2013八年级(下)数学期末试卷及答案

合集下载

2013-2014新人教版八年级数学下期期末试题2(含答案)

2013-2014新人教版八年级数学下期期末试题2(含答案)

2013—2014年八年级下学期期末考试 数学模拟试卷(人教版)(二)(满分100分,考试时间100分钟)学校________________ 班级_____________ 姓名________________ 一、选择题(每小题3分,共24分) 1. 下列运算错误的是()A=B.=C=D .2(2=2. 已知函数y =kx +b 的图象如图所示,则y =2kx +b 的图象可能是( )3. 下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤有一个角是直角的平行四边形是正方形.其中正确的有( ) A .1个B .2个C .3个D .4个4. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )201525247724251520157242025157242025A .B .C .D .5. 已知一个一次函数,当自变量x 的取值范围为-1≤x ≤2,相应的函数值y 的取值范围为3≤y ≤6,则这个一次函数的解析式是( ) A .4y x =+ B .45或y x y x =+=-- C .5y x =-- D .45或y x y x =+=-+6. 如图,一架长25米的梯子AB 斜靠在墙上,梯子底端距墙脚7米,当梯子顶端沿墙壁向下滑动9米时,梯子的底端水平向外滑动了( ) A .13米B .9米C .6米D .5米NHF E DCBA第6题图 第7题图 第8题图7. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( ) A .12个B .9个C .7个D .5个8. 一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x 的取值范围是( ) A .1<x <9 B .1≤x ≤9 C .1<x ≤3 D .3<x <9二、填空题(每小题3分,共21分)9. 两个不相等的无理数,他们的乘积是有理数,请写出一对这样的数:_____、______.10. 若一组数据为1,2,3,则这组数据的方差为_____.11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.12. 已知11()A x y ,,22()B x y ,是一次函数y =kx +2(k >0)图象上不同的两点,若1212()()t x x y y =--,则t ________0.(选填“>”、“≥”、“<”或“≤”)13. 如图,点A 1,B 1,C 1,D 1分别是四边形ABCD 各边上的中点,两条对角线AC ,BD 互相垂直.若AC =3,BD =4,则四边形A 1B 1C 1D 1的面积为_________. 14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(4,0),点C 在第一象限内,∠CAB =90°,且BC =6.将△ABC 沿x 轴向右平移,当点C 落在直线y =-BC 扫过的面积为________________.D 1C 1B 1A 1DC BADC BPEA第13题图 第14题图 第15题图15. 如图,E 为正方形ABCD 外一点,连接AE ,BE ,DE ,过点A 作AP ⊥AE ,交DE 于点P .若AE =AP =1,BPAPD ≌△AEB ;②点B 到直线AE的距离为;③BE ⊥DE;④1APB APD S S +=△△4ABCD S =正方形.其中正确的是___________________.(填写序号) 三、解答题(本大题共7小题,满分55分)16. (6分)(1)已知-1<x <4,4x -.(2)17. (8分)如图,圆柱的底面周长为16 cm ,AC 是底面圆的直径,高BC =9 cm ,点P 是母线BC 上一点,且PC 23BC .一只蚂蚁从点A 出发沿着圆柱体的侧面爬行到点P 的最短距离是多少?18. (8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形统计图(如图1)和条形统计图(如图2),经确认图1是正确的,而图2尚有一处错误.类型C D B A 40%20%30%10%图1 图2回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.19.20.(8分)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)之间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:((3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式; (4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.21. (8分)如图,以△ABC 的三边为边在BC 同侧分别作等边三角形,即△ABD ,△BCE ,△ACF .(1)四边形ADEF 为__________四边形;(2)当△ABC 满足条件____________时,四边形ADEF 为矩形; (3)当△ABC 满足条件____________时,四边形ADEF 为菱形; (4)当△ABC 满足条件____________时,四边形ADEF 不存在.FAEDB22. (9分)如图,在平面直角坐标系中,直线1y x =-+与3y x =+交于点A ,与x 轴分别交于点B 和点C .若D 是直线AC 上一动点,则在直线AB 上是否存在点E .使得以O ,D ,A ,E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.2013—2014年八年级下学期期末考试数学模拟试卷(二)(人教版)参考答案一、选择题1.A 2.C 3.A 4.C5.D 6.A7.B8.A二、填空题9,10.2311.4912.>13.3 14.15.①③⑤三、解答题16.(1)2x-2 (2)217.10cm18.(1)条形统计图中D类型对应的人数应为2人(2)5棵,5棵(3)①从第二步开始出错;②5.3,1378 19.(1)证明略(2)菱形,证明略(3)2:120.(1)140<x≤230;x>230(2)920 y x =(3)m=0.2521.(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°(4)∠BAC=60°22.111 () 22E,;257 ()22E-,。

2013年初二下册数学期末联考试卷(带答案)

2013年初二下册数学期末联考试卷(带答案)

2013年初二下册数学期末联考试卷(带答案)?012-2013?鍒?浜?鏁?瀛?璇?棰??2?鍒嗭紝鍏?8A銆丅銆丆銆丏1锛?鐐筆锛?4,5锛锛?A锛庯紙4锛?锛?B锛庯紙-4锛?5锛?C锛庯紙5锛?4锛?D锛庯紙4,-5锛?2锛?宸茬煡鐐筆锛?2,-1锛?鍒欑偣P锛?A B岃薄闄?C?D?3锛庝娇鍒嗗紡鏃犳剰涔?鍒檟鐨勫彇鍊艰寖鍥达紙锛?A锛巟鈮? B锛?x=-1 C锛?x鈮? D锛?x=1 4锛庝笅鍒楀洓y=- 锛?A锛?2,4) B锛?-2锛?4) C锛?-2,4) D锛?4,2) 5锛?璁$畻梅鐨勭粨鏋滄槸锛?锛?A锛?B 锛?C锛?D锛?6锛庡凡鐭ュ叧浜巟鐨勬柟绋?锛?=0锛?锛?A锛?-2 B锛?2 C锛?5 D 3 7锛庡凡鐭ヤ竴娆″嚱鏁皔=(m 锛?)x锛?鐨勫浘璞$粡杩囷紙1,4锛夛紝鍒檓鐨勫€间负锛?锛?A锛?7 B锛?0 C锛? D锛?2 8锛庡凡鐭?+ =3锛屽垯鐨勫€间负锛?锛?A锛?B锛?C锛?D锛?9锛庡凡鐭ュ弽姣斾緥鍑芥暟y= ?锛?锛? (3, ),( , ),鍒?锛?锛?鐨勫ぇ灏忓叧绯绘槸锛?锛?A锛?锛?锛?B锛?锛?锛?C 锛?锛?锛?D锛?锛?锛?10锛庡嚱鏁?涓?锛?锛?11BCD A锛?3,2锛夛紝C锛?,0锛夛紝鍒欑洿绾緽D鐨勮В鏋愬紡涓猴紙锛?A锛?y= x锛?B锛?y=锛?x+ C锛?y= x+ D锛?y= x+ 12?鍜?,澶ф呴櫎鍘诲皬姝f柟褰㈤儴鍒嗙殑闈㈢Н涓簊锛堥槾褰遍儴鍒嗭級锛屽垯s涓巟鐨勫ぇ鑷村浘璞′负锛?锛?ч6?鍒嗭紝鍏?4鍒嗭級璇峰皢?13锛庡綋x=__________鏃讹紝鍒嗗紡鐨勫€间负闆?14锛庝竴绮掔背鐨勯噸閲忕害涓?.000036篲_ 鍏?15y=ax+b锛坅鈮?锛夊拰鍙屾洸绾縴= (k鈮?)鐩镐氦,y鐨勬柟绋嬬粍鐨勮В鏄痏________ 16锛庝竴娆″嚱鏁皔=kx+b(k鈮?)鐨勫浘璞′笌鐩寸嚎y=-2x+1骞y=3x-1浘璞¤〃杈惧紡涓篲________ 銆?17锛庡皢x= 浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??锛屽張灏唜= +1浠e叆鍙嶆瘮渚嬪嚱鏁皔=锛??鍒?=______________ 18鍥撅紝鐭╁舰OABC鐨勪袱杈筄A銆丱C鍒嗗埆鍦▁杞淬€亂杞寸殑姝e崐杞翠笂锛孫A=4锛孫C=2锛岀偣G掔嚎鐨勪氦鐐癸紝缁忚繃鐐笹鐨勫弻鏇茬嚎y=BC鐩镐氦浜庣偣M,姹侰M锛歁B鐨勫€兼槸_______銆???鍒嗭紝鍏?4鍒嗭級瑙g嗚В?1920锛??紝姣忓皬棰?0鍒嗭紝鍏?0鍒В?21锛庤В鏂圭▼锛?= 22锛庡寲绠€锛屽啀姹傚€硷細鍏朵腑鏄?锛?? 23锛=kx+b鐨勫浘璞′笌x杞翠氦涓庣偣C锛屼笖涓庡弽姣斾緥鍑芥暟y= 鐨勫浘璞¢兘缁忚繃鐐笰锛?2,6锛夊拰鐐笲锛?锛宯锛?(1) 姹傚弽姣斾緥鍑芥暟鍜屼竴娆″嚱鏁拌В鏋愬紡(2) 鐩存帴鍐欏嚭涓嶇瓑寮弅x+b鈮?鐨勮В闆?(3) 姹?AOB鐨勯潰绉?24锛?013骞?鏈?0鏃ワ紝鍥涘窛闆呭畨鍙戠敓浜?.0绾у湴闇囥€傚湪鎶楅渿鏁7200椤跺笎绡锋敮鎻村洓宸濈伨鍖猴紝鍚庢潵鐢变簬鎯呭喌绱ф€ワ紝鎺ユ敹鍒颁笂绾ф寚绀猴紝瑕佹眰鐢熶骇鎬婚噺姣斿師璁″垝澧炲姞20%锛屼笖蹇呴』鎻愬墠5澶╁畬鎴愮敓浜т换鍔★紝璇ュ巶杩呴€熷姞娲句汉鍛樼粍缁囩敓浜э紝瀹?姣忓ぉ鐢熶骇鐨勯《鏁扮殑2鍊嶏紝璇烽棶璇ュ巶瀹為檯姣忓ぉ鐢熶骇澶氬皯椤跺笎绡?浜斻€佽В??2鍒?锛屽叡24鍒嗭В?25锛庡洓宸濊媿20澶╁叏y锛堝崟浣嶏細鍗冨厠锛変笌涓婂競鏃堕棿x1锛夋墍绀猴紝绾㈡槦鐚曠尨妗冪殑浠锋牸z(鍗曚綅锛氬厓/鍗冨厠)涓庝笂甯傛椂闂磝锛堝ぉ锛夌殑2锛夋墍绀恒€?锛?у€硷紱锛?勬棩閿€閲弝涓庝笂甯傛椂闂磝鐨勫嚱鏁拌В殑鍙栧€艰寖鍥淬€?锛?锛夎瘯姣旇緝绗?澶╁拰绗?3?26?绾縴=x涓巠=-x+2浜や簬鐐笰锛岀偣P A涓婁竴鍔ㄧ偣()锛屼綔PQ y=-x+2浜庣偣Q,Q涓鸿竟QMN,璁剧偣P鐨勬í鍧愭爣涓簍銆?锛?锛夋眰浜ょ偣A 鐨勫潗鏍囷紱锛?锛夊啓鍑?鐐筆浠庣偣O杩愬姩鍒扮偣AQMN涓?OAB閲嶅彔鐨勯潰绉痵涓巘鐨勫嚱鏁板叧绯诲紡锛屽苟鍐欏嚭鐩稿簲鐨勮嚜鍙橀噺t鐨勫彇鍊艰寖鍥达紱锛?锛夋槸鍚﹀瓨鍦ㄧ偣Q锛屼娇OCQ鑻??。

2012-2013八年级下学期期末考试数学试卷(人教版)(含答案)

2012-2013八年级下学期期末考试数学试卷(人教版)(含答案)

2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。

A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

山东省临沂市莒南县2013-2014学年下学期期末考试八年级数学试卷及答案(word版)

山东省临沂市莒南县2013-2014学年下学期期末考试八年级数学试卷及答案(word版)

山东省临沂市莒南县2013-2014学年下学期期末考试八年级数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2 C.x≠2D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8B.x>2 C.x≥2D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD 的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD 的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC的长为_________ cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE 并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y 与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D 作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。

2013年下学期期末考试 八年级考试试卷

2013年下学期期末考试 八年级考试试卷

2013年下学期期终调考八年级考试试卷物理考生注意:本学科试卷共四道大题,满分100分,考试时量90分钟;一、选择题(本题共30分,每小题给出的选项中,只有一项是符合题目要求的,考生必须把答案的序号填入下面答题表内对应位置,写在其它地方均为无效答案,不给分。

每小题选对的得2分,错选或未选的得0分。

)值A.偏大 B.偏小 C.相等 D.以上答案均有可能2. 往保温瓶里灌水时,听声音就能判断壶里水位的高低,这是因为A.随着水位升高,音调逐渐升高B.随着水位升高,音调逐渐降低C.随着水位升高,音调不变,响度越来越大D.水着水位升高,音调不变,响度越来越小3.一场大雪过后,人们会感到外面万籁俱静。

究其原因,你认为正确的是A.可能是大雪后,行驶的车辆减少,噪声减小B.可能是大雪后,大地银装素裹,噪声被反射C.可能是大雪后气温较低,噪声传播速度变慢D.可能是大雪蓬松且多孔,对噪声有吸收作用4.温度与人们的生活息息相关。

以下给出的温度值中,你认为合理的是A.人体正常体温是39℃ B.人体感觉舒适的环境温度为24℃C.沸水的温度一定是100℃ D.适合人们洗澡的热水温度约70℃5.在下面列举的现象中,不是升华现象的是A.碘加热时变为碘蒸气。

B.夏天,冰棒周围冒“白气”。

C.萘制的卫生球日久变小。

D.冬天,冰冻的衣服也会变干6.下列所示的四种现象中,可用光的直线传播原理解释的是A.镜中花B.水中桥C.林中影D.缸中鱼7.“猴子捞月”的寓言故事说,猴子看到井中有一个月亮,如图,以为月亮掉进水中了,就要去捞,结果什么也没捞到。

关于水中月亮离水面的远近,以下说法中正确的是A. 和天上月亮到水面的距离相等B. 井有多深,月亮就有多深C. 月亮就在水的表面上D. 和猴子眼睛到水面的距离相等8.如图所示,一束激光AO由空气斜射入玻璃砖,折射后从另一侧面射出,其出射点可能是图中的A.M点B.N点C.P点D.Q点9.老奶奶用放大镜看报纸时,为了看到更大的清晰的像,应A.报纸与眼睛不动,放大镜尽量离报纸远一些B.报纸与眼睛不动,放大镜尽量离报纸近一些C.报纸与放大镜不动,眼睛尽量离报纸近一些D 报纸与放大镜不动,眼睛尽量离报纸远一些10. 一支蜡烛位于凸透镜前,调节镜的位置可在屏上成清晰、放大的像,若保持透镜的位置不变,把蜡烛和光屏的位置对调一下,则A.在光屏上不再呈现像 B。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

学1213学年下学期八年级期末考试数学(附答案)

学1213学年下学期八年级期末考试数学(附答案)

车逻初中2012—2013学年第二学期期末考试八年级数学(考试时间120分钟 满分150分)一、选择题(本大题有8小题,共24分.把答案填入下表)1.若分式12x x -+的值为0,则 A. 2x =-B. x= 0C. x = 1或2x =-D. x = 12. 若n m <,则下列不等式不一定正确的是A.n m 22<B.0<-n mC.23-<-n mD.22n m <3. 若反比例函数的图象经过点(-1,2),则它的解析式是 A. y = -x 21 B. y = -x 2 C. y = x 2 D. y = x14. 下列计算正确的是A.336x x x += B.236m m m ⋅= C.3= 5. 对4000米长的大运河堤进行绿化时,为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是A.21040004000=+-x x B.24000104000=--x x C.24000104000=-+x x D.21040004000=--x x6.如图,点D 、E 分别在△ABC 的 AB 、AC 边上,下列条件不能使△ADE ∽△ACB 的是A. ∠ADE =∠CB. ∠AED =∠BC. AD :AC=DE :BCD. AD :AC=AE :ABCE DA第6题图第7题图第8题图7.如图,身高1.6m 的小玲想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,若AC=0.8m ,BC=3.2m ,则树的高度为A. 4.8mB. 6.4mC. 8mD. 10m 8.如图,两个反比例函数xy 1=和x y 3-=的图象分别是1l 和2l .设点A 在1l 上,xAB ⊥轴交2l 于点B ,y AC ⊥轴交2l 于点C ,则△ABC 的面积为A. 4cm 2B. 6cm 2C. 8cm 2D. 10cm 2 二、填空题(本大题有10小题,共30分.把答案填在对应题号的横线上)9. 当m ▲ 时,42-m 有意义.10. 化简的结果为 ▲ . 11.在比例尺为1:500000的地图上,若甲、乙两地的距离cm 4,则甲、乙的实际距离 是 ▲ km .12.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .13.学校举行中学生运动会,某班需要从3名男生和2名女生中随机抽取一名做志愿者,则女生被选中的概率是 ▲ . 14.关于x 的方程32=-+x ax 无解,则a 的值是 ▲ .15.如果将一张矩形的A4纸沿长边对折,得到两张全等的矩形纸片,恰好与原矩形相似,那么A4纸的长与宽的比为 ▲ . 16. 若点P (m , n )在反比例函数xy 4=的图象上,则243m n m -+的值为 ▲ . 17.已知△ABC 如图所示,A (5,0)、B (6,3) 、C (3,0),将△ABC 以坐标原点O 为位似中心、位似比3:1进行缩小,则缩小后的点B 所对应的点的坐标为 ▲ .18.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,21=CD DE ,若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ . 三、解答题(本大题有10小题,共96分) 19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧≤-->+51325x x x x ,并写出最大整数解.20.(本题满分8分)已知x 是绝对值不大于2的整数,先化简221112x x x x x---÷+,再选择一个合适的x 的值代入求值.第17题图第18题图CBE DA F21.(本题满分8分)计算:(1(2)1)(1-22.(本题满分8分)我市自2013年1月开始实行的《交通新规》规定:在十字路口,机动车应按所需行进方向驶入导向车道. 如图,在一个两车道的十字路口,向左转弯的必须进入第一车道,直行或者向右转弯的进入第二车道.假设每一辆车经过该路口时,左转、直行、右转的可能性的大小均相同.(1)机动车驶入第二条车道的概率是 .(2)如果在第二条车道共有三辆机动车,利用画树状图或列表求车辆可以通行时这三辆车全部直行的概率.23.(本题满分10分)如图,在下列五个关系:①AB∥CD,②AD=BC,③∠A =∠C,④∠B =∠D,⑤∠B +∠C=180°中,选出两个关系作为条件,可以推出四边形ABCD是平行四边形,并以平行四边形定义.......作为依据予以证明.(写出一种即可)已知:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.24.(本题满分10分)“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?25.(本题满分10分)在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D , EF 垂直平分AD 交AB 于点E .(1)证明:△DEF ∽△ADC ; (2)若AE=25 ,AC=32,求AD 的长.26.(本题满分10分)已知一次函数7+-=x y 与反比例函数()00>>=x k xky ,图象相交于A 、B 两点,其中A (1,a )、B (b ,1).(1)求k b a 、、的值; (2)观察图象,直接写出不等式07<-+x xk的解集; (3)若点M (3,0),连接AM 、BM ,探究∠AMB 是否为90°,并说明理由.27.(本题满分12分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价-进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.28.(本题满分12分)如图1,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 是BC 上一定点.动点P 从C 出发,以2cm /s 的速度沿C →A →B 方向运动,动点Q 从D 出发,以1cm /s 的速度沿D →B 方向运动.点P 出发5 s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止. 图2是当50≤≤t 时△BPQ 的面积S( cm 2)与点P 的运动时间t (s )的函数图象. (1)CD = ,=a ;(2)当点P 在边AB 上时,t 为何值时,使得△BPQ 与△ABC 为相似? (3)运动过程中,求出当△BPQ 是以BP 为腰的等腰三角形时的t 值.图1图2)。

2012-2013学年度八年级下期末检测数学试卷.doc

2012-2013学年度八年级下期末检测数学试卷.doc

BC AD2012-2013学年度下学期八年级数学期末检测试一、选择题(每小题3分,共18分) 1、在代数式x 1、21、212+x 、πxy3、y x +3、11++m a 中,分式有( )A 、2个B 、3个C 、4个D 、5个2、在反比例函数y=x2的图象上的一个点的坐标是( )A 、(2,1)B 、(-2,1)C 、(2、21)D 、(21,2)3、如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=90°时,它是矩形 D、当AC =BD 时,它是正方形4、下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A 、3、4、5 B 、6、8、10 C 、3、2、5 D 、5、12、13 5、数据-3、-2、1、3.6、x 、5的中位数是1,那么这组数据的众数是( )A 、2B 、1C 、10D 、6、如图,在周长为20cm 的 ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD ,交AD 于点E ,则△ABE 的周长为( ) A 、4cm B 、6cm C 、8cm D 、10cm 二、填空题(每小题3分,共24分)7、将0.000702用科学记数法表示,结果为 。

8、一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有 个。

9、在 ABCD 中,AB ,BC ,CD ,的三条边的长度分别是(x-2)cm ,(x+3)cm ,8cm ,则 ABCD 的周长为 cm 。

10、若矩形一个内角的平分线分它的长边为两部分,长分别为2和3。

则该矩形的面积为 。

11、甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10 乙:7、8、9、8、8 则这两人5次射击命中的环数的平均数x 甲=x 乙=8。

方差S 2甲 S 2乙。

(填“>”、“<”或“=”) 12、若菱形一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm 2,则菱形的周长为 cm 。

2013年八年级下册数学期末考试卷及答案

2013年八年级下册数学期末考试卷及答案

一、选一选1、下列多项式中能用平方差公式分解因式的是( ) A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x2、不等式组 ⎪⎩⎪⎨⎧≥<212x x 的解集在数轴上应表示为( )3、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .乙班 B .甲班 C .两班一样整齐 D .无法确定 4、△ABC 中,若∠A :∠B :∠C = 2:3:4,则∠C 等于( ) A 、20° B 、40° C 、60° D 、80° 5、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( ) A .1 B .1.5 C .2 D .2.56、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )A、个体是每个学生 B、样本是抽取的1200名学生的数学毕业成绩 C、总体是40本试卷的数学毕业成绩 D、样本是30名学生的数学毕业成绩7、下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。

其中真命题的个数的是( )A.1个B.2个C.3个D.4个 8、若分式yx yx -+中的x 、y 的值都变为原来的3倍,则此分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的61密封线9、在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是( )A 、100B 、90C 、80D 、70二、填空题:9、某公司行李托运的费用与重量的关系为一次函数,由右图 可知只要重量不超过________千克,就可以免费托运。

2013八年级(下册)数学期末测试卷(含答案)

2013八年级(下册)数学期末测试卷(含答案)

2013年八年级(下册)数学期末测试题(考试时间:120分钟 满分:150分)姓名:_________ 得分:____________说明:本试卷分为A 卷和B 卷两部分。

卷 名 A 卷B 卷总分 题 号 一 二 三 四 一 二 得 分A 卷 第I 卷一、选择题(每题只有一个正确答案,每题3分,共30分)1.不等式21>+x 的解集是( )A.1>xB.1<xC.1≥xD.1≤x2.多项式22y x -分解因式的结果是( )A.2)(y x +B.2)(y x -C.))((y x y x -+D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是( ) A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 ( ) A.ACBCAB AC = B.BC AB BC ⋅=2 C.215-=AB AC D.618.0≈AC BC 5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 ( ) A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是 ( )A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间4题图10题图7.若分式方程5156-=+--x k x x (其中k 为常数)产生增根,则增根是 ( ) A.x=6 B.x=5 C.x=k D.无法确定8.若的值是,则131242++=+x x x x x ( )A.21 B.101 C.41 D.81 9.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 10.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6第II 卷二、填空题(每题3分,共15分)11、分解因式:2m 2-8m+8=_________12、若的值为那么分式b ba b b a +=-,352__________13、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为___________。

2013-2014学年八年级下期末考试数学试题及答案

2013-2014学年八年级下期末考试数学试题及答案

八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。

2013年人教版八年级下册数学期末试题及答案.doc

2013年人教版八年级下册数学期末试题及答案.doc

DA BC2013年上人教版八年级下数学期末测试题一、选择题(每题4分,共48分) 1、下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x -2D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对(第7题) (第8题) (第9题)8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( )ABCA 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <2 10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。

最2013年八年级(下)数学期末试卷(3)答案

最2013年八年级(下)数学期末试卷(3)答案

最新2013年八年级下期末考试数学试题(三)(考试时间:120分钟 试卷总分:120分)题 号 得 分一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考 A 、众数 B 、平均数 C 、加权平均数 D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、30010、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分) 1.下列图形中,其中是中心对称的是( )A. B. C. D.2.下列因式分解正确的是( )A.x 2+y 2=(x+y )2B.5a 2-20ab=m (5m -20n )C.﹣a 2+b 2=(b -a )(a+b )D.a 3-a=a (a 2-1) 3.若x >y ,下列不等式一定成立的是( )A.2x >y+2B.x -2023>y -2023C.﹣x >﹣yD.|x |>|y |4.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在B’处,若∠1=∠2=44°,则∠B 为( )A.124°B.114°C.104°D.66°(第4题图) (第5题图) (第7题图)5.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC ,∠BCD ,则∠P=( )A.45°B.60°C.90°D.120° 6.下列多项式中,不能用公式法因式分解的是( )A.﹣x 2+16y 2B.81(a 2-2ab+b 2)-(a+b )2C.m 2-13mn+19n 2 D.﹣a 2-b 2(第9题图)(第10题图)10.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E、F、G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE,其中正确的个数是()A.0B.1C.2D.3二.填空题。

(每小题4分,共24分)11.若xy=2,x-y=1,则代数式2x2y-2xy2= .12.如图,在△ABC中,AD为△ABC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积是10cm2,AB=6cm,AC=4cm,则DF= cm.(第12题图)(第14题图)(第16题图)13.正多边形的一个内角等于150°,则这个正多边形的边数是.14.如图,在平行四边形ABCD 中,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,若AB=6,CF=2,则CE= .15.按图中程序计算:规定输入一个值x 到结果是否≥17为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围是 .16.如图,等边△ABC 内有一点O ,OA=3,OB=4,OC=5,以点B 为旋转中心将OB 逆时针旋转60°得到线段O’B ,连接O’A ,下列结论:①△BO’A 可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 到点O’的距离为5;③∠AOB=150°;④S 四边形AOBO’=6+4√2;⑤S △AOC +S △AOB =6+94√3.其中正确的结论有 .(只填序号) 三.解答题。

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,1、如果分式x-1有意义,那么x 的取值范围是() A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是()A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为()A 、4B 、34C 、4或34D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形()A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为()A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考() A 、众数 B 、平均数 C 、加权平均数 D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为()A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为()A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为()A 、100B 、150C 、200D 、30010、下列命题正确的是()A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

D 、对角线互相垂直的四边形面积等于对角线乘积的一半。

11、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:()通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。

其中正确的有A 、1个B 、2个C 、3个D 、4个12、如图,两个正方形ABCD 和AEFG 共顶点A ,连BE 、DG 、CF 、AE 、BG ,K 、M 分别为DG 和CF 的中点,KA 的延长线交BE 于H ,MN ⊥BE 于N 。

则下列结论:①BG=DE 且BG ⊥DE ;②△ADG 和 △ABE 的面积相等;③BN=EN ,④四边形AKMN 为平行四边形。

其中正确的是() A 、③④ B 、①②③C 、①②④D 、①②③④ 第9题图二、填空题(共4小题,每小题3分,共12分)13、一组数据8、8、x 、10的众数与平均数相等,则x= 。

14、如图,己知直线b kx y +=图象与反比例函数xk y =图 象交于A (1,m )、B (—4,n ),则不等式b kx +>xk的解集为 。

第14题图15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。

……第一个图 第二个图 第三个图16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky =的图象过点D ,则其 解析式为 。

第16题图三、解答题(共9题,共72分) 17、(本题6分)解方程13321-+=+x x x x18、(本题6分)先化简,再求值。

)121(12xx x x --÷-其中2=x19、(本题6分)如图,□ABCD 中,点E 、F 在对角线AC 上,且AE=CF 。

求证:四边形BEDF 是平行四边形。

20、(本题7分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A 、B 、C 、D五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图: 民主测评统计图演讲答辩得分表:规定:演讲得分按“去掉一个最高分和一个最低分 再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分 ⑴求甲、乙两位选手各自演讲答辩的平均分; ⑵试求民主测评统计图中a 、b 的值是多少⑶若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长。

21、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。

22、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O ,且AC ⊥BD ,DH ⊥BC 。

⑴求证:AH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。

23、(本题10分)某单位为了响应政府发出的“全民健身”的号召,打算在长和宽分别为20米和16米的矩形大厅内修建一个40平方米的矩形健身房ABCD,该健身房的四面墙壁中有两面沿用大厅的旧墙壁(如图为平面示意图),且每面旧墙壁上所沿用的旧墙壁长度不得超过其长度的一半,己知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米,设健身房高3米,健身房AB 的长为x米,BC的长为y米,修建健身房墙壁的总投资为w元。

⑴求y与x的函数关系式,并写出自变量x的范围。

⑵求w与x的函数关系,并求出当所建健身房AB长为8米时总投资为多少元?24、某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。

⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。

图①图②图③⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。

⑶将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系(不需要证明)图④25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2=上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。

⑴试判断四边形ABCD 的形状。

⑵若点P 是线段BD 上一点PE ⊥BC 于E ,M 是PD 的中点,连EM 、AM 。

求证:AM=EM⑶在图⑵中,连结AE 交BD 于N ,则下列两个结论:①MN DM BN +值不变;②222MNDM BN +的值不变。

其中有且仅有一个是正确的,请选择正确的结论证明并求其值。

八年级下数学试题参考答案二、填空题(共4小题,每空3分,共12分)13、6 14、-4<x <0或x >1 15、32 16、xy 3=三、解答题(共9题,共72分)17、解:方程两边同时乘以3(x+1)得3x=2x -3x -3…………………………………………………………2分x =-43…………………………………………………………………4分 检验:当x =-43时,3(x+1)≠0 ………………………………5分∴x =-43是原方程的解………………………………………………6分18、解:原式=xx x x x 1212+-÷- ………………………………………2分 =xxx x x -⋅-+1)1)(1(=1--x ………………………………4分当2=x 时,原式=12-- ………………………………6分19、证明: 连接BD 交AC 于O …………1分∵ 四边形ABCD 是平行四边形∴ AO=CO BO=DO …………3分 ∵ AE=CF∴ AO -AE = CO -CE即 EO=FO …………5分 ∴ 四边形BEDF 为平行四边形 …………6分 注:证题方法不只一种 20、解:⑴甲演讲答辩的平均分为:923949290=++ ………………………1分乙演讲答辩的平均分为:893918789=++ ………………………2分 ⑵a=50―40―3=7 ……………………………………………3分 b=50-42-4=4 ………………………………………………4分 ⑶甲民主测评分为:40×2+7=87 乙民主测评分为:42×2+4=88∴甲综合得分:9046487692=+⨯+⨯ ………………………5分∴甲综合得分:6.8846488689=+⨯+⨯ ………………………6分∴应选择甲当班长。

………………………7分21、解:延长BD 交AC 于E∵BD ⊥AD …………………1分 ∴∠ADB=ADE=900 ∵AD 是∠A 的平分线∴∠BAD=EAD …………………2分 在△ABD 与△AED 中⎪⎩⎪⎨⎧∠=∠=∠=∠ADE ADB AD AD EAD BAD ∴△ABD ≌△AED …………………3分 ∴BD=ED AE= AB=12 …………………4分 ∴EC=AC -AE=18-12=6 …………………5分 ∵M 是BC 的中点 ∴DM=21EC=3 …………………7分 22、⑴证明:过D 作DE ∥AC 交BC 延长线于E ……1分∵AD ∥BC∴四边形ACED 为平行四边形……………2分 ∴CE=AD DE=AC ∵ABCD 为等腰梯形 ∴BD = AC=CE ∵AC ⊥BD ∴DE ⊥BD∴△DBE 为等腰直角三角形………………4分 ∵DH ⊥BC∴DH=21BE=21(CE+BC )=21(AD+BC )…………………5分 ⑵∵AD=CE ∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=)(21)(21…………7分 ∵△DBE 为等腰直角三角形 BD=DE=6 ∴186621=⨯⨯=∆DBE S ∴梯形ABCD 的面积为18……………………………………8分 注:此题解题方法并不唯一。

相关文档
最新文档