中考复习专题二次函数经典分类讲解复习以及练习题
(完整版),初中二次函数知识点详解及典型例题,文档
知识点一、二次函数的看法和图像1、二次函数的看法一般地,若是特y ax2bx c( a, b,c是常数, a 0) ,特别注意a不为零那么 y 叫做 x的二次函数。
y ax2bx c(a, b,c是常数, a0) 叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于x b对称的曲线,这条曲线叫抛物线。
2a抛物线的主要特色:①有张口方向;②有对称轴;③有极点。
3、二次函数图像的画法五点法:〔1〕先依照函数剖析式,求出极点坐标,在平面直角坐标系中描出极点M ,并用虚线画出对称轴〔2〕求抛物线y ax2bx c 与坐标轴的交点:当抛物线与 x 轴有两个交点时,描出这两个交点A,B 及抛物线与 y 轴的交点 C,再找到点 C 的对称点 D。
将这五个点按从左到右的序次连接起来,并向上或向下延伸,就获取二次函数的图像。
当抛物线与 x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点 C 及对称点 D 。
由 C、M 、 D 三点可大概地画出二次函数的草图。
若是需要画出比较精确的图像,可再描出一对对称点 A 、B ,尔后按次连接五点,画出二次函数的图像。
知识点二、二次函数的剖析式二次函数的剖析式有三种形式:口诀-----一般两根三极点〔1〕一般一般式:〔2〕两根当抛物线y ax2bx c(a,b, c是常数, a0)y ax2bx c 与x轴有交点时,即对应二次好方程ax2bx c 0有实根 x1和 x2存在时,依照二次三项式的分解因式ax 2bx c a( x x1 )( x x2 ) ,二次函数y ax2bx c 可转变为两根式y a( x x1)( x x2)。
若是没有交点,那么不能够这样表示。
a的绝对值越大,抛物线的张口越小。
〔3〕三极点极点式:y a(x h)2k (a, h, k是常数, a0)知识点三、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕,即当 x b时,2ay最值4ac b24a。
中考数学复习《二次函数》专题训练-附带有参考答案
中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
(完整word版)二次函数中考复习(题型分类练习)
二次函数题型分析练习题型一:二次函数对称轴及顶点坐标的应用1.(2015•兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( )A . y =(x +2)2B .y =2x 2﹣2C .y =﹣2x 2﹣2D .y =2(x ﹣2)22.(2014•浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A 。
(﹣3,7) B.(﹣1,7) C.(﹣4,10) D 。
(0,10) 3.在同一坐标系中,图像与y=2x 2的图像关于x 轴对称的函数是( ) A 。
212y x = B 。
212y x =- C.22y x =- D 。
2y x =-4。
二次函数 无论k 取何值,其图象的顶点都在( ) A.直线上 B 。
直线上 C.x 轴上 D.y 轴上5。
(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个6.(2014•扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 . 7。
已知二次函数,当取 ,(≠)时,函数值相等,则当取时,函数值为( )A.B .C 。
D 。
c8.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式= 。
第2题图题型二:平移 1。
抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为( )A. B 。
C 。
D.2.(2012上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________3。
二次函数()23212-+=x y 的图象是由函数221x y =的图象先向 (左、右)平移 个单位长度,再向(上、下)平移 个单位长度得到的.4。
备战中考数学复习《二次函数》专项综合练习附答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC .(1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 【解析】试题分析: (1)利用待定系数法求二次函数的解析式;(2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m +,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L , ∵直线BC 经过B (4,0),C (0,3),设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +, ∵PE ⊥x 轴,PE ∥OC ,∴∠BDE=∠BCO ,∵∠BDE=∠PDF ,∴∠PDF=∠BCO ,∵∠PFD=∠BOC=90°,∴△PFD ∽△BOC , ∴=PED PD BOC BC的周长的周长, 由(1)得:OC=3,OB=4,BC=5,故△BOC 的周长=12,∴2334125m m L -+=, 即L=﹣95(m ﹣2)2+365, ∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,当点Q 落在y 轴上时,CQ ∥PD ,∴∠PCQ=∠CPD ,∴∠PCD=∠CPD ,∴CD=PD ,∴CD=DP=PQ=QC ,∴四边形CDPQ 是菱形,过D 作DG ⊥y 轴于点G ,设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n ,而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|, ∵PD=CD ,∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.3.已知如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=⎧⎨=⎩,解得:33k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.4.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .()1求抛物线的函数解析式;()2求ABC 的面积;()3能否在抛物线第三象限的图象上找到一点P ,使APC 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【答案】()1 2134y x x =+-;()212;()27334APC x S =-当时,有最大值,点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【解析】【分析】(1)设顶点式并代入已知点()6,0A -即可;(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC 的面积计算拆分为APF CPF SS +即可.【详解】 ()1设此函数的解析式为2()y a x h k =++,∵函数图象顶点为()2,4M --,∴2(2)4y a x =+-,又∵函数图象经过点()6,0A -,∴20(62)4a =-+- 解得14a =, ∴此函数的解析式为21(2)44y x =+-,即2134y x x =+-; ()2∵点C 是函数2134y x x =+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,又当0y =时,有21304y x x =+-=, 解得16x =-,22x =,∴点B 的坐标是()2,0,则11831222ABC S AB OC =⋅=⨯⨯=; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .设(),0E x ,则21,34P x x x ⎛⎫+- ⎪⎝⎭,设直线AC 的解析式为y kx b =+,∵直线AC 过点()6,0A -,()0,3C -,∴603k b b -+=⎧⎨-=⎩, 解得123k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为132y x =--, ∴点F 的坐标为1,32F x x ⎛⎫-- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭, ∴1122APC APF CPF S S S PF AE PF OE =+=⋅+⋅ 2221113393276(3)22424244PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭, ∴当3x =-时,APC S 有最大值274, 此时点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【点睛】 本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值.【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得.【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a =-A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b b a a-- ) A 、B 两点关于直线y=kx-2a+3对称,又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上. ∴b a -=b a-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】 本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知, 方程的两根为:2572m m x ()-±-=- 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P1(3+5,152-),P2(352,1+52),P3(5+52,1+52),P4(55-,152-).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E (3,3),易得OE 的解析式为:y=x ,过P 作PG ∥y 轴,交OE 于点G ,∴G (m ,m ),∴PG=m-(m 2-4m+3)=-m 2+5m-3,∴S 四边形AOPE =S △AOE +S △POE , =12×3×3+12PG•AE , =92+12×3×(-m 2+5m-3), =-32m 2+152m , =32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:5+555- ∴P 5+51+555-152); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:3+535;P3+5152-35,1+5综上所述,点P的坐标是:(52,1+52)或(552-,1523+515-35,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.8.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.9.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩, 解得:2383a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线解析式为:y=228233x x +-, ∵过点B 的直线y=kx+23, ∴代入(1,0),得:k=﹣23, ∴BD 解析式为y=﹣2233x +; (2)由2282332233y x x y x ﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D (﹣5,4), 如图1,过D 作DE ⊥x 轴于点E ,作DF ⊥y 轴于点F ,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO =PEOC,即4t=523t-,解得15129±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,52=526,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为4915129±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小.则△EOF ∽△NHD′设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a -=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。
中考专题复习二次函数(含答案)
中考专题复习二次函数课标解读知识要点1.二次函数的解析式有三种形式,它们分别是:一般式 ;顶点式 ;交点式 (其中21,x x ,是抛物线与x 轴的交点的横坐标,即一元二次方程02=++c bx ax (a ≠0)的两根).2.二次函数c bx ax y ++=2(a ≠0)的图象是 . ①顶点坐标是 ,对称轴是 .②开口方向:当a >0时,开口向 ;当a <0时,开口向 .③增减性:当a >0时,在a b x 2-=的左侧,y 随x 的增大而 ,在ab x 2-=的右侧,y 随x 的增大而 ;当a <0时,在abx 2-=的左侧,y 随x 的增大而 ,在abx 2-=的右侧,y 随x 的增大而 . ④最大(小)值:当a >0时,函数有最 值,且当x 时,y 有最 值是 ;当a <0时,函数有最 值,且当x 时,y 有最 值是 .3.我们可以用根的判别式判断抛物线c bx ax y ++=2(a ≠0)与x 轴的交点个数,即当Δ 时,抛物线与x 轴有两个交点;当Δ 时,抛物线与x 轴只有一个交点(顶点);当Δ 时,抛物线与x 轴没有交点. 典例诠释考点一 求二次函数图象的顶点坐标、对称轴、与坐标轴的交点 例1 二次函数3-2x -2x y =的最小值为( ) A.5B.0C.-3D.-4例2 函数5413-+=-x mx y m 是二次函数. (1)m 的值为 ;(2)写出这个二次函数图象的对称轴: ;将解析式化成()k h x a y +-=2(a≠0)的形式为: .考点二 二次函数图象与a 、b 、c 的关系例3 二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-40所示,则下列关系式中正确的是( )图1-8-40 A.ac >0B.b +2a <0C.2b -4ac >0D.a-b +c <0例4 已知二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-41所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④ 2c <3b ;⑤a +b >m (am +b )(m ≠1),其中正确的结论有 ( )图1-8-41 A.2个B.3个C.4个D.5个考点三二次函数图象的变换例5 将抛物线2y=向上平移3个单位长度得到的抛物线表达式是 .2x例6将抛物线2y=先向左平移2个单位长度,再向上平移3个单位长度后得5x到新的抛物线,则新抛物线的表达式是( )A.()3=x2-2+y+22+=xy B.()3C.()3-+22=xyx2-2y= D.()3-考点四二次函数解析式的确定例7 请写出一个符合以下三个条件的二次函数的解析式: .①过点(1,1);②当x>0时,y随x的增大而减小;③当自变量x的值为3时,函数值y小于0.例8 抛物线c=2a≠0)上部分点的横坐标x,纵坐标y的对应值如下+bxaxy+表:(1)求这个抛物线的表达式及顶点坐标;(2)直接写出当y<0时x的取值范围.例9 如图1-8-42,二次函数()k h x y +-=2图象的顶点坐标为M (1,-4).图1-8-42(1)求出该二次函数的图象与x 轴的交点A ,B 的坐标.(2)在二次函数的图象上是否存在点P (点P 与点M 不重合)使MAB PAB s s ∆∆=45?若存在,求出P 点的坐标;若不存在,请说明理由.考点五 二次函数与方程、不等式的关系例10 二次函数c bx ax y ++=2(a ≠0)的部分图象如图1-8-43所示,对称轴为直线x =-1,与x 轴的一个交点为(1,0),与y 轴的交点为(0,3),则方程02=++c bx ax (a ≠0)的解为( )图1-8-43 A .x =1B .x =-1C .1x =1,2x =-3D .1x =1,2x =-4例11 若二次函数bx x y +=2的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程52=+bx x 的解为( ) A .1x =0,2x =4 B .1x =1,2x =5 C .1x =1,2x =-5 D .1x =-1,2x =5考点六 二次函数的应用例12 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( ) A.y =60(300+20x ) B.y =(60-x )(300+20x ) C.y =300(60-20x )D.y =(60-x )(300-20x )例13 为了促进旅游业的发展,某市新建一座景观桥,如图1-8-44.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.图1-8-44考点七 二次函数与几何图形的综合运用例14 在平面直角坐标系中,抛物线32++bx yax (a ≠0)与x 轴交于点A (-3,0)、B (1,0)两点,D 是抛物线的顶点,E 是对称轴与x 轴的交点. (1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.基础精练1.已知()22+-=x x m y 是y 关于x 的二次函数,那么m 的值为( ) A.-2B.2C.±2D.02.二次函数42-2++=x x y 的最大值为( ) A .3 B .4 C .5 D .63.抛物线()3122+-=x y 的顶点坐标为( )A .(2,1)B .(2,-1) C.(-1,3) D.(1,3)4.抛物线22x y =向左平移1个单位长度,再向下平移3个单位长度,则平移后的抛物线的解析式为( ) A .()312++=x y B .()3-12+=x yC .()3-1-2x y =D .()3-1-2x y =5.将抛物线32-2+=x x y 向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .6.请写出一个图象的对称轴是直线x =1,且经过(0,1)点的二次函数的表达式: .7.将函数322+-=x x y 写成()k h x a y +-=2(a ≠0)的形式为 .8.将二次函数542+-=x x y 化为()k h x a y +-=2(a ≠0)的形式,那么h +k = .9.如图1-8-46是二次函数的图象,那么二次函数的表达式可能是 .(只写出一个即可)图1-8-4610.下表给出了代数式c bx x ++2-与x 的一些对应值:(1)根据表格中的数据,确定b ,c ,n 的值; (2)设+bx +c ,直接写出当0≤x ≤2时y 的最大值.11.(2015·丰台二模)在平面直角坐标系xOy 中,抛物线12++=bx ax y (a ≠0)经过A (1,3),B (2,1)两点. (1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在点A ,C 之间的部分(包含点A ,C )记为图象G ,如果图象G 沿y 轴向上平移t (t >0)个单位长度后与直线AB 只有一个公共点,求t 的取值范围.真题演练1.(2016·天津)已知二次函数()1+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( ) A.1或-5B.-1或5C.1或-3D.1或32.(2016·上海)如果将抛物线22+=x y 向下平移1个单位长度,那么所得的新抛物线的表达式是( ) A.()212+-=x yB.()212++=x y C .12+=x y D .32+=x y3.(2015·巴中)已知二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-47所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )图1-8-47 A .①②B .只有①C .③④D .①④4.(2015·成都)将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A.()3-22+=x y B.()322++=x y C.()32-2+=x y D.()3-2-2x y =5.(2013·北京)请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y = .【答案】12+=x y (答案不唯一)6.(2014·云南)抛物线32-2+=x x y 的顶点坐标是 .7.(2013·北京)在平面直角坐标系xOy中,抛物线2-mxy (m≠0)与y-2mx2轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.8.(2014·北京)在平面直角坐标系xOy中,抛物线n=2+2经过点A(0,mxxy+-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且D点纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.图1-8-48答案 典例诠释考点一 求二次函数图象的顶点坐标、对称轴、与坐标轴的交点 例1 (2016·昌平期末)二次函数3-2x -2x y =的最小值为( ) A.5B.0C.-3D.-4【答案】 D例2 (2016·丰台期末)函数5413-+=-x mx y m 是二次函数. (1)m 的值为 ;(2)写出这个二次函数图象的对称轴: ;将解析式化成()k h x a y +-=2(a≠0)的形式为: .【答案】 (1)1,(2)x =-2;()9-22+=x y【点评】 此题型主要考查了利用配方法确定二次函数图象的顶点坐标和对称轴.正确配方是解这类题的关键.考点二 二次函数图象与a 、b 、c 的关系例3 (2016·石景山期末)二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-40所示,则下列关系式中正确的是( )图1-8-40 A.ac >0B.b +2a <0C.2b -4ac >0D.a-b +c <0【答案】 C例4 (2016·延庆期末)已知二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-41所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④ 2c <3b ;⑤a +b >m (am +b )(m ≠1),其中正确的结论有 ( )图1-8-41A.2个B.3个C.4个D.5个【答案】 B【点评】二次函数图象的特征从如下方面进行研究:开口方向,对称轴,顶点坐标以及增减性,最值,开口大小.同时需要关注一些特殊的代数式的值,如:a+b+c,a-b+c,4a+2b+c,4a-2b+c,2a+b等.考点三二次函数图象的变换例5 (2015·通州二模)将抛物线2y=向上平移3个单位长度得到的抛物线表2x达式是 .【答案】3y22+=x例6 (2016·房山期末)将抛物线25xy=先向左平移2个单位长度,再向上平移3个单位长度后得到新的抛物线,则新抛物线的表达式是( )A.()32-2+=xyy B.()322++=xC.()3-+=x22y-22xy= D.()3-【答案】 A【点评】对于二次函数图象的平移、旋转、轴对称问题要特别关注变换前后抛物线的开口方向和顶点坐标的变化.抛物线2y=(a≠0)与()kax-y+=2(a≠ahx0)形状相同,位置不同.把抛物线2y=(a≠0)向上平移k(k>0)个单位长度、ax向右平移h(h>0)个单位长度可以得到抛物线()k-=2(a≠0).y+xha考点四二次函数解析式的确定例7 (2016·丰台期末)请写出一个符合以下三个条件的二次函数的解析式: .①过点(1,1);②当x>0时,y随x的增大而减小;③当自变量x的值为3时,函数值y 小于0.【答案】3431-2+=x y (答案不唯一)【解题思路】 由条件②可以确定这个二次函数图象的对称轴为y 轴,且开口向下,可设表达式为c ax y +=2(a ≠0),由条件①可得a +c =1,由条件③可得9a +c <0 ,这两个条件组可确定a 、c 的取值范围.本题答案不唯一.例8 (2016·昌平期末)抛物线c bx ax y ++=2a ≠0)上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)求这个抛物线的表达式及顶点坐标; (2)直接写出当y <0时x 的取值范围.【解】 (1)抛物线的表达式为6-2++=x x y ;顶点坐标为 . (2)x <-2或x >3.例9 (2016·昌平期末)如图1-8-42,二次函数()k h x y +-=2图象的顶点坐标为M (1,-4).图1-8-42(1)求出该二次函数的图象与x 轴的交点A ,B 的坐标.(2)在二次函数的图象上是否存在点P (点P 与点M 不重合)使MAB PAB s s ∆∆=45?若存在,求出P 点的坐标;若不存在,请说明理由. 【解】 (1)A (-1,0),B (3,0).(2)存在,点P 的坐标为(4,5)或(-2,5).【点评】 确定二次函数解析式经常会用到待定系数法,一般有几个待定系数就有几个方程.分为以下几种情况:(1)当已知抛物线上任意三点的坐标时,一般选用一般式c bx ax y ++=2(a ≠0); (2)当已知抛物线的顶点坐标、对称轴或最值时,常选用顶点式()k h x a y +-=2(a≠0);(3)当已知抛物线与x 轴的两个交点坐标时,常选用交点(双根)式()()21x x x x a y --=(a ≠0).考点五 二次函数与方程、不等式的关系例10 (2016·石景山期末)二次函数c bx ax y ++=2(a ≠0)的部分图象如图1-8-43所示,对称轴为直线x =-1,与x 轴的一个交点为(1,0),与y 轴的交点为(0,3),则方程02=++c bx ax (a ≠0)的解为( )图1-8-43 A .x =1B .x =-1C .1x =1,2x =-3D .1x =1,2x =-4【答案】 C【点评】 本题考查的主要知识是二次函数图象的性质.由对称轴为直线x =-1及一个交点(1,0)可求出另一个与x 轴的交点坐标为(-3,0).方程02=++c bx ax (a ≠0)的解的实质是当二次函数值为0时其图象与x 轴的交点的横坐标.例11 (2016·东城二模)若二次函数bx x y +=2的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程52=+bx x 的解为( ) A .1x =0,2x =4 B .1x =1,2x =5 C .1x =1,2x =-5D .1x =-1,2x =5【答案】 D【点评】 本题主要考查了二次函数图象的性质.解决本题的关键是数形结合,根据已知条件画出图象即可做出正确判断. 考点六 二次函数的应用例12 (2016·西城期末)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( )A.y =60(300+20x )B.y =(60-x )(300+20x )C.y =300(60-20x )D.y =(60-x )(300-20x )【答案】 B例13 (2016·石景山二模)为了促进旅游业的发展,某市新建一座景观桥,如图1-8-44.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.图1-8-44【解】 建立如图1-8-45所示的坐标系,设抛物线的表达式为162+=ax y (a ≠0),由题意可知,B 的坐标为(20,0),图1-8-45∴ 400a +16=0,∴ a =-251,∴ y =-2251x +16,∴ 当x =5时,y =15. 答:与CD 的距离为5米的景观灯杆MN 的高度为15米.【点评】 这是一类二次函数实际应用的题目,包括如喷泉、掷铅球、涵洞、跳水运动等问题,解决此类题需要建立适当的坐标系,用待定系数法确定解析式,再利用解析式解决有关问题.在建立坐标系后,要特别注意坐标系中的点与实际问题中的量的关系,合理建系正确确定相应点的坐标是关键. 考点七 二次函数与几何图形的综合运用例14 (2015·东城二模)在平面直角坐标系中,抛物线32++bx yax (a ≠0)与x 轴交于点A (-3,0)、B (1,0)两点,D 是抛物线的顶点,E 是对称轴与x 轴的交点. (1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 【解】 32++=bx ax y .(2)存在: 32--2+=x x y =()41-2++x∴ 顶点D (-1,4),∴ F (-1,-4).假设以点O ,F ,P ,Q 为顶点的平行四边形存在, ∴ 点Q (x ,y )的纵坐标满足|y |=|EF |=4, ①当y =-4时,32--2+x x =-4, 解得21-±=x ,∴ ()4-22-1-1,Q ,()4-221-2,+Q ,∴ ()022-1,P ,()0221,P . ②当y =4时,32--2+x x =4,解得x =-1, ∴ 3Q (-1,4),∴ 3P (-2,0).综上所述,符合条件的P 点有三个,即:()022-1,P ,()0221,P ,3P (-2,0). 基础精练1.(2016·昌平期末)已知()22+-=x x m y 是y 关于x 的二次函数,那么m 的值为( )A.-2B.2C.±2D.0【答案】 A2.(2016·东城期末)二次函数42-2++=x x y 的最大值为( ) A .3 B .4 C .5 D .6 【答案】 C3.(2016·房山期末)抛物线()3122+-=x y 的顶点坐标为( )A .(2,1)B .(2,-1) C.(-1,3) D.(1,3)【答案】 D4.(2016·海淀期末)抛物线22x y =向左平移1个单位长度,再向下平移3个单位长度,则平移后的抛物线的解析式为( ) A .()312++=x y B .()3-12+=x yC .()3-1-2x y =D .()3-1-2x y =【答案】 B5.(2016·东城期末)将抛物线32-2+=x x y 向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 . 【答案】()44-2+=x y6.(2015·西城二模)请写出一个图象的对称轴是直线x =1,且经过(0,1)点的二次函数的表达式: . 【答案】 1-2+=x x y (答案不唯一)7.(2015·海淀二模)将函数322+-=x x y 写成()k h x a y +-=2(a ≠0)的形式为 .【答案】()212+-=x y8.(2015·丰台二模)将二次函数542+-=x x y 化为()k h x a y +-=2(a ≠0)的形式,那么h +k = . 【答案】 39.(2015·平谷二模)如图1-8-46是二次函数的图象,那么二次函数的表达式可能是 .(只写出一个即可)图1-8-46【答案】x x y -=2(答案不唯一)10.(2016·房山期末)下表给出了代数式c bx x ++2-与x 的一些对应值:(1)根据表格中的数据,确定b ,c ,n 的值; (2)设+bx +c ,直接写出当0≤x ≤2时y 的最大值. 【解】 (1)b =-2,c =5,n =5.(2) 511.(2015·丰台二模)在平面直角坐标系xOy 中,抛物线12++=bx ax y (a ≠0)经过A (1,3),B (2,1)两点. (1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在点A ,C 之间的部分(包含点A ,C )记为图象G ,如果图象G 沿y 轴向上平移t (t >0)个单位长度后与直线AB 只有一个公共点,求t 的取值范围. 【解】142-2++=x x y ;y =-2x +5.(2)∵ 点C 在抛物线上,且点C 的横坐标为3, ∴ 点C 的坐标为(3,-5).点C 向上平移t (t >0)个单位长度后的对应点为点C ′(3,t -5),将其代入直线表达式y =-2x +5,解得t =4.结合图象可知,符合题意的t 的取值范围是0<t ≤4. 真题演练1.(2016·天津)已知二次函数()1+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A.1或-5B.-1或5C.1或-3D.1或3【答案】 B2.(2016·上海)如果将抛物线22+=x y 向下平移1个单位长度,那么所得的新抛物线的表达式是( ) A.()212+-=x yB.()212++=x y C .12+=x y D .32+=x y【答案】 C3.(2015·巴中)已知二次函数c bx ax y ++=2(a ≠0)的图象如图1-8-47所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )图1-8-47 A .①②B .只有①C .③④D .①④【答案】 D4.(2015·成都)将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A.()3-22+=x y B.()322++=x y C.()32-2+=x y D.()3-2-2x y =【答案】 A5.(2013·北京)请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y = .【答案】12+=x y (答案不唯一)6.(2014·云南)抛物线32-2+=x x y 的顶点坐标是 . 【答案】 (1,2)7.(2013·北京)在平面直角坐标系xOy 中,抛物线2-2-2mx mx y =(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在-2<x <-1这一段位于直线l 的上方,并且在2<x <3这一段位于直线AB 的下方,求该抛物线的解析式.【解】 (1)A (0,-2),B (1,0).(2)y =-2x +2.(3)∵ 抛物线的对称轴为直线x =1,∴ 抛物线在2<x <3这一段与在-1<x <0这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <-1这一段位于直线l 的上方,在-1<x <0这一段位于直线l 的下方,∴ 抛物线与直线l 的交点横坐标为-1.当x =-1时,y =-2×(-1)+2=4,∴ 抛物线过点(-1,4),将其代入抛物线解析式得,m +2m-2=4,解得m =2,∴ 抛物线的解析式为2-4-22x x y =.8.(2014·北京)在平面直角坐标系xOy 中,抛物线n mx x y ++=22经过点A (0,-2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,且D 点纵坐标为t ,记抛物线在A ,B 之间的部分为图象G (包含A , B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.图1-8-48【解】 2-4-22x x y =,对称轴为直线x =1.(2)由题意可知点C 的坐标为(-3,-4),二次函数2-4-22x x y =的最小值为-4. 由图1-8-48可以看出D 点纵坐标的最小值为-4,设直线BC 的解析式为b kx y +=,讲B 与C 坐标代入得:⎩⎨⎧=+=+4-3-43b k b k解得:0,34==b k∴直线BC 的解析式为x y 34=当1=x 时,34=y则t 的取值范围为344-≤≤t 。
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。
②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。
③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。
④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。
交点情况与方程的解的情况同与x 轴相交时一样。
2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。
3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。
②当1−=x 时所对应的函数值为c b a y +−=。
③当2=x 时所对应的函数值为c b a y ++=24。
④当2−=x 时所对应的函数值为c b a y +−=24。
4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。
②若对称轴为直线1−=x 时,则02=−b a 。
③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。
④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。
练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。
《二次函数》中考专题复习(知识点+分题型练习题)
《二次函数》章节复习一、概念(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)交点式:12()()y a x x x x =--(a ≠0)二、二次函数的图像和性质1、形状:二次函数的图像是一条2、开口方向:当0a >时,开口向 ;当0a <时,开口向 。
3、一般式()0a ≠的图像性质(1)对称轴:二次函数2y ax =的对称轴是 ;2y ax bx c =++的对称轴是(2)顶点坐标:二次函数2y ax =的顶点坐标是 ;2y ax bx c =++的顶点坐标是(3)增减性:(4)最值:若0a >,当x = 时,y 有最小值是 若0a <,当x = 时,y 有最大值是4、顶点式()2y a x h k =-+()0a ≠的图像性质(1)对称轴: ;(2)顶点坐标:(3)增减性:(4)最值:若0a >,当x = 时,y 有最小值是 若0a <,当x = 时,y 有最大值是5、交点式12()()y a x x x x =--(a ≠0)的性质(1)对称轴: ;(2)增减性:三、函数平移四、系数a 、b 、c 与二次函数的图像(1)a 的符号由 确定, 时,0a >; 时,0a <(2)a 、b 同号时,对称轴在y 轴的 侧;a 、b 异号时,对称轴在y 轴的 侧;b =0时,对称轴是 。
(左同右异)(3)c 的符号由 确定,当 时,0c >;当 时,0c =;当 时,0c <。
以上结论和条件互换时,仍然成立。
五、二次函数关系式的确定1.设一般式:y =ax 2+bx +c (a ≠0).若已知条件是图象上三个点的坐标或三组x 、y 的对应值,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.2.设顶点式:y =a (x -h )2+k (a ≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y =a (x -h )2+k (a≠0),将已知条件代入,求出待定系数化为一般式.3.设交点式:y =a (x -x 1)(x -x 2)(a ≠0).若已知二次函数图象与x 轴的两个交点的坐标,则设交点式:y =a (x -x 1)(x -x 2)(a ≠0),将第三点的坐标或其他已知条件代入,求出待定系数a ,最后将关系式化为一般式.六、抛物线与坐标轴的交点(1)与y 轴交点的求法:令 =0,则 =c ,交点为(0,c )(2)与x 轴交点的求法:令 =0,则得到一元二次方程ax 2+bx +c =0(a ≠0),ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________;交点个数由一元二次方程的判别式的符号决定;240b ac ->时,一元二次方程 ,函数与x 轴240b ac -=时,一元二次方程 ,函数与x 轴240b ac -<时,一元二次方程 ,函数与x 轴(3)与其他函数图像的交点求法:联立方程,解方程组即可。
(完整版)二次函数知识点及经典例题详解最终
二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
初三中考一轮复习(12)二次函数 题型分类 含答案(全面 非常好)
求顶点坐标1. 抛物线y =-(x +2)2-3的顶点坐标是( ).【答案】DA.(2,-3);B.(-2,3);C.(2,3);D.(-2,-3) . 2. 抛物线221y x x =-+的顶点坐标是【答案】AA .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)3. 若下列有一图形为二次函数y =2x 2-8x +6的图形,则此图为何?【答案】A4. 二次函数522-+=x x y 有( )DA . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-5. 将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 【答案】y=(x-2)2+16.下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是( ) A .y = (x − 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x − 2)2 − 3 D .y = (x + 2)2 − 3 【答案】C7. 如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 【答案】A2cx a=。
5.图象与x 轴的交点的个数⇔24ac b -:当24ac b ->0时,抛物线与x 轴有两个交点. 当24ac b -<0时,抛物线与x 轴有一个交点. 当24ac b -= 0时,抛物线与x 轴没有交点.6. 函数图象上的点与相关代数式:(1,a b c ++)、(-1,a b c -+);(2,42a b c ++)、(-2,42a b c -+)图像到系数1.已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0【答案】D2. 如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
中考复习专题二次函数经典分类讲解复习以及练习题含答案
1、二次函数的定义定义:y=ax2 +bx +c (a 、b 、c是常数, a ≠0)定义重点:①a≠0②最高次数为 2 ③代数式必定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,此中是二次函数的有____个。
m2m2.当m_______时,函数y=(m+1)χ-2χ+1是二次函数?2、二次函数的图像及性质y抛物线极点坐标xy=ax2+bx+c(a>0)4acb2a,4ay0 xy=ax2+bx+c(a<0)b4acb22a,4ab直线x 直线xb对称轴地点张口方向增减性最值2a由a,b和c的符号确立a>0,张口向上在对称轴的左边,y跟着x的增大而减小.在对称轴的右边,y跟着x的增大而增大.当x b 时,y最小值为4acb22 a4a2a由a,b和c的符号确立a<0,张口向下在对称轴的左边,y跟着x的增大而增大.在对称轴的右边,y跟着x的增大而减小.当x b时,y最大值为4acb22a4a例2:已知二次函数y1232x21)求抛物线张口方向,对称轴和极点M 的坐标。
2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
3)x 为什么值时,y 随的增大而减少,x 为什么值时,y 有最大(小)值,这个最大(小)值是多少? 4)x 为什么值时,y<0?x 为什么值时,y>0?3、求抛物线分析式的三种方法1、一般式:已知抛物线上的三点,往常设分析式为________________y=ax2+bx+c(a≠0)2,极点式:已知抛物线极点坐标(h,k ),往常设抛物线分析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),往常设分析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2)(a≠0)练习:依据以下条件,求二次函数的分析式。
中考数学复习----《二次函数之定义、图像以及性质》知识点总与专项练习题(含答案解析)
中考数学复习----《二次函数之定义、图像以及性质》知识点总与专项练习题(含答案解析)知识点总结1. 二次函数的定义:形如()02≠++=a c bx ax y 的函数叫做二次函数。
2. 二次函数的图像:二次函数的图像是一条抛物线。
3. 二次函数的性质与图像:x 的增大而增大; 的增大而减小; 的增大而增大; 的增大而减小;①若二次函数是一般形式时,则二次函数与y 轴的交点坐标为()c ,0。
若0>c ,则二次函数与y 轴交于正半轴;若0<c ,则二次函数与y 轴交于负半轴。
②二次函数开口向上时,离对称轴越远的点函数值越大;二次函数开口向下时,离对称轴越远的函数值越小。
③二次函数函数值相等的两个点一定关于对称轴对称。
④二次函数的一般式化为顶点式:利用一元二次方程的配方法。
专项练习题1.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系【分析】根据题意列出y 与x 的关系式可得答案. 【解答】解:由题意得,y =40﹣2x , 所以y 与x 是一次函数关系, 故选:B .2.(2022•株洲)已知二次函数y =ax 2+bx ﹣c (a ≠0),其中b >0、c >0,则该函数的图象可能为( )A .B .C.D.【分析】根据c>0,可知﹣c<0,可排除A,D选项,当a>0时,可知对称轴<0,可排除B选项,当a<0时,可知对称轴>0,可知C选项符合题意.【解答】解:∵c>0,∴﹣c<0,故A,D选项不符合题意;当a>0时,∵b>0,∴对称轴x=<0,故B选项不符合题意;当a<0时,b>0,∴对称轴x=>0,故C选项符合题意,故选:C.3.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=1D.与直线y=3x有两个交点【分析】A、把x=0代入y=3(x+1)(2﹣x),求函数值再与点的纵坐标进行比较;B、化简二次函数:y=﹣3x2+3x+6,根据a的取值判断开口方向;C、根据对称轴公式计算;D、把函数的问题转化为一元二次方程的问题,根据判别式的取值来判断.【解答】解:A、把x=0代入y=3(x+1)(2﹣x),得y=6≠2,∴A错误;B 、化简二次函数:y =﹣3x 2+3x +6, ∵a =﹣3<0,∴二次函数的图象开口方向向下, ∴B 错误;C 、∵二次函数对称轴是直线x =﹣=, ∴C 错误;D 、∵3(x +1)(2﹣x )=3x , ∴﹣3x 2+3x +6=3x , ∴﹣3x 2+6=0, ∵b 2﹣4ac =72>0,∴二次函数y =3(x +1)(2﹣x )的图象与直线y =3x 有两个交点, ∴D 正确; 故选:D .4.(2022•衢州)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为( ) A .21或4 B .34或﹣21 C .﹣34或4 D .﹣21或4 【分析】分两种情况讨论:当a >0时,﹣a =﹣4,解得a =4;当a <0时,在﹣1≤x ≤4,9a ﹣a =﹣4,解得a =﹣.【解答】解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1, 顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a , ∵y 的最小值为﹣4, ∴﹣a =﹣4, ∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值, ∴9a ﹣a =﹣4, 解得a =﹣;综上所述:a的值为4或﹣,故选:D.5.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是()A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对【分析】根据二次函数的性质判断即可.【解答】解:∵抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2或x2<x1≤0或0<﹣x1<x2或0<x1<﹣x2,故选:D.6.(2022•兰州)已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1B.x>1C.x<2D.x>2【分析】将二次函数解析式化为顶点式,由抛物线对称轴及开口方向求解.【解答】解:∵y=2x2﹣4x+5=2(x﹣1)2+3,∴抛物线开口向上,对称轴为直线x=1,∴x>1时,y随x增大而增大,故选:B.7.(2022•广州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是()A.a<0B.c>0C.当x<﹣2时,y随x的增大而减小D.当x>﹣2时,y随x的增大而减小【分析】根据图象得出a,c的符号即可判断A、B,利用二次函数的性质即可判断C、D.【解答】解:∵图象开口向上,∴a>0,故A不正确;∵图象与y轴交于负半轴,∴c<0,故B不正确;∵抛物线开口向上,对称轴为直线x=﹣2,∴当x<﹣2时,y随x的增大而减小,x>﹣2时,y随x的增大而增大,故C正确,D不正确;故选:C.8.(2022•郴州)关于二次函数y=(x﹣1)2+5,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是(﹣1,5)C.该函数有最大值,最大值是5D.当x>1时,y随x的增大而增大【分析】通过分析二次函数顶点式判断函数图象开口方向、顶点坐标、最值以及增减性即可求解.【解答】解:y=(x﹣1)2+5中,x2的系数为1,1>0,函数图象开口向上,A错误;函数图象的顶点坐标是(1,5),B错误;函数图象开口向上,有最小值为5,C错误;函数图象的对称轴为x=1,x<1时y随x的增大而减小;x>1时,y随x的增大而增大,D正确.故选:D.9.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)【分析】由抛物线解析式可得抛物线顶点坐标.【解答】解:∵y=2(x+9)2﹣3,∴抛物线顶点坐标为(﹣9,﹣3),故选:B.10.(2022•岳阳)已知二次函数y=mx2﹣4m2x﹣3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤﹣1或m>0D.m≤﹣1【分析】先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m <0,根据二次函数的性质求得m的不同取值范围便可.【解答】解:∵二次函数y=mx2﹣4m2x﹣3,∴对称轴为x=2m,抛物线与y轴的交点为(0,﹣3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤﹣3,即m•42﹣4m2•4﹣3≤﹣3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤﹣3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.11.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【分析】首先求出抛物线的对称轴,根据二次函数的增减性即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:D.12.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=2C.抛物线的顶点坐标为(2,1)D.当x<2时,y随x的增大而增大【分析】根据抛物线a>0时,开口向上,a<0时,开口向下判断A选项;根据抛物线的对称轴为x=h判断B选项;根据抛物线的顶点坐标为(h,k)判断C选项;根据抛物线a>0,x<h时,y随x的增大而减小判断D选项.【解答】解:A选项,∵a=1>0,∴抛物线开口向上,故该选项不符合题意;B选项,抛物线的对称轴为直线x=2,故该选项不符合题意;C选项,抛物线的顶点坐标为(2,1),故该选项不符合题意;D选项,当x<2时,y随x的增大而减小,故该选项符合题意;故选:D.13.(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.【分析】由题意可知﹣2<m<2,根据m的范围即可确定n的范围.【解答】解:∵y=x2+2x+2=(x+1)2+1,∴二次函数y=x2+2x+2的图象开口向上,顶点为(﹣1,1),对称轴是直线x=﹣1,∵P(m,n)到y轴的距离小于2,∴﹣2<m<2,而﹣1﹣(﹣2)<2﹣(﹣1),当m=2,n=(2+1)2+1=10,当m=﹣1时,n=1,∴n的取值范围是1≤n<10,故答案为:1≤n<10.14.(2022•长春)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为.【分析】函数配方后得y=﹣x2﹣2x+3=﹣(x+1)2+4,当y=1时,﹣(x+1)2+4=1,可得x=﹣1±,因为﹣1+>,所以﹣1﹣≤x≤时,函数值y的最小值为1,进而可以解决问题.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴图象开口向下,顶点坐标为(﹣1,4),根据题意,当a≤x≤时,函数值y的最小值为1,当y=1时,﹣(x+1)2+4=1,∴x=﹣1±,∵﹣1+>,∴﹣1﹣≤x≤时,函数值y的最小值为1,∴a=﹣1﹣.故答案为:﹣1﹣.15.(2022•黔东南州)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=﹣在同一坐标系内的大致图象为()A.B.C.D.【分析】由抛物线开口方向,对称轴位置及抛物线与y轴交点位置判断a,b,c的符号,从而可得直线与反比例函数图象的大致图象.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴b>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴直线y=ax+b经过第一,二,三象限,反比例函数y=﹣图象经过一,三象限,故选:C.16.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】由抛物线顶点式可得抛物线顶点坐标,由图象可得m,n的符号,进而求解.【解答】解:∵y=(x+m)2+n,∴抛物线顶点坐标为(﹣m,n),∵抛物线顶点在第四象限,∴m<0,n<0,∴直线y=mx+n经过第二,三,四象限,故选:D.17.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.﹣2≤m<0C.m>2D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.18.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是.【分析】根据抛物线求出对称轴x=1,y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,分两种情况讨论:m>0时或m<0时,利用抛物线的性质分析求解.【解答】解:抛物线的对称轴为:x=﹣=1,当x=0时,y=2,∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,当m>0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣(不符合题意,舍去),当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1(不符合题意,舍去),当m>0且抛物线的顶点在线段CD上时,2﹣m=﹣1,解得:m=3,当m<0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣,当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1,综上,m的取值范围为m=3或﹣1<m≤﹣,故答案为:m=3或﹣1<m≤﹣.19.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于()A.5B.4C.3D.2【分析】由题意得b=a+1,代入代数式a2+2b﹣6a+7可得(a﹣2)2+5,故此题的最小值是5.【解答】解:∵b﹣a=1,∴b=a+1,∴a2+2b﹣6a+7=a2+2(a+1)﹣6a+7=a2+2a+2﹣6a+7=a2﹣4a+4+5=(a﹣2)2+5,∴代数式a2+2b﹣6a+7的最小值等于5,故选:A.20.(2022•贺州)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a 的值为()A.1B.2C.3D.4【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.【解答】解:∵二次函数y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,故选:D .21.(2022•嘉兴)已知点A (a ,b ),B (4,c )在直线y =kx +3(k 为常数,k ≠0)上,若ab 的最大值为9,则c 的值为( )A .1B .23C .2D .25 【分析】由点A (a ,b ),B (4,c )在直线y =kx +3上,可得,即得ab =a (ak +3)=ka 2+3a =k (a +)2﹣,根据ab 的最大值为9,得k =﹣,即可求出c =2.【解答】解:∵点A (a ,b ),B (4,c )在直线y =kx +3上,∴,由①可得:ab =a (ak +3)=ka 2+3a =k (a +)2﹣, ∵ab 的最大值为9,∴k <0,﹣=9,解得k =﹣,把k =﹣代入②得:4×(﹣)+3=c ,∴c =2,故选:C .22.(2022•凉山州)已知实数a 、b 满足a ﹣b 2=4,则代数式a 2﹣3b 2+a ﹣14的最小值是 .【分析】根据a ﹣b 2=4得出b 2=a ﹣4,代入代数式a 2﹣3b 2+a ﹣14中,然后结合二次函数的性质即可得到答案.【解答】解:∵a ﹣b 2=4,∴b2=a﹣4,∴原式=a2﹣3(a﹣4)+a﹣14=a2﹣3a+12+a﹣14=a2﹣2a﹣2=a2﹣2a+1﹣1﹣2=(a﹣1)2﹣3,∵1>0,又∵b2=a﹣4≥0,∴a≥4,∵1>0,∴当a≥4时,原式的值随着a的增大而增大,∴当a=4时,原式取最小值为6,故答案为:6.。
(完整版)初三数学二次函数知识点总结和经典习题含答案,推荐文档
初三数学 二次函数 知识点总结一、二次函数概念:1. 二次函数的概念:一般地,形如 y = ax 2 + bx + c ( a ,, b c 是常数, a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a ≠ 0 ,而b , 的定义域是全体实数.2. 二次函数 y = ax 2 + bx + c 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2.⑵ a ,, b c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式: y = ax 2 的性质:y = ax 2 + c 的性质: 上加下减。
c 可以为零.二次函数2.3.左加右减。
a < 0向下(h , 0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随 x 的增大而增大; x = h 时, y 有最大值0 .4. y = a (x - h )2+ k 的性质:a 的符号开口方向 顶点坐标 对称轴性质a > 0向上(h , k )X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随 x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h , k )X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随 x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h , k ); ⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h , k )处,具体平移方法如下:【【(k >0)【【【【(k <0)【【【 |k |【【【【 【( h >0)【【【( h <0【 【 【 |k|【【【【 【( h >0)【【【( h <0) 【 【 |k|【【【【 【( k >0)【【【( k <0)【 【 【 |k |【【【【 【( h >0)【【【( h <0)【 【 【 |k|【【【y=a (x-h )2【【(k >0)【【【(k <0)【【【 |k |【【【y=a (x-h )2+k2. 平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.概括 成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得 ⎛ b ⎫24ac - b 2 b 4ac - b 2到前者,即 y = a x + 2a ⎪+ ,其中 h = - 4a , k = .2a 4a ⎝ ⎭六、二次函数 y = ax 2 + bx + c 的性质y=ax 2y=ax 2+k⎝ ⎭ .当 x < - b2a 时, y 随 x 的增大而减小; 当 x > - b2a 时, y 随 x 的增大而增大;b 时, 4ac - b 2 当 x = -2a 2. 当y 有最小值 . 4a b⎛ b 4ac - b 2 ⎫ b a < 0 时,抛物线开口向下,对称轴为 x = - 2a ,顶点坐标为 - 2a, 4a ⎪ .当 x < - 2a 时,b b 4ac - b 2y 随 x 的增大而增大;当 x > - 时, y 随 x 的增大而减小;当 x = - 时, y 有最大值 .2a 2a 4a七、二次函数解析式的表示方法1. 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 ;2. 顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 ;3. 两根式(交点式): y = a (x - x 1)(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大. 2. 一次项系数b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右 b 为 0 对称轴为 y 轴) 3. 常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ; ⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x ,0,) ,B (x 0) (x ≠ x ) ,其中的 x ,x 是一元121212二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.. ② 当∆ = 0 时,图象与 x 轴只有一个交点;1. 当b ⎛ b 4ac - b 2 ⎪⎫ a > 0 时,抛物线开口向上,对称轴为 x = - ,顶点坐标为 - , 4a2a 2a ⎝ ⎭③ 当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;二次函数对应练习试题一、选择题1.二次函数y =x2 - 4x - 7 的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线y =-2x2 向上平移1 个单位,得到的抛物线是()A. y =-2(x +1)2B. y =-2(x -1)2C. y =-2x2 +1D. y =-2x2 -1中的( )3.函数y =kx2 -k 和y =k(k ≠ 0) 在x同一直角坐标系中图象可能是图4.已知二次函数y =ax2 +bx +c(a ≠ 0) 的图象如图所示,则下列结论: ①a,b 同号;②当x =1 和x = 3 时,函数值相等;③ 4a +b = 0 ④当y =-2 时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D. 4 个5.已知二次函数y =ax2 +bx +c(a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax2 +bx +c = 0 的两个根分别是x1=1.3和x2=()A.-1.3 B.-2.3 C.-0.3 D.-3.36.已知二次函数y =ax2 +bx +c 的图象如图所示,则点(ac, bc) 在()A. 第一象✲B .第二象✲C .第三象✲D .第四象✲7. 方程2x - x 2 =2 的正根的个数为()xA.0 个B.1 个C.2 个.3 个8. 已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2C. y = x 2 - x - 2 或 y = -x 2 + x + 2B. y = -x 2 + x + 2D. y = -x 2 - x - 2 或 y = x 2 + x + 2二、填空题9. 二次函数 y = x 2 + bx + 3 的对称轴是 x = 2 ,则b =。
中考数学专题复习资料-二次函数
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。
抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
初中数学中考复习 二次函数 专题讲义(含解析)
二次函数 专题讲义考点回顾一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
【含8套中考卷】专题二次函数经典精讲课后练习及详解
二次函数经典精讲题一:已知抛物线L :y = ax 2+bx+c(其中a ,b ,c 都不等于0),它的顶点坐标P(−2ba,244ac b a ),与y 轴的交点是M(0,c).我们称以M 为顶点,对称轴是y 轴且过点P 的抛物线为抛物线L 的伴随抛物线,直线PM 为L 的伴随直线.已知有一抛物线y =-2x 2+4x+1,求它的伴随直线和伴随抛物线的解析式.题二:如图,抛物线y = x 2+bx+8与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B(点B 在第二象限),抛物线的顶点C 在直线OB 上,且点C 为OB 的中点,对称轴与x 轴相交于点D ,平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为 .题三:如图,二次函数y = ax 2+bx+c (a ≠ 0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x = 2,且O A = OC ,则下列结论: ①abc > 0; ②9a+3b+c < 0; ③c > -1;④关于x 的方程ax 2+bx+c = 0(a ≠ 0)有一个根为-1a. 其中正确的结论个数有( )A .1个B .2个C .3个D .4个题四:如图所示,抛物线y = ax 2+bx+c(a ≠ 0)与x 轴交于点A(-2,0)、B(1,0),直线 x =-0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD = MC , 连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论:①a-b = 0;②当-2 < x < 1时,y > 0;③四边形ACBD 是菱形;④9a-3b+c > 0. 你认为其中正确的是( )A.②③④ B.①②④ C.①③④ D.①②③题五:如图,Rt△ABC的斜边AB在x轴上,AB = 4,点B的坐标为(-1,0),点C在y轴的正半轴,抛物线y = ax2+bx+c(a ≠ 0)的图象经过点A,B,C.(1)求y关于x的函数解析式;(2)设对称轴与抛物线交于点E,与AC交于点D,在对称轴上,是否存在点P,使以点P,C,D三点为顶点的三角形与△ADE相似?若存在,请求出点P的坐标;若不存在,请说明理由.[来源:Z_xx_]题六:如图,在平面直角坐标系中xOy中,一次函数y =54x+m(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x = 1为对称轴的抛物线y = ax2+bx+c(a,b,c为常数,a ≠ 0)经过A、C 两点,并与x轴的正半轴交于点B.(1)求点C的坐标;(2)求抛物线的函数表达式;(3)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F,是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.二次函数经典精讲 课后练习参考答案题一:伴随直线y = 2x+1;伴随抛物线y = 2x 2+1.详解:∵抛物线y =-2x 2+4x +1,∴顶点坐标P 为(1,3),与y 轴交点为M(0,1), 设伴随抛物线的解析式为y = ax 2+1,把P(1,3)代入得a = 2,∴伴随抛物线y = 2x 2+1, 设伴随直线y = kx+1,把P(1,3)代入解得k = 2,故伴随直线y = 2x+1. 题二:y = x 2+6x+8.详解:当x = 0时,y = x 2+bx+8 = 8,则A(0,8), ∵AB∥x 轴,∴B 点的纵坐标为8,当y = 8时,x 2+bx+8 = 8,解得x 1 = 0,x 2 =-b ,∴B(-b ,8)(b >0), ∵点C 为OB 的中点,∴C(-12b ,4), ∵C 点为抛物线的顶点,∴2484b ⨯-= 4,解得b = 4或b =-4(舍去),∴抛物线解析式为y = x 2+4x+8 = (x+2)2+4,∴抛物线的对称轴为直线x =-2,∴D(-2,0),设平移后的抛物线解析式为y = x 2+mx+n , 把A(0,8),D(-2,0)代入得8420n m n =⎧⎨-+=⎩,解得68m n =⎧⎨=⎩,所以平移后的抛物线解析式为y = x 2+6x+8.故答案为y = x 2+6x+8. 题三:C .详解:由图象开口向下,可知a < 0,与y 轴的交点在x 轴的下方,可知c < 0, 又对称轴方程为x = 2,所以-2ba> 0,所以b > 0,∴abc > 0,故①正确; 由图象可知当x = 3时,y > 0,∴9a+3b+c > 0,故②错误;由图象可知OA < 1,∵OA = OC,∴OC < 1,即-c < 1,∴c > -1,故③正确; 假设方程的一个根为x =-1a ,把x =-1a 代入方程可得1a -ba+c = 0, 整理可得ac -b+1 = 0,两边同时乘c 可得ac 2-bc+c = 0,即方程有一个根为x =-c , 可知-c = OA ,而当x = OA 是方程的根,∴x =-c 是方程的根,即假设成立,故④正确; 综上可知正确的结论有三个,故选C . 题四:D .[来源:学科网ZXXK]详解:①∵抛物线y = ax 2+bx+c(a ≠ 0)与x 轴交于点A(-2,0)、B(1,0), ∴该抛物线的对称轴为x =-2ba=-0.5,∴a = b,a -b = 0,①正确; ②∵抛物线开口向下,且抛物线与x 轴交于点A(-2,0)、B(1,0),[来源:] ∴当-2 < x < 1时,y > 0,②正确;③∵点A 、B 关于x = -0.5对称,∴AM = BM,又∵MC = MD,且CD⊥AB, ∴四边形ACBD 是菱形,③正确;④当x =-3时,y < 0,即y = 9a -3b+c < 0,④错误. 综上可知,正确的结论为①②③. 故选D .[来源:学科网ZXXK]题五:(1)y =-3x 2+3(2)存在,(1,3)或(1,-3).详解:(1)∵AB = 4,点B 的坐标为(-1,0),∴O A = 3,A(3,0), ∵∠BCO+∠CBO = 90°,∠CBA+∠CAO = 90°,∴∠BCO = ∠CAO,∴Rt△OCB∽Rt△OAC,∴OC:OA = OB :OC ,即OC :3 = 1:OC,设抛物线解析式为y = a(x+1)(x -3),把C(0代入得- a =∴抛物线解析式为y =(x+1)(x -3),即y =2(2)存在.y =2-1)2,则E(1,抛物线对称轴为直线x = 1,直线x = 1交x 轴于H 点,如图1,在Rt△AOC OA = 3在Rt△AHD 中,AH = 2,∴DH =3,AD = 2DH =3,∴DE CD = AC - ∵∠CDP = ∠EDA,∴当DP DC DE DA =时,△DPC∽△DEA,即DP [来源:学.科.网]此时P 点坐标为(1,3);当DP DC DA DE =时,△DPC∽△DAE,即DP :3 = 3:3,解得DP = 3,此时P 点坐标为(1,,综上所述,满足条件的P 点坐标为(1)或(1).题六:(1)(0,154);(2)y =-14x 2+12x+154;(3)存在,(2,154)或,-154).详解:(1)∵y =54x+m经过点(-3,0),∴0 =-154+m,解得m =154,∴直线解析式为y =54x+154,∴C(0,154);(2)∵抛物线y = ax2+bx+c对称轴为x = 1,且与x轴交于A(-3,0),∴另一交点为B(5,0),设抛物线解析式为y = a(x+3)(x-5),∵抛物线经过C(0,154),∴154= a•3(-5),解得a =-14,∴抛物线解析式为y =-14x2+12x+154;(3)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC = EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO = ∠EFG,在△CAO和△EFG中===COA EGFCAO GFEAC EF∠∠⎧⎪∠∠⎨⎪⎩,∴△CAO≌△EFG(AAS),∴EG = CO =154,即y E =154,∴154=-14x E2+12x E+154,解得x E = 2(x E = 0与C点重合,舍去),∴E(2,154);(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,-154=-14x2+12x+154,解得负数舍去),则,-154).D中考数学模拟试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 二次函数2(1)3y x =--的顶点坐标是A .(1,-3)B .(-1,-3)C .(1,3)D .(-1,3)2.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.则△C MN 与△C AB 的面积之比是A .1:2B . 1:3C .1:4D .1:93.如图,在⊙O 中,A ,B ,D 为⊙O 上的点,∠AOB=52°,则∠ADB 的度数 是A .104°B .52°C .38°D .26°4. 如图,在△ABC 中,DE ∥BC ,若13=AD AB ,AE=1,则EC 等于A .1B . 2C .3D .45. 如图,点P在反比例函数2y x=的图象上,PA ⊥x 轴于点A , 则△PAO 的面积为A .1B .2C .4D .66. 如图,在△ABC 中,B ACD ∠=∠,若AD=2,BD=3,则AC 长为A ...67. 抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围为A .1m >B .=1mC . 1m <D .4m <8. 已知二次函数y 1=ax 2+bx +c(a ≠0)和一次函数y 2=kx +n(k ≠0)的图象如图所示, 下面有四个推断: ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0 ④过动点P(m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1.A .①③B .①④C .②③二、填空题(本题共16分,每小题2分) 9. 已知点A (1,a )在反比例函数12y x=-的图象上,则a 的值为 . CB10.请写出一个开口向上,并且与y 轴交点在y 轴负半轴的抛物线的表达式:_______11. 如图,在⊙O 中,AB 为弦,半径OC⊥AB 于E ,如果AB=8,CE=2, 那么⊙O 的半径为 .12. 把二次函数245=-+y x x 化为()2y a x h k =-+的形式,那么h k +=_____.13. 如图,∠DAB=∠CAE ,请你再添加一个条件____________, 使得△ABC ∽△ADE .14. 若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为 .15. 为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上. 测得DE=0.5米,EF=0.25米,目测点D 到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为 米.16.如图1,将一个量角器与一张等边三角形(△ABC )纸片放置成轴对称图形,CD ⊥AB,垂足为D ,半圆(量角器)的圆心与点D 重合,此时,测得顶点C 到量角器最高点的距离CE =2cm ,将量角器沿DC 方向平移1cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图2,则AB 的长为 cm.图1CBAD EED ABC 图2三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:ooo2sin 45tan 602cos30++18. 下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线l 及直线l 外一点P. 求作:直线PQ ,使得PQ ⊥l. 做法:如图,①在直线l 的异侧取一点K ,以点P 为圆心,PK 长为半径画弧,交直线l 于点A ,B ; ②分别以点A ,B 为圆心,大于12AB 的同样长为半径画弧,两弧交于点Q (与P 点不重合); ③作直线PQ ,则直线PQ 就是所求作的直线. 根据小西设计的尺规作图过程,BP(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵PA= ,QA= ,∴PQ ⊥l ( )(填推理的依据).19.如图,由边长为1的25个小正方形组成的正方形网格上有一个△ABC ,且A ,B ,C 三点均在小正方形的顶点上,试在这个网格上画一个与△ABC 相似的△A 1B 1C 1,要求:A 1,B 1,C 1三点都在小正方形的顶点上,并直接写出△A 1B 1C 1的面积.20. 如图,在四边形ABCD 中,CD ∥AB ,AD=BC. 已知A (﹣2,0D (0,3),函数(0)=>ky x x的图象G 经过点C . (1)求点C 的坐标和函数(0)=>ky x x的表达式;(2)将四边形ABCD 向上平移2个单位得到四边形''''A B C D 是否落在图象G 上?21. 位:cm)的边与这条边上的高之和为40 cm ,这个三角形的面积为S(单位:cm 2).(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?[来22. 如图,在△ABC 中,∠ACB=90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC=12,BC=5. (1)求ADE ∠cos 的值;(2)当DE DC =时,求AD23. 如图,反比例函数=ky x分别交于M ,N 两点,已知点M (1)求反比例函数的表达式;(2)点P 为y 轴上的一点,当∠MPN24. 如图,AB,AC 是⊙O 的两条切线,B ,C 为切点,连接CO 并延长交AB 于点D ,交⊙O 于点E ,连接BE ,连接AO . (1)求证:AO ∥BE ;(2)若2=DE ,tan ∠BEO DO 的长.25. 如图,在Rt△ABC 中,∠ACB=90°,D 是AB 的中点,连接CD ,过点B 作CD 的垂线,交CD 延长线于点E. 已知AC=30,cosA=53. (1)求线段CD 的长; (2)求sin ∠DBE 的值.26. 在平面直角坐标系xOy 中,点()4,2A --,将点A 向右平移6个单位长度,得到点B. (1)直接写出点B 的坐标;(2)若抛物线2y x bx c =-++经过点A,B ,求抛物线的表达式;(3)若抛物线2y x bx c =-++的顶点在直线2y x =+上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.B27. 如图,Rt △ ABC 中,∠ACB=90°,AD 平分∠BAC , 作AD 的垂直平分线EF 交AD 于点E ,交BC 的延长线于点F ,交AB 于点G ,交AC 于点H . (1)依题意补全图形; (2)求证:∠BAD=∠BFG ;(3)试猜想AB ,FB 和FD 之间的数量关系并进行证明.28. 如图,在平面直角坐标系xOy 中,已知点A (1,2),B (3,2),连接AB. 若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“临近点”. (1)在点C (0,2),D (2,32),E (4,1)中,线段AB 的“临近点”是__________; (2)若点M(m ,n )在直线23y x =-+上,且是线段AB 的“临近点”,求m 的取值范围;(3)若直线y x b =+上存在线段AB 的“临近点”,求b 的取值范围.D BC一.选择题(本题共16分,每小题2分)二.填空题(本题共16分,每小题2分)9. -12 10.略 11. 5 12. 3 13.略 14. 15. 11.5 16.三. 解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 2sin45tan602cos30︒+︒+2222=⨯+⨯-……………………4分=……………………………………5分18. (1)如图所示………………………………………1分(2)PA=PB,QA=QB …………………………………3分依据:①到线段两个端点距离相等的点在这条线段的垂直平分线上;②两点确定一条直线. ………………………………………5分19. 画图略…………………………………………………3分面积略……………………………………………………5分20. (1)C(4,3),……………………………………………1分反比例函数的解析式y=x12;………………………3分(2)点B′恰好落在双曲线上.…………………………5分21.(1)xxS20212+-=…………………………2分(2)∵21-=a<0,∴S有最大值,…………………………3分当20)21(2202=-⨯-=-=abx时,S有最大值为200202020212=⨯+⨯-=S∴当x为20cm时,三角形面积最大,最大面积是200cm2. …………………………5分l22. 解:如图,(1)∵DE ⊥AB ,∴∠DEA=90°.∴∠A+∠ADE=90°. ∵∠ACB=90︒, ∴∠A+∠B=90°.∴∠ADE=∠B . ………………………………1分 在Rt △ABC 中,∵AC=12,BC=5, ∴AB=13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==. ………………………………3分 ∵ 12AC AD CD =+=, ∴51213x x +=. .………………………………4分 解得263x =. ∴ 263AD =. ……………………………5分23. (1)∵点M (-2,m )在一次函数12y x =-的图象上, ∴()1=212m -⨯-= . ∴M (-2,1). ……………………………2分 ∵反比例函数ky x=的图象经过点M (-2,1), ∴k =-2×1=-2. ∴反比例函数的表达式为2=-y x. ……………………………4分 (2)点P 的坐标为(0,分24. (1) 证明:连结BC ,A∵AB ,AC 是⊙O 的两条切线,B ,C 为切点,∴=AB AC ,平分∠OA BAC ………………………………1分 ∴OA ⊥BC. ∵CE 是⊙O 的直径, ∴∠CBE=90°,∴ OA ∥BE. ………………………………2分 (2)∵OA ∥BE, ∴∠BEO=∠AOC.∵tan ∠∴tan ∠在Rt △AOC 中,设OC=r,则∴在Rt △CEB 中r. ∵BE ∥OA, ∴△DBE ∽△D AO ∴DE EBDO OA=, ………………………………………………………………5分 2DO =, ∴DO=3. ………………………………6分25. ⑴∵∠ACB=90°,AC=30,cosA=53,∴BC=40,AB=50. ……………………2分 ∵D 是AB 的中点, ∴CD=21AB=25. …………………………3分 (2)∵CD=DB,∴∠DCB=∠DBC. ………………………4分 ∴cos ∠DCB=cos ∠DBC=45. ∵BC=40,∴CE=32, ……………………5分 ∴DE=CE -CD=7,BA∴sin ∠DBE=725=DE DB . ……………………6分26. (1)()2,2B -……………………2分(2)抛物线2y x bx c =-++过点,A B ,∴1642422b c b c --+=-⎧⎨-++=-⎩, 解得26b c =-⎧⎨=⎩∴抛物线表达式为226y x x =--+ ………………………4分 (3)抛物线2y x bx c =-++顶点在直线2y x =+上∴抛物线顶点坐标为(),2t t +∴抛物线表达式可化为()22y x t t =--++. 把()4,2A --代入表达式可得()2242t t -=---++ 解得123,4t t =-=-. ∴43t -≤<-.把()2,2B -代入表达式可得()2222t t --++=-. 解得340,5t t ==∴05<≤t .综上可知t 的取值范围时43t -≤<-或05<≤t . …………………6分27. (1(2(3∴ AF=FD ,∠ DAF=∠ ADF ,……………………5分 ∴ ∠ DAC+∠ CAF=∠ B+∠ BAD , ∵ AD 是角平分线, ∴ ∠ BAD=∠ CAD ∴ ∠ CAF=∠ B ,∴ ∠ BAF=∠ BAC+∠ CAF=∠ BAC+∠ B=90°………………………6分 ∴222AB AF FB +=∴222+=AB FD FB28.(1)C 、D (2)如图,设y x =+易知M (0,2),∴m≥0, 易知N 的纵坐标为1,代入y =(3)当直线3y x b =-+当直线3y x b =-+∴2≤b ……………………………………………7分中考数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12 分)1. 下列图标,是轴对称图形的是()2. 如图,数轴上的点A、B 分别表示实数a、b,则下列式子的值一定是正数的是()A.b+a B.b a C.a b D.b a3. 关于代数式x+2 的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小4. 如图,二次函数y=ax2+bx+c 的图像经过点(1,1)和点(3,0) .关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2 时,y 的值等于1;③当x>3 时,y 的值小于0.正确的是()A.①②B.①③C.②③D.①②③5计算999 93 的结果更接近()A.999 B.998 C.996 D.9336. 如图,点P是⊙O 外任意一点,PM、PN 分别是⊙O 的切线,M、N 是切点.设O P 与⊙O 交于点K.则点K是△PMN 的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点二、填空题(本大题共 10 题,每小题 2 分,共 20 分)7.13的相反数是 , 13的倒数是 .8. 若△ABC ∽△DEF ,请写出 2 个不同类型的正确的结论: ,.9. 如果 2 x m y 3 与 x y n 是同类项,那么 2m n 的值是 .10. 分解因式 2x 2 y 4xy 2 y 的结果是 .11. 已知 x 1、x 2 是一元二次方程 x 2x 3 0 的两个根,则x 1 x 2x 1 x 2= .12. 用半径为 4 的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为 .13. 如图,点 A 在函数 ykxx 0 的图像上,点 B 在 x 轴正半轴上,△OAB 是边长为 2 的等 边三角形,则 k 的值为 .14. 如图,在□ABCD 中,E 、F 分别是 A B 、CD 的中点,AF 、DE 交于点 G ,BF 、CE 交于点 H .当□ABCD 满足 时,四边形 E HFG 是菱形15. 如图,一次函数 y43-x 8 的图像与x 轴、y 轴分别交于 A 、B 两点.P 是 x 轴上一个动 点,若沿 B P 将△OBP 翻折,点 O 恰好落在直线 A B 上的点 C 处,则点 P 的坐标是 .16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板 A CB 的位置保持不动,将三角板 D CE 绕其直角顶点 C 顺时针旋转一周.当△DCE 一边与 A B 平行时,∠ECB 的度数为 .三、解答题(本大题共 11 小题,共 88 分)17. (6 分)求不等式1132x x -≤+的负整数解18. (7 分)⑴化简:24142x x --- ⑵方程的2411=422x x ---解是 .19. (7 分)小莉妈妈的支付宝用来生活缴费和购,如图是小莉妈妈2018 年9月至12 月支付宝消费情况的统计图(单位:元).⑴11 月支出较多,请你写出一个可能的原因;⑵求这4个月小莉妈妈支付宝平均每月消费多少元.⑶用⑵中求得的平均数来估计小莉妈妈支付宝2018 年平均每月的消费水平,你认为合理吗?为什么?20. (8 分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.⑴如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2 次,求指针2次都落在黑色区域的概率.⑵小刚在一个不透明的口袋中,放入除颜色外其余都相同的18 个小球,其中4个白球,6 个红球,8 个黄球,搅匀后,从中任意摸出1个球,若事件A的概率与⑴中概率相同,请写出事件A.21. (9 分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800 米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12 米,乙工程队每天改造8米,共用了200 天.⑴根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:____128____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y 表示的意义,然后在横线上补全小莉、小刚两名同学所列的方程组:小莉:x 表示,y 表示;小刚:x表示,y 表示;⑵求甲、乙两工程队分别出新改造步行道多少米.22. (7 分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).23. (9 分)南京、上海相距300km,快车与慢车的速度分别为100km/h 和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为xh,快车、慢车行驶过程中离南京的距离分别为y1、y2km.⑴求y1、y2 与x之间的函数表达式,并在所给的平面直角坐标系中画出它们的图像;⑵若镇江与南京相距80km,求两车途经镇江的时间间隔;⑶直接写出出发多长时间,两车相距100km.24. (7 分)如图,△ABC 中,AD⊥BC,垂足为D.小莉说:当A B+BD=AC+CD 时,△ABC是等腰三角形,她的说法正确吗,如正确,请证明;如不正确,请举反例说明.25.(8 分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为y m2.⑴求y与x的函数表达式;⑵若改造后观花道的面积为13m2,求x的值;⑶若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.26.(9 分)已知:如图,O 为正方形A BCD 的中心,E 为A B 边上一点,F 为B C 边上一点,△EBF 的周长等于B C 的长.⑴求∠EOF 的度数.⑵连接O A、OC.求证:△AOE∽△CFO.⑶若O E ,求AECF的值.27.(11 分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,四边形A BCD 是⊙O 的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O的半径是R,四边形A BCD 是⊙O 的内接四边形,AC⊥BD.求证:.证明:中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是正确的,请将正确选项的字母代号写在相应括号内)1.31-的倒数等于 ( ) A .3 B .-3 C .31- D .312.下列计算正确的是 ( )A . (a 2)2=a 4B .a 2·a 3=a 6C .(a+1)2=a 2+1D .a 2+a 2=2a 43.下列图形中,是中心对称图形的是 ( )A .直角B .直角三角形C .等边三角形D .平行四边形 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是 ( )A .B .C .D .5:cm)这组数据的中位数是 ( ) A .37 B .38 C .39 D .40 6.已知反比例函数y=x k ,点A (m ,y1),B(m+2,y 2 )是函数图像上两点,且满足211121-=y y ,则k 的值为 ( )A .2B .3C .4D .5 第二部分 非选择题(共132分)二、填空题(本大题共10小题,每小题3分,满分30分) 7.9的平方根是 .8.2017年10月10日,中科院国家天文台宣布,“中国天眼”发现1颗新脉冲星,距离地球16000光年。
备战中考数学综合题专题复习【二次函数】专题解析含答案解析
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+5152-),P2(352,1+52),P3(52,1+52),P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或352;P的坐标为(3+5,152-)或(352,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(352,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.3.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由.【答案】(1) S=﹣231003t 0<t <5); (2)307;(3)见解析. 【解析】【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3AM=AO+OM ,列方程可得t 的值; (3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值.【详解】解:(1)如图1,∵四边形ABCD 是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20, ∴OB=10,AO=103,由题意得:AP=4t ,∴PQ=2t ,AQ=23t ,∴S=S △ABC ﹣S △APQ ,=11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5);(2)如图2,在Rt △APM 中,AP=4t ,∵点Q 关于O 的对称点为M ,∴OM=OQ ,设PM=x ,则AM=2x ,∴AP=3x=4t ,∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t , t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积,∴S △APN =S △PMN ,过M 作MG ⊥PN 于G , ∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴AH=HM=3t , ∵AM=AO+OM , 同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.4.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【解析】【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论.【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b ,将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩, 解得:3300m n =-⎧⎨=⎩, ∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩; (2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105, ∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600,当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65, ∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.5.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P (2,﹣5)或(1,0).【解析】 试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3). ∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0). 综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.6.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .7.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y4=的距离,若存在,求出定点F的坐标;若不存在,请说明理由.【答案】⑴2y x2x3=-++;⑵当12a=,S□MANB=2S△ABM=274,此时115M,24⎛⎫⎪⎝⎭;⑶存在. 当15F1,4⎛⎫⎪⎝⎭时,无论x取任何实数,均有PG PF=. 理由见解析.【解析】【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20443a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
二次函数中考考点+例题-全面解析
二次函数中考考点分析考点1、确定a 、b 、c 的值.二次函数:y=ax 2+bx+c (a ,b,c 是常数,且a ≠0) 开口向上, 开口向下.抛物线的对称轴为: ,由图像确定2ba-的正负,由a 的符号确定出b 的符号,a,b 符号左 右 .即当抛物线的对称轴在y 轴的左边时,a ,b 号。
由x=0时,y= ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c 0,与y 轴交点在y 轴的负半轴时,c 0.确定了a 、b 、c 的符号,易确定abc 的符号.考点 2、确定a+b+c 的符号.x=1时,y= ,由图像y 的值确定a+b+c 的符号.与之类似的还经常出现判断4a+2b+c 的符号(易知x=2时,y= ),由图像y 的值确定4a+2b+c 的符号.还有判断a -b+c 的符号(x=-1时,y= )等等.考点3、与抛物线的对称轴有关的一些值的符号.抛物线的对称轴为x=2ba -,根据对称性知:取到对称轴 距离相等 的两个不同的x 值时, 值相等,即当x=2b a -+m 或x=2ba--m 时,y 值相等.中考考查时,通常知道x=2b a -+m 时y 值的符号,让确定出x=2ba--m 时y 值的符号.考点4、由对称轴x=2b a -的确定值判断a 与b 的关系.如:2b a-=1能判断出a = b . 考点5、顶点与最值.若x 可以取全体实数,开口向下时,y 在顶点处取得最大值,开口向上时,y 在顶点处取得最小值.例1、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;②c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ).A. 2个 B 。
3个 C. 4个 D. 5个解析:此题考查了考点1、2、3、4、5. ①错误.因为:开口向下a <0;对称轴x=2ba-=1,可以得出b >0; x=0时,y=c >0,故abc <0.②错误.因为:由图知x=-1时,y=a -b+c <0,即b >a+c .③正确.因为:由对称轴x=1知,x=0时和x=2时y 值相等,由x=0时,y >0,知x=2时,y=4a+2b+c >0.④正确.因为:由对称轴x=2ba-=1,可以得出a =-0.5 b ,代入前面已经证出b >a+c ,得出1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016中考复习二次函数知识点分类复习及练习知识要点:• 1、二次函数的定义• 2、二次函数的图像及性质 • 3、求解析式的三种方法• 4、a ,b ,c 及相关符号的确定 • 5、抛物线的平移• 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 •8、二次函数的综合运用1、二次函数的定义定义: y=ax ² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 练习:1、y=-x ²,y=2x ²-2/x ,y=100-5 x ²,y=3 x ²-2x ³+5,其中是二次函数的有____个。
2.当m_______时,函数y=(m+1)χ - 2χ+1 是二次函数? 2、二次函数的图像及性质抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax 2+bx+c(a>0)y=ax 2+bx+c (a<0)由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而减在对称轴的左侧,y 随着x 的增大而增x 的增大⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫⎝⎛--a b ac a b 44,22ab x 2-=直线abx 2-=直线mm -23、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)2,顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2) (a≠0)练习:根据下列条件,求二次函数的解析式。
(1)、图象经过(0,0), (1,-2) , (2,3) 三点;(2)、图象的顶点(2,3),且经过点(3,1) ;(3)、图象经过(0,0), (12,0) ,且最高点的纵坐标是3 。
例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。
求a、b、c。
4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定(2)C的符号:由抛物线与y轴的交点位置确定.(3)b的符号:由对称轴的位置确定(4)b2-4ac的符号:由抛物线与x轴的交点个数确定(5)a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定。
当x=1时,y>0,则a+b+c>0当x=1时,y<0,则a+b+c<0当x=1时,y=0,则a+b+c=0(6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1时,对应的y值决定。
当x=-1,y>0,则a-b+c>0当x=-1,y<0,则a-b+c<0当x=-1,y=0,则a-b+c=0练习1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a<0,b>0,c>0B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<02、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a>0,b>0,c=0B、a<0,b>0,c=0C、a<0,b<0,c<0D、a>0,b<0,c=03、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c 、△的符号为()A、a>0,b=0,c>0,△>0B、a<0,b>0,c<0,△=0C、a>0,b=0,c<0,△>0D、a<0,b=0,c<0,△<0熟练掌握a,b, c,△与抛物线图象的关系(上正、下负)(左同、右异)4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a 0,b 0,c 0.5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a 0,b 0,c 0.6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想)7.已知二次函数的图像如图所示,下列结论。
⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0⑷b=2a其中正确的结论的个数是()A 1个B 2个C 3个D 4个要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想。
5、抛物线的平移左加右减,上加下减练习⑴二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。
⑵二次函数y=2x2的图象先向平移个单位,再向平移个单位可得到函数y=2(x+1)2+2的图象。
引申:(3)由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+66、二次函数与一元二次方程的关系 一元二次方程根的情况与b ²-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.二次函数y=ax ²+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax ²+bx +c=0的解。
二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: (1)有两个交点b2 – 4ac > 0 (2)有一个交点b2 – 4ac= 0 (3)没有交点 b2 – 4ac< 0若抛物线y=ax2+bx+c 与x 轴有交点,则b2 – 4ac ≥0例(1)如果关于x 的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m 与x 轴有____个交点.(2)已知抛物线 y=x2 – 8x +c 的顶点在 x 轴上,则c=____.(3)一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x 轴的交点坐标是____. 41)25(2--=x y=x41)25(2--=x y ()有两个不相等的实数根方程时当00,0422≠=++>-a c bx ax ac b .2422,1a acb b x -±-=∴():00,0422有两个相等的实数根方程时当≠=++=-ac bx ax ac b .22,1a b x -=∴()没有实数根方程时当00,0422≠=++<-a c bx ax ac b7二次函数的综合运用1.已知抛物线y=ax2+bx+c 与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x 轴的距离为5,请写出满足此条件的抛物线的解析式.2.若a+b+c=0,a ≠0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.练习题1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………( )(A )k <31 (B )31<k <1 (C )k >1 (D )k >1或k <12.二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是…………( )(1)abc <0; (2)a +b +c <0; (3)a +c >b ; (4)a <-2b .(A )1 (B )2 (C )3 (D )43.若一元二次方程x 2-2 x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过…………………………………………………………………………………( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4.如图,已知A ,B 是反比例函数y =x2的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,则………………………………………………………………( )(A )S 1=S 2 (B )S 1>S 2 (C )S 1<S 2 (D )上述(A )、(B )、(C )都可能5.若点A (1,y 1),B (2,y 2),C ( ,y 3)在反比例函数y =-xk 12+的图象上,则( )(A )y 1=y 2=y 3 (B )y 1<y 2<y 3 (C )y 1>y 2>y 3 (D )y 1>y 3>y 26.直线y =ax +c 与抛物线y =ax 2+bx +c 在同一坐标系内大致的图象是……( )(A ) (B ) (C ) (D )7.已知函数y =x 2-1840 x +1997与x 轴的交点是(m ,0)(n ,0),则(m 2-1841 m +1997)(n 2-1841 n +1997)的值是……………………………………………( ) (A )1997 (B )1840 (C )1984 (D )18978.某乡的粮食总产量为a (a 为常数)吨,设这个乡平均每人占有粮食为y (吨),人口数为x ,则y与x 之间的函数关系为……………………………………………( )(A ) (B ) (C ) (D )(二)填空题(每小题4分,共32分)9.函数y =12-x +11-x 的自变量x 的取值范围是____________.10.若点P (a -b ,a )位于第二象限,那么点Q (a +3,ab )位于第_______象限.11.正比例函数y =k (k +1)12--k k x 的图象过第________象限.12.已知函数y =x 2-(2m +4)x +m 2-10与x 轴的两个交点间的距离为22,则m =___________.13.反比例函数y =xk的图象过点P (m ,n ),其中m ,n 是一元二次方程x 2+kx +4=0的两个根,那么P 点坐标是_____________.14.若一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数值y 的范围是-11≤y ≤9,则函数解析式是___________.15.公民的月收入超过800元时,超过部分须依法缴纳个人收入调节税,当超过部分不足500元时,税率(即所纳税款占超过部分的百分数)相同.某人本月收入1260元,纳税23元,由此可得所纳税款y (元)与此人月收入x (元)(800<x <1300)间的函数关系为____________. 17.(6分)已知y =y 1+y 2,y 1 与x 成正比例,y 2 与x 成反比例,并且x =1时y =4,x =2时y =5,求当x =4时y 的值. 18.(6分)若函数y =kx 2+2(k +1)x +k -1与x 轴只有一个交点,求k 的值.19.(8分)已知正比例函数y =4 x ,反比例函数y =xk.(1)当k 为何值时,这两个函数的图象有两个交点?k 为何值时,这两个函数的图象没有交点?(2)这两个函数的图象能否只有一个交点?若有,求出这个交点坐标;若没有,请说明理由.20.(8分)如图是某市一处十字路口立交桥的横断面在平面直角坐标系中的一个示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的D ′GD 部分为一段抛物线,顶点G 的高度为8米,AD 和AD ′是两侧高为5.5米的立柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和CD ′为两段对称的上桥斜坡,其坡度为1∶4.(1)求桥拱DGD ′所在抛物线的解析式及CC ′的长.(2)BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽.(3)按规定,汽车通过桥下时,载货最高处和桥拱之间的距离不可小于0.4米,今有一大型运货汽车,装载上大型设备后,其宽为4米,车载大型设备的顶部与地面的距离为7米,它能否从OA (OA ′)安全通过?请说明理由.21.(8分)已知二次函数y =ax 2+bx +c 的图象抛物线G 经过(-5,0),(0,25),(1,6)三点,直线l 的解析式为y =2 x -3.(1)求抛物线G 的函数解析式;(2)求证抛物线G 与直线l 无公共点;(3)若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标. 【分析】(1)略;(2)要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解;(3)直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.。