2014年全国高考理科数学试题及答案-全国卷
2014年高考全国卷1理科数学试题及标准答案-(word版)
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A ={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3. 设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-= B .22παβ-=C .32παβ+=D .22παβ+= 9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷。
2014年全国统一高考数学试卷(理科)及答案
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。
2014年全国一卷高考理科数学试卷及答案
2014年全国一卷高考理科数学试卷及答案2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷(选择题共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x|x-2x-3≥0},B={x|-2≤x<2},则A∩B=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)2.(1+i)³/(1-i)²=A.1+iB.1-iC.-1+iD.-1-i3.设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.已知F是双曲线C:x-my=3m(m>0)的一个焦点,则点F 到C的一条渐近线的距离为A.3B.3mC.3D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率=A.1/3B.5/8C.7/8D.16.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]上的图像大致为图片无法显示)7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=图片无法显示)A.2016B.715C.35D.288.设α∈(0,π/2),β∈(0,π/2),且tanα=(1+sinβ)/cos²β,则3α-β=A.2α-βB.2α+βC.3α+βD.3α-β9.不等式组{x+y≥1,x-2y≤4}的解集记为D。
有下面四个命题:p1:对于任意的(x,y)∈D,有x+2y≥-2;p2:存在(x,y)∈D,使得x+2y≥2;p3:对于任意的(x,y)∈D,有x+2y≤3;p4:存在(x,y)∈D,使得x+2y≤-1.其中真命题是A.p2,p3B.p1,p4C.p1,p2D.p1,p310.已知抛物线C:y=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,若2FP=4FQ,则|QF|=A.7/5B.3C.√3D.21.已知函数$f(x)=ax-3x+1$,若$f(x)$存在唯一的零点$x$,且$x>0$,则$a$的取值范围为$\textbf{(C)}$($1$,$+\infty$)。
2014年全国高考全国新课标I数学(理)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3CD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-= B .22παβ-= C .32παβ+= D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一。
2014年高考全国Ⅰ理科数学试题及答案(word解析版)
2014 年一般高等学校招生全国一致考试(全国Ⅰ)数学(理科)第 Ⅰ 卷一、选择题:本大题共 12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.( 1)【 2014 年全国Ⅰ,理 1, 5 分】已知会集 Ax x 22x 30 , Bx 2x 2,则AB =()(A ) 2,1 (B ) 1,2 (C )1,1 (D ) 1,2【答案】 A【剖析】∵ Ax x 22x 3 0x x1 或 x3 , B x 2 x 2 ,∴ A B x 2 x 1 ,应选 A .3( 2)【 2014 年全国Ⅰ,理2,5 分】 1 i1 2i (A )1i ( B ) 1 i ( C ) 1i (D ) 【答案】 D()1 i【剖析】∵(1i) 32i(1 i)2 1 i ,应选 D . (1 i) 2i( 3)【 2014 年全国Ⅰ,理 3, 5 分】设函数 f x , g x 的定义域为 R ,且 fx 是奇函数, g x 是偶函数,则以下结论中正确的选项是()( A ) f ( x) g (x) 是偶函数( B ) f (x) g( x) 是奇函数( C ) f ( x) | g( x) |是奇函数( D ) | f (x)g ( x) | 是奇函数【答案】 C【剖析】∵ f x 是奇函数, g x 是偶函数,∴f (x) 为偶函数, g( x) 为偶函数.再依照两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f (x) | g (x) | 为奇函数,应选 C .( 4)【 2014 年全国Ⅰ,理 4, 5 分】已知 F 是双曲线 C : x 2my 23m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为()( A ) 3 ( B ) 3(C ) 3m ( D ) 3m 【答案】 A 【剖析】由 C : x 2my 23m(m0) ,得 x 2y 2 1 , c 2 3m 3,c3m 3,设 F3m 3,0 ,一条渐近线3m3y3my0 ,则点 F 到 C 的一条渐近线的距离d3m33 ,应选 A .x ,即 x1 m3m( 5)【 2014 年全国Ⅰ,理 5, 5 分】 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率() ( A ) 1(B ) 3(C )5(D )78 8 88 【答案】 D【剖析】由题知 F 13,0 , F 23,0 且x 02y 0 2 1,因此 MF 1 MF 23 x 0 , y 03 x 0 , y 02x 02 y 023 3y 021 0 ,解得3 y 0 3,应选 D .3 3( 6)【 2014 年全国Ⅰ,理 6,5 分】如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角x 的始边为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP的距离表示为 x 的函数 f (x) ,则 y f ( x) 在 0, 上的图像大体为()(A ) (B )( C )(D )【答案】 B【剖析】如图:过 M 作 MDOP 于D ,则 PM sin x , OMcos x ,在 Rt OMP 中,OM PMcos x sin x1 1 MDcos x sin x sin 2 x ,∴f xsin 2x (0 x ) ,OP122应选 B .( 7)【 2014 年全国Ⅰ,理 7, 5 分】执行以下列图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的M ()( A ) 20(B ) 16(C ) 7 (D ) 1535 28【答案】 D【剖析】输入 a1, b 2, k 3 ; n 1时:M 11 3 , a 2,b 3 ;222n 2 时: M 228, a3,b8; n 3时: M3 3 15 , a 8,b 15 ;33 2328 8 38n 4 时:输出 M15,应选 D .81sin( 8)【 2014 年全国Ⅰ,理 8, 5分】设(0,) , (0, ) ,且 tan,则()cos22 (A ) 3(B ) 2(C ) 3 2 (D ) 2 2【答案】 B 22【剖析】∵ tansin 1 sin coscoscos sin, sincossin,coscos ,∴ sin222 ,0 2,∴2,即 2,应选 B .22x y 1的解集记为 D .有下面四个命题: p 1 : ( x, y) D , x 2 y 2 ,( 9【) 2014 年全国Ⅰ,理 9,5 分】不等式组2y 4 xp 2 : (x, y) D, x 2 y 2 , P 3 : ( x, y) D , x 2 y 3 , p 4 : (x, y)D , x 2 y 1 .其中真命题是()( A ) p 2 , p 3 ( B ) p 1 , p 4 (C ) p 1 , p 2 ( D ) p 1 ,p 3 【答案】 C【剖析】作出可行域如图: 设 x 2 y z ,即 y1x z,当直线过 A 2, 1 时,zmin2 2 0 ,2 2∴ z 0 ,∴命题 p 1 、 p 2 真命题,应选 C .( 10)【 2014 年全国Ⅰ,理 10,5 分】已知抛物线 C : y 28x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与 C 的一个交点,若FP4FQ ,则 |QF |()( A ) 7 (B ) 5(C )3(D )22 2【答案】 C【剖析】过 Q 作 QMl 于 M ,∵ FPPQ 3 ,又QM PQ 3 3 ,4FQ ,∴44PF,∴ QMPF4由抛物线定义知 QF QM3,应选 C .( 11)【 2014 年全国Ⅰ,理 11,5 分】已知函数 fxax 3 3x 2 1 ,若 f ( x) 存在唯一的零点 x 0 ,且 x 00 ,则 a的取值范围为()(A ) 2,(B ), 2 (C ) 1,( D ), 1【答案】 B【剖析】解法一:由已知 a0 , f ( x)3ax 26 x ,令 f (x) 0 ,得 x 0 或 x2 ,a当 a0 时, x,0 , f (x) 0; x0,2, f ( x) 0; x2 , , f (x) 0 ;aa且 f (0) 10 , f (x) 有小于零的零点,不吻合题意.当 a0 时, x2 0; x2 , f (x) 0; x0,, f (x),, f ( x) ,0aa要使 f (x) 有唯一的零点x 0 且 x 00 ,只需 2) 0 ,即 a2, a2 ,应选 B .f ( 4a解法二:由已知 a0 , f x ax33x21 有唯一的正零点,等价于a 3 1 13 有唯一的正零根,令 t1,则t 3t 3 x xx 问题又等价于 a3t 有唯一的正零根,即y a 与 y3t 有唯一的交点且交点在在 y 轴右侧记f (t )t 3 3t , f (t)3t 2 3 ,由 f (t )0 , t 1 , t, 1 , f (t) 0;t1,1 , f (t )0; ,t 1,, f (t ) 0 ,要使 a33t 有唯一的正零根,只需 af ( 1)2 ,应选 B .t ( 12)【 2014 年全国Ⅰ,理 12, 5 分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()( A ) 6 2 (B ) 4 2 (C )6(D )4【答案】 C【剖析】以下列图,原几何体为三棱锥D ABC ,其中 ABBC 4,AC 4 2,DB DC 2 5,26 ,应选 C .DA4 24 6 ,故最长的棱的长度为 DA第II 卷本卷包括必考题和选考题两部分.第( 13)题 ~第( 21)题为必考题,每个试题考生都必定作答.第( 22)题 ~第( 24)题为选考题,考生依照要求作答.二、填空题:本大题共 4 小题,每题 5 分( 13)【 2014 年全国Ⅰ,理 13, 5 分】 (x y)( xy)8的张开式中 x 2 y 2 的系数为.(用数字填写答案)【答案】 20【剖析】 (x y)8 张开式的通项为T r 1 C 8r x 8 r y r (r0,1, ,8) ,∴ T 8C 87 xy 7 8xy 7 , T 7 C 86 x 2 y 628x 2 y 6 ,∴ (xy)( x y)8 的张开式中 x 2 y 7 的项为 x 8 xy 7 y 28 x 2 y 6 20 x 2 y 7 ,故系数为20 .( 14)【 2014 年全国Ⅰ,理 14, 5 分】甲、乙、丙三位同学被问到可否去过 A 、 B 、 C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由 此可判断乙去过的城市为. 【答案】 AA 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B【剖析】由乙说:我没去过 C 城市,则乙可能去过 城市,则乙只能是去过 A , B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的 城市为 A . ( 15)【 2014 年全国Ⅰ,理 15,5 分】已知 A , B , C 是圆 O 上的三点,若 AO1(ABAC),则 AB 与 AC 的2夹角为.【答案】 900【剖析】∵ AO 1 ( AB AC) ,∴ O 为线段 BC 中点,故 BC 为 O 的直径,∴BAC 900,∴ AB 与 AC 的夹2角为 90 0 .a,b,c 分别为A,B,C 的对边, a( 16 )【 2014 年全国Ⅰ,理16, 5 分】已知ABC 的三个内角2 ,且(2 b )(sin AsinB ) c ( b ) sinC ,则 ABC 面积的最大值为.【答案】 3【剖析】由 a2且(2 b)(sin A sin B)(c b)sin C ,即 (a b)(sin A sin B) (cb)sin C ,由及正弦定理得:2221,∴(a b )(ab) (c b)c ,∴ b 2c 2 a 2bc ,故 cos Abc a A 600 ,∴ b 2c 2 4 bc ,12bc24 b 2 c 2 bcbc ,∴ S ABCbc sin A3 . 2三、解答题:解答应写出文字说明,证明过程或演算步骤.( 17)【 2014 年全国Ⅰ,理 17,12 分】已知数列 a n 的前 n 项和为 S n , a 11 , a n 0 , a n a n 1S n 1,其中为常数.( 1)证明: a n 2 a n;( 2)可否存在 ,使得 a n 为等差数列?并说明原由.解:( 1)由题设 a n a n 1S n 1 , a n 1 a n 2S n 1 1,两式相减 a n 1an 2a na n 1 ,由于 a n0 ,因此 a n 2 a n.6分( 2)由题设 a 1 1 , a 1a 2S 1 1,可得 a 211,由( 1)知 a 31假设 a n 为等差数列,则 a 1 ,a 2 ,a 3 成等差数列,∴ a 1 a 3 2a 2 ,解得4 ;证明4 时, a n 为等差数列:由 a n2a n 4 知:数列奇数项构成的数列a2 m 1是首项为 1,公差为4 的等差数列 a 2m14m 3 ,令 n 2m 1, 则 m n 1,∴ a n 2n 1 ( n 2m 1)2n ,数列偶数项构成的数列 a2m 是首项为 3,公差为 4 的等差数列 a 2m 4m 1 ,令 n 2m, 则 m ∴2 1 ,∴ ( * ),2a n n ( n 2m) a n2n 1 n n 1a n2N a因此,存在存在4 ,使得 a n 为等差数列.12 分( 18)【 2014 年全国Ⅰ,理 18, 12 分】从某企业的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得以下频率分布直方图:( 1)求这 500 件产质量量指标值的样本平均数x 和样本方差 s 2 (同一组数据用该区间的中点值作代表) ;( 2)由频率分布直方图可以认为,这种产品的质量指标值Z 遵从正态分布 N ( , 2 ) ,其中 近似为样本平均数 x , 2 近似为样本方差 s 2 .( i )利用该正态分布,求 P(187.8 Z 212.2) ;( ii )某用户从该企业购买了 100 件这种产品,记 X 表示 100 件产品中质量指标值为区间(187.8,212.2 )的产品件数,利用( i )的结果,求 EX .附: 15012.2 .若 Z N ( , 2) ,则 P(Z) 06826.,P(2Z2 ) =0.9544.解:( 1)抽取产质量量指标值的样本平均数x 和样本方差 s 2 分别为:x 170 0.02 1800.09 1900.22 200 0.33 2100.24 220 0.08 2300.02 200s 230 220.0920.22 00.33 10220.08302150 .0.0220100.24200.02 6 分( 2)(ⅰ)由(1)知 Z N(200,150),从而 P(187.8 Z212.2) P(200 12.2 Z200 12.2)0.6826. 9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为 0.6826依题意知 X B(100,0.6826),因此 EX 100 0.6826 68.26 .12 分( 19)【 2014 年全国Ⅰ,理 19, 12 分】如图三棱柱ABC A 1 B 1C 1 中,侧面 BB 1C 1C 为菱形, ABB 1C .( 1)证明: AC AB 1 ;( 2)若 ACAB 1 ,CBB 1 60 o, AB BC ,求二面角 A A 1B 1 C 1 的余弦值.解:( 1)连结 BC 1 ,交 B 1C 于 O ,连结 AO .由于侧面 1 1 为菱形, 因此 B 1CBC 1 ,BBC C且O 为 B 1C 与 BC 1 的中点.又 AB B 1C ,因此 B 1C 平面 ABO ,故 B 1 C AO又 B 1O CO ,故 AC AB 1 . 6分( 2)由于 AC AB 1 且 O 为 B 1C 的中点,因此 AOCO ,又由于 AB BC ,因此 BOABOC ,故 OA OB ,从而 OA , OB , OB 1 两两互相垂直. 以 O 为坐标原点, OB 的方向为 x 轴正方 向,OB 为单位长,建立以下列图空间直角坐标系O xyz .由于CBB 1 600 , 因此 CBB 1 为等边三角形. 又 ABBC ,则 A 0,0,3,B 1,0,0, 0,3 ,B 1,033C 0,3 ,0 , AB 1 0, 3 , 3, A 1B 1 AB1,0,3 ,33 33B C1 BC1, 3 ,0 ,设 nx, y, z 是平面的法向量,则n AB 1,即13n A 1B 13y3 03zm A 1 B 13因此可取 n1, 3,3 ,设 m 是平面的法向量,则,同理可取3n B 1C 1xz 03m1,3, 3 ,则 cos n, mn m 1 ,因此二面角 AA 1B 1C 1 的余弦值为1.12分n m 77223,F 是( 20)【 2014 年全国Ⅰ,理 20, 12 分】已知点 A 0, 2 ,椭圆 E :xy 1(a b 0) 的离心率为a 2b 22椭圆的焦点,直线 AF 的斜率为23, O 为坐标原点.( 1)求 E 的方程;3( 2)设过点 A 的直线 l 与 E 订交于 P,Q 两点,当OPQ 的面积最大时,求 l 的方程.解:( 1)设 F c,0 ,由条件知2 2 3,得 c 3 ,又c3 ,c 3a 2因此 a2 , b2a2c21,故 E 的方程x 2y 21 . 6分42( 2)依题意当 lx 轴不合题意, 故设直线 l :y kx 2 ,设 P x 1y, 1 Q, x y 2 , 2,将 y kx 2 代入xy 2 1 ,4得 14k 2x216kx12 0 ,当16(4 k23)0 ,即 k23时, x 1,2 8k 2 4 k 2 341 4k 2从而 PQk21 x 1x 24 k21 4k 23,又点 O 到直线 PQ 的距离 d2 ,因此 OPQ 的1 4k 2k 2 1 面积 S OPQ14 4k 2 3,设4k 23 t ,则 t0 ,S OPQ4t41 ,d PQ12t 2 4424ktt当且仅当 t2 , k7等号建立,且满足0 ,因此当 OPQ 的面积最大时,l 的方程为:2y77x 2 或 yx 2 ..12 分22be x 1( 21)【 2014 年全国Ⅰ,理 21, 12 分】设函数 f xae x ln x,曲线 y f ( x) 在点 1, f 1 处的切线为xy e(x 1) 2 .( 1)求 a, b ;( 2)证明: f ( x) 1.解:( 1)函数 f (x) 的定义域为 0,,xa xb x 1 b x 1xex 2exef (x) ae ln x由题意可得 f (1)2, f (1) e ,故 a 1,b2 . 6分x2e x 1 x2( 2)由( 1)知, f (x)ln x,从而 f ( x) 1 等价于 x ln x xex ln x ,则ex,设函数 g( x)eg (x) xln x ,因此当 x0, 1 时, g ( x) 0 ,当 x1 ,时, g (x) 0,故 g( x) 在 0,1单调减,eee在1,单调递加,从而 g( x) 在 0,的最小值为g( 1)1. 8分eee设函数 h(x)xex2,则 h (x) ex1 x,因此当 x0,1 时, h (x)0 ,当 x1,时, h ( x) 0 ,e故 h(x) 在 0,1 单调递加,在 1,单调递减,从而 h( x) g( x) 在 0,的最小值为 h(1)1 . 综上:当 x0 时, g( x)h( x) ,即 f ( x) 1.12e分请考生在( 22)、( 23)、( 24)三题中任选一题作答.注意:只能做所选定的题目.若是多做,则按所做第一个题目计分,做答时,请用 2B 铅笔在答题卡大将所选题号后的方框涂黑. ABCD 是( 22)【 2014 年全国Ⅰ,理 22,10 分】(选修 4-1:几何证明选讲)如图,四边形O 的内接四边形, AB 的延长线与 DC 的延长线交于点 E ,且 CBCE .( 1)证明: D E ;( 2)设 AD 不是O 的直径, AD 的中点为 M ,且 MBMC ,证明: ABC 为等边三角形.解:( 1)由题设得, A , B , C , D 四点共圆,因此, D CBE又 CB CE , CBE E ,因此 D E5 分( 2)设 BC 的中点为 N ,连结 MN ,则由 MB MC 知MN BC ,故 O 在直线 MN 上,又AD 不是 O 的直径, M 为 AD 的中点,故 OM AD ,即 MN AD ,因此 AD / /BC ,故 A CBE ,又 CBE E ,故 A E ,由( 1)知, D E ,因此 ADE 为等边三角形.10 分2 2( 23)【 2014 年全国Ⅰ,理 23,10 分】(选修 4-4:坐标系与参数方程)已知曲线C :xy1 ,49直线 l : x 2 t ( t 为参数).y 2 2t( 1)写出曲线 C 的参数方程,直线l 的一般方程;( 2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大值与最小值.解:( 1)曲线 C 的参数方程为x 2cos (为参数)直线 l 的一般方程为 2xy 60 . 5分y3sin( 2)曲线 C 上任意一点 P(2cos,3sin) 到 l 的距离为 d5| 4cos3sin6 |,5则|PA|d2 5 | 5sin() 6| ,其中为锐角,且 tan4 ,sin3053当 sin()1时, | PA | 获取最大值,最大值为2255当 sin() 1时, | PA | 获取最小值,最小值为 25 .10 分50 且11( 24)【 2014 年全国Ⅰ,理 24, 10 分】(选修 4-5:不等式选讲)若 a0 , bab .( 1)求 a 3 b 3 的最小值;ab( 2)可否存在 a, b ,使得 2a 3b 6?并说明原由.解:( 1)由 ab 1 1 2,得 ab 2 ,且当 a b 2 时等号建立.a bab故 a 3 b 32 a3 b 34 2 ,且当 a b 2 时等号建立,因此a 3b 3 的最小值为 4 2 .5分( 2)由( 1)知, 2a 3b 2 6 ab 4 3,由于 4 3 6 ,从而不存在 a,b ,使得 2a 3b 6 .10 分。
2014年高考真题(课标全国Ⅰ)数学(理科) 附答案
2014年普通高等学校招生全国统一考试(课标全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014课标全国Ⅰ,理1)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=().A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案:A解析:由已知,可得A={x|x≥3或x≤-1},则A∩B={x|-2≤x≤-1}=[-2,-1].故选A.2.(2014课标全国Ⅰ,理2)=().-A.1+iB.1-iC.-1+iD.-1-i答案:D解析:=-1-i.故选D.---3.(2014课标全国Ⅰ,理3)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是().A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案:C解析:由题意,知f(-x)=-f(x),g(-x)=g(x),对于A选项,f(-x)g(-x)=-f(x)g(x),f(x)g(x)为奇函数,故A错误;对于B选项,|f(-x)|g(-x)=|f(x)|g(x),|f(x)|g(x)为偶函数,故B错误;对于C选项,f(-x)|g(-x)|=-f(x)|g(x)|,f(x)|g(x)|为奇函数,故C正确;对于D选项,|f(-x)g(-x)|=|f(x)·g(x)|,|f(x)g(x)|是偶函数,故D错误.4.(2014课标全国Ⅰ,理4)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为().A.B.3C.m D.3m答案:A解析:由题意,可得双曲线C为=1,则双曲线的半焦距c=.不妨取右焦点(,0),其渐近线方程为y=±x,即x±y=0.所以由点到直线的距离公式得d=.故选A.5.(2014课标全国Ⅰ,理5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为().A.B.C.D.答案:D解析:(方法一)由题意知基本事件总数为24=16,对4名同学平均分组共有=3(种),对4名同学按1,3分组共有种,所以周六、周日都有同学参加共有3×=14(种).由古典概型得所求概率为.(方法二)周六没有同学参加公益活动即4位同学均在周日参加公益活动,此时只有一种情况;同理周日没有同学参加公益活动也只有一种情况,所以周六、周日均有同学参加公益活动的情况共有16-2=14(种).故所求概率为.故选D.6.(2014课标全国Ⅰ,理6)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]的图像大致为().答案:C解析:由题意|OM|=|cos x|,f(x)=|OM||sin x|=|sin x cos x|=|sin2x|,由此可知C正确.7.(2014课标全国Ⅰ,理7)执行右面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=().A.B.C.D.答案:D解析:当a=1,b=2,k=3,n=1时,1≤3,M=1+,a=2,b=,n=2;2≤3,M=2+,a=,b=,n=3;3≤3,M=,a=,b=,n=4;4>3,程序结束,输出M=.8.(2014课标全国Ⅰ,理8)设α∈,β∈,且tanα=,则().A.3α-β=B.3α+β=C.2α-β=D.2α+β=答案:C解析:由已知,得,∴sinαcosβ=cosα+cosαsinβ.∴sinαcosβ-cosαsinβ=cosα.∴sin(α-β)=cosα,∴sin(α-β)=sin-.∵α∈,β∈,∴-<α-β<,0<-α<,∴α-β=-α,∴2α-β=.故选C.的解集记为D,有下面四个命题:9.(2014课标全国Ⅰ,理9)不等式组-p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1,其中的真命题是().A.p2,p3B.p1,p2C.p1,p4D.p1,p3答案:B解析:画出可行域如图阴影部分所示.作直线l0:y=-x,平移l0,当直线经过A(2,-1)时,x+2y取最小值,此时(x+2y)min=0.故p1:∀(x,y)∈D,x+2y≥-2为真.p2:∃(x,y)∈D,x+2y≥2为真.故选B.10.(2014课标全国Ⅰ,理10)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=().A.B.3C.D.2答案:B解析:如图,由抛物线的定义知焦点到准线的距离p=|FM|=4.过Q作QH⊥l于H,则|QH|=|QF|.由题意,得△PHQ∽△PMF,则有,∴|HQ|=3.∴|QF|=3.11.(2014课标全国Ⅰ,理11)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是().A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案:C解析:当a=0时,显然f(x)有2个零点,不符合题意;当a>0时,f'(x)=3ax2-6x=3x(ax-2),易知函数f(x)在(-∞,0)上单调递增.又f(0)=1,当x→-∞时,f(x)=x2(ax-3)+1→-∞,故不适合题意;当a<0时,f(x)在-∞上单调递减,在上单调递增,在(0,+∞)上单调递减,只需f>0就满足题意.由f>0,得+1>0,解得a<-2或a>2(舍去).故a<-2.12.(2014课标全国Ⅰ,理12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为().A.6B.6C.4D.4答案:B解析:如图所示的正方体ABCD-A1B1C1D1的棱长为4.取B1B的中点G,即三棱锥G-CC1D1为满足要求的几何体,其中最长棱为D1G,D1G==6.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2014课标全国Ⅰ,理13)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)答案:-20解析:(x+y)8的通项公式为T r+1=x8-r y r(r=0,1,…,8,r∈Z).当r=7时,T8=xy7=8xy7,当r=6时,T7=x2y6=28x2y6,所以(x-y)(x+y)8的展开式中含x2y7的项为x·8xy7-y·28x2y6=-20x2y7,故系数为-20.14.(2014课标全国Ⅰ,理14)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案:A解析:根据甲、乙、丙说的可列表得15.(2014课标全国Ⅰ,理15)已知A,B,C为圆O上的三点,若),则与的夹角为. 答案:90°解析:由)可得O为BC的中点,则BC为圆O的直径,即∠BAC=90°,故与的夹角为90°.16.(2014课标全国Ⅰ,理16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为.答案:解析:由正弦定理,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=-.∴sin A=.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=bc·sin A≤,即(S△ABC)max=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2014课标全国Ⅰ,理17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.分析:(1)已知数列{a n}的前n项和S n与相邻两项a n,a n+1间的递推关系式a n a n+1=λS n-1,要证a n+2-a n=λ,故考虑利用a n+1=S n+1-S n消去S n进行证明.(2)若{a n}为等差数列,则有2a2=a1+a3,故可由此求出λ,进而由a n+2-a n=4验证{a n}是否为等差数列即可.解:(1)由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减,得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4.由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.18.(本小题满分12分)(2014课标全国Ⅰ,理18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表).(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.分析:(1)利用=x1p1+x2p2+…+x n p n求,利用s2=(x1-)2p1+(x2-)2p2+…+(x n-)2p n,求s2.(2)①由(1)可知μ,σ2,则N(μ,σ2)可知.将P(187.8<Z<212.2)进行转化,利用3σ原则求解.②由①可知一件产品的质量指标值位于区间(187.8,212.2)的概率为p,则100件产品中质量指标值位于区间(187.8,212.2)的产品件数X服从二项分布B(100,p),则由E(X)=100p可求E(X).解:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以E(X)=100×0.6826=68.26.19.(本小题满分12分)(2014课标全国Ⅰ,理19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.分析:(1)因为侧面BB1C1C为菱形,故考虑利用菱形的性质:对角线互相垂直平分,故连接BC1,不妨设其交B1C于点O,则O为B1C的中点,要证AC=AB1,故只需证B1C⊥AO.又B1C⊥AB,故考虑通过证B1C⊥平面ABO来达到目的.(2)利用空间直角坐标系求解,由(1)知B1O⊥AO,B1O⊥BO.故考虑以O点为坐标原点,以的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向建立空间直角坐标系,但需证明OB⊥OA,然后分别求出平面AA1B1和平面A1B1C1的法向量n,m,最后利用cos<n,m>=·求出二面角A-A1B1-C1的余弦值.解:(1)连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO⊂平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两互相垂直.以O为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz.因为∠CBB1=60°,所以△CBB1为等边三角形.又AB=BC,则A,B(1,0,0),B1,C-----.设n=(x,y,z)是平面AA1B1的法向量,则··即所以可取n=(1,.设m是平面A1B1C1的法向量,则··同理可取m=(1,-).则cos<n,m>=·.所以二面角A-A1B1-C1的余弦值为.20.(本小题满分12分)(2014课标全国Ⅰ,理20)已知点A(0,-2),椭圆E:=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.分析:(1)由过A(0,-2),F(c,0)的直线AF的斜率为或过两点的直线斜率公式可求c,再由e=,可求a,由b2=a2-c2可求b2,则椭圆E的方程可求.(2)由题意知动直线l的斜率存在,故可设其斜率为k,写出直线方程,并与椭圆方程联立,消去y,整理成关于x 的一元二次方程,利用弦长公式求出弦PQ的长|PQ|,利用点到直线的公式求出点O到直线PQ的距离d,则由S△OPQ=|PQ|·d,可将S△OPQ表示成关于k的函数,转化为求函数f(k)的最大值问题.注意k应使得一元二次方程的判别式大于0.解:(1)设F(c,0),由条件知,,得c=.又,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=-.从而|PQ|=|x1-x2|=·-.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=-.设-=t,则t>0,S△OPQ=.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0.所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.21.(本小题满分12分)(2014课标全国Ⅰ,理21)设函数f(x)=a e x ln x+-,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.分析:(1)由已知可得f(1)=e(1-1)+2=2,切线斜率k=e=f'(1),由此可求出a,b.(2)由(1)可求f(x),结合不等式的特点将之转化为g(x)>h(x)的形式,通过比较g(x)的最小值与h(x)的最大值进行证明.解:(1)函数f(x)的定义域为(0,+∞),f'(x)=a e x ln x+e x-e x-1+e x-1.由题意可得f(1)=2,f'(1)=e.故a=1,b=2.(2)由(1)知,f(x)=e x ln x+e x-1,从而f(x)>1等价于x ln x>x e-x-.设函数g(x)=x ln x,则g'(x)=1+ln x.所以当x∈时,g'(x)<0;当x∈∞时,g'(x)>0.故g(x)在单调递减,在∞单调递增,从而g(x)在(0,+∞)的最小值为g=-.设函数h(x)=x e-x-,则h'(x)=e-x(1-x).所以当x∈(0,1)时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.故h(x)在(0,1)单调递增,在(1,+∞)单调递减,从而h(x)在(0,+∞)的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.请考生在第22,23,24题中任选一题做答.如果多做,则按所做的第一题记分.做答时请写清题号.22.(本小题满分10分)(2014课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,四边形ABCD是☉O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是☉O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.分析:(1)由CB=CE可得∠CBE=∠E,要证∠D=∠E,故只需证∠CBE=∠D,利用圆内接四边形的一个外角等于它的内对角可证.(2)由(1)知∠D=∠E,要证△ADE为等边三角形,只需证∠A=∠E,又因为∠CBE=∠E,故只需证∠A=∠CBE,只需证AD∥BC,因为已知MB=MC,故考虑利用等腰三角形的三线合一的性质.故取BC的中点N,连接MN,则MN⊥BC,通过证明MN⊥AD来达到证明AD∥BC的目的.解:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是☉O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.23.(本小题满分10分)(2014课标全国Ⅰ,理23)选修4—4:坐标系与参数方程已知曲线C:=1,直线l:-(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析:(1)利用椭圆=1(a>0,b>0)的参数方程为(θ为参数),写出曲线C的参数方程.消去直线l的参数方程中的参数t可得直线l的普通方程.(2)设出点P的坐标的参数形式.求出点P到直线l的距离d,则|PA|=.转化为求关于θ的三角函数的最值问题,利用辅助角公式a sinθ+b cosθ=sin(θ+φ)求解.解:(1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cosθ,3sinθ)到l的距离为d=|4cosθ+3sinθ-6|,则|PA|=|5sin(θ+α)-6|,其中α为锐角,且tanα=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.24.(本小题满分10分)(2014课标全国Ⅰ,理24)选修4—5:不等式选讲若a>0,b>0,且.(1)求a3+b3的最小值;。
2014年高考理科数学试题及答案全国卷i
2014年高考理科数学试题及答案全国卷i 2014年高考理科数学试题及答案全国卷I一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是正确的。
1. 若函数f(x)=x^2+bx+c,且f(1)=0,则b的值为:A. 1B. -1C. 2D. -22. 已知向量a=(3,2),向量b=(-1,2),向量a与向量b的点积为:A. 4B. 5C. 6D. 73. 若直线l的方程为y=kx+b,且直线l与x轴交于点(2,0),与y轴交于点(0,3),则k的值为:A. 3/2B. -3/2C. 2/3D. -2/34. 已知等差数列{an}的首项为1,公差为2,求该数列的前10项和S10:A. 100B. 105C. 110D. 1155. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i6. 已知函数f(x)=x^3-3x,求f'(x):A. 3x^2-3B. x^2-3C. 3x^2+3D. x^2+37. 若双曲线C的方程为x^2/a^2-y^2/b^2=1,且双曲线C的渐近线方程为y=±(√3/3)x,则a与b的关系为:A. a=bB. a=√3bC. b=√3aD. b=3a8. 已知函数f(x)=x^2-4x+3,求函数f(x)的最小值:A. -1B. 0C. 1D. 49. 若圆C的方程为(x-1)^2+(y-2)^2=9,求圆C的圆心坐标和半径:A. 圆心(1,2),半径3B. 圆心(2,1),半径3C. 圆心(1,2),半径√9D. 圆心(2,1),半径√910. 已知正方体的棱长为a,求正方体的表面积:A. 6a^2B. 12a^2C. 24a^2D. 36a^211. 若函数f(x)=ln(x+√(x^2+1)),求f'(x):A. 1/(x+√(x^2+1))B. 1/(x-√(x^2+1))C. 1/(2x+2√(x^2+1))D. 1/(2x-2√(x^2+1))12. 已知函数f(x)=x^2-6x+8,求函数f(x)的零点:A. 2和4B. 1和5C. 3和3D. 4和2二、填空题:本题共4小题,每小题5分,共20分。
2014年高考全国卷1理科数学试题及答案-(word版)
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12 小题,每小题 5 分,共60 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={ x| 2 2 3 0x x } ,B={ x| -2≤x<2=,则 A B =A .[-2,-1]B .[-1,2 )C .[-1,1]D .[1,2)3 (1 i)2. =2(1 i)A .1 iB .1 iC . 1 iD . 1 i3. 设函数 f (x) ,g( x) 的定义域都为R,且 f ( x) 时奇函数,g( x) 是偶函数,则下列结论正确的是A . f (x) g( x) 是偶函数B .| f (x) |g(x) 是奇函数C . f (x) | g( x) |是奇函数D .| f ( x) g( x) |是奇函数4. 已知F 是双曲线 C : 2 2 3 ( 0)x my m m 的一个焦点,则点 F 到C 的一条渐近线的距离为A . 3B .3C . 3mD . 3m5. 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A . 18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x的函数 f ( x) ,则y = f (x) 在[0, ] 上的图像大致为5. 执行下图的程序框图,若输入的 a, b, k 分别为 1,2,3,则输出的 M =A .20 3B .165C .7 215 8D .6. 设(0, ) 2 ,(0, ) 2,且tan 1 sin cos,则A .3B . 222C .3D . 22 27. 不等式组xy 1 x 2y 4的解集记为 D .有下面四个命题:p : (x, y) D, x 2y2 , p 2 : ( x, y) D ,x 2y 2 ,1P : (x, y) D, x 2y 3 , 3p : (x, y) D ,x 2y1 .4其中真命题是A . p 2 , PB . 3p , p 4C . 1 p , p 2D . 1p , 1P38. 已知抛物线 C :28yx 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与C 的一个焦点,若F P 4FQ ,则 | QF |=A .7 2B .5 2C .3D .29. 已知函数 f (x) =33 2 1 axx ,若 f ( x) 存在唯一的零点 x 0 ,且 x 0 >0,则 a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)10. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .6 2B .4 2C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考全国卷1理科数学试题及答案-(word版)2014年高考全国卷1理科数学试题及答案-(
2014年普通高等学校招生全国统一考试一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x yD x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x yD x y ∃∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4F P F Q=,则||QF =A .72 B .52C .3D .211. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62 B .42 C .6 D .4二.填空题:本大题共四小题,每小题5分。
2014年高考真题(理科数学)全国卷 纯Word版解析可编辑
2014·全国卷(理科数学)1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.3.[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析] 因为b =cos 55°=sin 35°>sin 33°,所以b >a .因为cos 35°<1,所以1cos 35°>1,所以sin 35°cos 35°>sin 35°.又c =tan 35°=sin 35°cos 35°>sin 35°,所以c >b ,所以c >b >a .4.[2014·全国卷] 若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.224.B [解析] 因为(a +b )⊥a ,所以(a +b )·a =0,即|a|2+b·a =0.因为(2a +b )⊥b ,所以(2a +b )·b =0,即2a·b +|b|2=0,与|a|2+b·a =0联立,可得2|a|2-|b|2=0,所以|b|=2|a|= 2. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .17.C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝⎛⎭⎫942=81π4. 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A [解析] 根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca =2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a=14. 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .310.C [解析] 设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎨⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝⎛⎭⎫4×52=4. 11.[2014·全国卷] 已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1211.B [解析] 如图所示,在平面α内过点C 作CF ∥AB ,过点F 作FE ⊥β,垂足为点E ,连接CE ,则CE ⊥l ,所以∠ECF =60°.过点E 作DE ⊥CE ,交CD 于点D 1,连接FD 1.不妨设FC =2a ,则CE =a ,EF =3a .因为∠ACD =135°,所以∠DCE =45°,所以,在Rt △DCE 中,D 1E =CE =a ,CD 1=2a ,∴FD 1=2a ,∴cos ∠DCF =4a 2+2a 2-4a 22×2a ×2a=24.12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5. 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析] 如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].17.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.、[2014·全国卷] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1 AB C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1 AB C 的大小为arccos 14.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0. 22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n=k+1时,有2k+3<a k+1≤3k+3,结论成立.根据(i)(ii)知对任何n∈N*结论都成立.。
2014年全国高考数学(理科)试题及答案-新课标1卷(解析版)
2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i+=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x = 1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ =∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年全国高考-全国卷理科数学试题及答案
2014年普通高等学校统一考试(大纲)理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设103i zi,则z 的共轭复数为()A .13iB .13i C .13i D .13i2. 设集合2{|340}M x xx ,{|05}Nx x ,则MN()A .(0,4]B .[0,4)C .[1,0)D .(1,0]3. 设0sin 33a,0cos55b ,0tan 35c,则()A .a bcB .bc a C .cb a D .ca b4. 若向量,a b 满足:||1a ,()a b a ,(2)a b b ,则||b ()A .2B .2C .1D .225. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A .60种B .70种C .75种D .150种6. 已知椭圆C :22221x y ab(0)a b 的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B 的周长为43,则C 的方程为()A .22132xyB .2213xyC .221128xyD .221124xy7. 曲线1x y xe 在点(1,1)处切线的斜率等于()A .2eB .eC .2D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .814B .16C .9D .2749. 已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A ,则21cos AF F ()A .14B .13C .24D .2310. 等比数列{}n a 中,452,5a a ,则数列{lg }n a 的前8项和等于()A .6B .5C .4D .311. 已知二面角l为060,AB ,AB l ,A 为垂足,CD,C l ,0135ACD,则异面直线AB 与CD 所成角的余弦值为()A .14B .24C .34D .1212. 函数()yf x 的图象与函数()yg x 的图象关于直线0xy对称,则()yf x 的反函数是()A .()yg x B .()y g x C .()y g x D .()y g x 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.8()x y yx的展开式中22x y 的系数为.14. 设x 、y 满足约束条件02321xy xyx y,则4z xy 的最大值为.15.直线1l 和2l 是圆222xy的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于.16. 若函数()cos 2sin f x x a x 在区间(,)62是减函数,则a 的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a Cc A ,1tan 3A,求B.18.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a ,2a 为整数,且4n S S .(1)求{}n a 的通项公式;(2)设11nn nb a a ,求数列{}n b 的前n 项和n T .19. (本小题满分12分)如图,三棱柱111ABCA B C 中,点1A 在平面ABC内的射影D 在AC 上,090ACB,11,2BC ACCC . (1)证明:11AC A B ;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A ABC 的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.21. (本小题满分12分)已知抛物线C :22(0)y px p 的焦点为F ,直线4y 与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ .(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线'l 与C 相较于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.22. (本小题满分12分)函数()ln(1)(1)ax f x x a xa.(1)讨论()f x 的单调性;(2)设111,ln(1)nn a a a ,证明:23+22na n n.参考答案一、选择题:1. D2.B3.C4.B5.C6.A7.C8.A9.A10.C11.B12.D二、填空题:13. 70 14. 5 15.4316.(,2]三、解答题:17.(本小题满分10分)解:由题设和正弦定理得3sin cos 2sin cos A C C A故3tan cos 2sin A CC因为1tan 3A ,所以cos 2sin CC即1tan 2C……………………………6分所以tan tan[180()]B AC tan()A C tan tan tan tan 1A CA C ……………8分1即135B ………………………………10分18.(本小题满分12分)解:(Ⅰ)由110a ,2a 为整数知,等差数列{}n a 的公差d 为整数又4nS S ,故450,0a a 即1030,1040d d 解得10532d因此3d数列{}n a 的通项公式为133na n …………………………………6分(Ⅱ)1111()(133)(103)3103133nb n n nn………………………8分于是12...n nT b b b 1111111[()()...()]371047103133nn 111()310310n 10(103)n n ……………….12分19.(本小题满分12分)解法一:(Ⅰ)因为1A D平面1,ABC A D平面11AAC C ,故平面11AAC C平面ABC ,又BCAC ,所以BC平面11AAC C ,……………3分连结1AC ,因为侧面11AAC C 为菱形,故11AC AC 由三垂线定理得11AC A B ………5分(Ⅱ)BC平面11,AAC C BC平面11BCC B ,故平面11AAC C 平面11BCC B 作11,A ECC E 为垂足,则1A E 平面11BCC B 又直线1//AA 平面11BCC B ,因而1A E 为直线1AA 与平面11BCC B 的距离,13A E因为1AC 为1ACC 的平分线,故113A D A E………………8分作,DF AB F 为垂足,连结1A F ,由三垂线定理得1A FAB ,故1A FD 为二面角1A ABC 的平面角由22111ADAA A D得D 为AC 中点,1525AC BC DFAB ,11tan 15A D A FDDF所以二面角1A ABC 的大小为arctan 15………………12分解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C xyz ,由题设知1A D 与z 轴平行,x 轴在平面11AAC C 内(Ⅰ)设1(,0,)A a c ,由题设有2a,(2,0,0)A ,(0,1,0)B ,则(2,1,0)AB ,(2,0,0)AC ,1(2,0,)AA a c ,11(4,0,)AC ACAA a c ,1(,1,)BA a c ………………2分由1||2AA 得22(2)2a c,即2240aac①于是221140AC BA aa c,所以11AC A B ………………………5分(Ⅱ)设平面11BCC B 的法向量(,,)mx y z ,则1,m CB mBB ,即0m CB,1m BB 因为(0,1,0)CB,11(2,0,)BB AA a c ,故0y ,且(2)0a x cz 令x c ,则2za ,(,0,2)mc a ,点A 到平面11BCC B 的距离为22||2|||cos,|||(2)CA m c CA m CA cm ca 又依题设,A 到平面11BCC B 的距离为3,所以3c 代入①解得3a (舍去)或1a………………………………………8分于是1(1,0,3)AA 设平面1ABA 的法向量(,,)n p q r ,则1,nAA n AB ,即10n AA ,0n AB ,30pr且20pq,令3p ,则23q ,1r ,(3,23,1)n ,又(0,0,1)p为平面ABC 的法向量,故。
2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45 6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f (x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=﹣.∴S△OAB=S△OAF+S△OFB=×|y1﹣y2|==×=.故选:D.【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5F:空间位置关系与距离.【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2>m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2>m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N+时,++…+<.【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.祝福语祝你马到成功,万事顺意!。
2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1。
已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ).A 。
[]2,1--B 。
[)1,2-C 。
[]1,1-D 。
[)1,22。
32(1)(1)i i +=-( ). A .1i + B .1i - C 。
1i -+ D 。
1i --3。
设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。
A .()()f x g x 是偶函数B 。
()()f x g x 是奇函数C 。
()()g x f x 是奇函数D 。
()()f x g x 是奇函数4。
已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。
3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C 。
58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7。
执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )。
A .203 B . 72 C . 165 D 。
1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A 。
32παβ-=B . 32παβ+=C 。
22παβ-=D 。
22παβ+=9。
不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-。
2014全国统一高考数学真题及逐题详细解析(理科)—新课标Ⅱ卷
2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N =( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量,a b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .1B .2C .3D .54.钝角三角形ABC 的面积是12,1AB =,BC ,则AC =( )A .5B .2 D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .08.B .075.C .06.D .045. 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B . 59 C . 1027D . 13 7.执行右图程序框图,如果输入的,x t 均为2,则输出的S =( )A .4B .5C .6D .78.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2 D .39.设,x y 满足约束条件70,310,350.x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于,A B 两点,O 为坐标原点,则OAB 的面积为( )A C .6332 D .9411.直三棱柱111ABC A B C -中,90BCA ∠=︒,M N ,分别是1111A B AC ,的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为( )A .110 B .25 C12.设函数()xf x mπ=.若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.10()x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f =.若(1)0f x ->,则x 的取值范围是______.16.设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是____.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n a a +=+.(Ⅰ)证明1{}2n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1211132n a a a +++<. 18.(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ABCD ⊥平面 ,E 为PD 的中点.(Ⅰ)证明:PB AEC ∥平面;(Ⅱ)设二面角D AE C --为60°,1AP = ,AD =,求三棱锥E ACD - 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的(Ⅰ)求关于的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆa y bt=- 20.(本小题满分12分)设12,F F 分别是椭圆22221x y a b+= (0a b >> )的左右焦点,M 是C上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b . 21.(本小题满分12分)已知函数()2x x f x e e x -=--。
2014年全国统一高考数学试卷及解析(理科)(大纲版)
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=17、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、18、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、311、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为、(用数字作答)14、(5分)设x、y满足约束条件,则z=x+4y的最大值为、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i题目分析:直接由复数代数形式的除法运算化简,则z的共轭可求、试题解答解:∵z==,∴、故选:D、点评:本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题、2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]题目分析:求解一元二次不等式化简集合M,然后直接利用交集运算求解、试题解答解:由x2﹣3x﹣4<0,得﹣1<x<4、∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4)、故选:B、点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题、3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b题目分析:可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得、试题解答解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C、点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题、4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、题目分析:由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||、试题解答解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B、点评:本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种题目分析:根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案、试题解答解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C、点评:本题考查分步计数原理的应用,注意区分排列、组合的不同、6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=1题目分析:利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程、试题解答解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1、故选:A、点评:本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题、7、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、1题目分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率、试题解答解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C、点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础、8、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、题目分析:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积、试题解答解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=、故选:A、点评:本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、题目分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论、试题解答解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===、故选:A、点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、3题目分析:利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10、再利用对数的运算性质即可得出、试题解答解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10、∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4、故选:C、点评:本题考查了等比数列的性质、对数的运算性质,属于基础题、11、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、题目分析:首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案、试题解答解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===、故选:B、点评:本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)题目分析:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x 的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得、试题解答解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D、点评:本题考查反函数的性质和对称性,属中档题、二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为70、(用数字作答)题目分析:先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数、=•(﹣1)试题解答解:的展开式的通项公式为T r+1 r••=•(﹣1)r••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70、点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题、14、(5分)设x、y满足约束条件,则z=x+4y的最大值为5、题目分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案、试题解答解:由约束条件作出可行域如图,联立,解得C(1,1)、化目标函数z=x+4y为直线方程的斜截式,得、由图可知,当直线过C点时,直线在y轴上的截距最大,z最大、此时z max=1+4×1=5、故答案为:5、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、题目分析:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果、试题解答解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:、点评:本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2] 、题目分析:利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x 的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围、试题解答解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1、∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=、∴,解得:a≤2、∴a的取值范围是(﹣∞,2]、故答案为:(﹣∞,2]、点评:本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、题目分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出、试题解答解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=、∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、题目分析:(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可、试题解答解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=、点评:本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、题目分析:(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得、试题解答解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan点评:本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、题目分析:记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求、(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可、试题解答解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31、(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38、故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2点评:本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、题目分析:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程、(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|、把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|、由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程、试题解答解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=、又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去)、故C的方程为y2=4x、(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4、∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1)、又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3、过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3)、故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0、点评:本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、题目分析:(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式、试题解答解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数、②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数、(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立、②假设当n=k时结论成立,即,=ln(a n+1)>ln(),则当n=k+1时,a n+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校统一考试(大纲)理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设103iz i=+,则z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i - 2. 设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则MN =( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]- 3. 设0sin 33a =,0cos55b =,0tan 35c =,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >> 4. 若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1D .25. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y += B .2213x y += C .221128x y += D .221124x y += 7. 曲线1x y xe-=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π9. 已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( )A .14 B .13C.4 D.310. 等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .311. 已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( ) A .14 B.4 C.4 D .1212. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.8-的展开式中22x y 的系数为 . 14. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .16. 若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B. 18.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 21. (本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线'l 与C 相较于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 22. (本小题满分12分)函数()ln(1)(1)axf x x a x a=+->+. (1)讨论()f x 的单调性;(2)设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+.参考答案一、选择题:1. D2.B3.C4.B5.C6.A7.C8.A9.A10.C11.B12.D二、填空题:13. 70 14. 5 15.4316.(,2]-∞三、解答题:17.(本小题满分10分)解:由题设和正弦定理得3sin cos 2sin cos A C C A =故3tan cos 2sin A C C =因为1tan 3A =,所以cos 2sin C C =即1tan 2C =……………………………6分 所以tan tan[180()]B A C =-+tan()A C =-+tan tan tan tan 1A CA C +=-……………8分1=-即135B =………………………………10分18.(本小题满分12分)解:(Ⅰ)由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数又4n S S ≤,故450,0a a ≥≤ 即 1030,1040d d +≥+≤解得 10532d -≤≤- 因此3d =-数列{}n a 的通项公式为133n a n =-…………………………………6分(Ⅱ)1111()(133)(103)3103133n b n n n n==⋅-----………………………8分于是12...n n T b b b =+++1111111[()()...()]371047103133n n=-+-++--- 111()310310n =-- 10(103)nn =-……………….12分19.(本小题满分12分)解法一:(Ⅰ)因为1A D ⊥平面1,ABC A D ⊂平面11AAC C ,故平面11AA C C ⊥平面ABC , 又BC AC ⊥,所以BC ⊥平面11AAC C ,……………3分连结1A C ,因为侧面11AAC C 为菱形,故11AC A C ⊥由三垂线定理得11AC A B ⊥………5分(Ⅱ)BC ⊥平面11,AAC C BC ⊂平面11BCC B ,故平面11AA C C ⊥平面11BCC B作11,A E CC E ⊥为垂足,则1A E ⊥平面11BCC B又直线1//AA 平面11BCC B ,因而1A E 为直线1AA 与平面11BCC B 的距离,13A E =因为1A C 为1ACC ∠的平分线,故113A D A E ==………………8分 作,DF AB F ⊥为垂足,连结1A F ,由三垂线定理得1A F AB ⊥, 故1A FD ∠为二面角1A AB C --的平面角 由22111AD AA A D =-=得D 为AC 中点,1525AC BC DF AB ⨯=⨯=,11tan 15A DA FD DF∠==所以二面角1A AB C --的大小为arctan 15………………12分解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C xyz -,由题设知1A D 与z 轴平行,x 轴在平面11AAC C 内(Ⅰ)设1(,0,)A a c ,由题设有2a ≤,(2,0,0)A ,(0,1,0)B ,则 (2,1,0)AB =-, (2,0,0)AC =-,1(2,0,)AA a c =-,11(4,0,)AC AC AA a c =+=-, 1(,1,)BA a c =-………………2分由1||2AA =得22(2)2a c -+=,即2240a a c -+= ①于是221140AC BA a a c ⋅=-+=,所以11AC A B ⊥………………………5分 (Ⅱ)设平面11BCC B 的法向量(,,)m x y z =,则1,m CB m BB ⊥⊥,即0m CB ⋅=,10m BB ⋅=因为(0,1,0)CB =,11(2,0,)BB AA a c ==-,故0y =,且(2)0a x cz -+= 令x c =,则2z a =-,(,0,2)m c a =-,点A 到平面11BCC B 的距离为22||2|||cos ,|||(2)CA m c CA m CA c m c a ⋅⋅<>===+-又依题设,A 到平面11BCC B 的距离为3,所以3c =代入①解得3a =(舍去)或1a = ………………………………………8分 于是1(1,0,3)AA =- 设平面1ABA 的法向量(,,)n p q r =,则1,n AA n AB ⊥⊥,即10n AA ⋅=,0n AB ⋅=,30p r -+=且20p q -+=,令3p =,则23q =,1r =,(3,23,1)n =,又(0,0,1)p =为平面ABC 的法向量,故1cos ,||||4n p n p n p ⋅<>==⋅所以二面角1A AB C --的大小为1arccos4……………………12分 20.(本小题满分12分)解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备 (Ⅰ)122D A B C A B A B C =⋅⋅+⋅+⋅⋅22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ===⨯=………3分所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =⋅⋅+⋅+⋅⋅0.31=……………………………………6分(Ⅱ)χ的可能取值为0,1,2,3,4,其分布列为0(0)()P P B A C χ==⋅⋅0()()()P B P A P C =⋅⋅2(10.6)0.5(10.4)=-⨯⨯-0.06=001(1)()P P B A C B A C B A C χ==⋅⋅+⋅⋅+⋅⋅001()()()()()()()()()P B P A P C P B P A P C P B P A P C =⋅⋅+⋅⋅+⋅⋅2220.60.5(10.4)(10.6)0.50.4(10.6)0.5(10.4)=⨯⨯-+-⨯⨯+-⨯⨯-0.25=222(4)()()()()0.50.60.40.06P P A B C P A P B P C χ==⋅⋅=⋅⋅=⨯⨯=(3)()(4)0.25P P D P χχ==-==(2)1(0)(1)(3)(4)P P P P P χχχχχ==-=-=-=-=10.060.250.250.06=----0.38=…………………………………………………………………10分数学期望0(0)1(1)2(2)3(3)4(4)EX P P P P P χχχχχ=⨯=+⨯=+⨯=+⨯=+⨯=0.2520.3830.2540.06=+⨯+⨯+⨯2=……………………………………………………………12分21.(本小题满分12分)解:(Ⅰ)设0(,4)Q x ,代入22y px =得08x p=所以088||,||22p p PQ QF x p p==+=+ 由题设得85824p p p+=⨯,解得2p =-(舍去)或2p = 所以C 的方程为24y x =……………………………………………5分 (Ⅱ)依题意知l 与坐标轴不垂直,故可设l 的方程为1(0)x my m =+≠代入24y x =得 2440y my --= 设1122(,),(,)A x y B x y ,则12124,4y y m y y +==-故AB 的中点为2212(2 1.2),|||4(1)D m m AB y y m +=-=+又l '的斜率为m -,所以l '的方程为2123x y m m=-++ 将上式代入24y x =,并整理得2244(23)0y y m m+-+= 设3344(,),(,)M x y N x y ,则234344,4(23)y y y y m m+=-=-+ 故MN 的中点为2222(23,)E m m m ++-,23424(|||m MN y y m+=-=…10分 由于MN 垂直平分AB ,故,,,A M B N 四点在同一圆上等价于1||||||2AE BE MN ==, 从而22211||||||44AB DE MN += 即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=化简得210m -=,解得1m =或1m =-所求直线l 的方程为10x y --=或10x y +-=……………………………12分22.(本小题满分12分) 解:(Ⅰ)()f x 的定义域为222[(2)](1,),()(1)()x a a f x x x a --'-+∞=++………………….2分(ⅰ)当12a <<时,若2(1,2)x a a ∈--,则()0f x '>,()f x 在2(1,2)a a --是增函数;若2(2,0)x a a ∈-,则()0f x '<,()f x 在2(2,0)a a -是减函数;若(0,)x ∈+∞,则()0f x '>,()f x 在(0,)+∞是增函数;……………………4分(ⅱ)当2a =时,()0f x '≥,()0f x '=成立当且仅当0x =,()f x 在(1,)-+∞是增函数; (ⅲ)当2a >时,若(1,0)x ∈-,则()0f x '>,()f x 在(1,0)-是增函数;若2(0,2)x a a ∈-,则()0f x '<,()f x 在2(0,2)a a -是减函数;若2(2,)x a a ∈-+∞,则()0f x '>,()f x 在2(2,)a a -+∞是增函数;……6分(Ⅱ)由(Ⅰ)知,当2a =时,()f x 在(1,)-+∞是增函数,当(0,)x ∈+∞时,()(0)0f x f >=,即2ln(1)(0)2xx x x +>>+ 又由(Ⅰ)知,当3a =时,()f x 在[0,3)是减函数, 当(0,3)x ∈时,()(0)0f x f <=,即3ln(1)(03)3xx x x +<<<+…………………9分 下面用数学归纳法证明2322n a n n <≤++ (ⅰ)当1n =时,由已知1213a <=,故结论成立; (ⅱ)设当n k =时结论成立,即2322k a k k <≤++ 当1n k =+时,122222ln(1)ln(1)22322k k k a a k k k +⨯+=+>+>=++++ 133332ln(1)ln(1)32332k k k a a k k k +⨯+=+≤+>=++++即当1n k =+时有12333k a k k +<≤++,结论成立。