人教版初三数学下册两边夹角
人教版初三数学下册两边及其夹角法相似
三角形相似判定定理2
一、复习提问
1.相似三角形的判定方法有哪些?分别是什么?
2.通过几何语言来描述三角形相似的判定
二、新知探究
在△ABC 和△A ′B ′C ′中,∠A=80°,∠A ′=80°,
A B A C AB AC ''''=.那么这两个三角形相似吗?
相似三角形的判定3:
文字语言:如果一个三角形的 与另一个三角形的 对应成比例,并且 相
等,那么这两个三角形相似。
符号语言: 或 或
三、新知应用
练习:
B / B
A C C / A /
四、巩固提高
1. 如图;在△ABC 中,DE 不平行BC,当
_____ AE
AB 时,△ABC ∽△AED ,若AB=8,BC=7,AE=5,则DE=___________
2.在△ABC 和△A ’B ’C ’中,∠B=∠B ’, AB =6, BC=8,B ’C ’=4,则当A ’B ’=______时, △ABC ∽△A ’B ’C ’,当A ’B ’=________时,△ABC ∽△C ’ B ’ A ’
3. 如图;正方形ABCD 中,P 是BC 上的点,BP=3PC ,Q 是CD 中点,求证:△ADQ ∽△QCP。
九年级数学下册 2721 相似三角形的判定 时 相似三角形的判定定理12练习 新版新人教版
九年级数学下册 2721 相似三角形的判定时相似三角形的判定定理12练习新版新人教版----b719c99a-6ea7-11ec-9664-7cb59b590d7d九年级数学下册2721相似三角形的判定时相似三角形的判定定理12练习新版新人教版第2课相似三角形的判定定理1,2基础题知识点1三边成比例的两个三角形相似1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形()a、 B.必须相似B.不得相似C.不一定相似D.无法判断2.已知△abc的三边长分别为6cm,7.5cm,9cm,△def的一边长为4cm,当△def的另两边长是下列哪一组数据时,这两个三角形相似()a、 2cm,3cmb.4cm,5cmc.5cm,6cmd.6cm,7cm3.(宜昌模拟)下列四个三角形中,与甲图中的三角形相似的是()4.如图所示,在△ ABC,ab=25,BC=40,AC=20英寸△ ade,AE=12,ad=15,de=24。
试着判断这两个三角形是否相似,并解释原因知识点2两边成比例且夹角相等的两个三角形相似5.如图所示,在△ ABC和△ 艾德,∠ BAC=∠ D、为了△ ABC类似于△ 除此之外,还必须满足以下条件之一acabacbc=b.=adaeaddeacabacbc=d.=addeadae6.如图所示,如果△ ABC是已知的,在以下四个三角形中,一个类似于△ ABC是()7.在△abc和△a′b′c′,若∠b=∠b′,ab=6,bc=8,b′c′=4,则当a′b′=____________时,△abc∽△a′b′c′.8.已知:如图所示,abad=ACAE,∠ B=30°,则∠ e=_____9.根据下列条件,判断△abc和△a′b′c′是否相似,并说明理由.∠b=50°,ab =2,bc=3,∠b′=50°,a′b′=12,b′c′=18.中间问题10.如图,在正方形网格上,若使△abc∽△pbd,则点p应在________处.()a.p1b.p2c.p3d.p411.如图所示,在等边三角形ABC中,D和E分别位于AC和ab上,ad∶AC=1∶ 3,AE=be,有()a。
人教版数学九年级下册27.2.1三边法、两边及其夹角法课件
2 4
1 2
设另外两条 边长分别为 x,y
x 1,x 5 52 2
y 1,y3 62
方案(3)
21 k3 6 3
x 1,x 4 43 3
y 1,y 5 53 3
方案(2)
k2
2 5
x 2,x8 45 5
y 2 , y 12 65 5
六、小結:相似三角形的判定方法: 七、作業:P42,2,3
△ABC与△A'B'C'的三组对应边
的比不等,它们不相似
练习
1.根据下列条件,判断△ABC与△A'B'C'是否相似,并说明理由:
(1)∠A=40°,AB=8,AC=15
∠A' =40°,A'B' =16,A'C' =30
(2)AB=10cm,BC=8cm,AC=16cm
A'B' =16cm,B'C' =12.8cm,A'C' =25.6cm
C'
∴ AB AC A' B' A'C'
(2)∵
AB 4 1 A' B' 12 3
又 ∠A=∠A' ∴ △ABC∽△A'B'C'
两三角形 的相似比 是多少?
要使两三角形相 似,不改变AC的 长,A'C'的长应
当改为多少?
BC 6 1 B'C' 18 3
AC 8 A'C' 21
AB BC AC A' B' B'C' A'C'
(1)∠A=120°,AB=7cm,AC=14cm, A
立体几何中夹角范围
立体几何中夹角范围
在立体几何中,夹角是指两条直线、两个平面或者一条直线和一个平面之间的角度。
夹角的范围取决于夹角所在的几何形状和空间位置。
以下是一些常见情况下夹角的范围:
1. 直线夹角范围,在平面几何中,两条直线之间的夹角范围是0度到180度之间。
夹角为0度时表示两条直线重合,夹角为180度时表示两条直线平行但不重合。
2. 平面夹角范围,在三维空间中,两个平面之间的夹角范围是0度到180度之间。
夹角为0度时表示两个平面重合,夹角为180度时表示两个平面平行但不重合。
3. 空间夹角范围,在三维空间中,一条直线和一个平面之间的夹角范围是0度到90度之间。
夹角为0度时表示直线在平面上,夹角为90度时表示直线垂直于平面。
总的来说,夹角的范围取决于几何体的维度和位置关系,但通常夹角的范围都是在0度到180度之间。
希望这些信息能够帮助你更好地理解立体几何中夹角的范围。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
人教版数学九年级下册《 两边成比例且夹角相等的两个三角形相似》PPT课件
探究新知 归纳: 由此得到利用两边和夹角来判定三角形相似的定理:
两边成比例且夹角相等的两个三角形相似.
符号语言:
∵
AB A' B'
AC A' C
'
,∠A=∠A′,
∴ △ABC ∽ △A′B′C′ . B'
A' A
C' B
C
探究新知
【思考】对于△ABC和 △A′B′C′,如果 A′B′ : AB= A′C′ : AC. ∠C=∠C′, 这两个三角形一定会相似吗?
B
∴ DF EF 3 .
F
AC BC 5
又 ∵∠C =∠F = 70°,∴△DEF∽△ABC. D
E
例 2 如图,△ABC 与 △ADE 都是等腰三角形,AD =
AE,AB = AC,∠DAB =∠CAE. 求证:△ABC∽△ADE.
AB AC . 求证:△ABC∽△A′B′C′. A' B' A' C'
证明:在 △A′B′C′ 的边 A′B′ 上取点 D, 使 A′D = AB.过点 D 作 DE∥B′C′, D
交 A′C′ 于点 E.
B'
∵ DE∥B′C′,∴ △A′DE∽△A′B′C′.
A'
E A C'
∴ A' D A' E . A' B' A' C'
巩固练习
已知∠A=40°,AB=8,AC=15, ∠A' =40°,A'B' =16, A'C' =30 ,判断△ABC与△A'B'C'是否相似,并说明理 由.
人教版 九年级下册数学第二十七章:相似 27.2 相似三角形教案设计
相似三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解相似三角形的概念,会准确找出两个相似三角形的对应边、对应角。
●探索两个三角形相似的条件,会选择恰当的方法识别两个三角形相似。
●探索相似三角形的性质,能运用性质进行有关计算。
●通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题。
●培养合情推理和数学说理能力。
重点:●掌握相似三角形的判定定理,会运用判定定理判定两个三角形相似;运用三角形相似的知识计算不能直接测量物体的长度和高度;相似三角形和相似多边形的周长、面积的性质的理解与运用。
难点:●相似三角形判定方法的运用;灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题);探索证明相似多边形面积的性质。
学习策略:对于本知识点的学习,应由低到高处理好以下几个方面的问题:●先识记并理解相似三角形的判定方法。
●灵活运用三角形的判定方法,进行证明或计算。
●学会由实际问题构建实际三角形,利用相似三角形解决实际问题。
●结合三角形的判定方法,从本质上去理解相似三角形的性质,在实际应用中加深体会相似三角形的性质。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)相似图形的概念我们把的图形称为相似图形(similar figures).(二)成比例线段对于四条线段a b c d 、、、,如果其中两条线段的比(即它们长度的比)与另两条线段的比 ,如a c b d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段(proportional segments).(三)相似多边形(similar polygons)(1)相似多边形的特征:相似多边形的对应 相等,对应 相等.(2)相似多边形的识别:如果两个多边形的对应 相等,对应 相等,那么这两个多边形相似.(四)判定两个三角形全等的方法有(简写形式)、 、 、 。
2022年初中数学精选《两边及其夹角分别相等的两个三角形2》课时练(附答案)
1.两边及其夹角分别相等的两个三角形一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是〔〕A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,在△ABC和△DEC中,AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是〔〕A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D5.如图,在四边形ABCD中,AB=AD,CB=CD,假设连接AC、BD相交于点O,那么图中全等三角形共有〔〕A.1对 B.2对 C.3对 D.4对6.在△ABC和CBA'''∆中,∠C=C'∠,b-a=ab'-',b+a=ab'+',那么这两个三角形〔〕A. 不一定全等B.不全等C. 全等,根据“ASA〞D. 全等,根据“SAS〞7.如图,AD是△ABC的BC边上的高,以下能使△ABD≌△ACD的条件是〔〕第1题第3题图第4题图第5题图A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,假设AD=4,AB=6,BC=8,那么梯形ABCD 的周长为〔 〕A .22B .24C .26D .28 二、填空题9. 如图,BD=CD ,要根据“SAS 〞判定△ABD ≌△ACD ,那么还需添加的条件是.10. 如图,AC 与BD 相交于点O ,假设AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 那么∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF . 12.如图,AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 〔写出一个即可〕.13.如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,那么∠BED= 度.第9题图第7题图第8题图第10题图第11题图14. 如图,假设AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC. 15. 如图,△ABC ,BA=BC ,BD 平分∠ABC ,假设∠C=40°,那么∠ABE 为 度. 16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,假设EF=5cm ,那么 AE= cm .40D CBAE17. :如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分别是C 、A ,那么BE 与DE 的位置关系是 .18. △ABC 中,AB=6,AC=2,AD 是BC 边上的中线,那么AD 的取值范围是 . 三、解答题19. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .ACE B 0CEDBA第13题图第14题图第12题图第15题图第16题图第17题图D20.:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
九年级数学初三下册:第一章 直角三角形的边角关系教案 教学设计
第一章直角三角形的边角关系1 锐角三角函数第1课时正切与坡度1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能用表示直角三角形中两直角边的比来表示物体的倾斜程度和坡度(坡比)等.3.能根据直角三角形的边角关系,用正切进行简单的计算.重点理解正切、倾斜程度、坡度的数学意义,密切关注数学与生活的联系.难点理解正切的意义,并用它来表示两边的比.一、情境导入师:梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放得“陡”,那个梯子放得“平缓”,人们是如何判断的?课件出示下图,提出问题:(1)甲组中EF和AB哪个梯子比较陡?你是怎么判断的?有几种判断方法?(2)乙组中AB和EF哪个梯子比较陡?你是怎么判断的?甲组乙组二、探究新知引导学生阅读教材第2~4页的内容,完成以下问题:1.比较梯子的倾斜程度(1)如图,这里摆放的三组梯子,每组梯子中哪一个更陡?梯子的倾斜程度与什么有关?(2)分别求出每组图中的AC BC 与ED FD,想一想它们的比值与梯子的倾斜程度有什么关系? 2. 如下图,小明想通过测量B 1C 1及 AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及 AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)Rt △AB 1C 1和 Rt △AB 2C 2有什么关系? (2)B 1C 1AC 1和B 2C 2AC 2有什么关系?(3)如果改变B 2在梯子上的位置呢? 由此你得出什么结论? 3.正切是如何定义的?4.梯子的倾斜程度与tan A 的值有什么关系? 5.坡度是如何定义的? 三、举例分析例 如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?甲 乙(1)tan α和tan β 的值分别是多少? (2)你能比较tan α和tan β 的大小吗?(3)根据tan A 的值越大,梯子越陡你能判断哪一个自动扶梯比较陡吗? 四、练习巩固1.在△ABC 中,∠C =90°,则tan A 等于( ) A.BC AB B.AC AB C.BC AC D. AB AC2.如图,在△ABC 中,∠C =90°,BC =6,若tan A =34,则AC =________.3.如图,Rt △ACB 中,∠B =90°,BC =10,tan A =512,求AB ,AC.五、课堂小结 1.易错点:(1) tan A 中常省略角的符号“∠”,用希腊字母表示角时也可省略,如:tan α,tan β 等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan ∠BAC 或tan ∠1,tan ∠2 等;(2) tan A 没有单位,它表示一个比值;(3) tan A 是一个完整的数学符号,不可分割,不表示“tan ”乘“A ”. 2.归纳小结:(1)tan A =∠A 的对边∠A 的邻边;(2)tan A 的值越大,梯子越陡.3.方法规律:(1)一个角的正切是在直角三角形中定义的,因此,tan A=∠A的对边∠A的邻边只能在直角三角形中适用;(2)坡面与水平面的夹角称为坡角;坡面的铅垂高度与水平宽度的比称为坡度(或坡比).六、课外作业1.教材第4页“随堂练习”第1、2题.2.教材第4页习题1.1第1、2题.本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过比较梯子哪个更徒引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观地呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深了学生对教学内容的体会和理解.本课中,对梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系.第2课时正弦和余弦1.理解正弦、余弦及三角函数的意义.2.能够运用sin A,cos A表示直角三角形两边的比.3.根据直角三角形中的边角关系,进行简单的计算.重点理解正弦、余弦的定义,能根据直角三角形的边角关系进行简单计算.难点正弦、余弦的理解及应用.一、复习导入1.在Rt△ABC中,∠C=90°,tan A=34,AC=10,求BC,AB的长.2.若梯子与水平面相交的锐角为∠A,∠A越大,梯子越________;tan A的值越大,梯子越________.3.当Rt △ABC 中的一个锐角A 确定时,其他边之间的比值也确定吗? 可以用其他的方式来表示梯子的倾斜程度吗?二、探究新知1.正弦、余弦及三角函数的定义 课件出示:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是什么? (2)B 1C 1AB 1和B 2C 2AB 2的关系是什么?(3)如果改变B 2在斜边上的位置,则B 1C 1AB 1和B 2C 2AB 2的关系是什么? 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小经已确定时,它的对边与斜边的比值____________,根据是________________.它的邻边与斜边的比值呢?2.梯子的倾斜程度与sin A 和cos A 的关系探究活动:梯子的倾斜程度与sin A 和cos A 之间有什么关系?如图,AB ,A 1B 1表示梯子,CE 表示支撑梯子的墙,AC 在地面上. (1)梯子AB ,A 1B 1哪个更陡?(2)梯子的倾斜程度与sin A 和cos A 有关系吗? 三、举例分析例 如图,在Rt △ABC 中,∠B =90°,AC =200,sin A =0.6,求BC 的长.(1)sin A等于图中哪两条边的比?(2)你能根据sin A=0.6写出等量关系吗?(3)根据等量关系你能求出BC的长吗?四、练习巩固1.在 Rt△ABC中,若各边的长度同时都缩小4倍,则锐角A的正弦值( )A.缩小4倍B.缩小2倍C.保持不变D.不能确定2.已知∠A,∠B为锐角.(1)若∠A=∠B,则sin A________ sin B;(2)若sin A=sin B,则∠A ________∠B.3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=6,求∠B的三个三角函数值.五、课堂小结1.易错点:(1)sin A,cos A,tan A是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sin A,cos A,tan A是一个完整的符号,表示∠A的正弦、余弦、正切,习惯省去“∠”符号;(3)sin A,cos A,tan A都是一个比值,注意区别,且sin A,cos A,tan A均大于0,无单位;(4)sin A,cos A,tan A的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系.2.归纳小结:(1)正弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB 的比叫做∠A的正弦,记作sin A;(2)余弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB 的比叫做∠ A的余弦,记作cos A;(3)sin A越大,梯子越陡; cos A越小,梯子越陡.3.方法规律:两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.六、课外作业1.教材第6页“随堂练习”第1、2题.2.教材第6~7页习题1.2第1、3、4、5题.本节课结合初中学生身心发展的特点,运用了类比教学法,加深学生对教学内容的体会和了解,很容易就掌握了正弦和余弦的概念和意义.同时,探究活动培养和发展了学生的观察、思维能力.本课时贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的基本认识规律,运用了这些直观教学,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.2 30°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义.2.能够进行30°,45°,60°角的三角函数值的计算.3.能够根据30°,45°,60°的三角函数值说明相应的锐角的大小.重点能够进行30°,45°,60°角的三角函数值的计算;能够根据30°,45°,60°角的三角函数值说出相应的锐角大小.难点通过探索特殊三角函数值的过程,培养学生进行有关推理的能力.一、复习导入1.在Rt△ABC中,∠C =90°.(1)a,b,c三者之间的关系是什么?∠ A+∠ B等于多少度?(2)如何表示sin A,cos A,tan A,sin B,cos B,tan B? 2.观察一副三角尺,其中有几个锐角?它们分别等于多少度?二、探究新知课件出示:如图所示,在Rt△ABC中,∠ C=90°,∠ A=30°.(1)a,b,c三者之间有什么样的关系?(2)sin 30°等于多少?你是怎样得到的?与同伴交流.(3)cos 30°等于多少?tan 30°呢?(4)sin 60°,cos 60°,tan 60°呢?(5)45°角的三角函数值分别是多少呢?引导学生填写表格:三角函数值sin A cos A tan A30°45°60°三、举例分析例1 计算:(1) sin 30°+cos 45°;(2) sin 260°+cos 260°-tan 45°.处理方式:通过记忆特殊角的三角函数值求解,注意格式和过程.例2 (课件出示教材第9页例2)引导学生思考如下问题:(1)你能根据题意画出图形吗?(2)你能根据所画图形构造直角三角形吗?(3)你能找到图形中的特殊角吗?(4)你能根据特殊角的三角函数值求出正确的结果吗?四、练习巩固1.下列式子中成立的是 ( )A.cos 72°<sin 35°<tan 46°B.sin 35°<tan 46°<cos 72°C.tan 46°<cos 72°<sin 35°D.tan 46°<cos 40°<sin 35°2.已知等腰△ABC的腰长为4 3,底角为30°,则底边上的高为________,周长为________.3.若(3tan A-3)2+||2cos B-3=0,则△ABC按角分类是什么三角形?五、课堂小结1.易错点:(1)能进行含30°,45°,60°角的三角函数值的计算;(2)能根据30°,45°,60°角的三角函数值,说出相应锐角的大小.2.归纳小结:sin 30°=12,sin 45°=22,sin 60°=32;cos 30°=32,cos 45°=22,cos 60°=12;tan 30°=33,tan 45°=1,tan 60°= 3.3.方法规律:在Rt△ABC中,若∠A+∠B=90°,则有:sin A=cos (90°-A);cos A= sin (90°-A) ;sin B=cos (90°-B);cos B=sin (90°-B).六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第10页习题1.3第1~4题.本节课课程设计中引入非常直接,由三角板引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.设计开门见山,节省了时间,为后面的教学提供了方便.在讲解特殊角的三角函数值时也很详细,可以说前部分的教学很成功,学生理解得很好.3 三角函数的计算1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义.2.能用计算器由已知三角函数值求角度.3.能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.重点熟悉计数器的使用,能熟练掌握按键顺序.难点非整数度的角的三角函数值的求法.一、情境导入课件出示:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m)引导学生思考以下问题:(1)在Rt△ABC中,sin α如何表示?(2)你知道sin 16°是多少吗?(3)我们可以借助科学计算器求锐角的三角函数值,那么怎样用科学计算器求三角函数值呢?二、探究新知1.已知角求三角函数值(1)引导学生阅读教材第12页用计算器求三角函数值的操作过程,提出问题:①利用计算器求三角函数值用到哪些按键?②求值过程中按键使用的先后顺序是什么?③求整数角度和用“度、分、秒”表示的角度的区别是什么?④通过自学你能利用计算器求出sin 16°的数值吗?(2)课件出示:当缆车继续由点B到达点D时,他又走过了200 m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?引导学生思考如下问题:①缆车从点B到点D通过的路程是多少?②缆车从点B到点D水平通过的路程是多少?③缆车从点B到点D垂直高度上升了多少?2.已知三角函数值求角(1)课件出示:为了方便行人推自行车过某天桥,市政府在10 m高的天桥两端修建了40 m长的斜道,这条斜道的倾斜角是多少?引导学生思考如下问题:①在Rt△ABC中,sin A如何表示?②你能根据题目中的已知条件求出sin A的数值吗?③你能根据sin A的数值求出∠A吗?(2)引导学生阅读教材第13~14页用计算器求角的操作过程,提出问题:①利用计算器求角用到哪些按键?②求角过程中按键使用的先后顺序是什么?③如何利用计算器将求出的角度进行“度、分、秒”的换算?④你能利用计算器求出∠A的度数吗?三、练习巩固1.用计算器计算cos 44°的结果(精确到0.01)是( )A.0.90 B.0.72 C.0.69 D.0.662. 用计算器求tan 35°的值,按键顺序是____________________.3.在 Rt△ABC中,若∠C=90°,BC=20,AC=12.5,求两个锐角的度数(精确到1°).四、课堂小结1.易错点:(1)用计算器求三角函数值与用计算器求角的区别和联系;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的.2.归纳小结:(1)用计算器求三角函数值;(2)用计算器求角.3.方法规律:(1)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定:如无特别说明,计算结果一般精确到万分位;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;先输入数字后,再按三角函数键.五、课外作业1.教材第14页“随堂练习”第1、2、3题.2.教材第15页习题1.4第1~6题.本节课在教学过程中,力求从基本知识入手,尽可能地使计算简单化,然后逐步地加深提高.但从实际的效果上看,学生的基础知识较差,计算能力薄弱,虽然训练量在增加,但效果却不明显,始终对三角函数的性质运用很不熟练.在教学过程中,我深切感到自身知识面的不足,在讲解练习时很单调,不能进行适当地扩展.在以后的教学中,我还要继续加强自身的学习,不断钻研教材教法,力争做到讲课通俗易懂.4 解直角三角形1.了解直角三角形的概念,掌握直角三角形的边角关系.2.能运用直角三角形的角与角(两锐角互余)、边与边(勾股定理)、边与角的关系解直角三角形.重点直角三角形的解法.难点灵活运用三角函数解直角三角形.一、复习导入师:在图形的研究中,直角三角形是常见的三角形之一,因此经常会遇到求直角三角形的边长或角度等问题. 为了解决这些问题,往往需要确定直角三角形的边或角.课件出示:如图,在直角三角形ABC中,∠C=90°,∠A,∠B,∠C的对边分别记作a,b,c.(1)直角三角形的三边之间有什么关系?(2)直角三角形的锐角之间有什么关系?(3)直角三角形的边和锐角之间有什么关系?师:直角三角形中有6个元素,分别是三条边和三个角.那么至少知道几个元素,就可以求出其他的元素呢?这就是我们本节课要研究的问题.二、探究新知1.已知两边解直角三角形课件出示教材第16页例1,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能正确求解吗?教师给出解直角三角形的定义及其依据.2.已知一边和一锐角解直角三角形课件出示教材第16~17页例2,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能仿照例1独立完成求解吗?3.总结(1)通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(2)除直角外有5个元素(3条边、2个锐角),要知道其中的几个元素就可以求出其他的元素?(3)通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?归纳:解直角三角形,有下面两种情况(其中至少有一边) :(1)已知两条边(一直角边一斜边;两直角边);(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角).三、练习巩固1.在Rt△ABC中,∠C=90°,sin A=34,AB=5,则边AC的长是( )A.3 B.4 C.154D.5742.已知在Rt△ABC中,∠C=90°,BC=6,sin A=23,那么AB=________.3.在△ABC中,已知∠C=90°,b+c=30,∠A-∠B=30°,解这个直角三角形.四、课堂小结1.易错点:(1)如何把实际问题转化为数学问题,进而把数学问题具体化;(2)至少需要一边,即已知两边或已知一边一锐角才能解直角三角形.2.归纳小结:(1)“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程;(2)解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角;(3)解直角三角形的方法:①已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);②已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;③已知一个锐角求另一个锐角时,用两锐角互余.3.方法规律:已知斜边求直边,正弦余弦很方便;已知直边求直边,首选正切理当然;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要选好;已知锐角求锐角,互余关系要记好;已知直边求斜边,用除还需正余弦;计算方法要选择,能用乘法不用除.五、课外作业1.教材第17页“随堂练习”.2.教材第17~18页习题1.5第1~4题.本节课的重难点是直角三角形的解法,为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形、直角三角形中三边之间的关系、两锐角之间的关系、边角之间的关系.正确选用这些关系,是正确解直角三角形的关键.解直角三角形的方法灵活多样,学生可以自由选择解题方法.在处理例题时,首先让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合的思想,然后全班集体交流解法和心得,达到共同进步.5 三角函数的应用1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.重点经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.难点灵活将实际问题转化为数学问题,建立数学模型,并选择适当的三角函数来解决.一、情境导入如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续往东航行.你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、探究新知课件出示教材第19页“想一想”,提出问题:(1)什么是仰角?(2)在这个图中,30°的仰角、60°的仰角分别指哪两个角?(3)怎样求该塔的高度?处理方式:学生先独立思考解决问题的方法,再回答.解:(1)当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.(2)30°的仰角指∠DAC,60°的仰角指∠DBC.(3)∵CD是Rt△ADC和Rt△BDC的公共边,在Rt△ADC中,tan 30°=CDAC,即AC=CD tan 30°.在Rt△BDC中,tan 60°=CDBC,即BC=CDtan 60°,又∵AB=AC-BC=50 m,∴CD tan 30°-CDtan 60°=50.解得CD≈43 m.三、举例分析例(课件出示教材第19页“做一做”)引导学生思考:(1)你能根据题意将实际问题转化为数学问题吗?(2)你能根据题意画出示意图吗?(3)若AC代表原楼梯长,则楼高、楼梯所占地面的长度分别是多少?(4)40°和35°的角分别是哪个角?(5)在楼梯改造过程中,楼高是否发生了变化?(6)Rt△ABC中的哪条边不变?解:由条件可知,在Rt△ABC中,sin 40°=ABAC,即AB=4sin 40°,原楼梯占地长BC=4cos 40°.调整后,在Rt△ADB中,sin 35°=ABAD,则AD=ABsin35°=4sin 40°sin 35°,楼梯占地长DB=4sin 40°tan 35°.∴调整后楼梯加长AD-AC=4sin 40°sin 35°-4≈0.48(m).楼梯比原来多占DC=DB-BC=4sin 40°tan 35°-4cos 40°≈0.61(m).四、练习巩固1.一辆汽车沿坡角为α的斜坡前进500 m,则它上升的最大高度为( )A.500sin α B.500sin αC.500cos α D.500cos α2.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6 m,则斜坡上相邻两树间的坡面距离是________ m.(结果保留根号)3.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12 m处,测得∠BAC=30°,求BC的长.(结果保留根号)五、课堂小结1.易错点:(1)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线长,角之间的关系,锐角三角函数值,周长、面积等等.对于这类问题,我们常用的解题方法是:将非基本量转化为基本量,或由基本量间关系通过列方程(组),然后解方程(组),求出一个或两个基本量,最终达到解直角三角形的目的;(2)在非直角三角形的问题中,往往是通过作三角形的高,构成直角三角形来解决,而作高时,常从非特殊角的顶点作高;对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形,利用解直角三角形的方法,实现问题的转化.2.归纳小结:解直角三角形一般有以下几个步骤:(1)审题:认真分析题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知条件;(2)明确题目中的一些名词、术语的含义,如仰角、俯角、跨度、坡角、坡度及方向角;(3)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;(4)确定合适的边角关系,细心推理计算.3.方法规律:(1)在解直角三角形中,正确选择关系式是关键:①若求边:一般用未知边比已知边,求寻找已知角的某一个三角函数值;②若求角:一般用已知边比已知边,去寻找未知角的某一个三角函数值;(2)求某些未知量的途径往往不唯一.选择关系式常遵循以下原则:一是尽量选可以直接应用原始数据的关系式;二是设法选择便于计算的关系式,若能用乘法计算就避免用除法计算.六、课外作业1.教材第20页“随堂练习”第1、2题.2.教材第21页习题1.6第1~4题.本节课尽可能站在学生的角度上思考问题,设计好教学的每一个细节.上课前多揣摩学生的认知特点,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,把课堂让给学生,让他们做课堂这个舞台的主角.教师尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作.不断总结课堂教学中的得失,不断进步,只有这样,才能真正提高课堂教学效率.6 利用三角函数测高1.能够对仪器进行调整和对测量结果进行矫正,能够对所得到的数据进行分析,从而得出符合实际的结果.2.能综合应用直角三角形的边角关系的知识解决实际问题.重点设计活动方案、自制仪器、运用仪器进行实地测量以及撰写活动报告.难点运用直角三角形的边角关系求物体的高.一、情境导入问题1:在现实生活中需要测量像旗杆、高楼、塔等较高且顶部不可到达的物体的高度,根据我们所学的知识,同学们有哪些测量方法?问题2:这些测量的方法都用到了什么知识?问题3:如何利用直角三角形的边角关系,测量底部不可以直接到达的物体的高度呢?二、探究新知1.设计活动方案,自制仪器(1)测倾器(或测角仪、经纬仪等)由哪几部分构成?(2)制作测角仪时应注意什么?处理方式:小组讨论总结测倾器的制作方法和使用步骤.2.测量倾斜角(1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.(2)转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.那么这个度数就是较高目标M的仰角.师:这样做的依据是什么?3.测量底部可以到达的物体的高度要测物体MN的高度,可按下列步骤进行:(如下图)(1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).师:根据测量数据,你能求出物体MN的高度吗?解:在Rt△MEC中,∠MCE=α,AN=EC=l,∴tan α=MEEC,即ME=EC·tan a=l·tan α.∵NE=AC=a,∴MN=ME+EN=l·tan α+a.4.测量底部不可以到达的物体的高度要测量物体MN的高度,可按下列步骤进行:(1)在测点A处安置测角仪,测得此时物体MN的顶端M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测角仪(点A,B,N都在同一条直线上),此时测得M的仰角∠MDE=β.(3)量出测角仪的高度AC=BD=a,以及测点A,B之间的距离AB=b.师:根据测量数据,你能求出MN的高度吗?分析:根据测量的AB的长度,AC,BD的高度以及∠MCE,∠MDE的大小,根据直角三角形的边角关系.即可求出MN的高度.解:∵在Rt△MDE中,ED=MEtan β,在Rt△MCE中,EC =MEtan α,∴EC-ED=b.∴MEtan β-MEtan αtan αtan β=b.∴ ME=btan αtan βtan β-tan α.∴ MN=btan αtan βtan β-tan α+a.三、练习巩固1.直升飞机在离地面2 000 m的上空测得上海东方明珠底部的俯角为30°,此时直升飞机与上海东方明珠底部之间的距离是( )A.2 000 m B.2 000 3 mC.4 000 m D.4 000 3 m2.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为 ________米(精确到1米).(参考数据:sin 22.3°≈0.38,cos 22.3°≈0.93,tan 22.3°≈0.41)3.九年级1班的同学为了了解教学楼前一棵树的生长情况,去年在教学楼前点A处测得树顶点C的仰角为30°,树高5 m,今年他们仍在原地A处测得大树顶点D的仰角为37°,问这棵树一年生长了多少米?(精确到0.01)(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75,3≈1.732)。
九年级下册人教版数学习题课件27.2.1相似三角形的判定第2课时 由三边或两边和夹角判定三
6.(3分)如图,A,B两点被池塘隔开,在AB外任取一点C,连接AC, BC,并分别取其三等分点M,N(M,N两点均靠近点C),量得MN=5 m,则AB的长是( B ) A.10 m B.15 m C.20 m D.25 m
7.(4分)如图,已知∠DAB=∠EAC,添加一个条件:________ ___AA_DB___=__AA_CE___(答__案__不__唯__一__)_______________,使△ ADE∽△ABC.
12.(易错题)如图,在△ABC中,D为边AC上的一点,若AB=12,AC=8,AD=6,P为边AB上的一动点,则当AP的长为
_5_c_m_/_s_,__分2_c_m_别_/s_的时以速,度△1沿.A5D射Pc线和mO△N/As,B,OCM相2的似c方.m向运/s动的,速连接度EF,沿A射E,E线F与OOAN交,于点OCM,且的当点方E到向达运点B动时,,点F连也随接之停E止F运,动,设运
8.(4分)如图,用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量 零件的内孔直径AB,若OC∶OA=1∶2,量得CD=10 cm,则零件的 内孔直径AB的长为__2_0_ cm.
9.(8分)如图,在△ ABC中,∠ACB=90°,点 D,E分别是边BC,AB上的点,且BBAE =BBDC =
BC 13.如图,点P为∠MON的平分线OC上的一点,以点P为顶点的∠APB两边分别与射线OM,ON相交于点A,B,如果∠APB在绕点P旋 B′C′ ,∴△ABC∽△A′C′B′ 转时始终满足OA·OB=OP2,我们就把∠APB叫做∠MON的“关联角”.如果∠MON=50°,∠APB是∠MON的“关联角”,那么
其对应角∠B的度数相比(
)D
A.增加了10% B.减少了10%
人教版数学九年级下册 两边成比例且夹角相等的两个三角形相似
27.2.1 相似三角形的判定
第3课时 两边成比例且夹角相等的两个三角 形相似
复习引入 1. 回忆我们学习过的判定三角形相似的方法. 类比证
明三角形全等的方法,猜想证明三角形相似还有 哪些方法?
2. 类似于判定三角形全等的 SAS 方法,能不能通过 两边和夹角来判定两个三角形相似呢?
D B'
B
A' E
A C'
C
归纳:
由此得到利用两边和夹角来判定三角形相似的定理:
两边成比例且夹角相等的两个三角形相似. A'
符号语言:
在 △ABC 和 △A′B′C′ 中,
∵ AB AC ,∠A =∠A′,
B'
A' B' A' C'
A C'
∴ △ABC ∽ △A′B′C′ .
B
C
思考:
对于△ABC和
典例精析
例 1 根据下列条件,判断 △ABC 和 △A′B′C′ 是否相
似,并说明理由:
∠A = 120°,AB = 7 cm,AC = 14 cm, ∠A′ = 120°,A′B′ = 3 cm,A′C′ = 6 cm.
解:∵ AB 7, AC 14 7,∴ AB AC .
A' B' 3 A'C' 6 3
∴ AD = AE,AB = AC.
∴ AD AE . AB AC
D E
又 ∵∠DAB =∠CAE,
B
C
∴∠DAB +∠BAE =∠CAE +∠BAE,
即∠DAE =∠BAC.∴△ABC∽△ADE.
例3 如图,D,E 分别是 △ABC 的边 AC,AB 上的点,
九年级下点到直线的距离和夹角公式
点到直线的距离公式:设直线l的方程为Ax+By+C=0,点P(x1,y1)为平面上一点,则点P到直线l的距离d的公式为:d=,Ax1+By1+C,/√(A^2+B^2)夹角公式:设直线l1的斜率为k1,直线l2的斜率为k2,则直线l1和直线l2的夹角θ的公式为:θ = atan(,k2 - k1, / (1 + k1 * k2))其中atan为反正切函数,其值介于-π/2到π/2之间。
这些公式能够帮助我们计算点到直线的距离和直线之间的夹角。
以直线和点的距离公式为例,来简单地解释一下这个公式的原理。
考虑一条直线l上的两个不同点P(x1,y1)和Q(x2,y2),我们需要计算点P到直线l的距离d。
我们知道直线l的方程是Ax+By+C=0,因此点P和点Q都同时满足这个方程即A*x1+B*y1+C=0和A*x2+B*y2+C=0。
设点P到直线l的距离为d,那么点P到直线l上的任意一点(x,y)的距离也应该是d。
根据点到直线的距离公式,我们有:d=((x-x1)^2+(y-y1)^2)^(1/2)=((x-x1)^2+(y-y1)^2)^(1/2)/1利用直线l的方程,我们可以将y表示为关于x的函数:y=(-A/B)x-C/B将y代入上式中,可以得到一个只有x的表达式:d=((x-x1)^2+((-A/B)x-C/B-y1)^2)^(1/2)/1为了简化计算,我们可以引入一个新的变量k=-A/B,将上式写成:d = ((x - x1)^2 + (kx + C/B + y1)^2)^(1/2) / 1为了确定最小距离,我们需要求解当这个表达式取得最小值时的x。
将上式展开,并对x求导数,令导数为0,可以得到一个方程:d = (x - x1)^2 + (kx + C/B + y1)^2对上式两边同时开方,并将常数项消去,可以得到:d^2 = (x^2 - 2xx1 + x1^2) + (kx + C/B + y1)^2展开后化简可得:d^2 = (1 + k^2)x^2 + (2A/Bkx + 2y1k + 2x1)x + x1^2 + (y1 + C/B)^2这是一个关于x的二次方程,记作Ax^2+Bx+C=0,其中:A=1+k^2B=2A/Bk+2y1k+2x1C=x1^2+(y1+C/B)^2-d^2根据二次方程的求根公式,可以解得x的两个值将这两个值代入关于y的方程y = kx + C/B + y1,可以得到点P到直线l的两个交点。
人教版数学九年级下册《三边法、两边及其夹角法》教案1
人教版数学九年级下册《三边法、两边及其夹角法》教案1一. 教材分析人教版数学九年级下册《三边法、两边及其夹角法》是几何学习的重要内容,主要介绍了利用三边关系和两边及其夹角关系来判定三角形全等的方法。
这部分内容是学生进一步学习几何证明和解决实际问题的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的几何证明基础。
但是,对于利用三边法和两边及其夹角法判定三角形全等的方法,学生可能还不够熟悉。
因此,在教学过程中,需要注重引导学生理解和掌握这两种方法,并能够灵活运用。
三. 教学目标1.知识与技能:使学生掌握三边法和两边及其夹角法判定三角形全等的方法,并能够灵活运用。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对几何学习的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:三边法和两边及其夹角法判定三角形全等的方法。
2.难点:灵活运用三边法和两边及其夹角法解决实际问题。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过设置富有挑战性的问题,引导学生观察、操作、猜想、验证,激发学生的学习兴趣,培养学生的空间想象能力和逻辑思维能力。
六. 教学准备1.教具:三角板、直尺、圆规。
2.课件:相关的几何图形和动画。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:在几何板上,用三角板画一个任意角度的角,然后用直尺和圆规作一个与其相等的角。
引导学生观察和思考:如何判断这两个角是否相等?2.呈现(10分钟)引导学生观察和分析三角板上的三角形,提问:如何判断两个三角形是否全等?引导学生思考和讨论,得出三边法和两边及其夹角法的概念。
3.操练(10分钟)让学生分组进行合作学习,每组用三角板、直尺、圆规等工具,尝试利用三边法和两边及其夹角法判断两个三角形是否全等。
人教版九年级下册数学:三边法、两边及其夹角法PPT共15页
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
15
1
0
、
倚
南ቤተ መጻሕፍቲ ባይዱ
窗
以
寄
傲
,
审
容
膝
之
易
安
。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
人教版九年级下册数学:三边法、两 边及其夹角法
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
人教版数学九年级下册27.2.1:三边法、两边及其夹角法课件
∴
AB BC AC ,
AB BC AC
∴△ABC∽△A′B′C′.
1.(泰州·中考)一个铝质三角形框架三条边长分别
为24cm,30cm,36cm,要做一个与它相似的铝质三角形
框架,现有长为27cm,45cm的两根铝材,要求以其中的
一根为一边,从另一根上截下两段(允许有余料)作为
另外两边.截法有( B )
A.0种
B. 1种
C. 2种 D. 3种
2. 如图,已知: AB BC AC,试说明∠BAD=∠CAE.
AD DE AE
A E
∴ΔABC∽ΔADE, ∴∠BAC=∠DAE,
D
B
C
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE.
答案:相似. 相似比为2﹕1.
4.要作两个形状相同的三角形框架,其中一个三角形
A
D
E
D
E
A
∵ DE∥BC
∴ △ ADE ∽ △ ABC
B A型
CB
X型
C
二、 三角形全等有哪几种简单的判定方法呢? SSS、SAS 、ASA(AAS)、HL 【猜想】 有没有其他简单的办法判断两个三角形相似呢?
A 三组对应边的比相等 A′
B′
C′
B
C
是否有△ABC∽△A′B′C′?
【探究】 任意画一个三角形,再画一个三角形,使它的各边 长都是原来三角形各边长的k倍,度量这两个三角形 的对应角,它们相等吗?这两个三角形相似吗?与 同桌交流一下,看看是否有同样的结论。
27.2.1 相似三角形的判定
第2课
1.理解定理“平行于三角形一边的直线和其他两边相交, 所构成的三角形与原三角形相似”,“如果两个三角形的 三边成比例,那么这两个三角形相似.” 2.培养学生与他人交流、合作的意识.
人教版九年级下册数学:三边法、两边及其夹角法(共32张PPT)
27.2.1相似三角形的判定(2)
知识回顾
1. 我们学过哪些判定三角形相似的方法? ⑴定义:三个角分别相等,三边成比例的两个 三角形相似;
⑵引理:平行于三角形一边的直线和其他两边相交, 所构成的三角形与原三角形相似.
A
D
E
ED AA
DE
∵ DE//BC ∴ △ ADE ∽ △ ABC
三角形相似的判定定理:
(1)拿出准备好的三角形纸片(每张三角形纸片已标好三边长度); 已知:如图,在△ABC和△A'B'C'中, 已知:如图,在△ABC和△A'B'C'中, 例 根据下列条件,判断△ABC 和△A'B'C'是否相似, 已知:如图, △A'B'C'和 △ABC中,∠A ' =∠A, ⑵引理:平行于三角形一边的直线和其他两边相交, (注意:长边对长边,短边对短边. (SSS) △ABC∽△A′B′C′ (1)拿出准备好的三角形纸片(每张三角形纸片已标好三边长度); △ABC∽△A'B'C' △A'DE∽△A'B'C' ∴ △ ADE ∽ △ ABC 猜想:三边成比例的两个三角形相似
探究一:◈三边成比例的两个三角形相似
DEBCAE AC △ABC∽△A′B′C′. , 两边成比例且夹角相等
A
BC 三角形相似的判定定理: BC AC AC
D
探究一:◈三边成比例的两个三角形相似
D E B,A C EAC 已知:如图, △A'B'C'和 △ABC中,∠A ' =∠A,
证明△A'DE≌△ABC
三边法、两边及其夹角法-人教版九年级数学下册教案
三边法、两边及其夹角法-人教版九年级数学下册教案一、教学内容本节课程的教学内容为三边法、两边及其夹角法。
二、教学目标1.了解三边定量法和两边夹角定量法的概念,能正确理解两种方法的思路和求解步骤。
2.掌握利用三角形的三边或两边及其夹角求解三角形的周长、面积等问题的方法。
3.培养学生的数学思维能力和解决实际问题的能力。
三、教学重难点1.重点:理解和掌握两种方法的求解思路和步骤。
2.难点:应用方法解决实际问题。
四、教学方法1.归纳法:通过归纳总结数学知识与规律,提高学生的理解能力。
2.实践法:通过实际问题的解决和验证,加深学生的记忆和理解,提高学生的实际操作能力。
五、教学过程(一)引入1.讲解选题背景和知识点,激发学生学习兴趣。
2.利用文章《测量建筑物高度的方法》向学生展示实际生活中应用三角形的例子,引导学生了解数学知识在实际生活中的重要性。
(二)理论讲解1.介绍三边定量法和两边夹角定量法,并分别讲解求解步骤。
2.通过示例演示和讲解样本题目,通过讲解思路和解题技巧,提高学生对知识的理解和记忆。
(三)练习和实践操作1.利用样本题目和习题集的练习题,给学生足够多的时间进行练习和巩固。
2.分组进行小组讨论,挖掘实际问题并设计解决方案,实现知识向解决实际问题的迁移。
(四)总结1.结合习题解答,帮助学生答疑解惑,加深对知识点的理解。
2.对本节课程的知识重点难点、解题方法和正确策略进行总结归纳,加强学生记忆和理解。
(五)作业布置布置背书、习题等作业,要求对应学生的能力水平。
要求学生认真对待作业,积极解决问题。
六、教学反思通过本节课程的教学,我们有效地提高了学生用数学解决实际问题的能力和深入理解掌握数学知识的能力,同时也了解到教学过程中需要关注学生的个性特点,结合实际情况灵活使用不同教学方法,极大地提高教学效率和效果。
人教版九年级下册数学:三边法、两边及其夹角法共15页文档
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
பைடு நூலகம்谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习导学:
(1) 两个三角形全等有哪些判定方法?
(2) 我们学习过哪些判定三角形相似的方法?
(3) 相似三角形与全等三角形有怎样的关系?
二、探究研讨:
探究一: 任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。
思考:通过上述操作我们发现,只要两个三角形的边具备什么条件时,这两个三角形就相似?
三角形相似的判定方法2:
的两个三角形相似.
几何语言表述:∵
∴△ABC∽△A′B′C′
探究二:(认真阅读教材P33页)
证明:
三角形相似的判定方法3:
___ __的两个三角形相似.
几何语言表述:
三、巩固提升:
1、根据下列条件,判定△ABC与△A′B′C′是否相似,并说明理由:
(1) △ABC与△A′B′C′中,∠A=120°,AB=7cm,AC=14cm,
∠A′=120°A′B′=3cm,A′C′=6cm;
(2) △ABC与△A′B′C′中,AB=4cm,BC=6cm,AC=8cm,
A′B′=12cm,B′C′=18cm,A′C′=21cm.
2、如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:△ABC∽△EFD.。