2014年高考文科数学全国卷1

合集下载

2014年普通高等学校招生全国统一考试·全国卷Ⅰ 文科数学[校对版]

 2014年普通高等学校招生全国统一考试·全国卷Ⅰ 文科数学[校对版]

2014年普通高等学校招生全国统一考试·全国卷Ⅰ文科数学(时间:120分钟分值:150分)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N= ( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)2.若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>03.设z=+i,则|z|= ( )A. B. C. D.24.已知双曲线-=1(a>0)的离心率为2,则a= ( )A.2B.C.D.15.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+= ( )A. B. C. D.7.在函数①y=cos|2x|,②y=|cosx|,③y=cos,④y=tan中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M= ( )A. B. C. D.10.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0= ( )A.1B.2C.4D.811.设x,y满足约束条件且z=x+ay的最小值为7,则a= ( )A.-5B.3C.-5或3D.5或-312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)第Ⅱ卷(非选择题)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.15.设函数f(x)=则使得f(x)≤2成立的x的取值范围是.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{a n}的通项公式.(2)求数列的前n项和.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表).(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB.(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.20.(本小题满分12分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程.(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(本小题满分12分)设函数f(x)=a l nx+x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0.(1)求b.(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD是☉O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E.(2)设AD不是☉O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C:+=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程.(2)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲若a>0,b>0,且+=.(1)求a3+b3的最小值.(2)是否存在a,b,使得2a+3b=6?并说明理由.答案解析1.B 在数轴上表示出对应的集合,可得M∩N=(-1,1).2.【解题提示】由tanα>0确定α所在象限,根据各象限三角函数值的符号确定选项.C 由tanα>0可得:kπ<α<kπ+(k∈Z),故2kπ<2α<2kπ+π(k∈Z),正确的结论只有sin2α>0.3.B z=+i=+i=+i,|z|==.4.【解题提示】根据双曲线的性质c2=a2+b2及e=求解.D 由双曲线的离心率可得=2,解得a=1.5.【解题提示】利用函数的奇偶性的定义进行判断.C 设H(x)=f(x)·|g(x)|,则H(-x)=f(-x)·|g(-x)|,因为f(x)是奇函数,g(x)是偶函数,所以H(-x)=-f(x)·|g(x)|=-H(x),故H(x)是奇函数.6.A 如图所示,+=(-)+(+)=+=+=(+)=.7.A 由y=cos x是偶函数可知y=cos |2x|=cos2x,最小正周期为π,即①正确;y=|cos x|的最小正周期也是π,即②也正确;y=cos最小正周期为π,即③正确;y=tan的最小正周期为,即④不正确.即正确答案为①②③.8.B 根据所给三视图易知,对应的几何体是一个横放着的三棱柱.9.D 输入a=1,b=2,k=3;n=1时:M=1+=,a=2,b=;n=2时:M=2+=,a=,b=;n=3时:M=+=,a=,b=;n=4时:输出M=.10.A 根据抛物线的定义可知|AF|=x0+=x0,解得x0=1.11.【解题提示】先根据x,y满足的约束条件画出可行域,平移直线x+ay=0,确定取得最小值的点,从而确定a的值.B 画出不等式组对应的平面区域,如图所示.联立解得所以A.当a=0时A为,z=x+ay的最小值为-,不满足题意;当a<0时,由z=x+ay得y=-x+,要使z最小,则直线y=-x+在y轴上的截距最大,此时最优解不存在;当a>0时,当直线过点A时截距最小,z最小,此时z=+=7,解之得a=-5(舍去)或a=3.12.【解题提示】先对函数进行求导,然后根据导函数进行分析,注意对参数a的分类讨论.C 由题意知a≠0,f'(x)=3ax2-6x,令f'(x)=0,解得x=0或x=.当a>0时,x∈(- ,0),f'(x)>0;x∈,f'(x)<0;x∈f'(x)>0,且f(0)=1>0,故f(x)有小于0的零点,不满足.当a<0时,需使x0>0,且唯一,只需f>0,即a2>4,所以a<-2.13.【解析】设数学书为A,B,语文书为C,则不同的排法共有(A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A)共6种排列方法,其中2本数学书相邻的情况有4种,故所求概率为P==.答案:14.【解析】由丙可知,乙至少去过一个城市,由甲说可知甲去过A,C,且比乙多,故乙只去过一个城市,且没有去过C城市,故乙只去过A城市.答案:A15.【解析】当x<1时,由e x-1≤2可得x-1≤l n2,即x≤l n2+1,故x<1;当x≥1时,由f(x)=≤2可得x≤8,故1≤x≤8.综上可得x≤8.答案:(- ,8]16.【解析】在Rt△ABC中,由条件可得AC=100m,在△MAC中,由正弦定理可得=,故AM=AC=100m,在Rt△MAN中,MN=AM·sin60°=150m.答案:15017.【解题提示】根据方程x2-5x+6=0求出a2,a4的值,从而求出{a n}的通项公式,再利用错位相减法求出数列的前n项和.【解析】(1)方程x2-5x+6=0的两根为2,3,由题意得a2=2,a4=3,设数列{a n}的公差为d,则a4-a2=2d,故d=,从而a1=,所以{a n}的通项公式为:a n=n+1.(2)设数列的前n项和为S n,由(1)知=,则S n=+++…++,S n=+++…++,两式相减得:S n=+-=+-所以S n=2-.18.【解析】(1)(2)质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为:s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.19.【解题提示】利用线面垂直证明线线垂直,求三棱柱ABC-A1B1C1的高可转化为求点B1到平面ABC的距离.【解析】(1)连接BC1,则O为BC1与B1C的交点,因为侧面BB1C1C为菱形,所以B1C⊥BC1,又AO⊥平面BB1C1C,故B1C⊥AO,AO∩BC1=O,所以B1C⊥平面ABO,由于AB 平面ABO,故B1C⊥AB.(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,由于BC⊥AO,BC⊥OD,AO∩DO=O,故BC⊥平面AOD,所以OH⊥BC.又OH⊥AD,AD ∩BC=D,所以OH⊥平面ABC.因为∠CBB1=60°,所以△CBB1为等边三角形,又BC=1,可得OD=,由于AC⊥AB1,所以OA=B1C=,由OH·AD=OD·OA,且AD==,得OH=,又O为B1C的中点,所以点B1到平面ABC的距离为,故三棱柱ABC-A1B1C1的高为.20.【解析】(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4. 设M(x,y),则=(x,y-4),=(2-x,2-y),由题设知·=0,故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2,由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆. 由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率为-,直线l的方程为:y=-x+,又|OM|=|OP|=2,O到l的距离为,|PM|=,所以△POM的面积为.21.【解析】(1)f'(x)=+(1-a)x-b,由题设知f'(1)=0,解得b=1.(2)f(x)的定义域为(0,+∞),由(1)知,f(x)=a l n x+x2-x,f'(x)=+(1-a)x-1=(x-1),①若a≤,则≤1,故当x∈(1,+∞)时,f'(x)>0,f(x)在(1,+∞)上单调递增.所以,存在x0≥1,使得f(x0)<成立的充要条件为f(1)<,即-1<,所以--1<a<-1;②若<a<1,则>1,故当x∈时,f'(x)<0,x∈时,f'(x)>0,f(x)在上单调递减,f(x)在上单调递增.所以,存在x0≥1,使得f(x0)<成立的充要条件为f<,而f=a l n++>,所以不符合题意.③若a>1,则f(1)=-1=<.综上,a的取值范围为:∪(1,+∞).22.【证明】(1)由题设知,A,B,C,D四点共圆,所以∠D=∠CBE,由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,由MB=MC知MN⊥BC,故O在直线MN上.又AD不是☉O的直径,AD的中点为M,故OM⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形.23.【解析】(1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任一点P(2cosθ,3sinθ)到l的距离为d=|4cosθ+3sinθ-6|. 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tanα=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.24.【解析】(1)由=+≥,得ab≥2,当且仅当a=b=时等号成立, 故a3+b3≥2≥4,当且仅当a=b=时等号成立,所以a3+b3的最小值为4.(2)不存在.理由如下:由(1)知,2a+3b≥2≥4,由于4>6,从而不存在a,b使得2a+3b=6.。

2014年普通高等学校招生全国统一考试新课标I卷(数学文)-推荐下载

2014年普通高等学校招生全国统一考试新课标I卷(数学文)-推荐下载

n 2 时: M 2 2 8 , a 3 ,b 8 ; n 3 时: M 3 3 15 , a 8 ,b 15 ;
n 4 时:输出 M 15 . 选 D. 8
33 2 3
10.已知抛物线 C: y2 x 的焦点为 F , A , 是 C 上一点, AF 5 ,则 (



1 2
2

D. cos 2 0
2
,选 B
2
第 1 页 共 12 页
【解析】:由双曲线的离心率可得 a2 3 2 ,解得 a 1 ,选 D. a
(5)设函数 f (x), g(x) 的定义域为 R ,且 f (x) 是奇函数, g(x) 是偶函数,则下列结论中正确的是

最小正周期为

6
,即③正确;
y

tan(2x
4

EB FC EC BC

4
第 2 页 共 12 页
)
的最
8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

ay
(B)3
5 4
x0
,解之得
的最小值为
(D)5 或-3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年高考文科数学全国卷1(含详细答案)

2014年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。

2014年全国高考数学卷文科卷1试题及答案解析-精选.pdf

2014年全国高考数学卷文科卷1试题及答案解析-精选.pdf

( II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间 的中点值作代表) ; ( III )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指 标值不低于 95 的产品至少要占全部产品的 80%”的规定?
20.已知点 P ( 2,2) ,圆 C : x2 y2 8y 0 ,过点 P 的动直线 l 与圆 C 交于 A, B 两点,线段 AB 的中点为 M , O 为坐标原点 .
23.已知曲线
x2 C:
y2
x2t
1,直线 l :
( t 为参数)
49
y 2 2t
写出曲线 C 的参数方程,直线 l 的普通方程;
过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大
值与最小值 .
22.如图,四边形 ABCD 是 交于点 E ,且 CB CE .
(1) 求 M 的轨迹方程; (2) 当 OP OM 时,求 l 的方程及 POM 的面积
试卷第 3 页,总 4 页
21.设函数 f x a ln x
处的切线斜率为 0
1a2 x
2
bx a
1 ,曲线 y
f x 在点 1,f 1
求 b; 若存在 x0 1, 使得 f x0
a
,求 a 的取值范围。
a1
试卷第 4 页,总 4 页
1. B 【解析】
参考答案
试题分析:根据集合的运算法则可得: M N x | 1 x 1 ,即选 B.
[115 ,且12A5O)
8
平面 BB1C1C .
( I )在答题卡上作出这些数据的频率分布直方图:
A1B1C1 中,侧面 BB1C1C 为菱形, B1C 的中点为 O ,

2014年全国高考文科数学试题及答案-全国卷

2014年全国高考文科数学试题及答案-全国卷

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16 B C .13 D5.函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->-C .3(1)()x y e x R =-∈D .3(1)()x y e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小.大纲版数文解析(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)- 11 -。

2014年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题(文科)解析版D8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】:B【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱. 选B9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A.203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===; 4n =时:输出158M = . 选D.10.已知抛物线C :xy=2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8 【答案】:A【解析】:根据抛物线的定义可知001544AF xx =+=,解之得01x =. 选A.11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a = (A )-5(B )3 (C)-5或3(D )5或-3 【答案】:B【解析】:画出不等式组对应的平面区域, 如图所示.在平面区域内,平移直线0x ay +=,可知在点 A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a = -5或a = 3.但a = -5时,z 取得最大值,故舍去,答案为a = 3. 选B.(12)已知函数32()31f x axx =-+,若()f x 存在唯一的零点0x ,且0x>,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞- 【答案】:C【解析1】:由已知0a ≠,2()36f x axx'=-,令()0f x '=,得0x =或2x a =,当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。

2014年全国卷1(文科数学)

2014年全国卷1(文科数学)

2014年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}M x x =-<<,{21}N x x =-≤≤,则M N =IA.(2,1)-B.(1,1]-C.(1,3)D.(2,3)- 2.若tan 0α>,则A.sin 0α>B.cos 0α>C.sin 20α>D.cos20α>3.设11z i i=++,则z =A.12B.2C.2D.24.已知双曲线22213x y a -=(0a >)的离心率为2,则a =A.21 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A.()f x ⋅()g x 是偶函数B.()()f x g x 是奇函数C.()()f x g x 是奇函数D.()()f x g x 是奇函数6.设D ,E ,F 分别为ABC ∆的三边BC ,CA ,AB 的中点,则EB FC +=u u u r u u u rA.AD u u u rB.12AD u u u rC.12BC u u ur D.BC uuu r7.在函数①cos 2y x =,②cos y x =,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B.①③④C.②④D.①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行下图的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M = A.203 B.16C.7D.15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,054AF x =,则0x = A .1 B .2 C .4 D .811.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =A .5-B .3C .5-或3D .5或3- 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A.(2,)+∞B.(,2)-∞-C.(1,)+∞D.(,1)-∞- 二、填空题:本大题共4小题,每小题5分,共20分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .15.设函数1131()1x e x f x xx -⎧<⎪=⎨⎪≥⎩,则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=o ,C 点的仰角45CAB ∠=o 以及75MAC ∠=o ;从C 点测得60MCA ∠=o .已知山高100BC m =,则山高MN = m .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第1721:题为必做题,每个试题考生都必须作答.第22,23,24题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}2n na的前n 项和. 18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定? 19.(本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当OP OM =时,求l 的方程及POM ∆的面积.21.(本小题满分12分)设函数21()ln 2a f x a x x bx -=+-(1a ≠),曲线()y f x =在(1,(1))f 处的切线斜率为0. (Ⅰ)求b ;(Ⅱ)若存在01x ≥使得0()1af x a <-,求a 的取值范围. (二)选考题:共10分.请考生在第22,23,24题中任选一题作答.如果多做,按所做的第一题计分.22.(本小题满分10分)选修41-:几何证明选讲如图,四边形ABCD 是O e 的内接四边形,AB 的延长线与DC 的延长线交于点ABCA 1B 1C 1OE ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O e 的直径,AD 的中点为M ,且MB MC =,证明:ADE ∆为等边三角形.23.(本小题满分10分)选修44-:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修45-:不等式选讲若0a >,0b >,且11ab a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.。

2014年高考文科数学全国卷1

2014年高考文科数学全国卷1

数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin 20α>D .cos 20α> 3.设1i 1iz =++,则|z |=( )A .12BCD .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2 BCD .15.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC +=( )A .ADB .12ADC .BCD .12BC7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(24y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72 C .165 D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠= ,C 点的仰角45CAB ∠= 以及75MAC ∠= ;从C 点测得60MCA ∠= .已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数6 26 38 22 8(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥; (Ⅱ)若1AC AB ⊥,160CBB ∠= ,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30 的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.。

2014年全国高考文科数学试题及答案-全国卷

2014年全国高考文科数学试题及答案-全国卷

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72. 已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35-D .45- 3. 不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4. 已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16B C .13D5. 函数1)(1)y x =>-的反函数是( )A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6. 已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8. 设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( )A .31B .32C .63D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10. 正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π11. 双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,,则C 的焦距等于( )A .2 B. C .4 D.12. 奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14. 函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B.19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小. 20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.21. (本小题满分12分)函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N四点在同一个圆上,求直线l的方程.参考答案一、选择题1.B2.D3.C4.B5.D6.B7.C8.C9.A10.A11.C12.D二、填空题13. -16014.3215. 5 16.43三、解答题:解答应写出文字说明,证明过程或演算步骤。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年高考文科数学全国卷1

2014年高考文科数学全国卷1

数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =I ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .2 C .3 D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .6C .5D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC +=u u u r u u u r( )A .AD u u u rB .12AD u u u rC .BC u u u rD .12BC u u u r 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72 C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=o ,C 点的仰角45CAB ∠=o 以及75MAC ∠=o ;从C 点测得60MCA ∠=o .已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=o ,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O e 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O e 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30o 的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.。

2014年全国高考数学卷文科卷1试题及答案解析课件.doc

2014年全国高考数学卷文科卷1试题及答案解析课件.doc

2014 年全国高考数学卷文科卷 17 .在函数①y cos | 2x |,②y | cos x| ,③y cos( 2x ) , ④6一、选择题(题型注释)1.已知集合M x| 1 x 3 ,N x| 2 x 1 ,则M N ()y tan(2 x)中,最小正周期为的所有函数为4A. ①②③B. ①③④C. ②④D. ①③A. ( 2 ,1)B. ( 1,1 )C. (1,3)D. ( 2,3 ) 2.若tan 0,则8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A. sin 0B. cos 0C. sin 2 0D. cos2 013.设z i1 i,则| z|A. 12B.22C.32D. 22 2x y4.已知双曲线1( 0)a2a 3 的离心率为2,则aA. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱9.执行右面的程序框图,若输入的a, b,k 分别为1,2,3 ,则输出的M ( )A. 2B.6 C.25 D. 125.设函数 f (x), g(x)的定义域为R ,且 f (x) 是奇函数,g (x) 是偶函数,则下列结论中正确的是A. f ( x)g( x) 是偶函数B. | f ( x) | g( x) 是奇函数C. f ( x) | g( x) | 是奇函数D. | f (x)g(x) |是奇函数6.设D, E,F 分别为ABC 的三边BC, CA, AB 的中点,则EB FC1 A. AD B. AD21C. BC2D. BC试卷第 1 页,总 4 页A. 203B.72C.165D.15816.如图,为测量山高MN ,选择A 和另一座山的山顶 C 为测量观测点. 从A 点测得M 点的仰角MAN 60 ,C 点的仰角CAB 45 以及52 的焦点为 F ,A x y10.已知抛物线C:y x 0, 是C上一点,AF x0 4 ,MAC 75 ;从C 点测得MCA 60 . 已知山高BC 100m ,则山高MN ________ m.则x0 ()A. 1B. 2C. 4D. 811.已知函数 3 2f (x) ax 3x 1,若f (x) 存在唯一的零点x0 ,且x0 0,则a的取值范围是(A)2, (B)1, (C), 2 (D), 1二、填空题(题型注释)三、解答题(题型注释)12.设x,y 满足约束条件x y a,且z x ay 的最小值为7,则ax y 1,17.已知 a 是递增的等差数列,a2 ,a4 是方程n2 5 6 0x x 的根。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2014年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2014年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 2.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>03.设i iz ++=11,则|z |=( )A .21B .22C .23D .24.已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( ) A .2 B .26 C .25D .15.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( )A .ADB .21C .21D .BC7.在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .811.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a=( )A.-5 B.3 C.-5或3 D.5或-312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞, -2)D.(-∞, -1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15.设函数113,1(),1xe xf xx x-⎧<⎪=⎨⎪≥⎩,则使得f(x)≤2成立的x的取值范围是______.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角:∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=______m.三、解答题:解答应写出文字说明,证明过程或演算步骤。

2014年高考(课标全国Ⅰ)数学(文科)

2014年高考(课标全国Ⅰ)数学(文科)

【解析】由于 y=cos|2x|=cos 2x,所以该函数的周期为2π=π;由函数 y=|cos x|的图象易知
2
其周期为π;函数 y=cos 2 + π 的周期为2π=π;函数 y=tan 2 - π 的周期为π,故最小正周
6
2
4
2
期为π的函数是①②③,故选 A.
8.(2014 课标全国Ⅰ,文 8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体
当 a>0 时,f'(x)=3ax2-6x=3ax - 2 ,
令 f'(x)=0,得 x1=0,x2=2,
所以 f(x)在 x=0 处取得极大值 f(0)=1,在 x=2处取得极小值 f 2 =1- 42, 要使 f(x)有唯一的零点,需 f 2 >0,但这时零点 x0 一定小于 0,不合题意;
当 a<0 时,f'(x)=3ax2-6x=3ax - 2 ,
B.(-1,1)
C.(1,3)
D.(-2,3)
【解析】由已知得 M∩N={x|-1<x<1}=(-1,1),故选 B.
2.(2014 课标全国Ⅰ,文 2)若 tan α>0,则( ).
A.sin α>0 【答案】C
B.cos α>0
C.sin 2α>0
D.cos 2α>0
【解析】由 tan α>0 知角α是第一或第三象限角,当α是第一象限角时,sin 2α=2sin αcos
两式相减,得12Sn=34 +
1 23
+

+
2
1
+1
+2 2 +2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)
绝密★启用前
2014年普通高等学校招生全国统一考试(全国新课标卷1)
文科数学
使用地区:河南、山西、河北
注意事项:
1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-
2.若tan 0α>,则
( )
A . sin 0α>
B .cos 0α>
C . sin 20α>
D .cos 20α> 3.设1
i 1i
z =++,则|z |=
( )
A .
12
B
C
D .2
4.已知双曲线22
21(0)3
x y a a -=>的离心率为2,则a = ( )
A .2 B
C
D .1
5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中
正确的是
( )
A .()f x ()g x 是偶函数
B .|()|f x ()g x 是奇函数
C .()f x |()|g x 是奇函数
D .|()()|f x g x 是奇函数
6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC +=
( )
A .AD
B .12AD
C .BC
D .12
BC
7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(24
y x =-中,最小正周期为π的所有函数为
( )
A .①②③
B .①③④
C .②④
D .①③
8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是
( )
A .三棱锥
B .三棱柱
C .四棱锥
D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则
输出的M =
( )
A .
203
B .7
2 C .165 D .158
10.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,
05
||4
AF x =,则0x = ( )
A .1
B .2
C .4
D .8
11.设x ,y 满足约束条件,
1,x y a x y +⎧⎨--⎩
≥≤且z x ay =+的最小值为7,则a =
( )
A .5-
B .3
C .5-或3
D .5或3-
12.已知函数3
2
()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是
( )
A .(2,)+∞
B .(1,)+∞
C .(,2)-∞-
D .(,1)-∞-
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.
13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .
14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .
15.设函数113e ,1,(),1,
x x f x x x -⎧⎪
=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .
16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠= ,C 点的仰角45CAB ∠= 以及75MAC ∠= ;从C 点测得
60MCA ∠= .已知山高100BC = m ,则山高MN = m .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)
已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2
n
n a 的前n 项和.
姓名________________ 准考证号_____________
-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---
-------------
数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)
18.(本小题满分12分)
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组
[75,85) [85,95) [95,105) [105,115) [115,125)
频数
6 26 38 22 8
(Ⅰ)在答题卡上作出这些数据的频率分布直方图:
(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
19.(本小题满分12分)
如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .
(Ⅰ)证明:1B C AB ⊥; (Ⅱ)若1AC AB ⊥,160CBB ∠= ,1BC =,求三棱柱111ABC A B C -的高.
20.(本小题满分12分)
已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;
(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.
21.(本小题满分12分)
设函数
2
1()ln (1)2a f x a x x bx a -=+
-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.
(Ⅰ)求b ;
(Ⅱ)若存在01x ≥,使得0()1
a
f x a <-,求a 的取值范围.
请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲
如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.
(Ⅰ)证明:D E ∠=∠;
(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.
23.(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线C :22
1
49x y +=,直线l :2,22,
x t y t =+⎧⎨
=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线
l
的普通方程;
(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30 的直线,交l 于点A ,求||PA 的最大值与最小值.
24.(本小题满分10分)选修4—5:不等式选讲
若0a >,0b >,且
11
a b
+(Ⅰ)求33a b +的最小值;
(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.。

相关文档
最新文档