二、振动参数及结构特性参数测量_1
机械实验之振动参数的测定
带宽法使用于小阻尼情况,既可用于高阶,也可用于低阶,但两个 半功率点的频率必须相差较大,否则误差很大。
本实验由于两个点的半功率点相隔较近,所以误差也比较大
2.3 实验的操作步骤
1)用自由振动法测量 和 A n
A)用榔头敲击简支梁使其产生自由衰减振动。
B)记录单自由度自由衰减振动波形,将加速度传感器所测振动经测振仪转 换为位移信号后(标准电信号),送入信号采集分析仪(A/D),让计算机虚拟 示波器以便显示。
C)绘出振动波形图波峰和波谷的两根包络线,然后设定,并读出个波形所
经历的时间t,量出相距i个周期的两振幅 2,0 。按公式计算 和 A n
2)用强迫振动法测量 和 A n
A)加速度传感器置于简支梁上,其输出端接信号采集分析仪,用来测量简支 梁的振动幅值
B)将电动式激振器接入激振信号源输入端,开启激振信号源的电源开关,对 简支梁系统施加交变正弦激振力,使系统产生正弦振动。
2 1 iln A ( n/A n i)
式中:02/T02/Td12---频率比
0
幅频特性曲线如右图:
振幅最大时的频率为共振频率 0 122
由于存在测量参数的不同,存在位移共振、速度共振及加 速度共振三种
振动形 式
阻尼
自由振动 频率
位移共振 频率
速度共振 频率
加速度共 振频率
无阻尼
n/0
机械振动实验课件
振动参数的测定
(固有频率和阻尼比)
一、实验目标
1.1 实验目的
1、了解单自由度系统自由振动的有关概念 2、了解单自由度系统强迫振动的有关概念 3、会根据自由衰减振动波形确定系统的固有频率和阻尼比会 4、根据强迫振动幅频特性曲线确定系统的固有频率和阻尼比
内科大安全环境监测技术教案第7章 振动检测
【课堂教学小结】3分钟)1、振动与噪音本质上相同,只是频率和传播介质不同。
2、我们所学振动检测,重点掌握环境振动的检测,适合我们矿业的作业场所。
参考位置等优点,由于它的脉冲响应优异,更适合于冲击的测量。
CI=史=2力V=Q时)2Adt4)拾振器的充分利用一般情况尽量用同参数相应的传感器进行测量,也可用电学微积分原理进行测量,但测量误差较大。
7.4拾振器7.4.1 压电式加速度计1.1.1 工作原理(1)组成:压电晶体、弹簧元件、外壳、引线。
(2)原理:(图示说明)2)特点体积小、灵敏度高、测量频率宽。
3)主要参数(1)灵敏度:输出量的变化与输入量变化的比值(2)安装方法与上限频率(3)前置放大器与下限频率(4)横向灵敏度(5)动态范围(6)环境影响程度1.1.2 磁电式速度计1)结构原理(1)组成:线圈、磁钢、顶杠、弹簧片、附件。
(2)原理:切割磁力线产生感生电动势(图示说明)。
2)特点a.只能测量质点振动b.可以做成相对和绝对两种(约20分钟) (约20分钟)c.输出幅度大d.输出阻抗低e.体积较压电式大1.1.3 拾振器的合理选择1)自振频率和工作频率的选择2)灵敏度的选择3)测量范围的选择4)测量内容的选择(本节无作业)【课堂教学小结】(3分钟)1、振动测量主要是根据振动类型正确选择拾振器;2、合理布置拾振器;3、准确分析测量结果。
(约12分钟)举例课程名称:安全环境监测技术7∙6测振仪的校准与标定1)标定内容X⑴拾振器灵敏度标定在振动台上进行,fW200Hz,a≤10g灵敏度Sv=U∕Xa=4π2f2A A为振幅读书;U为输出电压;f为频率(2)实验室条件下的二次标定2)频率特性的标定(1)频率响应:测频带(带宽)⑵谐振频率7.7振动允许标准(约20分钟)D人体允许振动标准(246页)人体可以通过各种感受器接收振动的信息,并通过大脑对振动作出相应的反应和判断。
根据振动对人影响的程度,可以建立振动的评价标准。
机械结构的动态特性测试与分析
机械结构的动态特性测试与分析引言:机械结构在现代工业中起着不可或缺的作用,从汽车发动机到航天飞行器,从建筑大厦到微型电子设备,都离不开稳定可靠的机械结构。
然而,由于各种因素的影响,机械结构往往存在动态特性,如共振、频率响应等问题,这些问题可能引发机械结构的破坏和故障。
因此,对机械结构的动态特性进行测试与分析变得至关重要。
一、动态特性测试方法1. 振动测试振动测试是评估机械结构动态特性的重要手段之一。
通过在机械结构上施加外力或激励,测量相应的振动信号,可以获取机械结构的共振频率、振动模态等信息。
常用的振动测试方法有自由振动测试和强制振动测试。
自由振动测试是在机械结构未受到任何外力干扰时的振动行为。
通过激励结构,记录下结构在自由振动过程中的振动信号,再经过数据处理和分析,可以得到机械结构的频率响应曲线和模态参数。
强制振动测试是施加外力或激励至机械结构后的振动行为。
通过在结构上施加单频、多频或随机激励信号,测量在不同激励下结构的振动响应,并进行数据处理和分析,可以研究机械结构的频率响应特性、传递函数等。
2. 声学测试声学测试是利用声波的传播和反射特性,测试和分析机械结构的动态特性。
常用的声学测试方法有声传递函数测试、声发射测试和声发射瞬变测试。
声传递函数测试是通过测量机械结构入射声波信号和反射声波信号之间的幅度和相位差,推断机械结构的振动特性和传递函数。
声发射测试是用于检测机械结构内部缺陷和损伤的方法。
通过在机械结构上施加外力或激励,并用传感器实时测量结构表面的声发射信号,再通过信号处理和分析,可以判断出机械结构的缺陷和故障。
声发射瞬变测试是在机械结构的工作状态下,测量由于结构内部应力变化引起的瞬态声发射信号,从而判断机械结构的动态特性和工作状态。
二、动态特性测试与分析的意义1. 提高机械结构的可靠性与安全性通过对机械结构的动态特性进行测试和分析,可以了解结构共振频率、振动模态等参数,从而避免结构受到共振现象的影响。
振动测量方法、标准及准则
振动测量方法、标准及实际振动原因分析及解决方案目录1、振动测量方法 21.1 加速度传感器21.1.1工作原理31.1.2优缺点41.2 速度传感器41.2.1工作原理41.2.2速度传感器优缺点51.3 位移传感器51.3.1工作原理61.3.2优缺点72、振动测量标准 82.1 ISO 10816系列标准82.2ASME标准82.3 DIN标准83、结论 84钢平台振动原因分析及解决方案84.1钢平台振动因素可包括一下几点:81、振动测量方法1.1 加速度传感器压电加速度传感器主要应用的是压电效应,压电效应是最流行的形式。
主要使用加速力而受到的微观晶体结构,压力会在晶体中产生电压,加速度传感器将这个压力转换为速度和方向。
1.1.1工作原理如上图的模型所示,加速度传感器包含微观晶体结构,当发生振动时会产生电压,然后产生的电压会产生加速度的读数。
1.1.2优缺点压电加速度传感器的优点是:1).结构简单,取材方便;2).安装方便,使用寿命长。
压电加速度传感器的缺点:1)谐振频率高,容易受到声音的干扰;2)输出阻抗高,输出信号弱,传感器输出信号需要经过放大电路放大后才能送检测电路检测。
1.2 速度传感器速度传感器可以测量振动的速度。
它适用于低频振动测量和对振动的整体评估,速度传感器可以直接测量振动,并提供振动速度的输出信号。
与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应。
图1(a)图1(b)1.2.1工作原理速度传感器的结构示意如图1(a)所示。
一个圆筒形的线圈固定在外壳内壁,线圈中间有一个永磁铁支承在弹簧上。
传感器的外壳固定在被测对象上,以承受振动。
永磁铁(参振质量)、弹簧和阻尼组成了一个单自由度系统图1(b)。
在设计时使该系统的固有频率远低于被测物振动的频率。
这时在被测物振动时,永磁铁在空间处于静止状态,永磁铁相对于线圈的运动即为被测物的运动。
布置方式:测量轴承座振动(简称座振)时,需要测量垂直、水平、轴向三个方向的振动,因此传感器的位置,也即测点的布置如下图所示。
机械实验之振动参数的测定
式中:A ------ 振动振幅
x•0yy静动-----------
初相位 有阻尼衰减振动圆频率
设初始条件:t=0时,初始位移Td2/02n22/012T0,/12 初始速度 d 02n2
1/ (1 2 )2 (2)2
•
A x02 [(x0 nx0 ) / d ]2
此波形有如下特点:
0
带宽法使用于小阻尼情况,既可用于高阶,也可用于低阶,但两个 半功率点的频率必须相差较大,否则误差很大。
本实验由于两个点的半功率点相隔较近,所以误差也比较大
2.3 实验的操作步骤
1)用自由振动法测量tg
x0d
•
/(x0
nx0)
和
n/0
A)用榔头敲击简支梁使其产生自由衰减振动。
B)记录单自由度自由衰减振动波形,将加速度传感器所测振动经测振仪转 换为位移信号后(标准电信号),送入信号采集分析仪(A/D),让计算机虚拟 示波器以便显示。
B)振幅按几何级数衰减
减幅系数: x B sin( t )
对数减幅 :
''
'
m x kx c x F0 sin t
2 迫振动法(共振法) 利用激振器对被测系统施以简谐激励力,使系统产生强迫振
动,改变激振频率,进行频率扫描,当激振频率与系统的固有频 率接近时,系统产生共振。因此,只要逐渐调节激振频率,同时 测定系统的响应幅值,绘出幅值和频率的关系曲线(即幅频特性 曲线),曲线上各峰值点所对应的频率,就是系统的各阶固有频 率。
单自由度系统,在简谐激励力的作用下,系统作简谐强 迫振动,系统的微分方程为
''
x
2 0
x
2nx
F0
工程振动测试技术09第9章基本振动参数常用的测量方法课件
由(a)、(b)两式解得:
n 2
(
f
2 v
f
2 x
)
由(b)、(c)两式解得:
应注意的问题
n 2fv
fa
(
f
2 a
f
2 v
)
当衰减系数n比较小时,fx、fv、fa 各值相差很
小,测量结果误差较大。
应用精确的频率测量仪器,使测量共振频率的
有效数字尽可能精确。
9.5.3 半功率点法 振动理论曾导出强迫振动的振幅表达式:
由于
fd
f
2 n
(
n 2
)2
是自由衰减振动法得到
的系统振动频率,略小于实际的固有频率。
优点:方法比较简便;
缺点:振动波形衰减太快。
9.2.2 强迫振动法 利用共振的特点来测量机械系统的固有频
率的方法称为强迫振动法,也叫共振法。 1. 调节转速法
速械发和系生固统共有的振频固时率有的频的转率关速系。ncf叫n 做6n临0c 界转,速就,可根以据计临算界出转机
c、计算与显示系统 主要功能:由平均值检波器和直流放大器输出脉冲 的平均值,使输出的直流电压与输入信号间的相位 差成正比关系,然后通过表头显示出来。
2、数字式相位计 数字式相位计的整形电路、相位差检测器的工作
原理同模拟式相位计测量系统的工作原理相同。
数字式相位计的工作原理框图
由于整形电路、相位差检测器 输出的信号如图(c)所示,
sin x
pnt
F0 x m
sin sin
pnt pnt
F0 x m
因此,只要测量发生速度共振时的速度幅值和激
振力幅值,即可通过此式计算出阻尼。
9.6 振型曲线的测量
振动标准及机器振动测量与评价标准简介
Expert
1)ISO/DIS 13374-2, 机器状态监测与诊断 数据处 理、通信与表示 第2部分: 数据处理 2)ISO/DIS 18434-1机器状态监测与诊断 热成像 第 1部分:一般指南 在“ISO 18436, 机器状态监测与诊断 人员培训与认 证的要求”总标题如下的: 3)ISO/CD 18436-3, 第3部分:对培训团体的要求 4)ISO/WD 18436-4, 第4部分:工业润滑分析 5)ISO/WD 18436-8, 第8部分:热成像 6)ISO/CD 18436-9, 第9部分:声发射 7)ISO/AWI 22096-1,机器状态检测与诊断 声技术 第1部分:声发射
Expert
0 引言(续)
目前,国内外大多数重要机器设备上都配置了监测诊 断装置或系统,但各家公司采用的状态监测与故障诊断方 法和评定准则各不相同。状态检测与故障诊断技术与系统 的推广与应用,迫切需要制订相应的标准。否则,监测结 果将难以进行比对和评估,提高诊断与预报的准确性更困 难。如果没有协同一致的标准,测量结果只有实施的人才 明白,就更难以实现远程诊断。 为了实现技术和经济发展的需要,上述技术领域的标 准化工作在国际上由ISO/TC108(机械振动与冲击技术 委员会)负责。国内有全国机械振动与冲击标准化技术委 员会(代号SAC/TC53)归口。
Expert
Expert
第5部分 水力发电厂和泵站机组 (GB/T6075.5-2002 idt ISO 10816-5:2000)
本标准规定了水力发电厂和泵站机组在非旋 转部件上振动的测量和评价准则。 本标准适用于水力发电厂和泵站机组,其额 定转速为(60-1800)r/min,轴瓦类型为筒式或分 块瓦式轴承,主机功率大于或等于1MW。轴线的 位置可以使垂直、水平或与这两个方向成任意角 度。 如:水轮机和水轮发电机、水泵-水轮机和电 动机-发电机。
机械故障诊断技术2_机械振动及信号
按振动规律分类
这种分类,主要 是根据振动在时间 按振动的动力学特征分类
(1)自由振动与固有频率
这种振动靠初始激励一次性获得振动能量,历程有限,一般不会 对设备造成破坏,不是现场设备诊断所需考虑的目标。描写单自由度 线性系统的运动方程式为: d 2 x(t ) m kx(t ) 0 dt 2 通过对自由振动方程的求解,我们导出了一个很有用的关系式: 无阻尼自由振动的振动频率为:
物体在持续的周期变化的外力作用下产生的振动叫强迫振动,如 不平衡、不对中所引起的振动。
由图2—3所见,衰减自由振动随时间 推移迅速消失,而强迫振动则不受阻 尼影响,是一种振动频率和激振力同 频的振动。从而可见,强迫振动过程 不仅与激振力的性质(激励频率和幅 值)有关,而且,与物体自身固有的 特性(质量、弹性刚度、阻尼)有关, 这就是强迫振动的特点。
m
d x dx c kx Fo sin t dt dt 2
( 惯 性 力 ) ( 阻 尼 力 ) ( 弹 性 力 ) ( 激 振 力 )
2
图2-2强迫振动力学模型
图2-3 强迫振动响应过程 a)强迫振动 b)衰减振动 c)合成振动
(3) 自激振动
自激振动是在没有外力作用下,只是由于系统自身的原因所产生的 激励而引起的振动,如油膜振荡、喘振等。自激振动是一种比较危险的 振动。设备一旦发生自激振动,常常使设备运行失去稳定性。 比较规范的定义是:在非线性机械系统内,由非振荡能量转变为振 荡激励所产生的振动称为自激振动。
第二章 机械振动及信号
在冶金、化工、机械等企业中旋转机械设备 约占80%,这些旋转设备主要包括发电机、电动 机、透平制氧机、鼓风机、大型轧钢机等,在众 多的诊断技术中,没有任何技术能比振动信号分 析对机器设备状况提供更深刻的了解。另外,由 于旋转机械设备在运行中易出现不对中或受外力 作用而产生振动的现象,其大小与安装质量和使 用中的故障有直接关系。由此可见,振动分析及 测量在诊断旋转机械中有着重要的地位。
振动测试相关标准
振动测试相关标准一、引言振动测试是评估产品或结构的动态特性和性能的重要手段。
在许多工程领域,如航空航天、机械、土木工程和汽车等,需要进行振动测试以确保产品的可靠性和安全性。
为了统一测试方法和规范,制定了一系列振动测试相关标准。
本文将重点介绍振动测试的频率范围、加速度和位移参数,以及加权处理等方面的标准。
二、振动测试的频率范围频率范围是振动测试的一个重要参数,它决定了测试所涵盖的振动频率范围。
不同的测试标准可能会规定不同的频率范围,以适应不同产品或结构的测试需求。
例如,一些标准可能规定低频范围为1~1000Hz,而另一些标准则可能规定高频范围为1000~5000Hz。
在实际测试中,应根据具体的标准和要求来确定适当的频率范围。
三、振动测试的加速度和位移参数加速度和位移是振动测试中的两个重要参数,它们反映了物体振动的剧烈程度和运动情况。
在制定振动测试相关标准时,通常会规定加速度和位移的测量范围和精度要求。
例如,一些标准可能要求加速度测量范围为0.1~10g(g为重力加速度),位移测量范围为0.01~1mm。
在实际测试中,应根据具体的标准和要求来确定适当的加速度和位移参数。
四、振动测试的加权处理加权处理是振动测试数据处理的一种方法,用于消除不同频率成分对测试结果的影响。
在制定振动测试相关标准时,通常会规定加权处理的方法和参数。
例如,一些标准可能要求采用“滤波器法”进行加权处理,而另一些标准则可能要求采用“谱分析法”。
在实际测试中,应根据具体的标准和要求来确定适当的加权处理方法。
五、结论本文介绍了振动测试相关标准的主要内容,包括振动测试的频率范围、加速度和位移参数以及加权处理等方面。
这些标准是指导实际振动测试的重要依据,有助于确保测试结果的准确性和可靠性。
在实际应用中,应遵循相关标准的要求,选择适当的测试方法和参数,以确保获得可靠的结果。
同时,随着技术的不断发展和新标准的制定,应关注并更新相关标准,以适应新的测试需求和挑战。
振动测量参数的选择
一、振动测量参数的选择位移:适用于低频范围,转速在1500转/分以下的机组,速度:适用于中频段,转速在1500——10000转/分范围内的机组、加速度:适用于高频段,转速在10000转/分以上的机组现在一般采用速度标准,1、位移:反映质点的位能,可监测位能对设备部件的破坏。
2、速度:反映质点的动能,可监测动能对设备部件的破坏。
3、加速度:反映质点的受力情况受,可监测振源的冲击力对设备的破坏程度。
振动的表征参数-峰值(单峰值)、峰-峰值及有效值。
对于位移,一般选峰-峰值作为表征参数;加速度选择峰值,速度选择有效值作为表征参数。
二、测点选择1、尽量靠近轴承2、尽量在垂直、水平、轴向三个方向上设置测点3、给测点位置作好记号,以保证测量数值的稳定性和可比性4、必要时可将设备表面进行处理三、测试中应注意的几个问题1、在测试同一设备、同一测点和同一参数量时,应选择同一种测试仪器,并在同一状态下、同一频带下进行测试。
2、检查测试设备的安装情况,应保证测点设备与测试仪器不产生共振。
3、测量径向振动时,传感器应相对于被测设备轴径向安装;测量轴向振动时,应相对于被测轴平行安装。
4、应考虑测试现场周围的电场、磁场以及外界环境对传感器和仪器本身的影响。
一、振动基础理论1.1 振动形式的描述机械设备总是不可避免的会产生振动,过大的振动是有害的,除非为了特殊的目的,如振动给料机、磨煤机等。
为了说明振动的特点,采用了多种描述方式。
1、时域描述有两种形式,即振动波形和轴心运动轨迹。
可直观了解振动随时间的变化情况,以及转轴在轴承中的横向运动情况,粗略估量振动平稳与否及对称程度。
2、频域描述将振动幅值、相位、能量情况按频率排列,有利于反映故障原因。
3、幅域描述现场主要采用峰值、峰-峰值、有效值等概念反映振动幅值的大小,其中又有位移、速度、加速度等不同振动量之分。
位移峰-峰值主要考核设备间隙的安全性。
速度有效值用以反映振动能量的大小或破坏能力,是判断振动状态的主要指标。
建筑结构试验简答
结构静力试验?答:一般是指在不长的时间内对试验对象进行平稳的连续加载,荷载从零开始一直加到结构构架破坏或到达预定荷载,或是在短时间内平稳地施加假设干次预定的重复荷载后,再连续增加荷载了解结构构件破坏。
结构静力试验加载设计包含:加载制度和加载图示。
加载设计的目的:在试验中模拟结构的实际荷载情况,提出与结构的实际荷载相似的加载制度和加载图示。
加载制度取决于:不同的试验对象和试验目的荷载量分级大小和分级多少,可依据:试验目的,试验期限,结构类型。
开裂试验荷载作用下,构建裂缝的出现与恒载时间有关。
混凝土加载时间,每级延续时间不少于10min,钢结构可少于10min。
科研性恒载30min,成产性不少于10min,结构构架受荷载作用后的剩余变形是说明结构工作性能的重要指标。
钢筋混凝土梁板构件的生产性鉴定:只测量1、构件的承载力2、抗裂度3.各级荷载小的挠度及裂缝开展情况研究性试验:除1、承载力、2抗裂度3、挠度和裂缝观测外,还测量构件某些部位的应力,以分析构件中该部位的应力大小和分布规律裂缝的测量包含:1、确定裂缝的位置和时间2、描述裂缝的开展和分布3、测量裂缝的宽度和深度梁工作性能的重要指标是由:转角和曲率反映的。
柱或压杆可以采纳正位或卧位试验。
屋架试验一般采纳正位试验。
偏心受压构件的偏心距:为物理中心到作用线中心的距离。
数据采集错误的原因:答:1、仪器参数设置错误而造成的数据出错2、人工读数时读错3.人工记录的笔误4、环境因素造成的数据失真5、测量一起的缺陷或安排错误造成而定出错6、测量过程遭到干扰。
1、结构静力试验有什么特点?答:结构静力试验中,加载速度很慢,结构变化也很慢,可以不考虑加速度引起的惯性力,不考虑由于加载速度快、结构变形快而产生的效应。
结构静力实验时,为什么要采纳分级加卸载?答:1.可操纵加载速度2.便于观测结构变形随荷载变化的规律3.可以了解结构各个阶段的工作性能4.分级加卸载为加载和观测提供了方便条件。
桥梁结构振动监测与结构健康评估方法
桥梁结构振动监测与结构健康评估方法桥梁结构在长期使用和自然力的作用下,会产生各种振动响应,这些振动响应反映了结构的动态特性以及可能存在的损伤。
因此,对桥梁结构进行振动监测和结构健康评估显得尤为重要。
本文将介绍桥梁结构振动监测的技术方法和结构健康评估的指标。
一、振动监测方法1. 力学式方法力学式方法是一种传统的振动监测方法,它通过布置一定数量的振动传感器在桥梁结构上进行测量,获取结构的动态响应。
常见的力学式方法包括加速度计法、应变计法和位移计法等。
加速度计法用于测量结构的加速度,通过二次积分可得到结构的位移响应;应变计法用于测量结构的应变响应,可反映结构的形变程度;位移计法直接测量结构的位移响应,但需要在结构上布置大量的位移传感器,成本较高。
2. 激光测距法激光测距法是一种非接触式的振动监测方法,它利用激光测量技术对桥梁结构进行测量。
激光测距法可以快速、准确地获取结构的振动信息,并且不会对结构造成人为干扰。
激光测距法在振动监测中被广泛应用,特别适用于大跨度桥梁的振动监测。
3. 非接触式传感器法非接触式传感器法是一种近年来发展起来的新型振动监测技术,它主要包括光纤传感技术、无线传感技术和图像处理技术等。
光纤传感技术利用光纤传感器对结构进行测量,可实现对结构振动的高精度监测;无线传感技术采用无线传感器网络对结构进行监测,具有布设灵活、成本低等优点;图像处理技术通过对结构振动进行图像捕捉和处理来获取振动信息。
二、结构健康评估方法1. 基于模型的方法基于模型的方法是一种常用的结构健康评估方法,它通过建立数学模型对结构进行分析和评估。
常见的基于模型的方法包括有限元分析法、边界元法和模态参数识别法等。
有限元分析法可以对结构进行力学模拟和振动分析,提供结构的应力、变形和振动信息;边界元法通过求解边界方程来研究结构的振动特性;模态参数识别法通过测量结构的特征振型和频率来评估结构的健康状态。
2. 数据驱动方法数据驱动方法是一种基于实测数据进行结构健康评估的方法,它通过统计学和机器学习等技术对结构的振动数据进行分析和处理。
振动测量参数的选择
振动测量参数的选择⼀、振动测量参数的选择位移:适⽤于低频范围,转速在1500转/分以下的机组,速度:适⽤于中频段,转速在1500——10000转/分范围内的机组、加速度:适⽤于⾼频段,转速在10000转/分以上的机组现在⼀般采⽤速度标准,1、位移:反映质点的位能,可监测位能对设备部件的破坏。
2、速度:反映质点的动能,可监测动能对设备部件的破坏。
3、加速度:反映质点的受⼒情况受,可监测振源的冲击⼒对设备的破坏程度。
振动的表征参数-峰值(单峰值)、峰-峰值及有效值。
对于位移,⼀般选峰-峰值作为表征参数;加速度选择峰值,速度选择有效值作为表征参数。
⼆、测点选择1、尽量靠近轴承2、尽量在垂直、⽔平、轴向三个⽅向上设置测点3、给测点位置作好记号,以保证测量数值的稳定性和可⽐性4、必要时可将设备表⾯进⾏处理三、测试中应注意的⼏个问题1、在测试同⼀设备、同⼀测点和同⼀参数量时,应选择同⼀种测试仪器,并在同⼀状态下、同⼀频带下进⾏测试。
2、检查测试设备的安装情况,应保证测点设备与测试仪器不产⽣共振。
3、测量径向振动时,传感器应相对于被测设备轴径向安装;测量轴向振动时,应相对于被测轴平⾏安装。
4、应考虑测试现场周围的电场、磁场以及外界环境对传感器和仪器本⾝的影响。
⼀、振动基础理论1.1 振动形式的描述机械设备总是不可避免的会产⽣振动,过⼤的振动是有害的,除⾮为了特殊的⽬的,如振动给料机、磨煤机等。
为了说明振动的特点,采⽤了多种描述⽅式。
1、时域描述有两种形式,即振动波形和轴⼼运动轨迹。
可直观了解振动随时间的变化情况,以及转轴在轴承中的横向运动情况,粗略估量振动平稳与否及对称程度。
2、频域描述将振动幅值、相位、能量情况按频率排列,有利于反映故障原因。
3、幅域描述现场主要采⽤峰值、峰-峰值、有效值等概念反映振动幅值的⼤⼩,其中⼜有位移、速度、加速度等不同振动量之分。
位移峰-峰值主要考核设备间隙的安全性。
速度有效值⽤以反映振动能量的⼤⼩或破坏能⼒,是判断振动状态的主要指标。
振动测量方法
第一节 振动的概念
从狭义上说,通常把具有时间周期性的运动称为振动。
从广义上说,任何一个物理量在某一数值附近作周期
性的变化,都称为振动。
力学量(如位移)
机械振动
电磁量(如I 、V、 E、 B) 电磁振动
机械振动
机械振动是物体在一定位置附近所作的周期性往
复的运动。 机械振动系统,就是指围绕其静平衡位置作来回往 复运动的机械系统,单摆就是一种简单的机械振动 系统。
(二)电磁式激振器
电磁激振器是非接触式的,其频率上限约为500- 800Hz。
激振器是由通入线圈中的交变电流产生 交变磁场,而被测对象作为衔铁,在交变磁 场作用下产生振动.
由于在电磁铁与衔铁之间的作用力F(t)只 会是吸力,而无斥力,为了形成往复的正弦 激励,应该在其间施加一恒定的吸力F0,然 后才能叠加上一个交变的谐波力F(t),如图 所示,即:
目前常用的瞬态激励方法有快速正弦扫描、 脉冲锤击和阶跃松弛激励等方法,下面分别 讨论和介绍。
(一)快速正弦扫描
这种测试方法是使正弦激励信号在所需 的频率范围内作快速扫描(在数秒钟内完 成),激振信号频率在扫描周期T内成线 性增加,而幅值保持恒定。扫描信号的 频谱曲线几乎是一根平坦的曲线,从而 能达到宽频带激励的目的。
3. 准周期振动
准周期振动是由频率比不全为有理数的 简谐振动叠加而成。
4. 瞬态振动、冲击
瞬态振动是指在极短时间内仅持续几个 周期的振动。
冲击是单个脉冲。 特点:过程突然发生,持续时间短,能
量很大。通常它由零到无限大的所有频 率的谐波分量构成。
5. 随机振动
没有确定的周期,振动量与时间也无一 定的关系。
2)拾振部分
《结构动力学与计算方法王生》第12章结构振动实验基础(第12章)
2.建立结构数学模型
根据已知条件,建立一种描述结构状 态及特性的模型,作为计算及识别参数依 据。目前一般假定系统为线性的。由于采 用的识别方法不同,也分为频域建模和时 域建模。根据阻尼特性及频率耦合程度分 为实模态或复模态模型等。
3.参数识别
按识别域的不同可分为频域法、时域法和混合 域法,后者是指在时域识别复特征值,再回到频 域中识别振型。
一般应考虑的问题
(1)慎重确定测量点。这要求事先对振动体的性质 有一初步的了解,有时,甚至要考虑到传感器的 质量负荷对被测振动体的影响。 (2)选择传感器及合适的配用仪器设备。在做该选 项时,应考虑到不同的传感器对配用电子设备的 特殊要求。例如压电式加速度计对前置放大器的 要求等。选用电子设备,总要考虑到他们的频率、 相位特性、动态范围、以及便于操作等因素。
• 近十多年来,由于计算机技术、FFT分析仪、 高速数据采集系统以及振动传感器、激励 器等技术的发展,试验模态分析得到了很 快的发展,受到了机械、电力、建筑、水 利、航空、航天等许多产业部门的高度重 视。已有多种档次、各种原理的模态分析 硬件与软件问世。
一、模态参数模型
1.动态数据的采集及频响函数或脉冲相应函数分析
• 二、振动试验的任务
• (1)测定结构的振动特性参数,频率、振型、阻 尼、广义质量、广义刚度和测量的动力特性,如 动弹性模量、动泊松比、动切变模量。
• (2)测定结构的动力响应,应力、位移、频率特 性等,以进行结构强度、刚度、稳定及优化分析, 制定减振或加固措施。
• (3)模拟振动条件,对产品(结构与仪表)进行 耐振性能试验检测,为改进产品设计提供依据。
三、传递函数测量
结构系统任意两点的传递函数也成为机械导纳。导纳 测量是模态分析的关键,为了获得正确的导纳,试验 时必须注意考虑: 1.结构支撑: 自由悬挂、固定在地基上。刚体模态,频率为零。 2.激励方法 激励信号中包含宽的频率成分,稳态随机激励或瞬态激 励时常用的两种宽带激励方法。 稳态激励有激振器;脉冲激励的数学原理是脉冲函数 具有与白噪声相同的平直频谱,而它的近似实现却比 稳态随机简易的得多,因此应用广泛。 传感器必须标定,试验设定正确得工程单位及合理选择窗函 数等。
设备振动测量方法
振动的基础知识
▪ 按时间历程分类,分为确定性振动和随机振动两大类。
机械振动
确定的
周期的
非周期的
随机的
平稳的
非平稳的
简谐 复杂周期 振动 振动
准周期 振动
瞬态和 冲击
各态历 经的
非各态 历经
振动的基础知识
振动信号三要素: 1) 幅值 amp: 振动体离开其平衡位置的最大位移。 2) 频率 frequency :周期的倒数。
以及激光多普勒效应进行测量;
振动测量方法
各种振动测量方法的比较:
名称
原理
优缺点
电测法
将被测件的振动量转化成电 量,而后用电量测试仪测量
灵敏度高,频率范围、动态范围、和线性 范围宽。便于分析和遥测。易受电磁干扰 。目前应用最广。
机械法
利用杠杆原理将振动量放大 后直接记录下来
抗干扰能力强,频率范围、动态范围、和 线形范围窄。测试时会给试件产生一定的 负载效应,影响测试结果。主要用于低频 大振幅振动及扭振的测量。
测振传感器的选择及应用
电涡流传感器除用来测量静态位移外,被广泛用来测量汽 轮机、压缩机、电机等旋转轴系的振动、轴向位移、转速等, 在工况监测与故障诊断中应用甚广。
电涡流位移传感器测 量轴201振3年动10月的8日示意图
轴心轨迹和2个传感器的时域波形图
18
测振传感器的选择及应用
▪ 涡流位移传感器特点: 结构简单 非接触式测量 线性度好 频率响应范围较宽 具有较强的抗干扰能力 在生产条件下安装方便
– 工作原理 惯性质量运动时产生的惯性力作用在压电晶体上,压电 晶体产生相应大小电荷。
2013年10月8日
(a)
工程振动测试技术09 第9章 基本振动参数常用的测量方法
⑥
放大器 电路
电路 触发电路
与门电器
⑦
时基信号 发生器
数字显示 计算电路
(1)
仪器由三部分组成:
(2)
1、计数部分;
(3)
2、时基信号发生器;
(4)
3、显示部分。
(5)
(6)
(7)
1、计数部分; 它包括衰减与放大器、限
幅电路、微分电路及双稳态触 发电路等。
基本功能:将被测正弦信 号变成矩形脉冲信号,如图中 第5个波形。
直流数字电压表由A/D转换器及电子计数显示器两 部分组成。A/D转换器是核心电路。有许多种形式。
积分式A/D转换器抗干扰力强,使用方便。比较式 A/D转换器测量速度快、精度高,稳定性好。
在电压表中读出电压值后,还需利用测试系统 的变换关系,求出振幅值。
例如:若测量系统为压电式加速度测量系统, 由电压表输出的电压读数为416 mv 。
指针式电压表是一台交流电压表,它有三种不同的 检波电路,使得电表指针的偏转分别与被测信号的平 均绝对值、峰值或有效值成正比。从而构成了三种不 同的电压表,测出三种不同的振动参数(峰值、有效值、 平均绝对值)数值。
9.3.2 数字式电压表直读法
数字式测振表的原理框图和指针式基本相同,所不 同是,指针式仪表采用磁电式表头;数字式仪表采用 一个直流数字电压表。
2. 调节干扰力频率法 1 用电磁激振器激振
2. 用振动台激振
将整个机械系统(模型)安装在振动台台面上。 振动台工作时,并使被测系统产生牵连惯性力并作 强迫振动。改变振动台位移的频率而幅值不变,利 用共振法就可测出系统的固有频率。
电动式振动台
除此方法外,还有晶体激 振,声波激振等。
用强迫振动法只可测得前 几阶固有频率,若得到更高阶 的固有频率,可应用实验模态 分析法。
振动参数测量偏大问题分析
振动参数测量偏大问题分析振动参数测量在工程领域中被广泛应用,它可以帮助工程师了解机械或结构的振动行为,从而进行合理的设计和维护。
在实际应用中,有时会出现振动参数测量偏大的问题,导致对振动行为的误解和不必要的担忧。
本文将对振动参数测量偏大问题进行分析,并提出相应的解决方案。
一、问题现象振动参数测量偏大的问题通常表现为以下几个方面:1. 振动幅值异常高:在进行振动参数测量时,得到的振动幅值远远超出预期范围,甚至超出了设备的额定振动限制。
2. 频率异常偏移:测得的振动频率与实际振动频率相比存在较大的偏移,导致振动特性分析的结果出现误差。
3. 系统异常报警:振动监测系统或设备自身的振动传感器会因为测量偏大而触发异常报警,导致误判和错误处理。
二、问题分析振动参数测量偏大的问题可能由多种原因引起,主要包括以下几点:1. 传感器故障:振动参数测量所使用的传感器可能存在故障,例如偏置电压异常、灵敏度损失或频率响应不稳定,导致测量结果偏大。
2. 环境干扰:振动参数测量场景中存在较强的环境干扰,如电磁场干扰、温度变化等,会对传感器的工作产生影响,从而导致数据异常。
3. 数据处理错误:在振动参数测量的数据采集和处理过程中,可能存在算法错误或参数设置不当,导致测量结果偏大。
4. 振动源变化:被测对象的振动源发生了变化,例如受到外部冲击或在运行过程中发生了故障,导致振动参数发生偏离。
5. 设备老化:振动传感器或被测对象本身的老化和损坏也可能导致振动参数测量偏大的问题。
三、解决方案针对振动参数测量偏大的问题,可以采取以下措施来解决:1. 传感器检测与校准:定期对振动参数测量所使用的传感器进行检测与校准,确保其正常工作且灵敏度、频率响应等性能符合要求。
2. 环境干扰控制:在进行振动参数测量时,应尽量减少环境干扰的影响,例如通过屏蔽措施、保持稳定的温度等方式来控制干扰因素。
3. 数据处理优化:对振动参数测量的数据处理算法和参数设置进行优化,确保数据采集和处理过程的准确性和稳定性。
振动参数及结构特性参数测量1
当系统处在某阶共振状态时,突然卸力,系统将 按该阶固有振动进行衰减,记录衰减时间历程曲 线后,由波形参数计算阻尼比
1 ln An 2m Anm
第23页,共79页。
结构固有特性参数测量-共振法
3)共振频率法
在振动系统上安装位移、速度,或速度、加速度传感器,分别测出其共振 频率,由
x0 0 x0 0 x0 0
窗函数 测量内容及坐标
传 感 器
振动物体
X(f)
放大器
分析仪
f1
f2 f3
f4
f
第10页,共79页。
结构固有特性参数测量-自由衰减法
1、测量过程
激励 系统 x(t),x(t),x(t) , 0
2、测量仪器与测量系统
传
放大器
感
器
记录仪
振动物体
信号发生器
此法的核心:记录时间历程曲线
第11页,共79页。
x静
( n )
1 2
1 x静 2(n) 2x动
测量方法:首先调节激励频率使系统达到共振状态,测出系统响应的最
大位移 x 0 ,再用相同力幅的静力 F 0 作用在系统同一激励
点 上,测出同一响应点的静变形,即可计算出阻尼比
第25页,共79页。
结构固有特性参数测量-共振法
5、振型的测量
当系统处在共振状态时,测量各响应点的幅值(测量点应尽可能多 些),并利用李莎育图形法测量各响应点之间的相位差,画出振型 图即可
第31页,共79页。
--运行变形分析
◆信号分析中
-- 没有线性模型的假设 -- 没有输入力的假设 -- 实际的工作载荷
-- 真实的边界条件
◆ODS的类型
-- 时域ODS -- 频谱域ODS(FFT或者Order) -- 升/降速ODS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐振动位移幅值的测量
3、 激光位移传感器
一般激光位移计包含一发光组件及一位置传感器(PSD),利用入射及 反射光间三角函数的关系来得到待测位移的。半导体激光的光源经过 透镜将光束聚焦在待测物体上,待测物反射光经接收透镜聚焦于位置 传感器上形成一光点,此光点位置随待测物位置改变而改变。 感测头有两种,镜面反射式与散光式。一般镜面反射式用于反光良 好或量测距离较近的待测物上,因为这种情况下入射角与反射角相 等。散射式则用于距离较远或较粗燥的量测面上。 传统的PSD是测量投射到光点的位置,取其中心点为测量点,但由于 光点的亮度分布并不是均匀的,取中心点的演算结果与实际位移误 差较大,因此,现在新型的CCD传感器采用光点中最亮的点为测量点, 其测量精度较传统的PSD要高。
ω<ωn
ω=ωn
ω>ωn
结构固有特性参数测量-共振法
(二)速度判别法 将激振信号输入到示波器的x轴,速度传感器输出信号输入到y轴,此时两通 道的信号分别为: 激振信号为: F F0 sin t 速度信号为: x x0 sin(t ) 2 共振时,ω=ωn,x轴信号和y轴信号的相位差为0,根据利萨如图原理可知, 屏幕上的图象将是一条直线。当ω略大于ωn或略小于ωn时,图象都将由直线 变为斜椭圆,其变化过程如下图所示。因此图象由斜椭圆变为直线的频率就 是振动体的固有频率。
3、激励
1)初位移法:加一力或一力偶,使系统产生初位移或初始转角
后,突然卸力(一阶固有频率测量)
2)敲击法:用力锤或其它施力工具(注意频率范围、敲击点)
4、响应
以单自由度系统为例
x(t ) x0e0t sin(d t )
结构固有特性参数测量-自由衰减法
5、时间历程
Ai
Ai m
2、测量仪器
激励系统:正弦信号发生器、功率放大器、激振器 测量系统:传感器、放大器、示波器、频率计、测振仪
结构固有特性参数测量-共振法
3、固有频率的测量
☆ 固有频率与共振频率的区别 1)固有频率是由结构固有参数和边界条件决定的,与激励方式无关。 2)共振频率指结构共振时的强迫振动频率。 3)系统的每阶固有频率分别对应多个共振频率 位移共振频率 速度共振频率 加速度共振频率
ω<ωn
ω=ωn
ω>ωn
结构固有特性参数测量-共振法 Nhomakorabea4、阻尼比的测量
1)半功率点法
首先激励系统使其处在共振状态,记录该状态时的振动幅值 An 和共振 频率 f n ,再计算 幅值为
1 An 2
1 An 2
,分别往高和往低方向调节激励频率,读取响应
时所对应的激励频率 f n1 和 f n 2 ,利用下面公式计算阻尼比
一种较为敏感的方法,而且共振时的频率就是系统的无阻尼固有频率,可
以排除阻尼因素的影响。 激振信号为: 位移信号为: 速度信号为:
F F0 sin t
x x0 sin(t )
x0 sin(t ) x 2 2 加速度信号为: x x0 sin(t )
2、读数显微镜
内读数 类型 外读数 0.05mm(min) 0.01mm(min)
静止时 振动时
d
x
当读数显微镜的放大倍数为k时,振动幅值为
x A 2k
测量过程:
在振动物体上贴一反光线或细砂纸,并用灯照亮,当结构静 止时,调整显微镜位置,以清晰的看到许多亮点,当结构振 动时,由于视觉的暂留效果,这些亮点就成为许多直线。 特点: 测量的是绝对位移
点 上,测出同一响应点的静变形,即可计算出阻尼比
结构固有特性参数测量-共振法
5、振型的测量
当系统处在共振状态时,测量各响应点的幅值(测量点应 尽可能多些),并利用李莎育图形法测量各响应点之间的 相位差,画出振型图即可
放大器 放大器 放大器
1
4
测 振 仪
2
3
频率计
放大器
激 振 器
功放
信号源
示波器
1、2、3 位移传感器,4-力传感器
2)自由衰减法
f n 2 f n1 2 fn
当系统处在某阶共振状态时,突然卸力,系 统将按该阶固有振动进行衰减,记录衰减时 间历程曲线后,由波形参数计算阻尼比
A 1 ln n 2 m An m
结构固有特性参数测量-共振法
3)共振频率法 在振动系统上安装位移、速度,或速度、加速度传感器,分别 测出其共振频率,由
振动理论
第二部分
振动参数及结构特性参数测量
振动幅值的测量
位移幅值
速度幅值 加速度幅值 力的幅值
机械法
光测法
电测法
简谐振动位移幅值的测量
1、测幅尺
C
是在一小块白色金属片上,画上带 有刻度的三角形制成。使用时,将 o 三角形按直角短边平行于振动方向 粘帖在振动物体上,当振动频率较 快时,标尺上的三角形因视觉暂留 效果看起来形成上下两个灰色三角 2A 形,其重叠部分是一个白色三角形。
各阶固有频率
结构固有特性参数测量-共振法
☆ 固有频率与共振频率的关系 以单自由度系统为例,当系统受到作用力
0 1 2 2
F F0 e jt
令
0
x x0 sin(t )
则
x0
m 2 (0 2 )2 (20 ) 2
F0
0 1 2 2
x 0 1 2 2
b
l
o
B
x
简谐振动位移幅值的测量
1、测幅尺
振动幅值与测幅尺 尺寸之间的关系
x A b 2l
2A
o
x
使用限制
1、频率不能太低 f>10Hz 2、振幅不能太小,A >0.1mm 3、上限受测幅尺尺寸限制 4、单一方向
应用:机械式和电动式振动台,振动筛等。 特点:方便、简单、精度较差。
简谐振动位移幅值的测量
结构固有特性参数测量-共振法
(一)位移判别法
将激振信号输入到示波器的x轴,位移传感器输出信号输入y轴,此时两通 道的信号分别为: 激振信号为: F F0 sin t 位移信号为: x x0 sin(t ) 共振时,ω=ωn,力信号和位移信号的相位差为π/2,根据利萨如图原理可 知,屏幕上的图象将是一个正椭圆。当ω略大于ωn或略小于ωn时,图象都 将由正椭圆变为斜椭圆,其变化过程如下图所示。因此图象由斜椭圆变为正 椭圆的频率就是振动体的固有频率。
X( f )
放大器
分析仪
振动物体
测量内容及坐标
f1
f 2 f3
f4
f
结构固有特性参数测量-自由衰减法
1、测量过程
激励
系统
(t ), x(t ), x x(t )
, 0
2、测量仪器与测量系统
传 感 器
放大器
记录仪
振动物体
信号发生器
此法的核心:记录时间历程曲线
结构固有特性参数测量-自由衰减法
模态分析法
运行模态分析
◆ 测量能够被一次完成(快速,数据一致性好)或多次完成
(受限于传感器的数量) ◆ 一次测量(一个数据组),不需要参考传感器 ◆ 多次测量(多个数据组),对所有的数据组,需要一个或 多个固定的加速度传感器作为参考
--运行变形分析
确定结构在工作条件下的振动模式 ◆ 工作条件
-- 负荷,压力,温度,流量
ω<ωn
ω=ωn
ω>ωn
结构固有特性参数测量-共振法
(三)加速度判别法 将激振信号输入到示波器的x轴,加速度传感器输出信号输入到y轴,此时两 通道的信号分别为: 激振信号为: F F0 sin t x x0 2 sin(t ) 加速度信号为: 共振时,ω=ωn,x轴信号和y轴信号的相位差为π/2,根据利萨如图原理可 知,屏幕上的图象将是一个正椭圆。当ω略大于ωn或略小于ωn时,图象都 将由正椭圆变为斜椭圆,其变化过程如下图所示。因此图象由斜椭圆变为正 椭圆的频率就是振动体的固有频率。
4)放大系数法
在正弦激励下,系统的动力放大系数为
x动---共振幅值 x0 ( ) F0 k x静
当共振时
1 (n ) 2
x静 1 2 (n ) 2x动
测量方法:首先调节激励频率使系统达到共振状态,测出系统响应的最 大位移
x0 ,再用相同力幅的静力
F0 作用在系统同一激励
Td
结构固有特性参数测量-自由衰减法
6、固有频率和阻尼比测量
阻尼比:测出图中 Ai 和 Ai+m 幅值,求减幅系数 由于
ti时刻,Ai xo e 0tn ti m时刻,Ai m x0 e
0 ( t mTd )
m T i 则 A e im
A
0 d
对数减幅
简谐振动位移幅值的测量
4、电涡流位移传感器
已知灵敏度 如 S 5000mv / mm 则振动位移为 d u S
积分或微分
传 感 器
前置放大器
u
测振仪
振动物体
5、速度传感器 6、加速度传感器
传 感 器
放大器
u
频率计
振动物体
测量放大器
简谐振动频率测量
1、频率计(直读法)
传 感 器
放大器
频率计
1
4
放大器 放大器 放大器 测 振 仪
2
3
频率计
放大器
激 振 器
功放
信号源
示波器
1、2、3 位移传感器,4-力传感器
结构固有特性参数测量-共振法
共振的判别
(2)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提 出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是