人教版七年级数学上册 第三章一元一次方程 3.1.1一元一次方程 课后练习
七年级数学上册 第三章一元一次方程同步练习题(无答案) 人教新课标版
第三章一元一次方程3.1.1一元一次方程(第1课时)1.判断下面所列的是不是方程:(1)25+2x=1;(2)2y-5=y+1;(3)2x-2x-3=0;(4)x-8;(5)x3x1--=2;(6)7+8=8+7.2.根据题意,用小学里学过的方法,列出式子:(1)扎西有零花钱10元,卓玛的零花钱是扎西的3倍少2元,求:扎西和卓玛一共有多少零花钱?(2)扎西和卓玛一共有22元零花钱,卓玛的零花钱是扎西的3倍少2元,求扎西有多少零花钱?3.判断正误:对的画“√”,错的画“×”.(1)方程x+2=0的解是2;()(2)方程2x-5=1的解是3;()(3)方程2x-1=x+1的解是1;()(4)方程2x-1=x+1的解是2. ()4.填空:(猜一猜,算一算)(1)方程x+3=0的解是x=;(2)方程4x=24的解是x=;(3)方程x+3=2x的解是x=.3.1.2等式的性质(第1课时)1.填空:(1)含有未知数的叫做方程;(2)使方程中等号左右两边相等的未知数的值,叫做;(3)只含有一个,的次数都是1,这样的方程叫做一元一次方程.2.判断下面所列的是不是方程,如果是方程,是不是一元一次方程:(1)1700+150x;(2)1700+150x=2450;(3)2+3=5;(4)2x2+3x=5.3.选择题:方程3x-7=5的解是()(A)x=2 (B)x=3(C)x=4 (D)x=54.填空:(1)等式的性质1可以表示成:如果a=b,那么a+c=;如果a=b,那么a-c=.(2)等式的性质2可以表示成:如果a=b,那么ac=;如果a=b(c≠0),那么ac=.5.利用等式的性质解下列方程:(1)x-5=6;(2)0.3x=45;(3)5x+4=0.6.利用等式的性质求方程2-14x=3的解,并检验.3.2解一元一次方程(一)(第1课时)1.完成下面的解题过程:用等式的性质求方程-3x+2=8的解,并检验.解:两边减2,得.化简,得.两边同除-3,得.化简,得x=.检验:把x=代入方程的左边,得左边===左边=右边所以x=是方程的解.2.填空:(1)根据等式的性质2,方程3x=6两边除以3,得x=;(2)根据等式的性质2,方程-3x=6两边除以-3,得x=;(3)根据等式的性质2,方程13x=6两边除以13,得x=;(4)根据等式的性质2,方程-13x=6两边除以-13,得x=;3.完成下面的解题过程:(1)解方程4x=12;解:系数化为1,得x=÷,即x=.(2)解方程-6x=-36;解:系数化为1,得x=÷,即x=.(3)解方程-23x=2;解:系数化为1,得x=÷,即x=.(4)解方程56x=0;解:系数化为1,得x=÷,即x=.4.完成下面的解题过程:解方程-3x+0.5x=10.解:合并同类项,得.系数化为1,得.5.解下列方程:(1)x2+3x2=7;(2)7x-4.5x=2.5×3-5.6.填框图:3.2解一元一次方程(一)(第2课时)1.填空:(1)方程3y=2的解是y=;(2)方程-x=5的解是x=;(3)方程-8t=-72的解是t=;(4)方程7x=0的解是x=;(5)方程34x=-12的解是x=;(6)方程-13x=3的解是x=.2.完成下面的解题过程:解方程3x-4x=-25-20.解:合并同类项,得.系数化为1,得.3.填空:等式的性质1:.4.填空:(1)根据等式的性质1,方程x-7=5的两边加7,得x=5+;(2)根据等式的性质1,方程7x=6x-4的两边减6x,得7x-=-4.5.完成下面的解题过程:解方程6x-7=4x-5.解:移项,得.合并同类项,得.系数化为1,得.6.将上题的解题过程填入框图:7.解方程:12x-6=34x.8.填空:(1)x+7=13移项得;(2)x-7=13移项得;(3)5+x=-7移项得;(4)-5+x=-7移项得;(5)4x=3x-2移项得;(6)4x=2+3x移项得;(7)-2x=-3x+2移项得;(8)-2x=-2-3x移项得;(9)4x+3=0移项得;(10)0=4x+3移项得.3.3解一元一次方程(二)(第1课时)1.填空:(1) x+6=1移项得;(2) -3x=-4x+2移项得;(3) 5x-4=4x-7移项得;(4) 5x+2=7x-8移项得.2.完成下面的解题过程:解方程2x+5=25-8x.解:移项,得.合并同类项,得.系数化为1,得.3.解方程x2+6=x.4.填空:(1)式子(x-2)+(4x-1)去括号,得;(2)式子(x-2)-(4x-1)去括号,得;(3)式子(x-2)+3(4x-1)去括号,得;(4)式子(x-2)-3(4x-1)去括号,得.5.完成下面的解题过程:解方程4x+3(2x-3)=12-(x+4).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程6(12x-4)+2x=7-(13x-1).3.3解一元一次方程(二)(第2课时)1.完成下列解题过程:解方程5x-4(2x+5)=7(x-5)+4(2x+1).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.2.填空:(1)6与3的最小公倍数是;(2)2与3的最小公倍数是;(3)6与4的最小公倍数是;(4)6与8的最小公倍数是.3.完成下面的解题过程:解方程7x54=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得. 系数化为1,得.4.解方程3x2-=x43-.5.完成下面的解题过程:解方程-7x54-=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程3x2-=-x43-.7.填空:(1)x16-=14去分母,得;(2) -x16-=14去分母,得;(3)x6=2x18+去分母,得;(4)x6=-2x18+去分母,得.3.3解一元一次方程(二)(第3课时)1. 填空:(1)x12-=x13+去分母,得;(2)x12-=x14+去分母,得;(3)x12-=-x14+去分母,得;(4)x16-=x14+去分母,得.2. 完成下面的解题过程:解方程x12-=-x14+.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.3.填空:(1)2,10,5的最小公倍数是;(2)4,2,3的最小公倍数是;(3)2,4,5的最小公倍数是;(4)3,6,4的最小公倍数是.4.填空:(1)x13-=2-x16+去分母,得;(2)x13-+x=x16+去分母,得;(3)x13-+x=2-x16+去分母,得. 5.填空: (1)5x 14-=3x 12+-2x3-去分母,得 ; (2)2x 16+-x 14+=2-1x 3-去分母,得 ; (3) 3x 22+-1=2x 14--2x 15+去分母,得 . 6.完成下面的解题过程: 解方程 3x 12+-2=3x 210--2x 35+.解:去分母(方程两边同乘 )得: . 去括号,得 . 移项,得 . 合并同类项,得 . 系数化为1,得 . 解一元一次方程复习(第1课时) 1.填空:(以下空你最好直接填,实在想不起来,你可以在教材中找,这些内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填) (1)含有未知数的 叫做方程. (2)只含有一个未知数,未知数的次数都是1,这样的方程叫做 . (3)使方程中等号左右两边相等的未知数的值,叫做 . (4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍 ;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍 . (5)把等式一边的某项变号后移到另一边,叫做 . (6)解一元一次方程的一般步骤是: 、 、 、 、 . 2.不解方程,判断x =-2是下面哪个一元一次方程的解:(1)2(x +8)=3(x -1); (2)5x +(2-4x)=0. 3.完成下面的解题过程: 解方程12x 3-=x -3x 12+,并检验. 解:去分母,得.去括号,得 .移项,得 . 合并同类项,得 ;系数化为1,得 . 检验:将x = 代入方程的左边,得左边= = . 将x = 代入方程的右边,得 右边= = . 左边=右边,所以x = 是方程的解. 4.把上题的解方程过程填入框图:3.4实际问题与一元一次方程(第1课时) 1.完成下面的解题过程: 卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米? 解:设x 周后树苗长高到100厘米.根据题意,得 . 解方程,得 . 答: 周后树苗长高到100厘米. 2.列一元一次方程解应用题:汽车上共有1500千克苹果,卸下600千克,还有30箱,每箱苹果重多少?3.根据题意,列出方程:(1)某数的3倍加上5等于它的4倍减3,求某数.设某数为x,根据题意,得,.(2)某数减去14等于它的13,求某数.设某数为x,根据题意,得,.(3)用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?设正方形的边长为x厘米,根据题意,得,.(4)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得,.(5)用12元钱买了3个笔记本,找回1.2元,每个笔记本多少钱?设每个笔记本x 元,根据题意,得,.3.4实际问题与一元一次方程(第2课时)1.根据题意,列出方程:(1)某数的5倍比它的2倍多6,求某数.设某数为x,根据题意,得.(2)某数的34比它的67少1,求某数.设某数为x,根据题意,得. (3)扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.设扎西家去年底的存款为x 元,根据题意,得. (4)某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?设他需x个月才能付清全部贷款,根据题意,得. 2.完成下面的解题过程:洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得.解方程,得.答:Ⅰ型洗衣机计划生台.3.填空:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.3.4实际问题与一元一次方程(第3课时)1.根据题意,列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.”你能求出问题中的“它”吗?设问题中的“它”为x,根据题意,列方程得.(2)地球上的海洋面积为陆地面积的 2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.设地球上陆地面积为x平方公里,根据题意,列方程得.(3)某中学初一年级,一班人数是全年级人数的16,二班人数50人,两个班级人数的和是98人.求该校初一年级的人数.设该校初一年级的人数为x,根据题意,列方程得.2.完成下面的解题过程:某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得.解方程得.这个足球场的宽==(米)答:这个足球场的长为米,宽为米.(2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得.解方程得.这个足球场的长==(米)答:这个足球场的宽为米,长为米.3.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(1)请你静下心来,仔仔细细把这道题默读几遍,弄清题目告诉了我们什么,要求的是什么.(2)如果设甲种铅笔买了x枝,那么乙种铅笔买了枝,买甲种铅笔用了元,买乙种铅笔用了元.(3)把这道题完整解一遍:解:设甲种铅笔买了x枝,则乙种铅笔买了枝.根据题意,列方程得.解方程得.乙种铅笔买的枝数==.答:甲种铅笔买了枝,乙种铅笔买了枝. 3.4实际问题与一元一次方程(第4课时)1.根据题意,列出方程:(1)卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.设卓玛有x岁,根据题意,列方程得.(2)蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得.(3)某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得.2.完成下面的解题过程:一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程.解方程得.共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得.全家人口数== .答:共有个苹果,全家有口人.3.4实际问题与一元一次方程(第5课时)1.根据题意,列出方程:一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示,由此可列出方程.(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.完成下面的思考和解题过程:卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得.答:扎西走路的速度为每小时千米.3.根据题意,列出方程:(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.(2)思考题:如下图,汽车匀速行驶,从A县城开到C县城用了3小时;从A县城开到B县城用了2小时.已知B县城距C县城60千米,A县城到B县城有多远?设A县城到B县城有x千米,则A县城到C县城有千米.根据:汽车从A县城开到C县城的速度=汽车从A县城开到B县城的速度列方程得.3.4实际问题与一元一次方程(第6课时)1.根据题意,列出方程:(1)如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?设此时正方形的边长是x 米,根据长方形与正方形的周长相等,列方程得.(2)思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?设高变成了x厘米,根据锻压前后的体积相等,列方程得.(提示:圆柱体积=底面积×高)2.完成下面的思考和解题过程:甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?6 610101010C县城B县城A县城8米10米(1)请你用摆学具的方法解出这道题.(2)设甲组应增调x人,则乙组应增调12,列方程得.(4)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得.解方程得.乙组应增调的人数== .答:甲组应增调人,乙组应增调人.3.4实际问题与一元一次方程(第7课时)1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的年龄是他波啦的14?设x年后,小巴桑的年龄是他波啦年龄的14.根据题意,得.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?(为了帮助学生理解题意,教师可以在学生探究前,边读题边演示螺钉和螺母)(1)请你默读题目,一直读到可以不看题目说出题目的意思.(2)不看题目,同桌之间互相说一说这道题目的意思.(3)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(4)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(5)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺母的人数==.答:应分配名工人生产螺钉,名工人生产螺母.4.按下面的设法解探究题:解:设分配x名工人生产螺母,则有名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺钉的人数==.答:应分配名工人生产螺母,名工人生产螺钉.作业:某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?选做题:P108习题3.3.4实际问题与一元一次方程(第8课时) 1.利用“路程=速度×时间”列整式: (1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米; (2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米; (3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.4.完成下面的思考和解题过程: 扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 反复仔细读这道题,你发现本题与例1的区别在什么地方?(2) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家 (3)从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 . (4)根据上面的审题和分析,请你完成下面的解题过程: 解:设边巴出发x 分钟后他们在路上相遇. 根据题意,列方程得 . 解方程得 . 答:边巴出发 分钟后他们在路上相遇. 3.4实际问题与一元一次方程(第9课时) 1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了分钟骑了分钟 相遇 家边巴家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是. 2.完成下面的思考和解题过程: 一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 . 解方程得 .答:巴啦追上扎西用了 分钟. 3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?3.4实际问题与一元一次方程(第10课时) 1.填空: (1)加工60个零件,甲单独做20小时完成,甲每小时加工零件 个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件 个; (3)加工60个零件,甲单独做20小时完成,甲x 小时加工零件 个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的 ;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的.2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率=.(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程.(5)解:设剩下的部分需要x小时完成.根据题意,列方程得.解方程得.答:剩下的部分需要小时完成.3.4实际问题与一元一次方程(第11课时)1.百分数与小数互化:(1)73%= (2)70%=(3)73.6%= (4)0.58=(5)0.5= (6)0.582=2.列整式填空:(1)全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;(2)电视机原价每台x元,现打“八折”销售,降价后每台卖元,降价后每台售价比原价少了元.3.根据题意,列出方程:(1)某校有女生480人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(2)某校有男生520人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(3)雪域商场为了促销决定对电视机打“八折”销售,降价后每台电视机售价比原价少了300元.打折后电视机售价多少元?设打折后电视机售价x元,根据题意,列方程得.3.4实际问题与一元一次方程(第12课时)1.填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2.选择题:某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3.辨析题:已知今年的产值比去年增长10%,扎西认为:今年比去年提高的产值=今年的产值×10%;卓玛不同意,她认为:今年比去年提高的产值=去年的产值×10%.你同意谁的观点,为什么?4.根据题意,列出方程:(1)某公司今年的产值是500万元,今年比去年增长25%.这个公司去年的产值是多少万元?设这个公司去年的产值是x万元,根据题意,列方程得.(2)把青稞磨成糌粑,重量要减轻6%.要得到8千克糌粑,需要青稞多少千克?(提示:青稞重量-减轻重量=糌粑重量)设需要青稞x千克,根据题意,列方程得.(3)一家商店将某种服装按成本价提高40%后标价,每件标价为175元.这种服装每件成本价是多少元?设这种服装每件的成本价是x元,根据题意,列方程得.5.思考题:一家商店将某种服装按成本价提高40%后标价,又以8折(也就是按标价的80%)卖出,结果每件仍获得利润15元,这种服装每件的成本价是多少元?(提示:每件服装的利润=每件服装的售价-每件服装的成本价)如果设每件服装的成本价为x 元,那么每件服装的标价为;每件服装的实际售价为;每件服装的利润为;由此,列出方程.解方程得.因此每件服装的成本价是元.第三章一元一次方程复习(第1、2、3课时)1.填空:(以下内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填)(1)含有的等式叫做方程.(2)只含有未知数,未知数的次数都是,这样的方程叫做一元一次方程.(3)使方程中等号左右两边的未知数的值,叫做方程的解.(4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍.(5)把等式一边的某项后移到另一边,叫做移项.(6)解一元一次方程的一般步骤是:去分母、、、、.(7)列方程解应用题的步骤是:审题、、、、.(8)三个基本的相等关系是:总量=各部分量的,表示的两个不同式子相等,一个量=另一个量的几倍或.(9)路程=×时间,工作量=×工作时间,增长的量=×原来的量.2.选择题:不解方程,指出下列方程中解为x=5的是().(A)12x3x1532-+=-(B)12x3x1532-+=-(C)12x3x1532-+=+(D)3x112x523+-=+3.填空:(1)方程x+ax-1=0的解为x=14,则a=.(2)当x=时,2x+3的值与5x+6的值相等.4.完成下面的解题过程:解方程x22x3146+--=.解:去分母,得.去括号,得.移项,得.合并同类项,得;系数化为1,得.5.根据题意,列出方程:(1)一个数的17与3的差等于最大的一位数,求这个数.设这个数为x,根据题意,列方程得.(2)第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,第一块实验田是多少平方米?设第一块实验田的面积是x平方米,根据题意,列方程得.(3)用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,长方形的长为多少米?设长方形的长为x 米,根据题意,列方程得.(4)儿子今年13岁,父亲今年40岁,几年前父亲的年龄是儿子的4倍?设x年前父亲的年龄是儿子的4倍,根据题意,列方程得. (5)教室里的课桌每行8张就多3张,每行9张就差3张,教室里有几行课桌?设教室里有x张课桌,根据题意,列方程得. (6)香巴拉果汁店中的A种果汁比B种果汁贵1元,扎桑和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.B种果汁的单价是多少元?设B种果汁的单价是x元,根据题意,列方程得. (7)某文件需要打印,尼玛独立做需要6小时完成,米玛独立做需要8小时完成.如果他们俩共同做,需几小时完成?设需要x小时完成,根据题意,列方程得. (8)冲吉到鞋店花了188元买了一双皮鞋,这双皮鞋是按标价打8折后售出的,这双鞋的标价是多少元?设这双鞋的标价是x 元,根据题意,列方程得.(9)平措存了一个一年期的储蓄,年利率为3%,(也就是一年增长3%)一年后能取5150元,他开始存了多少元?设他开始存入x 元,根据题意,列方程得.(10)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?设这种商品的成本价是x元,根据题意,列方程得.6.有一列数,按一定规律排列成1,3,5,7,9,…,其中某三个相邻数的和是177,这三个各是多少?7.探究题:扎西的手机,每月按这样的标准交费:每月月租费30元,每分钟通话费0.3元;卓玛的手机,每月按这样的标准交费:没有月租费,每分钟通话费0.4元.(1)你认为扎西合算还是卓玛合算,说说你的理由.(2)在一个月内,扎西通话200分钟,这个月扎西需交话费元,卓玛也通话200分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(3)在一个月内,扎西通话350分钟,这个月扎西需交话费元,卓玛也通话350分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(4)在一个月内通话多少分钟,这个月扎西和卓玛需交的话费一样多?解:设在一个月内通话x分钟,根据这个月扎西和卓玛需交的话费一样多,列方程得.解方程得.答:在一个月内通话分钟,这个月扎西和卓玛需交的话费一样多.(5)通过上面的讨论和探究,关于扎西合算还是卓玛合算,你得出了什么结论?与其他同学交流你的结论.。
秋七年级数学上册 3.1.1《一元一次方程》课时练习 (新版)新人教版-(新版)新人教版初中七年级上
一元一次方程一、单选题1.在下列方程中,解是x =-1的是( ).A .2x +1=1B .1-2x =1C .12x +=2D .1332x x +--=2 答案:D知识点:解一元一次方程解析:解答:分别解A 、B 、C 、D 四个方程,解A 方程得x=0,解B 方程得x=0,解C 方程得x=3,解D 方程得x=-1,故选D .分析:能够正确解答一元一次方程,所求解与题干对照;或把x=-1代入ABCD 四个方程,看方程是否成立,此法仅适用于单选题。
2.下列说法正确的是( ).A .x=-2是方程x-2=0的解B .x=6是方程3x+18=0的解C .x=-1是方程-2x =0的解D .x=110是方程10x=1的解 答案:D知识点:一元一次方程的解解析:解答:分别判断ABCD 四个选项是否为方程的解,可以选择代入或求解方程。
找到符合题意的选项。
分析:用代入法判断是否为方程的解适用于单选题.用求解法判断是否为方程的解适用于解答题,巧妙应用各种方法有利于提高做题速度,取得好成绩。
3.下列各式中,是方程的为( ).①2x-1=5 ②4+8=12 ③5y+8 ④2x+3y=0 ⑤2x 2+x=1 ⑥2x 2-5x-1A .①②④⑤B .①②⑤C .①④⑤D .6个都是答案:C知识点:根据数量关系列出方程解析:解答:含有未知数的等式叫做方程,明确有未知数、有等号这样是方程.分析:建立方程的概念,有未知数及等号的等式叫做方程,其余都不是.4.下列方程是一元一次方程的是().A.-5x+4=3y2 B.5(m2-1)=1-5m2 C.2-145n n-= D.5x-3答案:C知识点:一元一次方程的定义解析:解答:一元一次方程的定义是含有一个未知数及未知数的最高次数是一次的方程,明确这个概念去逐个判断即可求解.分析:明确一元一次方程的定义,元代表未知数,次代表未知数的最高次数,这样的整式方程叫做一元一次方程.5.根据下面所给条件,能列出方程的是().A.一个数的13是6 B.a与1的差的14C.甲数的2倍与乙数的13D.a与b的和的60%答案:A知识点:根据数量关系列出方程解析:解答:有数量的相等关系就能列出方程,13x=6.分析:有等量关系的概念比如包含“是”、“等于”、“即”就可以标记此内容为“等号”,从而列出方程.6.根据“x 的3倍与5的和比x 的13少2”列出方程是( ). A .3x+5=3x -2 B .3x+5=3x +2 C .3(x+5)=3x -2 D .3(x+5)=3x +2 答案:A知识点:根据数量关系列出方程解析:解答:x 的3倍与5的和用数学表达即为3x+5,x 的31即为31x ,x 的3倍与5的和比x 的31少2即为3x+5=3x -2 ,故选A 。
人教版七年级数学上册第三章《一元一次方程》知识点复习练习
人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)
人教版七年级数学上册第三章 一元一次方程 专题训练特殊一元一次方程的解法技巧1.解方程:4310.20.5x x ---=.2.解方程:1250.250.5x x +--=.3.解方程:32122234xx ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦.4.解方程:791246919753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.5.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦.6.解方程:41(7)6(7)55x x -=--.7.解方程:121(2050)(52)(410)0632x x x +++-+=.8.解方程:421263x xx ---=.9.解方程:228425920xx x--+=-.10.解方程:112259797z z +=-.11.解方程:32324343x x -=-.12.[中]解方程:2431362x x +--=.13.解方程223146x x +--=:.14.解方程:2123163234386x x x x -++++=+.15.解方程:16231056x x x x --++=-.参考答案 1.答案:见解析解析:分子、分母同乘10,得10(4)10(3)125x x ---=. 去分母,得5(4)2(3)1x x ---=. 去括号,得520261x x --+=. 移项,得521206x x -=+-. 合并同类项,得3x =15. 系数化为1,得x =5. 2.答案:见解析解析:原方程可化为4(1)2(2)5x x +--=. 去括号,得44245x x +-+=. 移项及合并同类项,得23x =-. 系数化为1,得32x =-. 3.答案:见解析解析:去括号,得1324x x ---=.移项及合并同类项,得364x-=.系数化为1,得8x =-. 4.答案:见解析解析:方程可化为12467153x +⎛⎫+++= ⎪⎝⎭.整理,得1241253x +⎛⎫+=-⎪⎝⎭. 方程两边都乘5,得24603x ++=-.方程两边都乘3,得212180x ++=-. 解得194. 5.答案:见解析解析:去中括号,得111(3)(3)1266x x x x -+-=-+. 将(3)x -看作一个整体, 移项及合并同类项,得112x =. 系数化为1,得x =2. 6.答案:见解析解析:移项,得41(7)(7)655x x -+-=.将(7)x -看作一个整体,合并同类项,得7x -=6. 移项及合并同类项,得x =13. 7.答案:见解析解析:原方程可化为52(25)(25)(25)033x x x +++-+=.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+= ⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=. 移项,得25x =-. 系数化为1,得52x =-. 8.答案:见解析解析:原方程可化为211233x xx ---=. 去分母,得3(21)12x x x --=-. 去括号,得32112x x x -+=-.移项,得32211x x x -+=-. 合并同类项,得3x =0.系数化为1,得x =0.9.答案:见解析解析:原方程可化为2222595xx x --+=+. 移项及合并同类项,得229x =.系数化为1,得49x =.10.答案:见解析解析:移项,得112529977z z -=--.合并同类项,得1z =-. 11.答案:见解析解析:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 即32(1)(1)043x x -+-=.将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-= ⎪⎝⎭. 所以1x -=0,移项,得x =1.12.答案:见解析解析:原方程可化为221133322x x +-+=.移项及合并同类项,得233x -=-.系数化为1,得x =2. 13.答案:见解析解析:原方程可化为1114232x x +-+=.移项,得1114322x x -=--,合并同类项,得11043x ⎛⎫-= ⎪⎝⎭. 故x =0.14.答案:见解析解析:移项,得2323163213684x x x x +++--=-. 两边分别通分,得4112568x x ++=. 去分母,得4(41)3(125)x x +=+. 去括号,得1643615x x +=+. 移项,得1636154x x -=-. 合并同类项,得2011x -=. 系数化为1,得0.55x =-.15.答案:见解析解析:移项,得26136510x x x x +--+=-. 两边分别通分,得3211610x x +-=. 去分母,得5(32)3(11)x x +=-. 去括号,得1510333x x +=-.移项,得1533310x x -=--.合并同类项,得12 x =-43. 系数化为1,得4312x =-.。
新人教版七年级数学上册第三章一元一次方程整章教案和习题
3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。
[重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。
[教学过程]一、问题导入含有未知数的等式叫做方程。
方程把问题中的未知数与已知数的联系用等式的形式表示出来。
研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。
怎样根据问题中的数量关系列出方程?怎样解方程?二、怎样列方程问题 汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
王家庄到翠湖的路程有多远?1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间?2、请你用算术方法解决这个问题。
3、如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?4、由于汽车是匀速行驶,可知各段路程的车速相等。
你能据此列出方程吗?列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。
列方程的过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
三、一元一次方程的概念例1 根据下列问题,设未知数并列出方程:(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?王家庄青山 翠湖 秀水设未知数,列方程(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:(1)设正方形的边长为x厘米,可列方程4x=24 ①(2)设x月后这台计算机的使用时间达到规定的检修时间。
1700+150 x=2450 ②(3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?女生人数为0.52 x人,男生人数为(1-0.52)x人。
七年级上册数学人教版课时练《3.1.1 一元一次方程》01 试卷含答案
人教版七年级上册数学《3.1.1一元一次方程》课时练一、选择题1.已知是方程14ax bx +=-的解,则()3525a b b -+--的值是()A .5B .5-C .10-D .102.下列方程中,一元一次方程的是()A .2x ﹣2=3B .x 2﹣3=x +1C .1y﹣1=3D .3x ﹣y =43.若关于x 的方程(1)a x b +=(a ,b 为常数)的解是1bx a =+,则()A .方程ax b =的解是b x a=B .方程bx a =的解是a x b=C .方程(1)1a x +=的解是11x a =+D .方程(1)1b x +=的解是11x b =+4.已知关于x 的方程2263ax xx --=-有非负整数解,则整数a 的所有可能的取值的和为()A .23-B .23C .34-D .345.关于方程(a +1)x =1,下列结论正确的是()A .方程无解B .x =11a +C .a≠﹣1时方程解为任意实数D .以上结论都不对6.下列结论正确的是()A .-3ab 2和b 2a 是同类项B .3p不是单项式C .a 比-a 大D .2是方程2x +1=4的解7.若方程()22150a x ax --+=是关于x 的一元一次方程,则a 的值为()A .0B .12-C .1D .128.药店销售某种药品原价为a 元/盒,受市场影响开始降价,第一轮价格下降30%,第二轮在第一轮的基础上又下降10%,经两轮降价后的价格为b 元/盒,则a ,b 之间满足的关系式为()A .b =(1﹣30%)(1﹣10%)aB .b =(1﹣30%﹣10%)aC .000013010a b =++D .0000(130)(110)ab =++9.王强参加3000米的长跑,他以8米/秒的速度跑了一段路程后,又以5米秒的速度跑完了其余的路程,一共花了15分钟,他以8米/秒的速度跑了多少米?设以8米/秒的速度跑了x 米,列出的方程是()A .3000156085x x -+=´B .30001585x x-+=C .3000156085x x --=´D .30001585x x --=10.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量简中,如图所示,根据图中给出的信息,得到的正确方程是().A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)二、填空题11.已知方程21(2)60n m x +++=是关于x 的一元一次方程,若此方程的解为正整数,且m 为整数,则22m =______.12.关于x 的方程(a ²-9)x ²+ax-3x+4=0是一元一次方程,则a =________.13.关于x 的方程2x-3=kx 的解是整数,则整数k 可以取的值是_____________.14.已知以x 为未知数的一元一次方程202020212019xm x +=的解为2x =,那么以y 为未知数的一元一次方程()20202020202120202019ym y --=-的解为_________.15.根据图中给出的信息,可列方程是______.小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!三、解答题16.(1)已知代数式22321A a ab b =++-,212B a ab a =-+-.若2A B -的值与a 的取值无关,求b 的值.(2)已知关于x 的方程2x x a -=-的解是关于x 的方程211(3)3122x x x a -+=-的解的三分之一.求a 的值.17.已知代数式2,32A a b B b a =-=++.(1)求3A B -;(2)如果32430b x --=是关于x 的一元一次方程,求3A B -的值.18.已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.19.对数轴上的点P 进行如下操作:将点P 沿数轴水平方向,以每秒m 个单位长度的速度,向右平移n 秒,得到点P ¢.称这样的操作为点P 的“m 速移”,点P ¢称为点P 的“m 速移”点.(1)当1m =,3n =时,①如果点A 表示的数为5-,那么点A 的“m 速移”点A ¢表示的数为;②点B 的“m 速移”点B ¢表示的数为4,那么点B 表示的数为;③数轴上的点M 表示的数为1,如果2CM C M ¢=,那么点C 表示的数为;(2)数轴上E ,F 两点间的距离为2,且点E 在点F 的左侧,点E ,F 通过“2速移”分别向右平移1t ,2t 秒,得到点E ¢和F ¢,如果2E F EF ¢¢=,请直接用等式表示1t ,2t 的数量关系.20.定义运算:a b ab a b Ä=+-.(1)按此定义,计算1b Ä的值.(2)若()()2111b x b x -++=是关于x 的一元一次方程,求()a b b a b Ä+-Ä的值.21.已知m n 、是有理数,单项式n x y -的次数是3,方程()2120m x mx tx n ++-++=是关于x 的一元一次方程,其中m t ¹.(1)求m n 、的值;(2)若该方程的解是3x =,求t 的值;(3)若该方程的解是正整数,请直接写出整数t 的值.22.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35.23.根据题意列出方程.(1)一个数的17与3的差等于最大的一位数,求这个数;(2)从正方形的铁皮上,截去2cm 宽的一个长方形条,余下的面积是80cm 2,那么原来的正方形铁皮的边长是多少?(3)某商店规定,购买超过15000元的物品可以采用分期付款方式付款,顾客可以先付3000元,以后每月付1500元.王叔叔想用分期付款的方式购买价值19500元的电脑,他需要用多长时间才能付清全部货款?参考答案1.B2.A3.C4.C5.D6.A7.D8.A9.A10.A11.18或32或50或12812.-313.±13.514.2022.15.π×(82)2•x =π×(62)2×(x+5)16.(1)25b =;(2)16a =17.(1)72b --;(2)-9.18.(1)75a =;(2)5a +b 的值为6或4或8或2.19.(1)①-2;②1;③-1;(2)211t t -=或123t t -=20.(1)1;(2)0.21.(1)n=2,m=-1;(2)13t =;(3)3,0,-5,-2,1,-322.(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -=23.(1)17x-3=;(2)x 2-2x=80;(3)3000+1500x=19500。
人教版数学 七年级上册 3.1.1 一元一次方程 课后练习题
一、单选题
1. 若是方程的解,则代数式的值为()
A.-5 B.-1 C.1 D.5
2. 下列方程是一元一次方程方程的是()
A.B.C.D.
3. 有方程①,②,③,④,其中解为1的是()
A.①②B.①③C.②④D.③④
4. 下列为一元一次方程的是()
A.B.
C.
D.
5. 下列式子中是一元一次方程的是()
A.﹣2=5 B.2x﹣3 C.x=y D.3x=0
二、填空题
6. 已知关于x的方程kx﹣2x=5的解为整数,则正整数k的值为 ___.
7. 请构造一个一元一次方程,使得方程的解为x=3:__________________.
8. 已知关于的方程有无数个解,那么_________.
三、解答题
9. 已知关于的方程的解比方程的解大2.求m值.
10. 在一次植树活动中,甲班植树的棵数比乙班多,乙班植树的棵数比甲班的一半多10棵.设乙班植树棵.
(1)列两个不同的含的式子来表示甲班植树的棵数;
(2)根据题意列出含未知数的方程;
(3)检验乙班、甲班植树的棵数是不是分别为25棵和35棵.
11. 给出四个式子:,,,.
用等号将所有式子两两连接起来,共有多少个方程?请写出来.
写出中的一元一次方程,并从中选一个你喜欢的一元一次方程求解.试判断是中哪个方程的解.。
人教版七年级数学上册第三章 3.1.1 一元一次方程 同步测试题(含答案)
人教版七年级数学上册第三章 3.1.1 一元一次方程 同步测试题一、选择题1.下列各式中,是方程的是(A )A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,是一元一次方程的是(A)A .5y -5=5B .xy =5 C.5y -5=5 D.15y -5 3.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m ≠0B .m ≠1C .m =-1D .m =04.下列方程中,解是x =2的方程是(D )A .4x =2B .3x +6=0C .12x =0 D .7x -14=0 5.若x =1是关于x 的方程ax +3x =2的解,则a 的值是(A )A .-1B .5C .1D .-56.在“爱护环境,建我家乡”的活动中,七(1)班学生回收饮料瓶共10 kg ,男生回收的重量是女生的4倍,设女生回收饮料瓶x kg ,根据题意可列方程为(D )A .4(10-x)=xB .x +14x =10 C .4x =10+x D .4x =10-x 7.已知方程2y -12=12y -中被阴影盖住的是一个常数,且此方程的解是y =-53,则这个常数应是(C )A .1B .2C .3D .48.一个长方形的周长为30 cm ,若这个长方形的长减少1 cm ,宽增加2 cm 就可成为一个正方形,设长方形的长为x cm ,可列方程为(D)A .x +1=(30-x )-2B .x +1=(15-x )-2C .x -1=(30-x )+2D .x -1=(15-x )+2二、填空题9.已知式子:①3-4=-1;②2x -5y ;③1+2x =0;④6x +4y =2;⑤3x 2-2x -1=0,其中为等式的是①③④⑤,为方程的是③④⑤.(填序号)10.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.11.在4和-3中,能使方程2x -10=-2左右两边相等的是4,故方程2x -10=-2的解为x =4.12.写出一个解为x =-15的一元一次方程:答案不唯一,如:x +15=0. 13.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38.14.已知(m -3)x |m |-2+4=18是关于x 的一元一次方程,则m =-3.15.已知(|k|-1)x 2-(k +1)x +10=0是关于x 的一元一次方程,则k 的值为1.三、解答题16.检验下列各题括号内的值是否为相应方程的解:(1)2x -3=5(x -3);{x =6,x =4}解:x =6不是方程的解,x =4是方程的解.(2)4x +5=8x -3.{x =3,x =2}解:x =3不是方程的解,x =2是方程的解.17.根据下列语句,列出方程:(1)一个数x 的3倍与9的和等于8;(2)一个数x 的3倍比它的一半大2;(3)一个数x 的3倍比它的2倍多10;(4)一个数x 的3倍与7的差比x 的13少2. 解:(1)3x +9=8.(2)3x -12x =2. (3)3x -2x =10.(4)3x -7=13x -2.18.已知y =1是方程my =y +2的解,求m 2-3m +1的值.解:由题意,将y =1代入方程my =y +2中,得m =1+2=3,当m =3时,m 2-3m +1=32-3×3+1=1.19.根据题意列方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x 份,则买《信息报》(15-x)份,根据题意列方程,得0.5x +0.4(15-x)=7.(2)设出售成人票x 张,则出售学生票(128-x)张,根据题意列方程,得10x +60%×10(128-x)=912.20.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x 株.(1)列两个不同的含x 的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x 的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树株数是30株,而不是35株.。
人教版七年级上册数学第三章一元一次方程3-1从算式到方程课后练习【含答案】
人教版七年级上册数学第三章一元一次方程3.1从算式到方程课后练习一、单选题(共12题)1.长江比黄河长 ,黄河长度的6倍比长江长度的5倍多 ,设长江长度为 ,则下列方836km 1284km xkm 程中正确的是( )A. B. 5x −6(x −836)=12846x −5(x +836)=1284C. D. 6(x +836)−5x =12846(x −836)−5x =12842.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( )A. 3x﹣2=2x+9B. 3(x﹣2)=2x+9C.D. 3(x﹣2)=2(x+9)x 3+2=x 2−93.如果 为有理数,那么下列等式不一定成立的是( )x =y,a A. B. C. D. 1−y =1−x x 2=y 2x a =y a ax =ay 4.若方程 的解为 ,则a 的值为( )2x +a 2=4(x −1)x =3A. -2 B. 10 C. 22 D. 25.小刚骑车从学校到家,每分钟行150 m ,某天回家时,速度提高到每分钟200 m ,结果提前5 min 到家,设原来从学校到家骑x (min ),则可列出的方程为( )A. 150x=200(x+5)B. 150x=200(x-5)C. 150(x+5)=200xD. 150(x-5)=200x6.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:① ;② ;③;④ .50m +12=55m −1350m −12=55m +13n −1250=n +1355n +1250=n −1355其中正确的是( )A. ①②B. ①③C. ③④D. ①④7.如果关于 的方程 的解是 ,那么 的值为( )x 3x +2a +1=x −6(3a +2)x =0a A. B. C. D. −1120−1320−201313208.已知关于x 的一元一次方程 的解为 ,则 的值为( )2x m −2+a =4x =−1a +m A. 9 B. 7 C. 5 D. 49.x 、y 、c 是有理数,则下列判断错误的是( )A. 若x =y ,则x+2c =y+2cB. 若x =y ,则a﹣cx =a﹣cyC. 若x =y ,则D. 若 ,则x =yx c =y c x c =y c 10.若关于 的方程 有正整数解,则满足条件的所有 值之和是( ).x x −6=(k −1)x k A. 0 B. 1 C. -1 D. -411.如果(4﹣m )x |m|﹣3﹣16=0是关于x 的一元一次方程,那么m 的值为( ) A. ±4 B. 4 C. 2 D. ﹣412.若x =-1是关于x 的方程2x +3a +1=0的解,则3a +1的值为( ) A. 0 B. -2 C. 2 D. 3二、填空题(共6题)13.某班在一次捐款活动中共捐出159元,比平均每人捐3元多24元,若设该班有x 人,根据题意可得方程:________.14.已知关于x 的方程 的解为x =1,则a =________.x −a 2=2x +1315.若关于x 的方程(2﹣m )x |m|﹣1+2=0是一元一次方程,则m 的值为________.16.若关于x 的方程 的解为 ,则k 的值是________.3x +2k =3x =−117.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要 完成;如果让八年级学生7.5ℎ单独工作,需要 完成.如果让七、八年级一起工作 ,再由八年级单独完成剩余部分,求一共需5ℎ1ℎ要多少小时能完成.设共需要x 小时完成,则可列方程________.18.若x+2与﹣5互为相反数,则x 的值为________.三、综合题(共4题)19.若方程 的解与关于 的方程 的解互为倒数,求 的值.2(3x +1)=1+2x x 6−2k 3=2(x +3)k 20.已知关于x 的方程 ,在解这个方程时,粗心的小琴同学误将 看成了 ,从而2a −3x =12−3x +3x 解得 ,请你帮他求出正确的解.x =321.当m 为何值时,关于x 的方程2(2x-m )=2x-(-x+1)的解是方程x-2=m 的解的3倍?22.A 、B 两座城市相距40千米,甲骑自行车从A 城出发前往B 城,1小时后,乙才骑摩托车从A 城出发前往B 城,已知乙的速度是甲的2.5倍,且乙比甲早30分钟到B 城,求甲、乙两人的速度各是多少?答案解析部分一、单选题1. D解:设长江长度为 ,则黄河长度为(x -836)km ,依题意得,xkm 6(x −836)−5x =1284故D .【分析】根据长江比黄河长 , 设长江长度为 ,则黄河长度为(x -836)km ,再根据黄河长836km xkm 度的6倍比长江长度的5倍多 , 可列出相应的付出,从而解答即可。
人教版七年级上册数学3.1.1一元一次方程同步训练(含答案)
人教版七年级上册数学3.1.1一元一次方程同步训练(含答案)人教版七年级上册数学3.1.1一元一次方程同步训练一、单选题1.下列选项中是一元一次方程的是()A.B.C.D.2.关于的方程的解是,则的值为()A.B.C.D.3.如果是关于的方程的解,则值为( )A.B.C.D.4.若关于y的一元一次方程的解为2,则()A.B.C.D.25.已知关于x的方程的解是,则a的值是()A.4 B.5 C.3 D.26.若关于x的方程是一元一次方程,则a的值为()A.1 B.±1 C.D.07.若是关于的一元一次方程的解,则的值为()A.3 B.5 C.7 D.98.当x的取值不同时,整式(其中a,b是常数)的值也不同,具体情况如下表所示:x 0 1则关于x的方程的解为()A.B.C.D.二、填空题9.若关于的方程是一元一次方程,则的值是.10.如果是一元一次方程,那么.11.关于的方程有无数解,则、满足的条件是.12.如果是关于的方程的解,那么.13.若是方程的解,则.14.已知是关于的方程的解,则的值为.15.若方程是关于的一元一次方程,则的值是.16.在方程:①;②;③;④;⑤中,一元一次方程有:.(填序号)三、解答题17.关于的方程有一个解是,求的值.18.判断是不是方程的解.19.已知关于x的方程是一元一次方程,求k的值.20.检验,是否为相应方程的解.参考答案:1.B2.C3.D5.B6.C7.C8.C9.010.111.12.13.214.415.16.②⑤/⑤②17.018.见解析19.k的值是20.不是方程的解,是方程的解答案第1页,共2页。
人教版七年级数学上册第三章《一元一次方程》练习题(含答案)
人教版七年级数学上册第三章《一元一次方程》练习题(含答案)一、单选题1.若1x =是方程21ax x +=的解,则a 的值是( )A .-1B .1C .2D .—12 2.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =- 3.已知下列方程:①22x x -=;②0.31x =;③512x x =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( )A .2B .3C .4D .54.已知x =y ,则下列等式不一定成立的是( )A .x ﹣k =y ﹣kB .x+2k =y+2kC .x y k k =D .kx =ky5.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 7.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4) B .π×92×x =π×92×(x+4) C .π×(92)2×x =π×(52)2×(x-4) D .π×92×x =π×92×(x-4)8.某市出租车收费标准是:起步价8元(即行驶距离不超过3km ,付8元车费),超过3km ,每增加1km 收1.6元(不足1km 按1km 计),小梅从家到图书馆的路程为xkm ,出租车车费为24元,那么x 的值可能是( )A .10B .13C .16D .189.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .42(94)35x x +-=B .42(35)94x x +-=C .24(94)35x x +-=D .24(35)94x x +-=10.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 11.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元 12.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1B .2C .3D .1或3二、填空题13.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.16.课本习题中有一方程32x x -=+其中一个数字被污渍盖住了,书后该方程的答案为x =﹣7,那么□的数字应是___.17.某兴趣小组中女生人数占全组人数的一半,如果再增加4名女生,那么女生人数占全组人数的35,则这个兴趣小组原来的人数是______人. 18.若单项式m 21+4x y 与-54n x y 是同类项,则m+n=_____;19.关于x 的一元一次方程230x kx --=的解是正整数,整数k 的值是____________. 20.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk 的解总是x =2,则ab =_________.三、解答题21.解下列方程:(1)4223x x -=+ (2)223146x x +--=22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.已知一列数2,0,﹣1.﹣12.(1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.24.学校安排某班部分男生将新购进的电脑桌椅搬入微机室,若每人搬4套,则还缺8套;若每人搬3套,则还剩4套.问学校安排了多少男生搬运电脑桌椅?25.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.26.对数轴上的点P 进行如下操作:将点P 沿数轴水平方向,以每秒m 个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点.(1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=.①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ;(2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系.27.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 .28.已知关于x 的一元一次方程ax +b =0(其中a ≠0,a 、b 为常数),若这个方程的解恰好为x =a ﹣b ,则称这个方程为“恰解方程”,例如:方程2x +4=0的解为x =﹣2,恰好为x =2﹣4,则方程2x +4=0为“恰解方程”.(1)已知关于x 的一元一次方程3x +k =0是“恰解方程”,则k 的值为 ;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值参考答案1.A2.D3.B4.C5.B6.B7.A8.B9.D10.C11.C12.C13.10014.2000,15.716.117.1618.5.19.1或-120.4-21.(1)52x=;(2) 0x=.22.(1)19x=(2)74 x=23.(1)3;(2)m=-12.24.12名25.(1)当前参加生产的工人有40人(2)车间还需要28天才能完成任务26.(1)①4;②20(2)−11,−2或7(3)y−x=3 27.(1)C2或C3(2)①103或503或﹣50;②70或50或11028.(1)9 2(2)m=﹣3,n=﹣23 (3)-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册 第三章一元一次方程 3.1.1一元一次方程 课后练习
一、单选题
1.下列方程中,解为x =-1的是( )
A .3x +1=2x -1
B .4x -1=2x +3
C .5x -3=6x -2
D .3x -1=2x
2.已知x =3是关于x 的方程2x -a =ax -2的解,则a 的值为( )
A .-2
B .2
C .-4
D .4
3.一个正方形花圃边长增加2 m ,所得新正方形花圃的周长是28 m ,设原正方形花圃的边长为x m ,由此可得方程为( ) A .x+2+28 B .4x+2+28 C .2(x+2)+28 D .4(x+2)+28
4.下列方程中,解为5x =的是( )
A .235x +=
B .101x =
C .()713x --=
D .3126x x -=+
5.若关于x 的方程(m﹣2﹣x |m|﹣1+3=0是一元一次方程,则m 值为( )
A .﹣2
B .2
C .﹣3
D .3
6.已知x=3是4x+3a=6的解,则a 的值为( )
A .﹣2
B .﹣1
C .1
D .2
7.已知下列方程:
①x -2=2x
﹣②12x +-1=33-x ﹣③2x =5x -1﹣④x 2-4x=3﹣⑤x=6﹣⑥x+2y=0.其中一元一次方程的个数是( ) A .﹣﹣﹣
B .﹣﹣﹣
C .﹣﹣
D .﹣﹣ 8.在下列方程中,解是x=-1的是( ).
A .2x+1=1
B .1-2x=1
C .12x +=2
D .1-x =2
9.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=
b a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( )
A .1
B .﹣1
C .±1
D .a≠1
10.已知x ﹣2是关于x 的方程3x +a ﹣0的一个解,则a 的值是( )
A .﹣6
B .﹣3
C .﹣4
D .﹣5
二、填空题
11.已知方程4x m -1﹣2﹣0是一元一次方程,则m﹣________﹣
12.已知23450n x -+=是关于x 的一元一次方程,则n = ______ .
13.若关于x 的方程3x+2b+1=x -(3b+2)的解是1,则b=__________.
14.“比x 的40%大6的数是13”用方程表示为______________+
15.在x﹣1﹣2﹣0中﹣是方程-1
2x﹣9﹣3x﹣2的解的是x﹣______.
三、解答题
16.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:
(1)m 的值;
(2)2(3m+2)-3(4m -1)的值.
17.1x =-是下列方程的解吗?
(1)728x x -=-;(2)2321x +=-.
18.若关于x 的方程230m mx m -++=是一元一次方程,求m 的值. 19.关于x 的方程(1)30n m x --=是一元一次方程.
﹣1)则m ﹣n 应满足的条件为:m ﹣n ﹣
﹣2)若此方程的根为整数,求整数m 的值.
20.设某数为x ,根据下列条件列方程并解方程.
(1)某数的4倍是它的3倍与7的差;
(2)某数的75%与-2的差等于它的一半;
(3)某数的3
4与5的差等于它的相反数.
21.已知x =3是方程3[(3x
+1)+()
14m x -]=2的解,n 满足关系式|2n +m |=1,求m +n 的值.
22.当m 为何值时,关于x 的方程4x -m=2x+5的解比2﹣x -m﹣=3﹣x -2﹣-1的解小2﹣
23.已知关于x 的方程的
解也是方程 的解,试求代数式 的值.
﹣﹣﹣﹣﹣﹣
3
172x +=384x x a -=-23
a a -
1.C 2.B 3.D 4.C 5.A 6.A 7.B 8.D 9.A 10.A 11.2
12.2
13.-1
14.40%x+6+13
15.2
16.(1)m=-5 (2)37
17.(1)是;(2)不是.
18.3
19.﹣1﹣1≠﹣ 1=﹣﹣2﹣2,0,24m =-,
20.(1)4x﹣3x﹣7﹣x﹣﹣7﹣﹣2﹣75%x﹣(﹣2)﹣
12x﹣x﹣﹣8 ;(3)34x﹣5﹣﹣x﹣x﹣207. 21.0或-1
22.当m=1时,关于x 的方程4x-m=2x+5的解比2(x-m )=3(x-2)-1的解小2 23.10。