轴对称的点,则a 的取值范围是A. )1,(e -∞B. ),(e -∞C. ),1(e e -D. )1,(ee -二、填空题:本大题共7小题,考生作答5小题,每小题5分,共25分.(一) 选做题 (请考生在11、12、13三题中任选两题作答,如果全做,则按前两题记分) 11. 在平面直角坐标系中,倾斜角为4π的直线l 与曲线:C ⎩⎨⎧+=+=ααsin 1,cos 2y x (α为参数) 交于A 、B 两点,且2||=AB . 以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是____________________. 12. 如图3,已知AB ,BC 是⊙O 的两条弦,BC AO ⊥,3=AB ,22=BC ,则⊙O 的半径等于_______.13. 若关于x 的不等式3|2|<-ax 的解集为}3135|{<<-x x , 则=a ________.(二)必做题(14~16题)14. 若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤,,4,k y y x x y ,且yx z +=2的最小值为6-,则=k ____.15. 如图4,正方形ABCD 和正方形DEFG 的边长分别为b a ,)(b a <. 原点O 为AD 的中点,抛物线)0(22>=p px y 经过C 、F 两点,则=ab________.16. 在平面直角坐标系中,O 为原点,)0,1(-A ,)3,0(B ,)0,3(C . 动点D 满足1||=,则||++的最大值是_________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53. 现安排甲组研发新产品A ,乙组研发新产品B. 设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元. 求该企业可获利润的分布列和数学期望.18. (本小题满分12分)如图5,在平面四边形ABCD 中,1=AD ,2=CD ,7=AC .(1) 求CAD ∠cos 的值;(2) 若147cos -=∠BAD ,621sin =∠CBA ,求BC 的长.19. (本小题满分12分)如图6,四棱柱1111D C B A ABCD -的所有棱长都相等,O BD AC = ,11111O D B C A = , 四边形11A ACC 和四边形11B BDD 均为矩形. (1) 证明:⊥O O 1底面ABCD ;(2)若60=∠CBA ,求二面角D OB C --11的余弦值.20. (本小题满分13分)已知数列}{n a 满足11=a ,nn n p a a =-+||1,*N n ∈.(1)若}{n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (2)若21=p ,且}{12-n a 是递增数列,是}{2n a 递减数列,求数列}{n a 的通项公式.图6D 1B D21. (本小题满分13分)如图7,O 为坐标原点,椭圆:1C )0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为1e ;双曲线:2C 12222=-by a x 的左、右焦点为43,F F ,离心率为2e . 已知2321=e e ,且13||42-=F F .(1)求1C 、2C 的方程;(2)过1F 作1C 的不垂直y 轴的弦AB ,M 为AB 的中点. 当直线OM 与2C 交于Q P ,两点时,求四边形APBQ 面积的最小值.22. (本小题满分13分)已知常数0>a ,函数.22)1ln()(+-+=x xax x f (1) 讨论)(x f 在区间),0(∞+上的单调性;(2)若)(x f 存在两个极值点1x ,2x ,且0)()(21>+x f x f ,求a 的取值范围.2014年高考湖南卷理科数学参考答案一、选择题. 1.【答案】B【解析】由题可得i i z zi i z -=-⇒=+)1(,所以i i i z 21211-=--=,故选B 【考点定位】复数 2.【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D【考点定位】抽样调查 3.【答案】C【解析】令1-=x 可得1)1()1()1()1(=+=---g f g f ,所以故选 C. 或者观察求得1)(2+=x x f ,3)(x x g -=,可求得1)1()1(=+g f .【考点定位】函数奇偶性 4.【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时, ()()2532351*********nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A. 【考点定位】二项式定理5.【答案】C 【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题, 故选C. 【考点定位】命题真假 逻辑连接词 6.【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时 ,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数 7.【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-=⇒=,故选B.【考点定位】三视图 内切圆 球 8.【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=-,故选D.【考点定位】实际应用问题 9.【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,又由⎰=3200)(πdx x f 得ϕ的一个值为3πϕ=,则56x π=是其中一条对称轴,故选A. 【考点定位】三角函数图像 辅助角公式 10.【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()0220001ln 2xx e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,当0x 趋近于负无穷小时,()001ln 2x e x a --+-趋近于-∞,因为函数()1ln 2x y e x a =--+-在定义域内是单调递增的,所以ln a a <⇒<,故选B.【考点定位】指对数函数 方程二、填空题11.【答案】1)sin (cos =-θθρ (或22)4sin(-=-πθρ)【解析】曲线C 的普通方程为1)1()2(22=-+-y x ,直线l 截曲线C 所得弦长2|=AB ,知直线l 过圆心)1,2(,故直线l 的直角坐标方程为1-=x y 1cos sin -=⇒θρθρ.【考点定位】极坐标,参数方程 12.【答案】23 【解析】设AD 交BC 于点D ,延长AO 交圆于另一点E ,则2==CD BD ,在ABD ∆中由勾股定理可得1=AD ,再由相交弦定理得2=DE ,从而直径3=AE ,半径23=R .【考点定位】勾股定理,相交弦定理等 13.【答案】3-【解析】依得可得⎪⎪⎩⎪⎪⎨⎧=-=--3|231|3|235|a a ,解得3-=a .【考点定位】绝对值不等式14.【答案】2-【解析】画出不等式(组)表示的平面区域,知当y x z +=2过点)(k k ,时取得最小值,所以62-=+k k ,2-=k . 【考点定位】线性规划 15.1【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩1a b ⇒=+,故填1+.【考点定位】抛物线 16.【答案】71+【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3cos ,sin 0,2θθθπ+∈,则(3OA OB OD ++=)sin(728ϕθ++=,所以OA OB OD ++的最大值为17728+=+,故填71+.或由题求得点D 的轨迹方程为1)3(22=+-y x ,数形结合求出OA OB OD ++的最大值即为点)3,1(-到轨迹上的点最远距离( 到圆心的距离加半径) .【考点定位】参数方程 圆 三角函数 数形结合 三、解答题17. 解: 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P , 31)(=E P ,53)(=F P ,52)(=F P . 且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1) 记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. 又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .数学期望为 14015152201512015100150)(==⨯+⨯+⨯+⨯=X E .18. 解:(1)在ADC ∆中,则余弦定理,得ADAC CD AD AC CAD ⋅-+=∠2cos 222.由题设知,77272417cos =-+=∠CAD . (2)设α=∠BAC ,则CAD BAD ∠-∠=α因为772cos =∠CAD ,147cos -=∠BAD , 所以721)772(1cos 1sin 22=-=∠-=∠CAD CAD , 14213)147(1cos 1sin 22=--=∠-=∠BAD BAD . 于是CAD BAD CAD BAD CAD BAD ∠∠-∠∠=∠-∠=sin cos cos sin )sin(sin α23721)147(77214213=⋅--⋅=. 在ABC ∆中,由正弦定理,CBA ACBC ∠=sin sin α,故 3621237sin sin =⋅=∠⋅=CBA AC BC α. 19. 解:(1)如图 (a),因为四边形11A ACC 为矩形,所以AC CC ⊥1,同理BD DD ⊥1. 由题知,11//CC OO ,11//DD OO ,所以AC OO ⊥1,BD OO ⊥1,又 O BD AC = , 故 ⊥O O 1底面ABCD . (2)解法1 如图(a),过1O 作11OB H O ⊥于H ,连接1HC . 由(1)知,⊥O O 1底面ABCD ,所以⊥O O 1底面1111D C B A ,于是. ⊥O O 111C A ,又因为四棱柱1111D C B A ABCD -的所有棱长都相等,所以四边形1111D C B A 为菱形,因此1111D B C A ⊥,从而⊥11C A 平面11B BDD ,所以O B C A 111⊥,于是⊥O B 1平面11HC O ,进而 ⊥O B 11HC ,故11HO C ∠是二面角D OB C --11的平面角.不妨设2=AB ,因为60=∠CBA ,所以1,311===C O OC OB ,71=OB ,在11B OO Rt ∆中,易知73211111=⋅=OB B O OO H O ,719212111=+=H O C O H C ,故19572719732cos 1111===∠HC HO HO C ,即二面角D OB C --11的余弦值为19572. 解法2因为四棱柱1111D C B A ABCD -的所有棱长都相等,所以四边形ABCD 为菱形,因此BD AC ⊥,又⊥O O 1底面ABCD ,从而OB ,OC ,1OO 两两垂直.如图(b),以O 为坐标原点,OB ,OC ,1OO 分别为x 轴, y 轴,z 轴建立空间坐标系xyz O -.不妨设2=AB ,因为60=∠CBA ,所以1,3==OC OB ,于是相关各点的坐标为:)0,0,0(O ,)2,0,3(1B ,)2,1,0(1C ,易知 )0,1,0(1=n 是平面11B BDD 的一个法向量,设),,(2z y x n =是平面11C OB 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅01212OC n OB n ,即⎩⎨⎧=+=+02023z y z x ,取3-=z ,则32,2==y x ,于是)3,32,2(2-=n .设二面角D OB C --11的大小为θ,易知θ为锐角,于是|,cos |cos 21><=n n θ2121=195721932==. 即二面角D OB C --11的余弦值为19572. 20. 解:(1)因为}{n a 是递增数列,所以nn n n n p a a a a =-=-++||11,而11=a ,因此p a +=12,231p p a ++=,又1a ,22a ,33a 成等差数列,所以31234a a a +=,因而032=-p p ,解得31=p 或0=p , 但当0=p 时,n n a a =+1,与}{n a 是递增数列相矛盾,故31=p . (2) 由于}{12-n a 是递增数列,因而 01212>--+n n a a ,于是0)()(122212>-+--+n n n n a a a a ① 且 1222121-<n n ,所以 ||||122212-+-<-n n n n a a a a ②则①②可知,0122>--n n a a ,因此122121222)1(21----==-n nn n n a a , ③因为是}{2n a 递减数列,同理可得0212<-+n n a a ,故nn n n n a a 21222122)1(21++-=-=-, ④ 由③④即得 n n n n a a 2)1(11++-=-. 于是 )()()(123121--++-+-+=n n n a a a a a a a a 122)1(21211--++-+=n n.2)1(3134211])21(1[(21111---⋅+=+--+=n n n 故数列}{n a 的通项公式为*).(2)1(31341N n a n nn ∈-⋅+=-21. 解:(1)因为2321=e e ,所以232222=+⋅-a b a a b a ,因此得 44443a b a =-,即222b a =,从而)0,(2b F ,)0,3(4b F ,于是13||342-==-F F b b ,所以1=b ,22=a .故1C 、2C 的方程分别是 1222=+y x ,1222=-y x . (2) 由于AB 过)0,1(1-F 且不垂直y 轴,故可设直线AB 的方程为 1-=my x 由⎪⎩⎪⎨⎧=+-=12122y x my x 得 012)2(22=--+my y m 易知此方程的判别式大于0,设),(,),(2211y x B y x A ,则21,y y 是上述方程的两个实根,所以 22221+=+m m y y ,21221+-=⋅m y y . 因此242)(22121+-=-+=+m y y m x x ,于是AB 中点)2,22(22++-m m m M , 因此直线PQ 的斜率为2m -,其方程为x m y 2-=. 由⎪⎪⎩⎪⎪⎨⎧=--=12222y x x m y 得 4)2(22=-x m ,所以022>-m ,2224m x -=,2222m m y -=, 从而 22222422||m m y x PQ -+=+=.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以 4|2||2|222211++++=m y mx y mx d ,因为点A 、B 在直线PQ 的异侧, 所以 0)2)(2(2211<++y mx y mx ,于是|22||2||2|22112211y mx y mx y mx y mx --+=+++从而 4||)2(22212+-+=m y y m d ,又21224)(||222122121++⋅=-+=-m m y y y y y y , 所以 4122222++⋅=m m d ,故四边形APBQ 面积 2222312221222||21m mm d PQ S -+-⋅=-+⋅=⋅=, 而 2202≤-<m ,故当0=m 时,S 取最小值2.综上所述,四边形APBQ 面积的最小值为2.22. 解:(1) 222)2)(1()1(4)2(2)2(21)('++-+=+-+-+=x ax a ax x x x ax a x f (*) 当1≥a 时,0)('>x f ,此时,)(x f 在区间),0(∞+上单调递增;当10<<a 时,由0)('=x f 得 a a x -=121(aa x --=122舍去), 当),0(1x x ∈时,0)('<x f ,当),(1∞+∈x x 时,0)('>x f ,故)(x f 在区间),0(1x 上单调递减,在区间),(1∞+x 上单调递增. 综上所述,当1≥a 时, )(x f 在区间),0(∞+上单调递增;当10<<a 时,)(x f 在区间)12,0(a a -上单调递减,在区间),12(∞+-aa 上单调递增.(2)由(*)式知,当1≥a 时, 0)('>x f ,此时)(x f 不存在极值点. 因而要使 )(x f 存在两个极值点,必有10<<a ,且)(x f 的极值点只可能是a a x -=121和a a x --=122,且由)(x f 的定义可知,a x 1->且2-≠x ,所以a a a 112->-- 且212-≠--a a ,解得21≠a . 此时,则(*)式知,1x ,2x 分别是)(x f 的极小值点和极大值点. 而 22)1ln(22)1ln()()(22211121+-+++-+=+x x ax x x ax x f x f4)(2)(44])(1ln[2121212121221+++++-+++=x x x x x x x x x x a x x a 12)1(4)12ln(2----=a a a 2122)12ln(2--+-=a a . 令x a =-12,由10<<a 且21≠a 知,当210<<a 时,01<<-x ;当121<<a 时,10<<x . 并记22ln )(2-+=xx x g , (i )当01<<-x 时,22)ln(2)(-+-=x x x g ,02222)('22<-=-=x x x x x g , 因此,)(x g 在区间)0,1(-上单调递减,从而04)1()(<-=-<g x g ,故当210<<a 时,0)()(21<+x f x f .(ii) 当10<<x 时,22ln 2)(-+=x x x g ,02222)('22<-=-=x x x x x g , 因此,)(x g 在区间)1,0(上单调递减,从而0)1()(=>g x g ,故当121<<a 时,0)()(21>+x f x f .综上所述,满足条件的a 的取值范围是)1,21(.。

2014年高考湖南理科数学试题及答案(word解析版)

2014年高考湖南理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(湖南卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年湖南,理1,5分】满足ii z z+=(i 为虚数单位)的复数z =( )(A )11i 22+ (B )11i 22- (C )11i 22-+ (D )11i 22--【答案】B【解析】由题意()i i 11i i i 1i i i 1i 22z z z z z z +-=⇒+=⇒-=-⇒==--,故选B .(2)【2014年湖南,理2,5分】对一个容量为N 的总体抽取容量为m 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ) (A )123p p p =< (B )231p p p =< (C )132p p p =< (D )123p p p == 【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D . (3)【2014年湖南,理3,5分】已知()f x ,()g x 分别是定义R 在上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +( )(A )-3(B )-1 (C )1 (D )3 【答案】C 【解析】分别令1x =和1x =-可得()()113f g -=且()()111f g ---=,则()()()()()()1131211111f g f f g g ⎧-=⎧=⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩()()111f g ⇒+=,故选C .(4)【2014年湖南,理4,5分】51(2)2x y -的展开式中23x y 的系数是( )(A )-20 (B )-5 (C )5 (D )20 【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351*********nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A .(5)【2014年湖南,理5,5分】已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )(A )①③ (B )①④ (C )②③ (D )②④ 【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C .(6)【2014年湖南,理6,5分】执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B )[]5,1-- (C )[]4,5- (D )[]3,6- 【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D .(7)【2014年湖南,理7,5分】一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-=,故选B .(8)【2014年湖南,理8,5分】某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年的生产总值的年平均增长率为( )(A )2p q +(B )(1)(1)12p q ++- (C(D1【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒,故选D .(9)【2014年湖南,理9,5分】已知函数发()()sin f x x ϕ=-,且230()0x f x dx =⎰,则函数()f x 的图象的一条对称轴是( )(A )56x π= (B )712x π= (C )3x π= (D )6x π=【答案】A【解析】解法一:函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,因为()232sin 0cos cos 03x dx ππϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰sin 03πϕ⎛⎫⇒-= ⎪⎝⎭, 所以23k πϕπ=+或423k ππ+,则56x π=是其中一条对称轴,故选A . 解法二:由定积分的几何性质与三角函数图象可知,03π⎛⎫⎪⎝⎭是函数()sin()f x x ϕ=-的一个对称中心,所以sin()03πϕ-=,所以3k πϕπ=+,故选A .(10)【2014年湖南,理10,5分】已知函数21()(0)2x f x x e x =+-<与2()ln()g x x x a =++的图像上存在关于y轴对称的点,则a 的取值范围是( )(A )(,)-∞(B )(,-∞ (C)((D)(【答案】B【解析】由题可得函数()f x 的图像上存在点020001(,)(0)2x P x x e x +-<关于y 轴对称的点02001(,)2x Q x x e -+-在函数2()ln()g x x x a =++的图像上,从而有()0220001ln()2x x e x x a +-=-+-+,即001ln()02x e x a --+-=.问题等价于函数1()ln()2x h x e x a =--+-在(),0x ∈-∞存在零点.解法一:1'()0x h x e x a=+>-+,()h x 在(),0x ∈-∞单调递增,当x →-∞时,()h x →-∞,要使()h x 在(),0-∞存在零点,则1(0)1ln 02h a =-->,从而a <B .解法二: 问题等价于函数1()2x x e φ=-与()ln()x x a ϕ=-+的图象在(),0-∞有交点,在同一坐标系中作出这两个函数的图象,当()ln()x x a ϕ=-+的图象在左右平移的过程中,(0)(0)h ϕ>即可,即a e <,故选B .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题:在11,12,13三题中任选两题作答,如果全做,则按全两题记分. (11)【2014年湖南,理11,5分】在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :1sin x C y αα=+⎧⎨=+⎩(α为参数)交于,A B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标 系,则直线l 的极坐标方程是 .【答案】2sin 4πρθ⎛⎫-=- ⎪⎝⎭【解析】曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l 的距离0d =,所以圆心在直线l 上,故1y x =-2sin cos 1sin 4πρθρθρθ⎛⎫⇒=-⇒-=- ⎪⎝⎭.(12)【2014年湖南,理12,5分】如图3,已知,AB AC 是O 的两条弦,,3AO BC AB ⊥=,22BC =则O的半径等于 . 【答案】32【解析】设线段AO 交BC 于点D 延长AO 交圆与另外一点E ,则2BD DC ==,由三角形ABD 的勾股定理可得1AD =,由双割线定理可得2BD DC AD DE DE =⇒=,则直径332AE r =⇒=.(13)【2014年湖南,理13,5分】若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a = .【答案】3-【解析】由题可得52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-.(二)必做题(14~16题)(14)【2014年湖南,理14,5分】若变量,x y 满足约束条件4y xx y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为6-,则k = . 【答案】2- 【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且,4y x x y ≤+≤的可行域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=,因为2k ≤,所以2k =-.(15)【2014年湖南,理15】如图,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线经过,C F 两点,则ba= .【答案】21+【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩21a b ⇒=+.(16)【2014年湖南,理16,5分】在平面直角坐标系中,O 为原点,(1,0),(0,3),(3,0)A B C -,动点D 满足1CD =,则OA OB OD ++的最大值是 . 【答案】17+【解析】动点D 的轨迹是以C 为圆心,1为半径的圆,可设D 的坐标为(3cos ,sin )θθ+,则(2cos ,3sin )OA OB OD θθ++=++.()()222cos 3sin OA OB OD θθ++=+++()822cos 3sin θθ=++()87sin θϕ=++,其中43sin ,cos 77ϕϕ==, 当()sin 1θϕ+=时,OA OB OD ++的取到最大值17+.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2014年湖南,理17,12分】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现 安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.解:记{E =甲组研发新产品成功},{F =乙组研发新产品成功}.由题意知2132(),(),(),()3355P E P E P F P F ====, 且E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记{E =至少有一种新产品研发成功},则H EF =,于是122()()()3515P H P E P F ==⋅=,故所求的概率为13()1()15P H P H =-=.(2)设企业可获利润为X ,则X 的可能取值为0,100,120,220.因122(0)()3515P X P EF ===⋅=,133224236(100)(),(120)(),(220)().351535153515P X P EF P X P EF P X P EF ===⋅====⋅====⋅=X0 100 120 220 P215 315 415 615 数学期望为:()0120100220151555E X =⨯+⨯+⨯+⨯14015==.(18)【2014年湖南,理18,12分】如图,在平面四边形ABCD 中,1,2,7AD CD AC ===.(1)求cos CAD ∠的值;(2)若7cos BAD ∠=-,21sin CBA ∠=,求BC 的长.解:(1)在ADC ∆中,由余弦定理,得:222cos 2AC AD CD CAD AC AD +-∠=⋅,故由题设知,27cos .27CAD ∠==. (2)设BAC α∠=,则BAD CAD α=∠-∠,因为27cos CAD ∠=,7cos BAD ∠=-,所以221sin 1cos CAD CAD ∠=-∠=, 2221sin 1cos BAD BAD ∠=-∠=, 于是()3sin sin sin cos cos sin BAD CAD BAD CAD BAD CAD α=∠-∠=∠∠-∠∠= 在ABC ∆中,由正弦定理,sin sin BC AC CBAα=∠,故37sin 23sin 21AC BC CBA α⋅⋅===∠. (19)【2014年湖南,理19,13分】如图,四棱柱1111ABCD A B C D -的所有棱长都相等,11111,AC BD O AC B D O ==,四边形11ACC A 和四边形11BDD B 为矩形.(1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.解:(1)如图(a ),因为四边形11ACC A 为矩形,所以1CC AC ⊥,同理1DC BD ⊥.因为11//CC DD ,所以1CC BD ⊥,而AC BD O =,因此1CC ⊥平面ABCD , 由题设知11//O O C C ,故1O O ⊥平面ABCD . (2)解法一: 如图(a ),过1O 作11O H B C ⊥于H ,连接1C H .由(1)知,1O O ⊥平面ABCD ,所以1O O ⊥平面1111A B C D ,于是111O O AC ⊥,又四棱柱1111-ABCD A B C D 的所有棱长都相等,所以1111A B C D 是菱形,因此1111AC B D ⊥,从而11AC ⊥平面11B BDD ,所以111AC OB ⊥,于是1OB ⊥平面11O HC ,进而11OB C H ⊥,所以11O HC ∠为二面角11C OB D --的平面角,不妨设2AB =, 因为060CBA ∠=,所以11,OB OC OB === 在11Rt OO B ∆中,易知11111O O O H B O B O =⋅=,又111O C =.于是1C H ===故1111cos O H O HC C H ∠====11C OB D --. 解法二:因为四棱柱1111-ABCD A B C D 的所有棱长都相等,所以ABCD 是菱形,因此 AC BD ⊥,又1O O ⊥平面ABCD ,从而1,,OB OC OO 两两垂直.如图(b ),以1,,OB OC OO 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系O xyz -,不妨设2AB =,因为060CBA ∠=,所以1OB OC =.于是相关各点的坐标为11(0,0,0),(0,1,2)O B C ,易知,1(0,1,0)=n 是平面 平面11B BDD 的一个法向量.设2(,,)x y z =n 是平面11OB C 的一个法向量, 则212100OB OC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即2020z y z +=+=⎪⎩,取z =2,x y ==所以2=n .设二面角11C OB D --的大小为,易知是锐角,于是 121212cos cos ,θ⋅=<>===⋅n n n n n n .二面角11C OB D -- (20)【2014年湖南,理20,13分】已知数列{}n a 满足111,,*n n n a a a p n N +=-=∈.(1)若数列{}n a 是递增数列,且123,2,3a a a 成等差数列,求p 的值;(2)若12p =,且{}2+1n a 是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式. 解:(1)因为数列{}n a 是递增数列,11nn n n n a a a a p ++-=-=,而11a =,因此2231,1a p a p p =+=++,又123,2,3a a a 成等差数列,所以21343a a a =+,因而得230p p -=.解得1,03p p ==.当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾,故13p =.(2){}2+1n a 是递增数列,因而2+1210n n a a -->,于是()()2+122210n n n n a a a a --+-> ① 但2211122n n -<,所以2+12221n n n n a a a a --<- ② 由①,②知,2210n n a a -->,因此()221221211122n n n n n a a ----⎛⎫-== ⎪⎝⎭③ 因为{}2n a 是递减数列,同理可得2120n n a a +-<,故()21221221122n nn n na a ++-⎛⎫-=-=⎪⎝⎭④图a 1A OC B D1C 1B 1D A1O H1由③,④知,()1112n n n na a ++--==,于是121321()()()n n n a a a a a a a a -=+-+-++-()()()11211111111412111222233212n n nnnn -+-----=+-++=+=+⋅+.数列{}n a 的通项公式为()1141332nn n a --=+⋅.(21)【2014年湖南,理21,13分】如图,O 为坐标原点,椭圆221221(0)x y C a b a b+=>>:的左右焦点分别为12,F F ,离心率为1e ;双曲线222221(0)x yC a b a b-=>>:的左右焦点分别为34,F F ,离心率为2e ,已知123e e =,且2431F F =-.(1)求12C C ,的方程;(2)若1F 过作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值. 解:(1)因为123e e =,所以2222311b b a a -+=,即4434a b -=,因此222a b =,从而24(,0),(3,0)F b F b , 24331b b F F -==-,所以1b =,22a =,椭圆1C 方程为2212x y +=,双曲线2C 的方程为2212x y -=. (2)因为直线AB 不垂直于y 轴且过点()11,0F -,故课设直线AB 的方程为1x my =-.由22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=.易知此方程的判别式大于0.设1122(,),(,)A x y B x y ,则12,y y 是上述方程的两个实根,所以12122221,22m y y y y m m -+=⋅=++,因此()12122422x x m y y m -+=+-=+,AB 的中点为222,22m M m m -⎛⎫ ⎪++⎝⎭,故直线PQ 的斜率为2m -,PQ 的方程为2m y x =-,即20mx y +=. 由22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得()2224m x -=,222222420,,22m m x y m m ∴->==--,2222+4222m PQ x y m ∴=+=- 设点A 到直线PQ 的距离为d ,则B 点到直线PQ 的距离也为d ,所以112222224mx y mx y d m +++=+因为点,A B 在直线20mx y +=的异侧,所以()()1122220mx y mx y +++<, 于是112211222222mx y mx y mx y mx y +++=+--,从而()2122224my y d m +-=+又因为()22121212222144m y y y y y y m +-=+-=+,所以2222124m d m +=+四边形APBQ 面积222122132221222m S PQ d m m+=⋅==-+-- 而2022m <-<,故当0m =时,S 取得最小值2.四边形APBQ 面积的最小值为2.(22)【2014年湖南,理22,13分】已知常数0a >,函数2()ln(1)2xf x ax x =+-+.(1)讨论()f x 在区间(0,)+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且12()()0f x f x +>,求a 的取值范围.解:(1)()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x +-=++,(*)因为()()2120ax x ++>, 所以当10a -≤时,当1a ≥时,()'0f x ≥,此时,函数()f x 在()0,+∞单调递增,当01a <<时,()12'0f x x x =⇒==-,当1(0,)x x ∈时,()'0f x <;当1(,)x x ∈+∞时,()'0f x <. 故()f x 在区间1(0,)x 单调递减,在1(,)x +∞单调递增的. 综上所述:当1a ≥时,()'0f x ≥,此时,函数()f x 在()0,+∞单调递增,当01a <<时, ()f x 在区间10,2a a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在12a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增的. (2)由(*)式知,当1a ≥时,()'0f x ≥函数()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<,又()f x 的极值点只可能是1x =2x =-,且由()f x 的定义可知,1x a >-且2x ≠-,所以1a ->-,2--,解得12a ≠-,此时,(*)式知1x ,2x 分别是()f x 的极小值点和极大值点,而1212121222()()ln(1)ln(1)22x x f x f x ax ax x x +=+-++-++ ()()()121221212121244ln 1224x x x x a x x a x x x x x x ++⎡⎤=+++-⎣⎦+++()()()22412ln 21ln 2122121a a a a a -=--=-+---. 令21a x -=,由01a <<且12a ≠-知当102a <<时,10x -<<;当112a <<时,01x <<.记22()ln 2g x x x =+-.(ⅰ)当10x -<<时,()2()2ln 2g x x x =-+-,所以222222'()x g x x x x -=-=,因此,()g x 在()1,0-上单调递减,从而()(1)40g x g <-=-<,故当102a <<时,12()()0f x f x +<.(ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以222222'()x g x x x x-=-=,因此,()g x 在()0,1上单调递减, 从而()(1)0g x g >=,故当112a <<时,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围是为1,12⎛⎫⎪⎝⎭.。

2014年高考理科数学湖南卷(含详细答案)

2014年高考理科数学湖南卷(含详细答案)

数学试卷 第1页(共45页) 数学试卷 第2页(共45页) 数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足ii z z +=(i 为虚数单位)的复数z =( )A .11i 22+B .11i 22-C .11i 22-+D .11i 22--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽 样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( ) A .123p p p =< B .231p p p =< C .132p p p =<D .123p p p ==3.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(1)(1)f g += ( ) A .3-B .1-C .1D .34.51(2)2x y -的展开式中23x y 的系数是 ( )A .20-B .5-C .5D .205.已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )A .①③B .①④C .②③D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 ( )A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-7.一块石材表示的几何体的三视图如图2所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .48.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A .2p q+ B .(1)(1)12p q ++-CD19.已知函数()sin()f x x ϕ=-,且2π30()d 0f x x =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x = 10.已知函数21()e (0)2x f x x x =+-<与2()ln()g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos ,1sin ,x y αα=+⎧⎨=+⎩(α为参数)交于A ,B 两点,且||2AB =.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图3,已知AB ,BC 是O 的两条弦,AO BC ⊥,AB =BC =则O 的半径等于 .13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = . (二)必做题(14~16题)14.若变量x ,y 满足约束条件,4,,y x x y y k ⎧⎪+⎨⎪⎩≤≤≥且2z x y =+的最小值为6-,则k = .15.如图4,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过C ,F 两点,则ba= . 16.在平面直角坐标系中,O 为原点,(1,0)A -,(0,3)B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的最大值是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120 万元;若新产品B 研发成功,预计企业可获利润100 万元,求该企业可获利润的分布列和数学期望.-----在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------姓名________________ 准考证号_____________图1图2图3图4数学试卷 第4页(共45页) 数学试卷 第5页(共45页) 数学试卷 第6页(共45页)18.(本小题满分12分)如图5,在平面四边形ABCD 中,1AD =,2CD =,AC (Ⅰ)求cos CAD ∠的值;(Ⅱ)若cos BAD ∠=,sin CBA ∠= 求BC 的长.19.(本小题满分12分)如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形. (Ⅰ)证明:1O O ⊥底面ABCD ;(Ⅱ)若60CBA ∠=,求二面角11C OB D --的余弦值.20.(本小题满分13分)已知数列{}n a 满足11a =,1||n n n a a p +-=,*n ∈N .(Ⅰ)若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (Ⅱ)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式.21.(本小题满分13分)如图7,O 为坐标原点,椭圆1C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线2C :22221x y a b -=的左、右焦点分别为3F ,4F ,离心率为2e .已知12e e =且241F F . (Ⅰ)求1C ,2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.(本小题满分13分)已知常数0a >,函数2()ln(1)2xf x ax x =+-+. (Ⅰ)讨论()f x 在区间(0+)∞,上的单调性; (Ⅱ)若()f x 存在两个极值点1x ,2x ,且12()()0f x f x +>,求a 的取值范围.图5图6图73 / 152014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析【提示】根据复数的基本运算即可得到结论. 【考点】复数的四则运算 2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,系统抽样和分层抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.故选D.【提示】利用二项式定理的展开式的通项公式,求解所求项的系数即可. 【考点】二项式定理 5.【答案】C【解析】根据不等式的性质可知,若x y >,则x y -<-成立,即p 为真命题,当1x =,1y =-时,满足x y >,数学试卷 第10页(共45页)数学试卷 第11页(共45页) 数学试卷 第12页(共45页)但22x y >不成立,即命题q 为假命题,则①p q ∧为假命题;②p q ∨为真命题;③()p q ∧⌝为真命题;④()p q ⌝∨为假命题,故选:C.【提示】根据不等式的性质分别判定命题p ,q 的真假,利用复合命题之间的关系即可得到结论. 【考点】非、或、且,真假命题 6.【答案】D【解析】当[2,0)t ∈-时,运行程序如下,221(1,9]t t =+∈,(26]3,S t -=∈-,当[0,2]t ∈时,[,1]33S t ∈--=-,则(2,6][3,1][3,6]S ∈---=-,故选D.r5 / 15【提示】由题意可得001e ln()0x x a ---+=有负根,采用数形结合的方法可判断出a 的取值范围.BD DC AD DE DE =⇒=O 的半径等于R ,先计算AD ,再计算数学试卷 第16页(共45页)数学试卷 第17页(共45页)数学试卷 第18页(共45页)【提示】可先由图中的点与抛物线的位置关系,写出C ,F 两点的坐标,再将坐标代入抛物线方程中,消去参数p 后,得到a ,b 的关系式,再寻求b的值.||OA OB OD ++=||OA OB OD ++的取值范围为cos,sin )θθ,求得||8OA OB OD ++=+||OA OB OD ++的最大值.【提示】(Ⅰ)利用对立事件的概率公式,计算即可,AC AD7 / 15数学试卷 第22页(共45页)数学试卷 第23页(共45页) 数学试卷 第24页(共45页)21277217147⎛⎫-- ⎪ ⎪⎝⎭ 37sin 23sin 216AC BACCBA∠=∠. 【提示】(Ⅰ)利用余弦定理,利用已知条件求得cos CAD ∠的值.(Ⅱ)根据cos CAD ∠,cos BAD ∠的值分别,求得sin BAD ∠和sin CAD ∠,进而利用两角和公式求得sin BAC ∠的值,最后利用正弦定理求得BC . 【考点】解三角形,余弦定理,正弦定理19.【答案】(Ⅰ)如图,因为四边形11ACC A 为矩形,所以1CC AC ⊥. 同理1DD BD ⊥.因为11CC DD ∥,所以1CC BD ⊥. 而ACBD O =,因此1C C B D C A ⊥底面.由题设知,11O O C C ∥. 故1C O B D O A ⊥底面.(Ⅱ)如图2,过1O 作11O H OB ⊥于H ,连接1HC . 由(Ⅰ)知,1C O B D O A ⊥底面, 所以11111O O A B C D ⊥底面, 于是111O O AC ⊥.又因为四棱柱1111A B ABC C D D -的所有棱长都相等,所以四边形1111A B C D 是菱形,11112OO O BOB=19【提示】(Ⅰ)由已知中,四棱柱1111ABCD A B C D-的所有棱长都相等,AC BD O=,11111AC B D O=,四边形11ACC A和四边形11BDD B均为矩形.可得111O O CC BB∥∥且1CC AC⊥,1BB BD⊥,进而1OO AC⊥,1OO BD⊥,再由线面垂直的判定定理得到1O O ABCD⊥底面;(Ⅱ)由线面垂直,线线垂直推得111AC OB⊥,11OB C H⊥,所以11C HO∠是二面角11C OB D--的平面角.再由三角函数求得二面角11C OB D--的余弦值.【考点】线线关系、线面关系,二面角9 / 15数学试卷 第29页(共45页) 数学试卷 第30页(共45页)11(1)32nn -- 【解析】解(Ⅰ)因为{}n a 1(1)2n n --++112121()121n ---+11 / 1511(1)32nn --. }n 的通项公式为11(1)32nn --. 【提示】(Ⅰ)根据条件去掉式子的绝对值,分别令1n =,2代入求出2a 和3a ,再由等差中项的性质列出关于p 的方程求解,利用“{}n a 是递增数列”对求出的p 的值取舍;(Ⅱ)根据数列的单调性和式子“1||n n n a a p +-=”、不等式的可加性,求出221n n a a --和1n n a a +-,再对数列{}n a 的项数分类讨论,利用累加法和等比数列前n 项和公式,求出数列{}n a 的奇数项、偶数项对应22a b a +=,从而2(F数学试卷 第34页(共45页)数学试卷 第35页(共45页) 数学试卷 第36页(共45页) 22212m m ++,22214m m ++.2222213|222122m d m m +==-+--. S 取得最小值2.13 / 15【提示】(Ⅰ)由斜率公式写出1e ,2e 把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入三角形面积公式得四边形APBQ n数学试卷第40页(共45页)数学试卷第41页(共45页)数学试卷第42页(共45页)【提示】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决. 【考点】函数单调性,极值,导数的性质与应用15 / 15。

2014年高考湖南理科数学试题及答案(word解析版)_共7页

2014年高考湖南理科数学试题及答案(word解析版)_共7页

2x
(9)【2014 年湖南,理 9,5 分】已知函数发 f x sin x ,且 03 f (x)dx 0 ,则函数 f x 的图象的一条
对称轴是( )
(A) x 5 6
(B) x 7 12
(C) x 3
(D) x 6
【答案】A
【解析】解法一:
x
1和
x

1 可得
f
1
g
1
3

f
1
g
1
1 ,则

f f
1 1
g g
1 3 1 1

f g
1 1
2 1
f 1 g 1 1,故选 C.
(4)【2014 年湖南,理 4,5 分】 (1 x 2 y)5 的展开式中 x 2 y 3 的系数是( ) 2
和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为 p1, p2 , p3 ,则( )
(A) p1 p2 p3
(B) p2 p3 p1
(C) p1 p3 p2
(D) p1 p2 p3
【答案】D
【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,
y 轴对称的点,则 a 的取值范围是( )
(A) ( , 1 ) e
(B) ( , e )
(C) ( 1 , e) e
(D) (- e,1 ) e
【答案】B
【解析】由题可得函数
即 p1 p2 p3 ,故选 D.
(3)【2014 年湖南,理 3,5 分】已知 f x , g x分别是定义 R 在上的偶函数和奇函数,且

2014年高考理科数学湖南卷答案及解析(word版)

2014年高考理科数学湖南卷答案及解析(word版)

2014年普通高等学校招生全国统一考试(湖南卷)一.选择题.1.【答案】B 【解析】由题可得()111122z i i i z i zi z i i z i z i +-=⇒+=⇒-=-⇒==--,故选B. 【考点定位】复数2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D.【考点定位】抽样调查3.【答案】C【解析】分别令1x =和1x =-可得()()113f g -=且()()111f g ---=()()111f g ⇒+=,则()()()()()()1131211111f g f f g g -==⎧⎧⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩()()111f g ⇒+=,故选C. 【考点定位】奇偶性4.【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭, 则2n =时, ()()2532351121022022n n nC x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A. 【考点定位】二项式定理5.【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <,所以命题q 为假命题,所以②③为真命题,故选C.【考点定位】命题真假 逻辑连接词6.【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时 ,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数7.【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-⇒=,故选B.【考点定位】三视图 内切圆 球8.【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=,故选D.【考点定位】实际应用题9.【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++, 因为()2302sin 0cos cos 03x dx ππϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰sin 03πϕ⎛⎫⇒-= ⎪⎝⎭, 则56x π=是其中一条对称轴,故选A. 【考点定位】三角函数图像 辅助角公式10.【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()0220001ln 2xx e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,当0x 取决于负无穷小时,()001ln 2x e x a --+-趋近于-∞,因为函数()1ln 2x y e x a =--+-在定义域内是单调递增的,所以ln a a <⇒<,故选B.【考点定位】指对数函数 方程二.填空题. 11.【答案】sin 42πρθ⎛⎫-=- ⎪⎝⎭ 【解析】曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()2,1到直线l 的距离0d =,所以圆心在直线l 上,故1y x=-sin cos 1sin 42πρθρθρθ⎛⎫⇒=-⇒-=- ⎪⎝⎭,故填sin 42πρθ⎛⎫-=- ⎪⎝⎭.【考点定位】极坐标 参数方程12.【答案】32【解析】设线段AO 交BC 于点D 延长AO 交圆与另外一点E ,则BD DC ==由三角形ABD 的勾股定理可得1AD =,由双割线定理可得2BD DC AD DE DE =⇒=,则直径332AE r =⇒=,故填32. 【考点定位】勾股定理 双割线定理13.【答案】3- 【解析】由题可得52331233a a ⎧--=⎪⎪⎨⎪-=⎪⎩3a ⇒=-,故填3-. 【考点定位】绝对值不等式14.【答案】2-【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且,4y x x y ≤+≤的可行域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=,故填2-.【考点定位】线性规划15.1【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,则2222a pa a b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩1a b ⇒=,故填1.【考点定位】抛物线16.【答案】【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3cos ,sin 0,2θθθπ+∈,则(3OA OB OD ++=cos θθ的最大值为2,++的最大值为=,故填所以OA OB OD【考点定位】参数方程圆三角函数。

2014年普通高等学校招生全国统一考试---理数(湖南)(4)

2014年普通高等学校招生全国统一考试---理数(湖南)(4)

科目:数学(理科)(试题卷)注意事项:1. 答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码的姓名、准考证号和科目。

2. 选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3. 本试题卷共6页。

如缺页,考生须及时报告监考老师,否则后果自负。

4. 考试结束后,将本试题卷和答题一并交回。

姓名准考证号祝你考试顺利!绝密★启用前2014年普通高等学校招生全国统一考试(湖南4)理 科 数 学一、选择题1.若集合{}{}1,2,3,4,5,(,)|,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为 A .3 B .6 C .8 D .10 2.若,a b R ∈,则“2a b =”是“复数12a bii+-为纯虚数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件3.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A .球 B .三棱锥 C .正方体 D .圆柱 4.将函数()sin f x x ω=(其中0ω>)的图象向右平移4π个单位长度,所得图象经过点3(,0)4π,则ω的最小值是 A .13 B .1 C .53 D .25.已知2222360,20x y z a x y z a ++-=+++-=,则实数a 的取值范围为A .[1,4]B .(,1][4,)-∞⋃+∞C .(1,4)D .(,1)(4,)-∞⋃+∞ 6.两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A. 10种B.15种C. 20种D. 30种7.下图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( )A. 1000N P =B. 41000N P =C. 1000M P =D. 41000MP =8.在数列{}n a 中,已知1222,7,n a a a +==等于*1()n n a a n N +⋅∈的个位数字,则2013a 的值为 A .8 B .6 C .4 D .2 9.下列函数中,在(0,)2π上有零点的函数是A .()sin f x x x =-B .2()sin f x x x π=- C .2()sin f x x x =-D .22()sin f x x x π=-10.如图,P 为椭圆221259x y +=上第一象限内的任意一点,过椭圆的右顶点A ,上顶点B 分别作y 轴,x 轴的平行线,它们相交于点C ,过P 引BC 、AC 的平行线交AC 于N ,交BC 于M ,交AB 于D 、E ,记矩形PMCN 的面积为1S ,三角形PDE 的面积为2S ,则12:S S =A .1B .2C .12D .与点P 的坐标有关 二、填空题11.设向量(1,2),(1,1),(2,)a m b m c m ==+= ,若()a c b +⊥ ,则||a =。

年普通高等学校招生全国统一考试湖南卷数学理科答案与解析参考版

年普通高等学校招生全国统一考试湖南卷数学理科答案与解析参考版

4
2 2
,故填
sin
4
2
.
2
【考点定位】极坐标 参数方程
3
12.【答案】
2
【解析】设线段 AO 交 BC 于点 D 延长 AO 交圆与另外一点 E ,则 BD DC 2 ,由三角
形 ABD 的勾股定理可得 AD 1 ,由双割线定理可得 BDDC ADDE DE 2 ,则直径 AE 3 r 3 ,故填 3 .
【考点定位】线性规划
15.【答案】 2 1
a2 pa








C
a 2
,
a
,
F
a 2
b,
b
,则
b2
2
p
a 2
b
a b
2 1 ,故 填
2 1.
【考点定位】抛物线
16.【答案】 2 3
【解析】动点 D 的轨迹为以 C 为圆心的单位圆,则设为 3 cos ,sin 0, 2 ,则
r ,则 8 r 6 r 82 62 r 2 ,故选 B.
【考点定位】三视图 内切圆 球
8.【答案】D
【 解 析 】 设 两 年 的 平 均 增 长 率 为 x ,则 有 1 x2 1 p1 q
x 1 p1 q 1,故选 D.
【考点定位】实际应用题
9.【答案】A
【解析】函数 f x 的对称轴为 x k x k ,
22
【考点定位】勾股定理 双割线定理
13.【答案】 3
5 3
a
2
【解析】由题可得
3
a
3 ,故填 3 .
1 3
a
2
3

湖南高考数学理科 含答案

湖南高考数学理科 含答案

,故选
A.
5.【答案】C
【解析】当 x y 时,两边乘以 1可得 x y ,所以命题 p 为真命题,当 x 1, y 2 时,因为 x2 y2 , 所以命题 q 为假命题,所以②③为真命题,故选 C.
6.【答案】D
【 解 析 】 当 t 2, 0 时 , 运 行 程 序 如 下 , t 2t2 1 1,9, S t 3 2, 6 , 当 t 0, 2 时 , S t 33, 1 ,则 S 2, 6 3, 1 3, 6 ,故选 D.
C. ( 1 , e) e
D. ( e, 1 ) e
二、填空题:本大题共 6 小题,考生作答 5 小题,每小题 5 分,共 25 分. (一)选做题(请考生在第 11,12,13 三题中任选两提作答,如果全做,则按前两题记分)
11.在平面直角坐标系中,倾斜角为
π 4
的直线 l
与曲线
C:xy21
相等,即 p1 p2 p3 ,故选 D.
3.【答案】C
【解析】分别令 x 1 和 x 1 可得 f 1 g 1 3且 f 1 g 1 1

f
1
g 1

1
,则


f f
1 1
g 1 3

g 1 1
f g
C. p1 p3 p2
D. p1 p2 p3
3.已知 f (x), g(x) 分别是定义在 R 上的偶函数和奇函数,且 f (x) g(x) x3 x2 1,则 f (1) g (1)
()
A.-3
B.-1
C.1
D.3
4. (1 x 2 y)5 的展开式中 x2 y3 的系数是 ( 2

湖南高考数学理科含答案

湖南高考数学理科含答案
乙组研发新产品 B .设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品 A 研发成功,预计企业可获得120 万元,若新产品 B 研发成功,预计企业可获得利润100 万
元,求该企业可获得利润的分布列和数学期望.
17.【答案】(1) 13 (2)详见解析 15
【解析】(1)解:设至少有一组研发成功的事件为事件 A 且事件 B 为事件 A 的对立事件,则事件 B 为一
【 解 析 】 当 t 2, 0 时 , 运 行 程 序 如 下 , t 2t2 1 1,9, S t 3 2, 6 , 当 t 0, 2 时 , S t 33, 1 ,则 S 2, 6 3, 1 3, 6 ,故选 D.
7.【答案】B 【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径 r ,则
A.[6, 2]
B.[5, 1]
C.[4, 5]
D.[3, 6]
开始
输入t


t<0?
t = 2t2 + 1
S=t-3
输出S
结束 图1
7.一块石材表示的几何的三视图如图 2 所示,将该石材切削、打磨,加工成球,则能得到的最大球的
半径等于 ( )
A. 1
B.2
C. 3
D.4
6
8
12
正视图
侧视图 图2
D. p1 p2 p3
3.已知 f (x), g(x) 分别是定义在 R 上的偶函数和奇函数,且 f (x) g(x) x3 x2 1,则 f (1) g (1)
()
A.-3
B.-1
C.1
D.3
4. (1 x 2 y)5 的展开式中 x2 y3 的系数是 ( 2

年普通高等学校招生全国统一考试湖南卷数学理科答案与解析参考版

年普通高等学校招生全国统一考试湖南卷数学理科答案与解析参考版

2014 年一般高等学校招生全国一致考试( 湖南卷 )数学理科一.选择题 .1.【答案】 B【分析】由题可得z ii 1 1iz i zi z 1 iiz1 i2i ,应选 B.z2【考点定位】复数 2.【答案】 D【分析】依据随机抽样的原理可得简单随机抽样 ,分层抽样 ,系统抽样都一定知足每个个体被抽到的概率相等 ,即 p 1 p 2 p 3 ,应选 D.【考点定位】抽样检查3.【答案】 C【分析】分别令 x1 和 x1 可得 f1 g 13 且 f 1 g 1 1f 1g 1 3 f 1 2 f 1 g 1 1 ,则 1g 11g 1f 1g 1 1 ,应选 C.f 1【考点定位】奇偶性 4.【答案】 A1n5 n【分析】第 n1项睁开式为 C 5nx2 y,2n1 n12则 n2 时 ,5 n323 ,应选 A.x2 y10 x 2 y20x yC522【考点定位】二项式定理 5.【答案】C【分析】当xy 时 ,两边乘以1可得xy,因此命题p 为真命题,当 x 1, y2时,因为 x 2y 2 ,q 为假命题,,C.【考点定位】命题真假逻辑连结词6.【答案】 D【分析】当 t 2, 0 时 ,运转程序以下 , t2t 2 11,9 , S t 32,6 ,当 t 0,2时, S t 33, 1 ,则 S2,63, 13,6 ,应选 D.【考点定位】程序框图 二次函数7.【答案】 B【分析】由图可得该几何体为三棱柱 ,因此最大球的半径为正视图直角三角形内切圆的半径r ,则 8 r 6 r82 62r 2 ,应选 B.【考点定位】三视图内切圆 球8.【答案】 D2【分析】设两年的均匀增加率为 x ,则有 1 x1 p 1 qx1 p 1 q 1,应选 D.【考点定位】实质应用题9.【答案】 A【分析】函数f x 的对称轴为 xkxk ,22232由于sin xdx 0cossin0 ,cos33因此2k 4 2k ,则 x5,应选 A.或 是此中一条对称轴336【考点定位】三角函数图像协助角公式10.【答案】 Bx 0,0知足 x 02ex1 2lnx 0a 【分析】由题可得存在x 02exln x 0 a 1 0 ,当 x 0 取决于负无量小时 , e x 0ln x 0a1 趋近于,因2 12为 函 数 y e x ln x a 在定义域内是单一递加的, 所 以2e 0 l n 0a1 0l nal nea ,应选e B.2【考点定位】指对数函数 方程二.填空题 .11.【答案】sin242【分析】曲线C的一般方程为22x 2y 11 , l的方程为 y x b ,设直线由于弦长AB2 ,因此圆心 2,1 到 直 线 l 的 距 离 d0 , 因此圆心在直线 l 上 , 故yx 1sincos1 sin2 ,故填 sin2424.2【考点定位】极坐标 参数方程12.【答案】32【分析】设线段 AO 交 BC 于点 D 延伸 AO 交圆与此外一点 E ,则BDDC2 ,由三角形ABD 的勾股定理可得AD 1 ,由双割线定理可得BD DCAD DEDE2 ,则直径AE3r 3 3,故填 .22【考点定位】勾股定理 双割线定理13.【答案】35 a 2 3【分析】由题可得3a 3 ,故填 3 .12 3a3【考点定位】绝对值不等式14.【答案】2【分析】求出拘束条件中三条直线的交点为 k, k , 4 k ,k ,2,2,且 yx, x y 4 的可行域如图 ,因此 k2 ,则当 k, k 为最优解时 , 3k6k2 ,当4 k ,k为最优解时 , 2 4 k k6 k 14 ,由于 k,2,故填 2.2 因此 k【考点定位】线性规划15.【答案】 2 1a, a , F a a2paa【分析】由题可得C b,b ,则 2 p a 2 1,故填22b2bb22 1.【考点定位】抛物线16.【答案】 2 3【分析】动点 D 的轨迹为以 C 为圆心的单位圆,则设为3cos,sin0,2,则228 2 cos3sinOA OB OD3cos sin3, 因为1c o s 3 s i n,OA OB OD的最大值为12 23,故填2 3 .的最大值为 2 因此【考点定位】参数方程圆三角函数17.某公司甲 ,乙两个研发小组 ,他们研发新产品成功的概率分别为 2 和 3,现安排甲组研发新35产品 A ,乙组研发新产品 B .设甲,乙两组的研发是互相独立的.(1)求起码有一种新产品研发成功的概率;(2)若新产品 A 研发成功,估计公司可获取120 万元,若新产品 B 研发成功,估计公司可获取利润 100 万元,求该公司可获取收益的散布列和数学希望.1317.【答案】 (1)(2)详看法析15A 且事件B 为事件 A 的对峙事件,则事【分析】 (1)解 : 设起码有一组研发成功的事件为事件23件 B 为一种新产品都没有成功,由于甲,乙成功的概率分别为, ,35则P B2131221535,再依据对峙事件概率之间的公式可得315P A 1P B 13,因此起码一种产品研发成功的概率为13 15.15(2)由题可得设该公司可获取收益为, 则的取值有0 , 120 0 , 100 0 , 120 100 , 即0,120,100,220 ,由独立试验的概率计算公式可得:P012132; P1202134;35153515P1001231; P220232;355355因此的散布列以下 :0120100220P2412 151555则数学希望 E0212041001220232 2088 130 .151555【考点定位】散布列希望独立试验的概率18.如图 5,在平面四边形ABCD 中,AD1, CD2, AC7 .(1)求cos CAD 的值;(2)若cos BAD7, sin CBA21,求BC的长.14618.【答案】 (1) cos27(2)6CAD77【分析】解 :(1)由DAC 对于CAD 的余弦定理可得cos CAD AD 2AC 2DC 2174 27,因此cos2 72AD AC2177CAD.7(2)由于BAD为四边形内角 ,因此sin BAD 0且 sin CAD 0 ,则由正余弦的关系可得sin BAD1cos2BAD189且 sin CAD1cos2CAD21,再有正147弦的和差角公式可得sin BAC sin BAD CAD sin BAD cos CAD sin CAD cos BAD189272173333 147714714,再由ABC的正弦定理可得7AC BCBC736 sin CBA sin BAC217.76【考点定位】正余弦定理正余弦之间的关系与和差角公式19.如图6,四棱柱ABCD A BC D 的全部棱长都相等, AC BD O, AC B D O ,1 1 1 1 1 1 1 11四边形 ACC1 A1和四边形 BDD1B1为矩形.(1)证明 : O1O底面ABCD;(2)若CBA 600,求二面角C1OB1 D 的余弦值.19.【答案】 (1)257详看法析 (2)19【分析】 (1)证明 : 四棱柱ABCD A1BC1 1 D1的全部棱长都相等四边形 ABCD 和四边形A1B1C1D1均为菱形AC BD O, AC11 B1D1O1O,O1分别为BD,B1D1中点四边形 ACC1A1和四边形 BDD1B1为矩形OO1 / / CC1 //BB1且 CC1 AC, BB1BDOO1BD,OO1AC又AC BD O 且AC,BD底面ABCDOO1底面ABCD.(2)过O作1BO 的垂线交1BO 于点1E ,连结EO , EC .不如设四棱柱11ABCD ABC D 的边1 1 1 1长为2a .OO1底面ABCD且底面ABCD //面A1B1C1D1 OO1面 A1 B1C1 D1又 O1C1面 A1B1C1D1OC OO1 11四边形 A1B1C1 D1为菱形O1C1O1 B1又 OC1OO且OO OC O ,OO,OB面OBD1111111111 O1C1面OB1D又 B1O 面 OB1DB1O OC1 1又 BO1O1E 且 O1C1O1 E O1, O1C1,O1 E面 O1 EC1 B1O面 O1 EC1O1EC1为二面角 C1OB1 D 的平面角,则cosO1 E O1EC1EC1CBA600且四边形 ABCD 为菱形O1C1 a , BO113a, OO12a, B1O B1O12OO127a ,则O1E B1O1 sin O1 B1O B1O1O1O3a2a221B1O7a a7再由O1 EC1的勾股定理可得EC1O1 E2O1C1212 a2a219a,77O1E 221 a257257则 cos7,因此二面角C1OB1O1 EC11919 D 的余弦值为.EC119a7【考点定位】线面垂直二面角20.已知数列a知足a1, a a p n,n N *.n1n 1n(1)若a为递加数列 ,且a1,2 a2,3a3成等差数列 ,求P的值 ;n(2)若p 1是递加数列 ,a2n是递减数列,求数列 a n的通项公式. ,且a2n124120.【答案】 (1) p 1(2)a n3 3 2n 1, n为奇数3413 3 2n 1, n为偶数【分析】解:(1)由于数列a n为递加数列,所以 a n 1a n0 ,则a n 1a n p n a n1a n p n,分别令n1,2可得a 2 a 1 p, a 3 a 2 p 2 a 2 1 p, a 3 p 2 p 1 , 由于 a 1 , 2a 2 , 3a 3成等差数列 , 因此4a 2a 1 3a 34 1 p 1 3 p 2p 13 p 2 p 0p1或 0,3 当 p 0 时 ,数列 a 为常数数列不切合数列 a1n 是递加数列 ,因此 p.n3(2) 由题可得an 1a n 1a2na2n 11 1 , a 2n2a2n 111 ,由于a 2n1是递n2 2 n2 2n2增数列且a2 n是递减数列, 所 以 a 2n1a n 2且 a 2n 2a 2n , 则 有a 2n an22a 2n1an 2an2 a n1 ,由于22a2n1a n2 1(2) 由题可得an 1a n 1a2na2n 11 1 , a 2n2a2n111 ,由于a 2n1是递n2 2 n2 2n2增数列且a 2n 是递减数列 , 因此 a 2n 1a 2n 1 0 且 a 2 n 2a 2n 0a 2n 2a 2n 0 ,两不等式相加可得 a2 n1a2n1a2n2a2na2 na2 n1a2n2a2n 1 ,又 因 为a2 n a2 n 11a2 n 2a2n 11, 所 以a2nan20 , 即22 n 122n 11a2 na2n11 1,2 2n1同理可得 a 2n 3a2 n2a2 n 1a2n且a2n3a2n2a2n1a 2 n ,因此 a 2 n 1a2n,2 2n则当n 2mm N *时 , a 2a 11, a 3a 211 ,, a 2 m a2m 111 , 这 2m1 个等式相加2 22, a 4a323 2m2 可得 a 2 m a 11111 1121 2322m 1222422 m 21 1 1 1 1 1 11412 22 m 1 4 22 22 m 2 4a2m1 11 13 3 22m 133 22m 1.44当 n2m 1 时 , a 21 a 21, a 4 a 3 1, , a 2m 1a2 m 1a 1, a 32 2 2 32 m ,这 2m22个等式相加可得a2 m 1a 11 111 1 121 2322 m 1222422m1 1 1 1 1111 2 22 m 1 4 22 22 m 4111 13 3 22m44a2 m 141当 m 0 时 , a 1 1 切合 故 413 3 22 m ,,a 2 m 13 3 22 m 24 1 1 , n 为奇数综上 a n33 2n .4 11 , n 为偶数33 2n【考点定位】叠加法 等差数列 等比数列21.如图 7, O为坐标原点 ,椭圆C1x2y2b 0 的左右焦点分别为F1, F2,离心率:2b2 1 aa为 e1;双曲线 C2x2y2F3 , F4,离心率为 e2,已知e1e23:2b2 1 的左右焦点分别为, 且a2F2F43 1.(1)求C1,C2的方程 ;(2) 过F1点的不垂直于y 轴的弦 AB , M 为 AB 的中点,当直线 OM 与C2交于 P, Q 两点时,求四边形 APBQ 面积的最小值.21.【答案】 (1)x2y 21x2y2 1 (2)422e11b21b22 a2b23,【分析】解 :(1) 由题可得a2 ,e2a2 ,且F1F2,由于e1e22且F2 F4a2b2a2b2,所以1 b21 b23且a2a22a22a2231a2b 且 b1,a 2 ,因此椭圆 C1方程为x221,b b y2双曲线 C2的方程为x2y21. 2(2)由(1)F21,0,不垂直于y,AB 的方程为x ny 1 ,联可得由于直线 AB轴因此设直线立直线与椭圆方程可得n22y22ny10y A y B 2ny mn,则则,由于n22,n22M x M , y M在直线 AB ,x Mn 212 ,AB 为焦点弦,因此依据焦点上 因此2 n 2 由于n 22弦弦长公式可得AB2e 1x M22 2n 22 2 4 2 n 2122n 2,则直线 PQ 的方程n 22为yyMxynx ,联立直线PQ与双曲线可得x M2n x 282n 2x 22 0 x 24, y 2 则 4 n 2 0 2 n 2 , 因此 P,Q2n 24 n 2的坐标为8,2n 2,8 2n 2,则 点P,Q 到直线 AB 的距离为4 n 24 n 24 n 2,24 nn2n 28 1n2n 2814 n24 n 24 n24 n 2d 1, d 2,由于点 P,Q 在直线 ABn21n212n282 2 n 2 22n24 n 2 n 24 n 2的 两 端所 以 d 1 d 24,则四 边形 APBQ 面积n21n21S1AB d 1 d 22n 2 1 8 5 1,由于4 4 n 20 ,因此当 n 24 n2 时, 四边形 APBQ8n 2n 244面积获得最小值为 4 .【考点定位】弦长双曲线 椭圆 最值22.已知常数 a 0,函数 fx ln 1 ax2 xx .2(1)议论 f x 在区间 0,上的单一性 ;(2)若 fx 存在两个极值点x 1, x 2 ,且 f x 1f x 2 0 ,求 a 的取值范围 .【答案】 (1)详看法析【分析】解 :(1)对函数 fx 求导可得a 42 4 1 axax 2 4 1 af ' xa x 2, 因 为1 ax222x 21 ax x 21 ax x 21 ax2, 因此0当 1 a 0 时 , 即 a 1 时 , f ' x0 恒建立 , 则函数 f xx2 在0, 单 调 递 增 , 当 a 1 时 ,f ' x 0x2 a 1 a, 则 函 数 f x 在 区 间a0, 2 a 1 a单一递减 ,在 2 a 1a单一递加的 .aa(2)解:(1)对函数fx求 导可得a4a x24ax1 ax 24 1 af ' x2, 因 为1 ax222x 21 ax x 21 ax x 21 ax 21 a 0a1f ' xf xx2时 , 即 时 ,恒建立 , 则函数 在, 因此当0, 单 调 递 增 , 当 a 1 时 ,f ' x 0x2 a 1 a, 则 函 数 f x 在 区 间a0, 2 a 1 a单一递减 ,在 2 a 1a单一递加的 .aa(2) 函 数 f x的 定 义 域为1 , , 由(1) 可得当 0a 1a时 , f ' x0 x2 a 1 a,则 2 a 1 a1 1,则2 a 1 a为aaaaa2函数 f x 的两个极值点 ,f x 1f x 2 ln 1 2 a 1 aln 1 2 a 1 a4 a 1 aln 1 4a 1 a4 a 1 a1a1 ,则 0a 1 a1,则设,由于1 或 0 a 222ta 1 a0 t1 ,则 f x 1 f x 2ln 1 4t 24t ,2设函数 g x ln 14x 24x0 t1, 后续有待更新 !!!2【考点定位】导数含参二次不等式对数更多出色内容:(在文字上按住ctrl即可点击查察)2014 年高考全国各省市高考作文题目2014 年全国各省市高考试题及答案分析2014 年高考成绩查问时间及进口2014 年高考分数线及历年分数线汇总2014 年全国各地录取结果查问特别策划——致我们终将逝去的高考。

2014年高考湖南卷理科数学

2014年高考湖南卷理科数学

绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)文档打印:株洲县五中黄小红本试卷包括选择题、填空题和解答题三部分,共5页.时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分,每小题四个选项中,只有一项符合题目要求.1.满足z i i z (i 为虚数单位)的复数z= A .1122iB .1122iC .1122iD .1122i2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽到的概率分别为123,,p p p ,则A .123p p p B .231p p p C .132p p p D .123p p p 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1f xg x xx则(1)(1)f g A . 3B .1C .1D .34.512)2(x y 的展开式中23x y的系数为A .20B .5 C .5D .205.已知命题P :22,,,xy xy q xy xy 若则命题:若则.在命题①pq ②pq③()pq ④()p q中,真命题是A .①③B .①④C .②③D .②④6.执行如图1所示的流程图,如果输入的[2,2]t ,则输出的S 属于A .[6,2]B .[5,1]C .[4,5]D .[3,6]图1图27.一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于A .1B .2C .3D .48.某市生产总值连续两年持续增长,第一年的增长率为p ,第二年的增长率为q ,该市这两年生产总值的年平均增长率为A .2p qB .(1)(1)12p q C .pqD .(1)(1)1p q 9.已知函数()sin(),f x x 且230()0f x dx,则函数()f x 的图象的一条对称轴是A .56xB .712xC .3xD .6x10.已知函数221()(0)()ln()y 2xf x xex g x xx a 与的图象存在关于轴对称的点,则a 的取值范围是A .1(,)eB .(,)e C .1(,)e eD .1(,)e e开始结束输出SS=t-3否是t=2t 2-1输入tt<0?8126正视图俯视图侧视图二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为4的直线l 与曲线2cos ,(1sinx y为参数)交于A ,B 两点,且|AB|=2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程为____________.12.如图3,已知AB ,BC 是O 的两条弦,,AOBC 3,22,AB BC O 则的半径等于____________.13.51|2|3,{|<}33x axx x若关于的不等式的解集为,则=___________.a (二)必做题(14-16题)14.若变量x ,y 满足约束条件4yx x yyk,且2z xy 的最小值为6,则_____.k15.如图4,正方形ABCD 和正方形DEFG 的边长分别为,a b()ab ,原点O 为AD 的中点,抛物线22(0)ypx p 经过,b C F a两点,则16.在平面直角坐标系中,O 为原点,(1,0),(0,3),C(3,0)A B 动点D 满足|CD|=1|OA+OB+OD|,则的最大值是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)ⅡⅢ某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为2335和.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18.(本小题满分12分)如图5,在平面四边形ABCD 中,1,2,7ADCD AC (Ⅰ)求cos CAD 的值;(Ⅱ)若721cos ,sin146BADCBA,求BC 的长.19.(本小题满分12分)如图6,四棱柱1111ABCD A BC D 的所有棱长都相等,11111,,AC BDO AC B D O 四边形1111ACC A BDD B 和四边形均为矩形.(Ⅰ)证明:1;O OABCD 底面(Ⅱ)若1160,CBA C OB D 求二面角的余弦值.图 620.(本小题满分13分)已知数列{n a }满足*111,||,.nnn a a a p nN (Ⅰ)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值;(Ⅱ)若12p,且{21n a }是递增数列,{2n a }是递减数列,求数列{n a }的通项公式.21.(本小题满分13分)如图7,O 为坐标原点,椭圆22122:1(0)x y C a b ab的左、右焦点分别为12,F F ,离心率为1e ;双曲线22222:1x y C ab的左、右焦点分别为34,F F ,离心率为2e .已知123,2e e 且24||3 1.F F (Ⅰ)求12,C C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.图722.(本小题满分13分)已知常数20,()ln(1).2x a f x ax x函数(Ⅰ)讨论()f x 在区间(0,)上的单调性;(Ⅱ)若()f x 存在两个极值点12,,x x 且12()()0,f x f x 求a 的取值范围.。

2014年全国高考理科数学试题及答案-湖南卷

2014年全国高考理科数学试题及答案-湖南卷

2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题的四个选项中,只有一项是符合题目要求的 1、满足1z i z+=(i 的虚数单位)的复数z= A 、1122i + B 、1122i - C 、1122i -+ D 、1122i -- 2、对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p 、2p 、3p ,则 A 、123p p p =< B 、123p p p >= C 、132p p p =< D 、132p p p ==3、已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )= 321x x ++,则(1)(1)f g +=A 、3-B 、1-C 、1D 、34、51(2)2x y -的展开式中23x y 的系数是A 、-20B 、-5C 、5D 、20 5、已知命题p :若x>y ,则-x<-y :命题q :若x>y ,在命题①p q Λ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨ 中,真命题是A 、①③B 、①④C 、②③D 、②④ 6、执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于A 、[-6,-2]B 、[-5,-1]C 、[-4,5]D 、[-3,6]7、一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于 A 、1 B 、2 C 、3 D 、4 8、某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年的生产总值的年平均增长率为 A 、2p q + B 、(1)(1)12p q ++- C 、pq D 、(1)(1)1p q ++-9、已知函数发()sin(x )f x ϕ=-,且230()0xf x dx =⎰,则函数()f x 的图象的一条对称轴是A 、5x=6π B 、x=712π C 、x=3π D 、x=6π 10、已知函数21()-(0)2xf x x e x =+<与2()ln()g x x x a =++的图象在存在关于y 轴对称点,则a的取值范围是A 、-e ∞(,)B 、-e ∞(,)C 、-e e (,) D 、-e e(,) 二、填空题,本大题共6小题,考生作答5小题,每小题5分,共25分(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分) 11.在平面直角坐标系中,倾斜角为4π的直线 l 与曲线 2cos :1sin x a C y a=+⎧⎨=+⎩(a 为参数)交于A ,B 两点,且 2AB =.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是_________。

2014年高考理科数学湖南卷

2014年高考理科数学湖南卷

两年生产总值的年平均增长率为 A. p q
2
B. ( p 1)(q 1) 1 2
()
C. pq
D. ( p 1)(q 1) 1

9.已知函数 f (x) sin( x ) ,且 3 f (x)dx 0 ,则函数 f (x) 的图象的一条对称轴是( ) 0
A. x 5π 6
B. x 7π 12
姓名________________ 准考证号_____________
----- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------
() D.3
()

A. 20
B. 5
C.5
D.20
5.已知命题 p :若 x>y ,则 x<-y ;命题 q :若 x>y ,则 x2>y2 .在命题
① p q ;② p q ;③ p (q) ;④ (p) q
中,真命题是

A.①③
B.①④
C.②③
D.②④
()
数学试卷 第 1 页(共 6 页)
C(3,0) ,动点 D 满足 | CD | 1,则 | OA OB OD | 的最大
图4
值是
.
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分 12 分) 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 2 和 3 .现安排甲 35 组研发新产品 A ,乙组研发新产品 B .设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率; (Ⅱ)若新产品 A 研发成功,预计企业可获利润 120 万元;若新产品 B 研发成功,预 计企业可获利润 100 万元,求该企业可获利润的分布列和数学期望.

【统一】14年高考真题理科数学湖南卷

【统一】14年高考真题理科数学湖南卷

【关键字】统一2014年普通高等学校招生全国统一考试(湖南)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的)1.满足(为虚数单位)的复数()(A)(B)(C)(D)2.对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是,则()(A)(B)(C)(D)3.分别是定义在上的偶函数和奇函数,且,则()(A)(B)(C)1 (D)34.的展开式中的系数是()(A)(B)0 (C)5 (D)205.已知命题:若,则;命题:若,则。

在命题① ②③ ④中,真命题是()(A)①③ (B)①④(C)②③ (D)②④6.执行如图1所示的程序框图,如果输入的,则输出的属于()(A)(B)(C)(D)7.一块石材表示的几何何的三视图如图2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()(A)1 (B)2 (C)3 (D)4 8.某市生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为()(A)(B)(C)(D)9.已知函数,且,则函数的图象的一条对称轴是()(A)(B)(C)(D)10.已知函数与的图象上存在关于轴对称的点,则的取值范围是()(A)(B)(C)(D)二.填空题(本大题共6小题,考生作答5小题,每小题5分,共25分)(一)选做题(请考生在第11、12、13三题中任选两题作答,如果全做,则按前两题计分)11.在平面直角坐标系中,倾斜角为的直线与曲线(为参数)交于两点,且,以坐标原点为极点,轴正半轴为极轴建立极坐标系,则直线的极坐标方程是_________________。

12.如图3,已知是的两条弦,,,,则的半径等于__________。

13.若关于的不等式的解集为,则。

(二)必做题(14-16题)14.若变量满足约束条件,且的最小值为,则_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、 选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的 1. 满足(z ii i z +=为虚数单位)的复数z = A .1122i + B .1122i - C .1122i -+ D .1122i--2.对一个容量为N 的总体抽取容量为n 的样本,学科网当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,,p p p 则 A .123p p p =< B .231p p p =< C .132p p p =< D .123p p p == 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++(1)(1)f g +则=A .-3B .-1C .1D .3 4.51(2)2x y -的展开式中23x y 的系数是 A .-20 B .-5 C .5 D .205.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题 ①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是 A .①③ B .①④ C .②③ D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-7.一块石材表示的几何何的三视图如图2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于A .1B .2C .3D .48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为A .2p q + B .(1)(1)12p q ++- C D 19.已知函数230()sin(),()0,f x x f x dx πϕ=-=⎰且则函数()f x 的图象的一条对称轴是A .56x π=B .712x π=C .3x π=D .6x π= 10.已知函数221()(0)()ln()2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a 的取值范围是A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,学科网如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :,(1sin x C y ααα=+⎧⎨=+⎩为参数)交于A B ,两点,则AB ||=2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 12.如图3,已知,AB BC 是O的两条弦,,AO BC AB BC ⊥==则O 的半径等于13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = (二)必做题(14-16题)14.若变量,x y 满足约束条件4y xx y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k =15.如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则16.在平面直角坐标系中,O为原点,(1,0),(3,0),A B C -动点D 满足||1,CD OA OB OD =++则||的最大值是 三、解答题:本大题共6小题,共75分.学科网解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为2335和.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(I ) 求至少有一种新产品研发成功的概率;(II )若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.18. (本小题满分12分)如图5,在平面四边形ABCD 中,127.AD CD AC =,=,= (I ) 求cos CAD ∠的值; (II ) 若721cos ,sin ,146BAD CBA ∠=-∠=求BC 的长.19. (本小题满分12分)如图6,四棱柱1111ABCD A BC D -的所有棱长都相等,11111,,ACBD O AC B D O ==四边形1111ACC A BDD B 和四边形均为矩形.(I ) 证明:1;O O ABCD ⊥底面(II )若1160,CBA C OB D ∠=--求二面角的余弦值.20. (本小题满分13分)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈ (I ) 若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (II )若12p =,且{21n a -}是递增数列,{2n a }学科网是递减数列,求数列{n a }的通项公式.21. (本小题满分13分)如图7,O 为坐标原点,椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为1e ;双曲线22222:1x y C a b -=的左、右焦点分别为34,F F ,离心率为2e .已知12e e =且24|| 1.F F(I ) 求12,C C 的方程;(II ) 过1F 作1C 的不垂直于y 轴的弦AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.22. (本小题满分13分)已知常数20,()ln(1).2xa f x ax x >=+-+函数 (I ) 讨论()f x 在区间(0,)+∞上的单调性;(II ) 若()f x 存在学科网两个极值点12,,x x 且12()()0,f x f x +>求a 的取值范围.2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案一、选择题1、B2、D3、C4、A5、C6、D7、B8、D9、A 10、B二、填空题11、(cos sin)1pθθ-=12、3 213、3-14、2-15、116、1三、解答题 17、(本小题满分12份) 解:(I )记E={甲组研发新产品成功},F={乙组研发新产品成功}.由题设知2132(),(),(),(),3355P E P E P F P F ====故所求的概率为(Ⅱ)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因122(0)()3515P X P EF ===⨯=, 133(100)()3515P X P E F ===⨯= 224(120)()3515P X P EF ===⨯=, 235(220)()3515P X P EF ===⨯=, 故所求的分布为数学期望为2()015E X =⨯+310015⨯+412015⨯+622015⨯=300480132021001401515++==18、(本小题满分12份)解:(I )如图5,在ADC ∆中,由余弦定理,得222cos .2AC AD CD CAD AC AD+-∠=⋅故由题设知,cosCAD ∠==sin 14BAD ∠=== 于是sin x =sin()BAD CAD ∠-∠=sin cos cos sin BAD CAD BAD CAD ∠∠-∠∠(-在ABC ∆中,由正弦定理,BC=3 7sin23sin216AC aCBA⋅⋅==∠19、(本小题满分12份)解:(I)如图(a),因为四边形11ACC A为矩形,所以1CC AC⊥.同理1DD BD⊥。

因为1CC∥1DD,所以1CC BD⊥。

而0AC BD=,因此1CC⊥底面ABCD。

由题设知,1O O∥1C C。

故1O O⊥底面ABCD。

(Ⅱ)解法I如图(a),过1O作11O H OB⊥于H,连接1HC.由(I)知,1O O⊥底面ABCD,所以1O O⊥底面1111A B C D,于是1O O⊥11AC.又因为四棱柱ABCD-1111A B C D的所有棱长都相等,所以四边形1111A B C D是菱形,因此1111AC B D⊥,从而1111AC BDD B⊥平面,所以111AC OB⊥,于是111OB O HC⊥平面,进而11OB C H⊥。

故11C HO∠是二面角11C OB D--的平面角。

不妨设AB=2。

因为60OCBA∠=,所以3OB=117OC==,OB在11t R OO B∆中,易知11111327OO O BO HOB⋅==111O C=,于是。

故111132257719197O HCOS C HOC H∠===。

即二面角11C OB D--的余弦值为25719。

解法 2 因为四棱柱ABCD-1111A B C D的所有棱长都相等,所以四边形ABCD是菱形,因此AC BD⊥。

又1O O⊥底面ABCD,从而OB,OC,1OO两两垂直。

如图(b ),以O 为坐标原点,OB,OC, 1OO 所在直线分别为轴,轴,轴,建立空间直角坐标系。

不妨设AB=2.因为60OCBA ∠=,所以OB =1OC =,于是相关各点的坐标为:O(0,0,0),1B ,1(0,1,2)C .易知,1(0,1,0)n =是平面11BDD B 的一个法向量。

设2(,,)n x y z =是平面11OB C 的一个法向量,则21210,0,n OB n OC ⎧⋅=⎪⎨⋅=⎪⎩即20,20.z y z +=+=⎪⎩取z =,则2,x y ==2n =。

设二面角11C OB D --的大小为θ,易知θ是锐角,于是12,COS COSn n θ=1212n n n n ⋅===⋅。

故二面角11C OB D --的余弦值为1920、(本小题满分13份)解(I )因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=。

而11a =,因此又123,2,3a a a 成等差数列,解得1,03p p == 当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾。

故13p =.(Ⅱ)由于{}21n a -是递增数列,因而21210n n a a +--,于是但2211122nn -,所以212221aa a an nn n --+-. ② 又①,②知,2210n n a a --,因此222121211(1)()22n nn n n a a -----== ③因为{}2n a 是递减数列,同理可得,2120n n a a +-故22121221(1)22nn n nna a ++⎛⎫ ⎪⎝⎭--=-=④ 由③,④即知,11(1)2n n n na a ++--=。

相关文档
最新文档