九年级数学第二次月考试卷
河南省信阳市商城县第二中学2021-2022学年九年级上学期第二次月考数学试题(含答案)
2021-2022学年河南省信阳市商城二中九年级(上)第二次月考数学试卷一、选择题,(每小题3分,共30分)下列各题均有四个选项,其中只有一个是正确的,请将正确选项填入括号内。
1.(3分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.2.(3分)已知:关于x的一元二次方程x2﹣2mx=1﹣m2根的情况是()A.两个不相等的实数根B.无实数根C.两个相等的实数根D.有一个实数根3.(3分)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC 与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:54.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0 5.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC 的度数为()A.65°B.35°C.32.5°D.25°6.(3分)已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A.k>﹣B.k>﹣且k≠0C.k≥﹣D.k≥﹣且k≠0 7.(3分)小明做两道数学单选题部有A、B、C、D四个选项,小明不会做,于是瞎猜这两道单选题,则都猜对的概率是()A.B.C.D.8.(3分)如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=9.(3分)如图是二次函数y=ax2+bx+c(其中a、b、c为常数a≠0)图象的一部分,对称轴是直线x=1;结合图象对于下列说法:(1)abc<0;(2)2a+b=1;(3)ax2+bx+c =0有两个不相等实数根;(4)当x<﹣1或x>3时,y<0.其中正确的是()A.(1)(2)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)10.(3分)如图,正△ABC的边长为5,过点B的直线l⊥AB,且△ABC与△A’BC’关于直线l对称,D为线段BC’上一动点,则AD+CD的最小值是()A.B.C.D.10二.填空题(每小题3分,共15分)11.(3分)请写出一个二次函数图象过原点且与x轴有两个交点的函数关系式.12.(3分)若反比例函数y=(k≠0)的图象经过点(2,﹣),则一次函数y=kx﹣k (k≠0)的图象不经过第象限.13.(3分)抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是.14.(3分)如图,以O为圆心,AB为直径的半圆O内有一直角三角形OBC,∠OBC=30°,将直角三角形BOC绕点O旋转至△B′OC′,点C在OA上,AB=4cm,则边BC扫过阴影部分面积为.15.(3分)如图,在矩形ABCD中,AB=8,AD=6,点E为对角线AC上一点,且AE=2,连接DE,点F为DE的中点,连接CF,则CF的长为.三、解答题(共8小题,满分75分)16.(8分)解方程:(1)x2+x﹣1=0.(2)(x+2)2=3(x+2).17.(9分)中招考试前,河南某校采用各种方式缓解学生压力,以求最佳状态迎接中考,于是对九年级部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们根据自己的情况必选且只选其中一类,学校收集数据整理如下:(1)本次调查共抽取了名九年级学生?(2)请补全条形统计图.(3)全校有3600人参加此次中考,请问用体育活动减压的学生大致有多少人?18.(9分)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.19.(9分)已知二次函数y=ax2+bx+c中自变量x和函数值y的部分对应值如下表:x…﹣10123…y…105212…(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)写出y≤5时自变量x的取值范围(可以结合图象说明).20.(9分)已知反比例函数(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,4),(﹣3,0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点,若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为个.21.(10分)初中生涯即将结束,同学们为友谊长存,决定互送礼物,于是去某礼品店购进了一批适合学生的毕业纪念品.已知购进3个A种礼品和2个B种礼品共54需元,购进2个A种礼品和3个B种礼品共需46元.(1)A,B两种礼品每个的进价是多少元?(2)该店计划用4200元全部购进AB两种礼品,设购进A种x个,B种y个.求y关于x的函数关系式.(3)该店进货时,A种礼品不少于60个,已知A种礼品每个售价为20元,B种礼品每个售价为9元,若该店全部售完获利为W元,试说明如何进货获利最大?最大为多少元?22.(10分)在数学课上,李老师在黑板上写出一道如下的试题:如图,△ABC内接于⊙O,AB为⊙O的直径,AC的长为4,CD为⊙O的切线,过点O作OD⊥AB,交CD于点D,与AC交于点E李老师要求添加条件后,编制一道题目,并解答.(1)在黑板内容中添加条件BC=2,求AB的长,请你解答.(2)以下是小明、小超的对话:小明:我加的条件是AO=,就可以求出BC的长了;小超:你这样太简单了,我加的条件是∠A=30°,选接OC,可以证明△ACB与△OCD 相似.李老师说:我们这节课侧重学习的是与切线性质有关的知识,小超添加的条件,证明的结论涉及到了切线性质的知识,而小明的没有涉及到切线性质的知识,请你解答一下小超提出来的问题.23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,BB′与CE的数量关系是.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.2021-2022学年河南省信阳市商城二中九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题,(每小题3分,共30分)下列各题均有四个选项,其中只有一个是正确的,请将正确选项填入括号内。
2021-2022学年浙江省杭州市西湖区九年级(上)第二次月考数学试卷(解析版)
2021-2022学年浙江省杭州市西湖区九年级第一学期第二次月考数学试卷一.选择题:本大题有10个小题,每小题3分,共30分.在每题给出的四个选项中,只有一个选项是符合题目要求的.1.任意抛掷一枚均匀的骰子,骰子停止转动后,发生可能性最大的事件是()A.朝上一面的点数大于2B.朝上一面的点数为3C.朝上一面的点数是2的倍数D.朝上一面的点数是3的倍数2.若二次函数y=ax2(a≠0)的图象过点(﹣2,﹣3),则必在该图象上的点还有()A.(﹣3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣2,3)3.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则()A.B.C.D.4.若四边形ABCD是圆内接四边形,则它的内角∠A,∠B,∠C,∠D的度数之比可能是()A.3:1:2:5B.1:2:2:3C.2:7:3:6D.1:2:4:3 5.在10倍的放大镜下看到的三角形与原三角形相比,三角形的周长()A.没有发生变化B.放大了10倍C.放大了30倍D.放大了100倍6.如图,在⊙O中,弦AC与半径OB交于点D,连接OA,BC,若∠B=60°,∠ADB=116°,则∠AOB的度数为()A.132°B.120°C.112°D.110°7.已知(﹣3,y1),(﹣2,y2),(1,y3)是二次函数y=﹣2x2﹣8x+m图象上的点,则()A.y2>y1>y3B.y2>y3>y1C.y1<y2<y3D.y3<y2<y18.如图,在△ABC中,点D在边AB上,DE∥BC交AC于点E,连接BE,DF∥BE交AC 于点F.若AF=3,CF=5,则△DEF与△BDE的面积之比为()A.B.C.D.9.如图,AB是⊙O的弦(非直径),点C是弦AB上的动点(不与点A、B重合),过点C作垂直于OC的弦DE.设⊙O的半径为r,弦AB的长为a,,则弦DE的长()A.与r,a,m的值均有关B.只与r,a的值有关C.只与r,m的值有关D.只与a,m的值有关10.已知二次函数y=ax2+bx﹣1(a,b是常数,a≠0)的图象经过A(2,1),B(4,3),C(4,﹣1)三个点中的其中两个点,平移该函数的图象,使其顶点始终在直线y=x﹣1上,则平移后所得抛物线与y轴交点纵坐标的()A.最大值为﹣1B.最小值为﹣1C.最大值为D.最小值为二、填空题(每题4分,满分24分,将答案填在答题纸上)11.已知抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为.12.已知线段AB长是2,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为.13.一个布袋里有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出1个球不放回,再摸出1个球,摸出的2个球都是红球的概率是.14.如图,BD、CE是⊙O的直径,弦AE∥BD,AD交CE于点F,∠A=25°,则∠AFC =.15.如图,二次函数y=ax2+bx+c与反比例函数y=的图象相交于点A(﹣1,y1)、B(1,y2)、C(3,y3)三个点,则不等式ax2+bx+c>的解是.16.如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.三、解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
合肥市九年级上学期数学第二次月考试卷
合肥市九年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)已知关于x的一元二次方程(a-2)x2+ax+1=0,其中a的值可以是()A . 2B . 0C . ±2D . 任意实数2. (2分) (2018·灌云模拟) 该校22名男子足球队队员的年龄分布情况如下表:年龄岁131415161718频数人数268321则这些队员年龄的平均数和中位数分别是(A . 16岁、15岁B . 15岁、14岁C . 14岁、15岁D . 15岁、15岁3. (2分)(2017·环翠模拟) 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A . 240米B . 160米C . 150米D . 140米4. (2分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A . 2B . 4C . 12D . 165. (2分)下列说法不一定正确的是()A . 所有的等边三角形都相似B . 有一个角是100°的等腰三角形相似C . 所有的正方形都相似D . 所有的矩形都相似6. (2分) (2017九上·东丽期末) 抛物线的顶点坐标是()A .B .C .D .7. (2分)如图,P是正方形ABCD内一点,∠APB=135, BP=1,AP=,求PC的值()A .B . 3C .D . 28. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=-1或x=3时,函数y的值都等于0.其中正确结论的个数是()A . 3B . 2C . 1D . 0二、填空题 (共8题;共9分)9. (1分)(2013·南宁) 若二次根式有意义,则x的取值范围是________.10. (1分)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是________.11. (1分)(2017·铁西模拟) 如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.12. (1分)如图,AD∥BE∥CF ,直线,与这三条平行线分别交于点A , B , C和点D , E , F ,,DE=6,则EF=________.13. (2分) (2018九上·丹江口期末) 如图,正方形ABCD中,AB=3cm,以B为圆心,1cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为________cm.14. (1分)直角三角形的两边长为5和7,则第三边长为________15. (1分)将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为________16. (1分) (2018九上·焦作期末) 如图,D,E分别是△ABC的边AB和AC上的动点,且DE∥BC,当DE把△ABC的面积分成1:3的两部分时,的值为________.三、解答题 (共11题;共103分)17. (10分)(2020·莲湖模拟) 计算:18. (2分)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图,若CB=a,CE=2a,求BM,ME的长;19. (2分) (2018九上·包河期中) 如图,是某座抛物线型的隧道示意图,已知路面AB宽24米,抛物线最高的C与路面AB的距离为8米,为保护来往车辆的安全,在该抛物线上距路面AB高为6米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF。
2021-2022学年新疆乌鲁木齐九中九年级(上)第二次月考数学试卷(附答案详解)
2021-2022学年新疆乌鲁木齐九中九年级(上)第二次月考数学试卷一、选择题(本大题共9小题,共45.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列食品标识中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.若关于x的一元二次方程(2k−1)x2+x−4k2=0的一个根为1,则k的值为( )A. 12B. 0或12C. 1D. 03.如图△ABC中,∠C=90°,∠B=20°,以C为圆心,CA为半径的圆交AB于点D,则AD⏜的度数为( )A. 30°B. 40°C. 45°D. 50°4.若关于x的一元二次方程|k−1|x2−6x+9=0有2个相等的实数根,则k的取值范围是( )A. k=2B. k=0C. k<1且k≠0D. k=2或k=05.如图,点A,B,C在⊙O上,∠O=62°,则∠BAC的度数是( )A. 28°B. 31°C. 54°D. 72°6.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了2352张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )A. x2−x=2352B. x2−x=2×2352C. x2−x=2352÷2D. x2+x=23527.⊙O半径为4,以⊙O的内接正三角形、正方形、正六边形的边心距为边作一个三角形,则所得三角形的面积是( )A. √2B. √3C. 2√2D. 2√38.如图,扇形OBA中,点C在弧AB上,连接BC,P为BC中点.若∠AOB=120°,点C沿弧从点B运动到点A的过程中,点P所经过的路径长为2π,则OA的长为( )A. 3B. 4C. 6D. 89.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是( )A. B.C. D.二、填空题(本大题共6小题,共30.0分)10.方程ax2+bx+c=0(a≠0)的系数a,b,c满足a−12b+14c=0,则方程有一个根为______.11.如图,四边形ABCD为⊙O的内接四边形,OD//BC,∠CBO=40°,则∠BCD的大小是______.12.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=−113x2+1213x+1,由此可知该生此次实心球训练的成绩为______米.13.直角三角形的两条直角边分别是二次函数y=a(x−5)2+12的顶点的横纵坐标,则该直角三角形的内切圆半径为______.14.如图,在Rt△ABC中,∠ACB=90°,BC=5,AB=13,E是边BC上的一动点,连接AE,作CD⊥AE于点D,连接BD,则BD的最小值为______.15.如图,在⊙O中,半径OC=6,D是半径OC上一点,且OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于______.三、解答题(本大题共8小题,共75.0分。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)
2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。
人教版九年级(上第二次月考数学试卷(解析版)
人教版九年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,103.已知,则的值是()A.B.C.D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:912.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.若(b+d+f≠0),则=.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是.三、解答题(共72分)17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是;(2)△A1B1C1的面积是平方单位.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=,BQ=.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.参考答案与试题解析一.选择题(共12小题)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,10【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选:C.3.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.6.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.8.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH =90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【分析】首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案.【解答】解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=.故选:A.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.【分析】根据平行线分线段成比例定理得到==3,则BC=3CE,然后利用BC+CE=BE=10可计算出CE的长.【解答】解:∵AB∥CD∥EF,∴==3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=10,∴CE=.故选:C.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵CF∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.二.填空题(共4小题)13.若(b+d+f≠0),则=.【分析】直接根据等比性质求解.【解答】解:∵,故答案为.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=5﹣5.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5﹣5.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为11.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程即可.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得x1=11,x2=﹣10,(舍去),答:参加这次会议的有11人.故答案为:11.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).【分析】根据勾股定理求出AB,分点M在OB上、点M在OA上两种情况,根据相似三角形的性质计算,得到答案.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB==5,当点M在OB上,△BMC∽△BOA时,=,∵C是AB的中点,∴OM=OB﹣BM=,∴点M的坐标为(0,);当点M在OA上,△AM′C∽△AOB时,==,∴AM′=2,∴OM′=OA﹣AM′=2,∴点M的坐标为(2,0);当点M在OA上,△AM′′C∽△ABO时,=,即=,解得,AM′′=,∴OM′′=4﹣=,∴点M的坐标为(,0);综上所述,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).三.解答题17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是(1,0);(2)△A1B1C1的面积是10平方单位.(2)利用梯形面积减去周围三角形面积求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1即为所求,点C1的坐标是(1,0);故答案为:(1,0);(2))△A1B1C1的面积是:(2+4)×6﹣×2×4﹣×2×4=10.故答案为:10.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).【分析】(1)方程利用公式法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+5x﹣7=0,这里a=2,b=5,c=﹣7,∵△=b2﹣4ac=25+56=81>0,∴x==,即x1=1,x2=﹣;(2)方程整理得:x2+3x=﹣,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣+,x2=﹣﹣.19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.0即可.【解答】证明:∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.【分析】延长DH交BC于点M,延长AD交BC于N,构造相似三角形,利用相似三角形对应边成比例求解.【解答】解:延长DH交BC于点M,延长AD交BC于N.∴BM=3.4,DM=0.9.由,可得MN=1.2.∴BN=3.4+1.2=4.6.由,可得AB=3.45.所以,大树的高度为3.45米.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.【分析】根据平行线和角平分线,可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBC=∠BDE,∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得EC=4.5cm.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.【分析】(1)先证明△AEF≌△DEB(AAS),得AF=DB,根据一组对边平行且相等可得四边形ADCF是平行四边形,由直角三角形斜边中线的性质得:AD=CD,根据菱形的判定即可证明四边形ADCF是菱形;(2)先根据菱形和三角形的面积可得:菱形ADCF的面积=直角三角形ABC的面积,即可解答.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【分析】根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【分析】(1)分别表示出增加的件数和盈利的金额即可;(2)日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),把相关数值代入求解即可.【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=5tcm,BQ=(8﹣4t)cm.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.【分析】(1)根据题意列式即可;(2)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA 时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(3)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)根据题意知:BP=5tcm,BQ=8﹣4tcm,故答案为:5tcm,(8﹣4t)cm;(2)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm);分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴=,解得,t=;∴t=1或时,△BPQ∽△BCA;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴=,∴=,解得t=.。
人教版九年级上册数学第二次月考试卷及答案
人教版九年级上册数学第二次月考试题一、单选题1.下面的图形中,是中心对称图形的是( )A .B .C .D . 2.方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .6、2、5 B .2、﹣6、5 C .2、﹣6、﹣5 D .﹣2、6、5 3.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是( ) A .2x =- B .0x = C .1x = D .3x = 4.二次函数2231y x x =-+图象一定过点( )A .()1,1-B .(),215-C .()0,1-D .()3,7 5.如图,OAB 绕点O 逆时针旋转80︒到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .35︒B .40︒C .45︒D .55︒ 6.若1x 、2x 是一元二次方程2280x x --=的两个根,则1212x x x x +-的值是( ) A .10 B .8- C .6- D .27.平面直角坐标系中,点(1,3)P -绕原点顺时针旋转90︒得到点P '的坐标是( ) A .(3,1)-- B .(-3,1) C .(-1,-3) D .(3,1) 8.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x 个人,列出的方程是( )A .(1)64x x +=B .(1)64x x -=C .2(1)64x +=D .(12)64x +=9.若二次函数26y x x c =-+的图象经过()11,A y -,()22,B y ,()35,C y 三点,则1y ,2y ,3y 的大小关系正确的是( )A .123y y y >>B .132y y y >>C .213y y y >>D .312y y y >> 10.如图,当ab >0时,函数y =ax 2与函数y =bx +a 的图象大致是( )A .B .C .D .二、填空题11.一元二次方程290x 的解是__.12.若点A (a ,1)与点B (﹣5,b )是关于原点O 的对称点,则a+b =_____. 13.当x =___________时,二次函数256y x x =-+取最小值.14.若关于x 的一元二次方程2420x x m -+=有两个不相等的实数根,则m 的取值范围是________.15.若二次函数y=mx 2﹣3x+2m ﹣m 2的图象经过原点,则m=________.16.如图,直线y mx n =+与抛物线2y ax bx c =++交于A (-1,p ),B (4,q )两点,则关于x 的不等式2mx n ax bx c +<++的解集是____________.17.如图所示,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=6,BC=8,则BD=_____________.三、解答题18.解方程:(1)22410x x --=(配方法)(2)2(1)66x x +=+19.如图,在平面直角坐标系中,ABC 的三个顶点坐标为(3,4)A -,(4,2)B -,(2,1)C -,ABC 绕原点逆时针旋转90︒,得到111A B C △,111A B C △向右平移6个单位,再向上平移2个单位得到222A B C △.(1)画出111A B C △和222A B C △;(2)(,)P a b 是ABC 的AC 边上一点,ABC 经旋转、平移后点P 的对应点分别为1P 、2P ,请写出点1P 、2P 的坐标.20.已知抛物线223y x x =--.(1)求抛物线与两坐标轴的交点坐标;(2)求它的顶点坐标,21.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元,求出y与x之间的函数关系式,并当x取何值时,商场获利润最大?23.将一条长为40cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.52cm,那么这段铁丝剪成两段后的长度分别是多(1)要使这两个正方形的面积之和等于2少?45cm吗?若能,求出两段铁丝的长度;若不能,请(2)两个正方形的面积之和可能等于2说明理由.24.如图①,在ABC 中,90,ACB AC BC ∠=︒=,以C 为顶点作45DCE ∠=︒,且CD CE 、分别与AB 相交于D E 、两点,将ACD △绕点C 逆时针旋转90︒得到BCF △.(1)若64AD EB ==,,求DE 的长;(2)若将DCA ∠绕点C 逆时针旋转使CD 与AB 相交于点D ,边CE 与AB 的延长线相交于点E ,而其他条件不变,如图②所示,猜想DE 与AD EB 、之间有何数量关系?证明你的猜想.25.如图,抛物线212y x bx c =-++与x 轴交于A B ,两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0),(0,2)A C -.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,求CBF 的最大面积及此时点E 的坐标.参考答案1.D2.C3.B4.B5.A6.A7.A8.C9.B10.C11.x 1=3,x 2=﹣3.12.413.5214.m <215.216.14x -<<17.1018.(1)11x =,21x =+;(2)11x =-,25x =. 19.(1)见解析;(2)1(,)P b a -,2(6,2)Pb a -++ 20.(1)(-1,0),(3,0);(2)(1,-4)21.解:(1)90°;(2)22.(1)2000元;(2)2101002000y x x =-++,当5x =时,商店所获利润最大为2250元.23.(1)16cm 24cm 、;(2)不能,理由见解析.24.(1)DE =(2)222DE AD BE =+,证明见解析.25.(1)213222y x x =-++;(2)存在,P 35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭或3,42⎛⎫ ⎪⎝⎭;(3)CBF 的最大面积为4,此时E 点坐标为(2,1).。
辽宁省盘锦市双台子区实验中学2022-2023学年 九年级上学期数学第二次月考试卷
考试时间120分钟 试卷满分150分 亲爱的同学们:当你打开试卷的同时,你的思维将会接受一番挑战,希望你沉着冷静,仔细思考,相信自己,勇敢接受考验,争取考出自己的最佳水平! 第Ⅰ卷(选择题 共30分) 一.选择题(每题3分,共 30分) 1.下列方程中,是一元二次方程的是( ) A .310x ﹣= B .2 230x += C .22(1)0x x +-= D .21x ﹣1=0 2.下列标识中,是中心对称图形的是( ) A . B . C . D . 3.如图,抛物线2y ax bx c ++=交x 轴于点(﹣1,0)和(4,0),那么下列说法正确的是( ) A .0ac > B .240b ac ﹣< C .对称轴是直线x =2.5 D .b >0 (第3题) (第4题) (第6题) 4.如图,将△ABC 绕点A 逆时针旋转55°得到△ADE ,若∠E =70°且AD ⊥BC 于点F ,则∠BAC 的度数为( ) A .65° B .70° C .75° D .80° 5.若关于x 的一元二次方程22(2)40k x x k -++-=有一个根是0,则k 的值是( ) A .﹣2 B .2 C .0 D .﹣2或2 6.如图,PA 、PB 分别与⊙O 相切于A 、B ,∠P =70°,C 为⊙O 上一点,则∠ACB 的度数为( )A .110°B .120°C .125°D .130°☆☆☆☆☆ ☆☆☆☆☆☆☆☆☆☆☆☆ ☆☆☆☆请☆勿☆于☆装☆订☆线☆内☆答☆题☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 姓 名 班 级 考 场 考 号 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 请按要求填写好姓名、班级、考场、考号,答题时间为120分钟。
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆考试时间120分钟 试卷满分150分7.世界卫生组织关于埃博拉疫情报告称,在病毒传播中,每轮平均1人会感染x 个人,若2个人患病,则经过两轮感染就共有162人患病.求x 的值( )A .9B .8C .7D .68.如图,CD 是△ABC 的边AB 上的中线,将线段AD 绕点D 顺时针旋转90°后,点A 的对应点E 恰好落在AC 边上,若AD =2,BC =5,则AC 的长为( )A .3B .4C .7D .23(第8题) (第9题)9.如图,在平面直角坐标系中,与y 轴相切的⊙P 的圆心是(2,a )且(a >2),函数y =x 的图象被⊙P 截得的弦AB 的长为23,则a 的值是( )A .23B .23+C .22+D .2210.如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A .B .考试时间120分钟 试卷满分150分C .D .填空题(每小题3分,共24分) 11.已知点M (a ,2)在第二象限,且|a |=1,则点M 关于原点对称的点的坐标是 . 12.如图,在正六边形ABCDEF 中,连接AC ,CF ,则∠ACF = 度.(第12题) (第14题) (第15题)13. 关于x 的一元二次方程2(1)10a x bx +++=有两个相等的实数根,则代数式2826a b -+的值是 .14. 如图,在半径为1的扇形AOB 中,∠AOB =90°,点P 是弧AB 上任意一点(不与点A ,B 重合),OC ⊥AP ,OD ⊥BP ,垂足分别为C ,D ,则CD 的长为 .15.已知关于x 的二次函数23y ax bx ++=的图象如图所示,则关于x 的方程20ax bx +=的非零根为 .16. 如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在⊙O 上,边AB 、AC 分别交⊙O 于D 、E 两点,点B 是的中点,则∠ABE = .(第16题) (第17题) 17.如图,在△ABC 中,∠ACB =90°,CA =CB =8cm ,点D 为△ABC 内一点,∠考试时间120分钟 试卷满分150分ACD =15°,CD =3cm ,连接AD ,将△ACD 绕点C 按逆时针方向旋转,使CA 与CB 重合,点D 的对应点为点E ,连接DE ,DE 交BC 于点F ,则BF 的长为 cm .18.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB =AC ,连接OB 、OC ,延长CO 交弦AB 于点D .若△OBD 是直角三角形,则弦BC 的长为 .三、解答题(第19题8分,第20小题14分,共22分.)19.计算.(1)222880x x +-= (2)12)3)(31(2+=+-x x x20.如图,△ABC 三个顶点的坐标分别是A (1,1),B (4,2),C (3,4).(1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2)请画出△ABC 关于原点对称的△A 2B 2C 2;(3)△A 1B 1C 1和△A 2B 2C 2关于x 轴上的某点成中心对称,请通过画图找到该点,并直接写出该点的坐标;(4)在x 轴上求一点P ,使△PAB 周长最小,请画出△PAB ,并求出点P 的坐标.四、解答题(本题10分)21.如图,在⊙O 中,AB ,AC 为弦,CD 为直径,AB ⊥CD 于E ,BF ⊥AC 于F ,BF 与CD 相交于G .(1)求证:ED =EG ;(2)若AB =8,OG =1,求⊙O 的半径.考试时间120分钟试卷满分150分五、解答题(第22题10分,第23题12分,共22分)22.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元?(3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.六、解答题(本题14分)24、某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.考试时间120分钟试卷满分150分(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?七、解答题(本题14分)25.如图在△ABC中,AB=BC=6,∠ABC=90°,直线l∥BC,点E是直线l上的一个动点,连接BE,将BE绕E逆时针旋转90°得到EF,连接BF交直线AC于点G.(1)如图1,当点E与点A重合时,线段BG和线段GF的数量关系是;(2)如图2,当点E在点A的右侧时,(1)问中的关系是否成立,请证明,若不成立,请写出你的结论并说明理由;(3)连接CF,若AE=2,请直接写出△CFG面积大小.考试时间120分钟 试卷满分150分八、解答题(本题14分)26.如图,抛物线2y x bx c =-++经过(1,0)A -、(0,3)C 两点,与x 轴的另一个交点为B ,点D 在y 轴上,且3OB OD =.(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P 的横坐标为t . ①当03t <<时,求四边形CDBP 的面积S 与t 的函数关系式,并求出S 的最大值; ②点Q 在直线BC 上,若以CD 为边,点C 、D 、Q 、P 为顶点的四边形是平行四边形,请求出所有符合条件的点P 的坐标.。
(北师大版)九年级上第二次月考数学试卷(含答案)(2019级)
九年级(上)第二次月考数学试卷一.选择题(每题2分共16分)1、如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12 B.9 C.6 D.32、将一元二次方程5x2-1=4x化成一般形式后,二次项的系数和一次项系数分别是()A、5,-1B、5,4C、5,-4D、5,13、如图,转盘中四个扇形的面积都相等.小明随意转动转盘2次,当转盘停止转动时,二次指针所指向数字的积为偶数的概率为()A.B.C.D.1题3题4题6题8题4.如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.8 B.9 C.10 D.125.如图所示几何体的左视图是()A.B.C.D.6、如图,反比例函数y=(k≠0)的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是()A. y=B. y=C. y=D. y=7、在Rt△ABC中,∠C=90°,sin A=35,BC=6,则AB=( )A .4B .6C .8D .108、如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t的值为( )A .1B .C .D .二、填空题(每题3分共24分)9.方程x 2﹣5x=0的解是 .10.方程2x ﹣4=0的解也是关于x 的方程x 2+mx+2=0的一个解,则m 的值为 .11.把一袋黑豆中放入100粒黄豆,搅匀后取出100粒豆子,其中有黄豆4粒,则该袋中约有黑豆 . 12.如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=AD ,CE 交AB 于点F 。
若AF=1.2cm ,则AB= cm .12题 13题 14题13.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且sin α=45,AB =4,求AD 的长为14、图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22米,则旗杆的高为_________m . 15、平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为 . 16、如图,在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3,…,按图示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3,…,在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 22018B 2018C 2018D 2018的边长是三计算题(17题每题4分18题5分共17分)17解方程:(1)x 2+4x+2=0 (2)3x 2+2x ﹣1=0;(3)计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒18、作图题如图,在正方形网格中,每一个小正方形的边长都为1,△OAB 的顶点分别为O (0,0),A (1,2),B (2,﹣1).(1)以点O (0,0)为位似中心,按位似比1:3在位似中心的同侧将△OAB 放大为△OA ′B ′,放大后点A 、B 的对应点分别为A ′、B ′,请在图中画出△OA ′B ′;(3分)(2)在(1)中,若C (a ,b )为线段AB 上任一点,写出变化后点C 的对应点C'的坐标 ;(1分) (3)直接写出四边形ABA ′B ′的面积是 .(1分)四解答题(19题6分20题5分,21-24每题6分25题8分共43分)19.(6分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得元购物券,至多可得元购物券;(2分)(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.(4分)20(5分)如图所示,晚上小亮在广场上乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯下的影子;(2分)(2)若灯高12 m,小亮身高1.6 m,小亮与灯杆的距离为13 m,求小亮影子的长度.(3分)21.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(3分)(2)若AB=8,AD=6,AF=4,求AE的长.(3分)22(6分)甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.A300450rE DB C23(6分)西瓜经营户以 2 元/千克的价格购进一批小型西瓜,以 3 元/千克的价格出售,每天可售出 200 千克.为了促销,该经营户决定降价销售.经调查发现,这种 小型西瓜每降价 0.1 元/千克,每天可多售出 40 千克.另外,每天的房租等固定成本 共 24 元.1)若将这种西瓜每千克的售价降低x 元,则每天的销售量是 千克(用含x 的代数式表示)(2分) 2)销售这种水果要想每天盈利200元且使每天的销售量较大,需将每千克的售价降低多少元?(4分)24.(6分)如图,一次函数y 1=ax -1(a ≠0)的图象与反比例函数y 2=kx (k ≠0)的图象相交于A 、B 两点,且点A 的坐标为(2,1),点B 的坐标为(-1,n).(1)分别求两个函数的解析式;(2分) (2)求△AOB 的面积.(2分)(3)直接写出y1>y2时自变量x 的取值范围.(2分)25.(8分)如图,在Rt ABC ∆中,,900=∠BAC 现在有一足够大的直角三角板,它的直角顶点D 是BC边上一点,另两条直角边分别交AB 、AC 于点E 、F.(1)如图1,若DE ⊥AB ,DF ⊥AC ,求证:四边形AEDF 是矩形(2分)(2)在(1)条件下,若点D 在BAC ∠的角平分线上,试判断此时四边形AEDF 形状,并说明理由;(2分)(3)若点D 在BAC ∠的角平分线上,将直角三角板绕点D 旋转一定的角度,使得直角三角板的两条边与两条直角边分别交于点E 、F (如图2),试证明AD AF AE 2=+.(尝试作辅助线)(4分)ABCEF D 图1 ABCEF图2D九年级(上)第一次月考数学试卷一选择题(每题2分共16分)1、( D )2、( C )3、( A )4.( D )5.( B )6、(C )7、(D )8、( D )填空题(每题3分共24分)9. x 1=0,x 2=5 10. -3 .11. 2400 .12. 6 cm .13163 14、12__m .15、(4,6)或(-4,-6).162017 17.(1)x 1=-2+,x 2=-2﹣(2) x 1=,x 2=﹣1(3) 1;18、 如图,△OA ′B ′即为所求作三角形;(2)C'的坐标为:(3a,3b);(3)∴四边形ABA′B′的面积是S△A′OB′﹣S△AOB=20,答案为:20.四解答题19.解: (1 )10 ,80.(2 )方法一:树状图法:方法二:列表法:从上面的树状图或表格可以看出,两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种.所以该顾客所获购物券的金额不低于50 元的概率是.20解:(1)如图所示:线段BC是所求,;(2)∵PO∥AB,∴△CAB∽△CPO,∴,设BC长为xm,则,∴x=2.4(m).21.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC;∴CD=AB=4,由(1)知△ADF∽△DEC,∴,∴DE=12…在Rt△ADE中,由勾股定理得:==6.…22解过D 做DE ⊥AB 于E ∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BCAB tgACB =)(4545米=⋅=∴tg BC AB在Rt ΔADE 中,∠ADE=30°DEAE tgADE =315334530=⋅=⋅=∴tg DE AE )(31545米-=-=∴AE AB CD 答:甲楼高45米,乙楼高31545-米.23(1)200+400x(2)设应将每千克小型西瓜的售价降低x 元,根据题意,得[(3-2)-x](200+-24=200可化为:50x 2-25x+3=0,解这个方程,得x 1=0.2,x 2=0.3.为使每天的销量较大,应降价0.3元,即定价3-0.3=2.7元/千克. 答:应将每千克小型西瓜的售价定为2.7元/千克.24.(1)∵一次函数y =ax -1(a≠0)的图象与反比例函数y =kx (k≠0)的图象相交于A 、B 两点,且点A 的坐标为(2,1),∴⎩⎨⎧2a -1=1,k 2=1.解得⎩⎨⎧a =1,k =2.∴一次函数的解析式是y =x -1,反比例函数的解析式是y =2x .(2)设AB 与y 轴交于点C ,当x =0时,y =-1,即C(0,-1). ∴S △AOB =S △AOC +S △BOC =12×|-1|×2+12×|-1|×|-1|=1+12=32.(3)x >2或 -1<x <024.1)在Rt ABC ∆中,,900=∠BAC∵DE ⊥AB ,DF ⊥AC ∴,900=∠=∠AFD AED ∴四边形AEDF 是矩形30450Ar E D BCABCEF D图1(2)连接AD∵AD 是BAC ∠角平分线 ∴045902121=⨯=∠=∠BAC EAD(3)作DM⊥AB,DN⊥AC∵AD是BAC∠角平分线∴四边形MDNA是正方形(已证)∴AM=AN=MD在Rt MED∆和Rt NFD∆中=-∠∠EDNMDNMDE∠=∠∠-EDNEDFNDF∠∵0=MDN∠EDF∠90=∵NDF∠=MDE∠又∵MD=DN∠FND=EMD∠90=∆≅NFDMED∆∴ME=NF∴AE+AF=AM-ME+AN+NF=AM+AN=2AM Rt MAD∆中,AM=MD∴22AD2+AM=MD∴222AD AM = ∴AM AD 2= ∴AM AD 22= ∴AD AF AE 2=+。
人教版2020年九年级数学上册 第二次月考模拟试卷三(含答案)
,x1=3+ ,x2=3﹣ ;
(2)x(x﹣7)=5x﹣36,整理得:x2﹣12x+36=0,
(x﹣6)2=0,开方得:x﹣6=0,即 x1=x2=6. 18.解:(1)把(0,1),(1,﹣2),(2,1)代入 y=ax2+bx+c 得
,解得
,
所以抛物线解析式为 y=3x2﹣6x+1; (2)y=3(x2﹣2x)+1=3(x2﹣2x+1﹣1)+1=3(x﹣1)2﹣2, 所以抛物线的顶点坐标为(1,﹣2). 19.解:∵关于 x 的方程 2x2+kx+1﹣k=0 的一个根是﹣1,
围栏多少米;若不能完成,请说明理由.
24.已知关于 x 的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中 a、b、c 分别为△ABC 三边的长. (1)如果 x=﹣1 是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根.
其中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
4.已知关于 x 的一元二次方程 3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
5.已知当 x>0 时,反比例函数 y= 的函数值随自变量的增大而减小,此时关于 x 的方程 x2﹣2(k+1)x+k2﹣1=0 的根的情况为( )
即 F 点的坐标是(a,
),
∵直线 BC 过点 B(0.3)和 C(﹣3,0), 设直线 BC 的解析式是 y=kx+b (k≠0),代入得:
贵州省遵义市红花岗区第七中学2022-2023学年九年级上学期第二次月考数学试题(含答案解析)
贵州省遵义市红花岗区第七中学2022-2023学年九年级上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是中心对称图形的是()A .B .C .D .2.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是()A .2x =-B .0x =C .1x =D .3x =3.遵义市是国家级红色旅行城市,每年都吸引众多海内外游客前来观光、旅行.据有关部门统计报道,2021年全市共接待游客3354万人次.将3354万用科学记数法表示为()A .4335410⨯B .43.35410⨯C .73.35410⨯D .83.35410⨯4.抛物线22(1)y x =--经过平移后得到抛物线22(3)3y x =-+-,其平移方法是()A .向右平移3个单位,再向上平移3个单位B .向右平移4个单位,再向下平移3个单位C .向左平移3不单位,再向上平移3个单位D .向左平移4个单位,再向下平移3个单位5.若关于x 的一元二次方程()221210m x x m -++-=有一根为0,则m 的值为()A .1B .﹣1C .±1D .06.如图,把一块长为40cm ,宽为30cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm 2,设剪去小正方形的边长为xcm ,则可列方程为()A .(30﹣2x )(40﹣x )=600B .(30﹣x )(40﹣x )=600C .(30﹣x )(40﹣2x )=600D .(30﹣2x )(40﹣2x )=6007.对于抛物线22(1)3y x =-++,下列说法正确的是()A .图象开口向下,对称轴是直线1x =B .顶点坐标为(1,3)C .当=1x -时,函数取得最大值3D .当1x >-时,y 随x 的增大而增大8.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为()A .2020B .2021C .2022D .20239.如表是二次函数2y ax bx c =++的几组对应值:x 6.176.18 6.19 6.202y ax bx c =++0.03-0.01-0.020.04根据表中数据判断,方程20ax bx c ++=的一个解x 的范围是()A .6.16 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<10.若点()()()123322A y B y C y --,,,,,都在关于x 的二次函数()220y ax ax c a =++>,的图象上,则123y y y ,,的大小关系是()A .123y y y >>B .132y y y >>C .312y y y >>D .321y y y >>11.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是()A .(-1B .-1)C .()D .(-2,1)12.已知抛物线2y ax bx c =++开口向下,顶点坐标为()1,n ,与x 轴交于点()1,0A -,与y 轴的交点在()0,2,()0,3之间(包含端点),下列结论:①20a b +=;②213a -≤≤;③对于任意实数m ,()()2110a mb m -+-≤总成立;④关于x 的方程21ax bx c n ++=-有四个不相等的实数根,且四个实数根的和为4.其中结论正确的个数是()A .1个B .2个C .3个D .4个二、填空题13.若点(),2A a -与点()3,B b 关于原点O 对称,则ab =_____.14.在一次同学聚会上,参加聚会的每两个同学都要握手一次.若所有参加聚会的同学共握手45次,则参加此次聚会的同学有_____人.15.如图所示,y mx n =+与2y ax k =+的图象交于()2,b -,()5,c 两点,则不等式2ax k mx n +<+的解集为______.16.如图,在四边形ABCD 中,90ABC ∠=︒,AB CB =,2AD =,4CD =,将BD 绕点B 逆时针旋转90︒得到BD ',连接DD ',当DD '的长取得最大值时,AB 长为_____.三、解答题17.解方程:(1)2420x x -+=;(2)()2236x x -=-.18.先化简,再求值:222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足方程:2250a a --=.19.已知关于x 的一元二次方程2240x x k -+-=有两个不相等的实数根1x ,2x .(1)求k 的取值范围;(2)若1221222x x x x +=-,求k 的值.20.在正方形网格中,建立如图所示的平面直角坐标系xOy ,ABC ∆的三个顶点都在格点上,点A 的坐标为(4,4),请解答下列问题:(1)画出ABC ∆关于原点O 成中心对称的111A B C ∆;(2)将ABC ∆绕点B 逆时针旋转90︒,画出旋转后的22A BC ∆;(3)将111A B C ∆绕点P 顺时针旋转90︒与22A BC ∆重合,请直接写出点P 的坐标.21.今年是我国脱贫胜利年,我国在扶贫方面取得了巨大的成就,技术扶贫也使得我省某县的一个电子器件厂脱贫扭亏为盈.该电子器件厂生产一种电脑显卡,2019年该类电脑显卡的出厂价是200元/个,2020年,2021年连续两年在技术扶贫的帮助下改进技术,降低成本,2021年该电脑显卡的出厂价调整为162元/个.(1)这两年此类电脑显卡出厂价下降的百分率相同,则平均每年下降的百分率是;(2)2021年某赛格电脑城以出厂价购进若干个此类电脑显卡,以200元/个销售时,平均每天可销售20个.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10个,如果每天盈利1150元,单价应降低多少元?22.疫情从未远去,据云南省卫健委通报,连续3天,云南省的本土日新增确诊病例均超过10例,从3月30日到4月6日,短短一周时间,本轮疫情中的本土确诊病例累计已达65例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为40元的消毒液,市场调查发现,每天的销售量(y 瓶)与每瓶的售价(x 元)之间满足如图所示的函数关系.(1)求y 与x 之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过55元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?23.已知函数2y x bx c =-++(b ,c 为常数)的图象经过点()0,3-,()2,5-.(1)求b ,c 的值;(2)当40x -≤≤时,求y 的最大值;(3)当0m x ≤≤时,若y 的最大值与最小值之和为2,请直接写出m 的值.24.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且45EAF ∠︒=,将ADF △绕点A 顺时针旋转90°后,得到ABQ ,连接EQ .(1)求证:EQ EF =;(2)若512BE DF =,=,求EF 的长.25.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点()0,3C ,连接BC ,点P 是直线BC 上方抛物线上一动点,过点P 作PE x ⊥轴于点E ,交BC 于点F ,作PD BC ⊥于点D .(1)求抛物线的解析式;(2)若点F是线段PE的三等分点,求点P的坐标;(3)线段PD是否存在最大值,若存在,请求出其最大值;若不存在,请说明理由.参考答案:1.C【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180︒,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:选项A 、B 、D 都不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形.选项C 能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形.故选:C .【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.B【分析】直接利用因式分解法解方程即可.【详解】解:220x x -=x (x-2)=010x =,2 2x =故选:B .【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.3.C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:3354万733540000 3.35410==⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.D【分析】原抛物线顶点坐标为()1,0,平移后抛物线顶点坐标为()3,3--,由此确定平移规律.【详解】解:22(3)3y x =-+- ,∴该抛物线的顶点坐标是()3,3--,∵22(1)y x =--的顶点坐标是()1,0,∴平移的方法可以是:将抛物线22(1)y x =--向左平移4个单位,再向下平移3个单位.故选:D .【点睛】本题考查了二次函数图象与几何变换.关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.5.B【分析】根据一元二次方程()221210m x x m -++-=有一根为0得到210m -=且10m -≠,即可解得答案.【详解】解:根据题意得:210m -=且10m -≠,解得1m =-.故选:B .【点睛】此题考查了一元二次方程,熟练掌握一元二次方程解的定义是解题的关键.6.D【分析】设剪去小正方形的边长是xcm ,则纸盒底面的长为(40﹣2x )cm ,宽为(30﹣2x )cm ,根据长方形的面积公式结合纸盒的底面积是600cm 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设剪去小正方形的边长是xcm ,则纸盒底面的长为(40﹣2x )cm ,宽为(30﹣2x )cm ,根据题意得:(40﹣2x )(30﹣2x )=600.故选:D .【点睛】本题考查的是一元二次方程的应用,正确理解题意找到等量关系是解题的关键.7.C【分析】根据次函数2()y a x h k =-+的性质解答即可.【详解】解:∵抛物线22(1)3y x =-++,∴该抛物线的图象开口向下,对称轴是直线=1x -,故选项A 错误,不符合题意;顶点坐标为(1,3)-,故选项B 错误,不符合题意;当=1x -时,函数取得最大值3,故选项C 正确,符合题意;当1x >-时,y 随x 的增大而减小,故选项D 错误,不符合题意;故选:C .【点睛】本题考查了二次函数图象的性质,熟练掌握二次函数2()y a x h k =-+的性质是解答本题的关键.对于二次函数2()y a x h k =-+(a ,h ,k 为常数,0a ≠),当0a >时,抛物线开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧y 随x 的增大而增大,此时函数有最小值;当a<0时,抛物线开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y 随x 的增大而减小,此时函数有最大值.其顶点坐标是(,)h k ,对称轴为直线x h =.8.B【分析】由题意根据一元二次方程的解及根与系数的关系可得出220221a a a b +=+=-、,将其代入222()()a a b a a a b ++=+++中即可得出答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴220221a a a b +=+=-、,∴222()()a a b a a a b ++=+++=2022-1=2021.故选:B .【点睛】本题考查根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出220221a a a b +=+=-、是解题的关键.9.C【分析】根据表格中数据的变化情况进行估计即可.【详解】解:由表可以看出,当x 取6.18与6.19之间的某个数时,0y =,即这个数是20ax bx c ++=的一个根.∴20ax bx c ++=的一个解x 的取值范围为6.18 6.19x <<.故选:C .【点睛】此题考查了二次函数和一元二次方程的关系,正确估计一元二次方程的根的取值范围是解题的关键.10.C【分析】先根据二次函数解析式得到函数开口向上,对称轴为直线=1x -,进而得到离对称轴越远,函数值越大,据此求解即可.【详解】解:∵二次函数解析式为()220y ax ax c a =++>,∴二次函数开口向上,对称轴为直线212a x a=-=-,∴离对称轴越远,函数值越大,∵()()()132121,213---=---=--=,,∴312y y y >>,故选:C .【点睛】本题主要考查了二次函数图象的性质,熟知开口向上的二次函数,离对称轴越远函数值越大是解题的关键.11.C【分析】如图,过点A 作AE ⊥OB 于E ,过点A′作A′H ⊥x 轴于H .利用全等三角形的性质解决问题即可.【详解】解:如图,过点A 作AE ⊥OB 于E ,过点A′作A′H ⊥x 轴于H .∵B (2,0),△AOB 是等边三角形,∴OA=OB=AB=2,∵AE ⊥OB ,∴OE=EB=1,∴∵A′H ⊥OH ,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE ,∴△A′OH ≌△OAE (AAS ),∴A′H=OE=1,∴A′(1),故选:C .【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.C【分析】根据二次函数的性质和已知条件逐项进行判断即可.【详解】解:∵顶点坐标为()1,n ,∴12b a-=,∴2b a =-,∴20a b +=,∴①正确;∵抛物线与x 轴交于点()1,0A -,∴0a b c -+=,由①可知:2b a =-,∴3c a =-,∵抛物线与y 轴的交点在()0,2,()0,3之间(包含端点),∴23c ≤≤,∴233a ≤-≤,∴213a -≤≤-,∴②错误;∵抛物线开口向下,顶点坐标为()1,n ,∴1x =时,二次函数2y ax bx c =++有最大值,∵m 为任意实数,∴2am bm c a b c ++≤++正确,∴2am bm a b +≤+,∴20am a bm b -+-≤,∴()()2110a m b m -+-≤,∴③正确;∵抛物线开口向下,顶点坐标为()1,n ,∴2ax bx c n ++=有两个相等的实数根,∴21ax bx c n ++=-有两个不相等的实数根,这两个根关于1x =对称,两根之和为2,∴关于x 的方程21ax bx c n ++=-有四个不相等的实数根,且四个实数根的和为4,∴④正确;故选:C .【点睛】此题考查了二次函数的图象和性质,熟练掌握相关知识是解题的关键.13.6-【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得a 、b 的值,再代入计算即可.【详解】解:∵点(),2A a -与点()3,B b 关于原点O 对称,∴3a =-,2b =,∴()326ab =-⨯=-.故答案为:6-.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数得出a 、b 的值是解题关键.14.10【分析】设参加此次聚会的同学有x 人,根据每两个同学都要握手一次,所有参加聚会的同学共握手45次列出方程,解方程即可得到答案.【详解】解:设参加此次聚会的同学有x 人,根据题意得:()11452x x -=,整理得:2900x x --=,解得:19x =-(不符合题意,舍去),210x =,∴参加此次聚会的同学有10人.故答案为:10.【点睛】此题考查了一元二次方程的应用,读懂题意,正确列出方程是解题的关键.15.<2x -或5x >【分析】观察两函数图象的上下位置关系,即可得出结论.【详解】解:观察函数图象可知:当<2x -或5x >时,直线y mx n =+在抛物线2y ax k =+的上方,∴不等式2ax k mx n +<+的解集为<2x -或5x >,故答案为:<2x -或5x >.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.16【分析】连接AD ',AC ,先证明()SAS D BA DBC '△≌△,得到4AD CD '==,在ADD ' 中,AD AD DD ''+>,当A 点在DD '上时,DD '最大为6,在Rt ADC中,求出AC =Rt ABC △中,利用勾股定理求出AB =【详解】解:连接AD ',AC,由题意得:90DBD DBA ABD ''∠=︒=∠+∠,∵90ABC ABD DBC ∠=︒=∠+∠,∴ABD DBC '∠=∠,在D BA '△和DBC △中,D B DB ABD DBC AB CB =⎧⎪∠=∠'⎨='⎪⎩,∴()SAS D BA DBC '△≌△,∴4AD CD '==,在ADD ' 中,AD AD DD ''+>,当A 点在DD '上时,DD '最大为6,此时45ADB ∠=︒,∵D BA DBC '△≌△,∴45BDC ∠=︒,∴90ADC ∠=︒,在Rt ADC 中,AC =在Rt ABC △中,22220AB BC AC +==,∴2220AB =,∴AB =.【点睛】此题考查了图形的旋转、勾股定理、三角形全等的判定和性质等知识,证明D BA DBC '△≌△是解题的关键.17.(1)12x =+22x =(2)12x =,25x =【分析】(1)利用配方法解一元二次方程即可;(2)变形后利用因式分解法解一元二次方程即可.【详解】(1)解:2420x x -+=,则242x x -=-,∴24424x x -+=-+,即()222x -=,∴2x -=∴12x =+22x =(2)()2236x x -=-,∴()()22320x x ---=,∴()()2230x x ---=,∴12x =,25x =.【点睛】此题考查了一元二次方程,熟练掌握一元二次方程的解法是解题的关键.18.212a a -;15【分析】先根据分式混合运算法则进行计算,然后再将225a a -=整体代入求值即可.【详解】解:222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭()()2242122a a a a a a a ⎡⎤+-=-⋅⎢⎥--⎢-⎥⎦-⎣()()222244212a a a a a a a a a ---+-=⋅-⋅---()()()21424a a a a a a +-=----=()()()()()22142a a a a a a a +---=--224(4)(2)a a a a a a --+=--212a a=-,∵2250a a --=,∴225a a -=,∴原式15=.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.19.(1)3k >(2)k 的值为5【分析】(1)依题意可知0∆>,解不等式即可得解;(2)由根与系数关系得到122x x +=,124x x k =-,由1221222x x x x +=-可以得到()11222x x x x +=-,代入求出k 的值即可.【详解】(1)解:依题意可知:0∆>,即()()22440k --->,∴3k >.(2)∵关于x 的一元二次方程2240x x k -+-=有两个不相等的实数根1x ,2x .∴122x x +=,124x x k =-,∵1221222x x x x +=-,∴()11222x x x x +=-,整理得:822k -=-,∴5k =,故k 的值为5.【点睛】此题考查了一元二次方程,熟练掌握根的判别式和根与系数关系是解题的关键.20.(1)见解析(2)见解析(3)(1,1)P -【分析】(1)利用中心对称变换的性质分别作出A ,B ,C 的对应点111,,A B C 即可;(2)利用旋转变换的性质分别作出A ,C 的对应点22,A C 即可;(3)作12A A 和1BB 的垂直平分线,交点即为所求的点P .【详解】(1)如图,111A B C ∆即为所求;(2)如图,22A BC ∆即为所求;(3)如图,点P即为所求,(1,1)【点睛】本题考查作图-旋转变换,中心对称变换等知识,解题的关键是掌握旋转变换,中心对称变换的性质,属于中考常考题型.21.(1)10%(2)单价应降低15元【分析】(1)设平均下降率为x,利用2021年该类电脑显卡的出厂价=2019年该类电脑显卡的出厂价×(1-下降率)2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)设单价应降低m元,则每个的销售利润为(38-m)元,每天可售出(20+2m)个,利用每天销售该电脑显卡获得的利润=每个的销售利润×日销售量,即可得出关于m的一元二次方程,解之即可得出m的值即可得出结论.【详解】(1)解:设平均下降率为x,依题意得:2200(1)162x -=,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均下降率为10%.故答案为:10%.(2)设单价应降低m 元,则每个的销售利润为(200﹣m ﹣162)=(38﹣m )元,每天可售出20+5m ×10=(20+2m )个,依题意得:(38﹣m )(20+2m )=1150,整理得:2281950m m -+=,解得:m 1=15,m 2=13.∵要减少库存,∴m =15.答:单价应降低15元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)3240y x =-+;(2)当每瓶的销售单价定为55元时,药店可获得最大利润,最大利润是1125元.【分析】(1)先设出一次函数的解析式,再用待定系数法求解即可;(2)根据利润=单盒利润⨯销售量列出函数解析式,再根据函数的性质求函数的最值.【详解】解:(1)设y 与x 之间的函数关系式为y kx b =+,由题意得:301505090k b k b +=⎧⎨+=⎩,解得:3240k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为3240y x =-+;(2)设每天利润为w 元,则()()403240w x x =--+233609600x x =-+-23(60)1200x =--+,∴当60x <时,w 随x 的增大而增大,又∵55x ≤,∴当55x =时,w 最大,最大值为23(5560)12001125(--+=元),∴当每瓶的销售单价定为55元时,药店可获得最大利润,最大利润是1125元.【点睛】本题考查二次函数的应用以及待定系数法求函数解析式,关键是根据题意列出函数关系式.23.(1)6,3b c =-=-(2)y 有最大值为6(3)m =﹣2或3-【分析】(1)用待定系数法即可得到答案;(2)由题意得到()226336y x x x =---=-++,且40x -≤≤,即可得到答案;(3)根据m 的取值范围分情况讨论即可得到m 的值.【详解】(1)解:把()0,3-,()2,5-代入2y x bx c =-++得,3425c b c =-⎧⎨--+=⎩,解得63b c =-⎧⎨=-⎩,即6,3b c =-=-.(2)∵()226336y x x x =---=-++,又∵40x -≤≤,∴当3x =-时,y 有最大值为6.(3)①当30m -<≤时,当0x =时,y 有最小值为=3y -,当x m =时,y 有最大值为263y m m =---,∴26332m m ----=,∴2m =-或4m =-(舍去).②当3m ≤-时,当3x =-时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为4-,∴()2364m -++=-,∴3m =-3m =-+.综上所述,2m =-或3-【点睛】此题考查了二次函数,熟练掌握二次函数的性质,分类讨论是解题的关键.24.(1)见解析(2)13EF =【分析】(1)由旋转的性质得QB DF AQ AF BAQ DAF ∠∠=,=,=,由45EAF ∠︒=可得45QAE ∠︒=,然后根据SAS 证明AQE AFE ≌ ,即可得出EQ EF =.(2)由45,45ABQ ADF ABD ∠==︒∠=︒可得90QBE ∠︒=,在Rt QBE △中根据勾股定理求出QE 的长,即可知EF 的长.【详解】(1)证明:∵将ADF △绕点A 顺时针旋转90°后,得到ABQ ,QB DF AQ AF BAQ DAF ∴∠∠=,=,=,ADF ABQ ∠∠=,45EAF ∠︒=,45DAF BAE ∴∠+∠︒=,45QAE ∴∠︒=,QAE FAE ∴∠∠=,在AQE 和AFE △中,AQ AF QAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,AQE AFE ∴≌ (SAS ),QE EF ∴=;(2)解:由(1)得AQE AFE ≌,ADF ABQ ∠∠=,QE EF ∴=,∵四边形ABCD 是正方形,45ADB ABD ∴∠∠︒==,45ABQ ∴∠︒=,90QBE ABQ ABD ∴∠∠+∠︒==,在Rt QBE △中,222QE QB BE +=222512169QE ∴=+=13QE ∴=又EF QE= 13EF ∴=【点睛】本题主要考查了旋转的性质和勾股定理,旋转前后的两个三角形的对应边相等,对应角相等这是解题的关键.25.(1)223y x x =-++(2)点()2,3P 或115,24P ⎛⎫ ⎪⎝⎭(3)存在,PD的最大值为8【分析】(1)用待定系数法求出解析式即可;(2)先求出直线BC 的表达式,设点()2P x,x 2x 3-++,则点(),3F x x -+,由点F 是线段PE 的三等分点,得到()213233x x x -+=-++或()223233x x x -+=-++,解方程即可得到答案;(3)先证明PD =,由(2)可知23924PF x ⎛⎫=--+ ⎪⎝⎭,求出PF 的最大值,即可得到答案.【详解】(1)解:由题意得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,故抛物线的表达式为:223y x x =-++;(2)设直线BC 的表达式为:3y kx =+,将点B 的坐标代入上式得:033k =+,解得:1k =-,故直线BC 的表达式为:3y x =-+;设点()2P x,x 2x 3-++,则点(),3F x x -+,∵点F 是线段PE 的三等分点,则13EF PE =或23PE ,即()213233x x x -+=-++或()223233x x x -+=-++,解得:3x =(舍去)或2或12,当2x =时,2234433x x -++=-++=,当12x =时,2115231344x x -++=-++=,即点()2,3P 或115,24P ⎛⎫ ⎪⎝⎭;(3)存在,理由:∵OB OC =,则45OBC ∠=︒,∵90FEB PDF ∠=∠=︒,BFE PFD ∠=∠,∴45DPF FBE ∠=∠=︒,则2PD =,由(2)知,()()22239233324PF x x x x x x ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∵10-<,故PF 有最大值,当32x =时,PF 的最大值为94,则PD的最大值为28PF =.【点睛】此题是二次函数几何综合题,考查了待定系数法求解析式,二次函数求最值等知识,读懂题意是解题的关键.。
北师大版九年级上册第二次月考数学模拟试题及答案 (精选5套试题)
北师大版九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.sin30°的值为()A.B.C.D.2.一个圆柱体钢块,正中央被挖去了一个长槽,其俯视图如图所示,则此圆柱体钢块的左视图是()A.B.C.D.3.若反比例函数y=(k≠0)的图象经过点(﹣1,2),则这个函数的图象一点经过()A.(﹣2,1)B.(,2)C.(﹣2,﹣1)D.(,2)4.近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,其大致图象是()A.B.C.D.5.下列投影中,是平行投影的是()A.B.C.D.6.若关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的值可以是()A.3 B.4 C.5 D.67.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,在原点的同一旁,把△ABO缩小,相似比为,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣4,1) D.(﹣2,2)8.如图,点B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,C D.则根据作图过程判定四边形ABDC是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形; D.对角线平分一组对角的四边形是菱形9.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场想每天获得3750元利润,设每件玩具涨x 元,可列方程为:(30+x﹣20)=3750.对所列方程中出现的代数式,下列说法错误的是()A.(30+x)表示涨价后玩具的单价B.10x表示涨价后少售出玩具的数量C.表示涨价后销售玩具的数量D.(30+x﹣20)表示涨价后的每件玩具的单价10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x >0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二、填空题(本大题共6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.若,则=.12.如图,Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=.13.如图,李明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知李明的身高是1.5米,则BC=米.14.反比例函数y=在每一个象限内,y的值随x值的增大而增大,则满足条件的一个数值k为.15.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,若△EDF的周长为9,则△BCF的周长为.16.如图,反比例函数y=(x>0)的图象和矩形ABCD都在第一象限内,AD与x轴平行,已知点A的坐标是(2,6),AB=2,AD=4.现将矩形ABCD向下平移m个单位,要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是.三、解答题(本大题有9小题,共58分.请在答题卡的相应位置作答)17.解方程:x2﹣2x﹣1=0.18.“低碳生活,绿色出行”,自行车日益成为人们喜爱的交通工具.某商场2013年销售自行车3万辆,2015年销售自行车3.63万辆.求这两年的年均增长率.19.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.20.如图,菱形ABCD的对角线AC,BD相交于点O,且AC=16,BD=12.(1)求菱形ABCD的周长;(2)过点O作OE⊥AB于点E,求sin∠BOE的值.21.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A(﹣1,m),B(n,﹣1)两点.(1)若C(x1,y1),D(x2,y2)是反比例函数的图象上的两点,且0<x1<x2,试比较y1,y2的大小得y1y2;(2)求这个一次函数点的表达式.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.23.如图,已知四边形ABCD中,∠B=∠C,AB=8,BC=10,CD=3,E是BC上一点,BE=4.(1)求证:△ABE∽△ECD;(2)求证:∠AED=∠B;(3)已知点F在BC上,且∠AFD=∠AE D.请画出∠AFD,并简要叙述画法,说明理由.24.(1)问题情境,如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)探究发现:如图2,直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E、F,连接EF.你发现(1)EF与MN有怎样位置关系?(2)ME与NF有什么数量关系?)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.sin30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.2.一个圆柱体钢块,正中央被挖去了一个长槽,其俯视图如图所示,则此圆柱体钢块的左视图是()A.B. C.D.【考点】由三视图判断几何体.【分析】左视图是从物体左面看所得到的图形.【解答】解:从物体左面看,是一个矩形,因为里面有一个长方体孔,所以有一条虚线表示的看不到的棱,故选D.3.若反比例函数y=(k≠0)的图象经过点(﹣1,2),则这个函数的图象一点经过()A.(﹣2,1)B.(,2)C.(﹣2,﹣1)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】先利用待定系数法求出反比例函数比例系数k的值,再根据反比例函数图象上点的坐标特征求解即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2.A、∵﹣2×1=﹣2,∴这个函数的图象一点经过(﹣2,1);B、∵﹣×2=﹣1≠﹣2,∴这个函数的图象一点不经过(﹣,2);C、∵﹣2×(﹣1)=2≠﹣2,∴这个函数的图象一点不经过(﹣2,﹣1);D、∵×2=1≠﹣2,∴这个函数的图象一点不经过(,2);故选A.4.近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,其大致图象是()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数的图象可排除A、B选项,再根据s、d均为正值,由此即可得出结论.【解答】解:∵近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,∴A、B不符合题意.又∵s、d均为大于0的数,∴反比例函数图象在第一象限.故选C.5.下列投影中,是平行投影的是()A.B.C.D.【考点】平行投影.【分析】连接影子的顶端和树的顶端得到投影线,若投影线平行则为平行投影.【解答】解:如图,只有B中的投影线是平行的,故选B.6.若关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的值可以是()A.3 B.4 C.5 D.6【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴△=(﹣4)2﹣4k>0,解得k<4.k的值可以是3,故选A.7.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,在原点的同一旁,把△ABO缩小,相似比为,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣4,1)D.(﹣2,2)【考点】位似变换;坐标与图形性质.【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以即可得到点A的对应点A′的坐标.【解答】解:点A(﹣4,2)的对应点A′的坐标是(﹣2,1).故选A.8.如图,点B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,C D.则根据作图过程判定四边形ABDC是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形【考点】菱形的判定.【分析】由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF 是菱形.【解答】解:根据作图过程判定四边形ABDC是菱形的依据是:四边相等的四边形是菱形,理由如下:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形,故选B.9.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场想每天获得3750元利润,设每件玩具涨x元,可列方程为:(30+x﹣20)=3750.对所列方程中出现的代数式,下列说法错误的是()A.(30+x)表示涨价后玩具的单价B.10x表示涨价后少售出玩具的数量C.表示涨价后销售玩具的数量D.(30+x﹣20)表示涨价后的每件玩具的单价【考点】由实际问题抽象出一元二次方程.【分析】设涨价x元,然后分别表示出销量和涨价后的单价即可列出方程求解.【解答】解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确;C、∵表示涨价后销售玩具的数量,∴C选项正确;D、∵(30+x﹣20)表示涨价后的每件玩具的利润,故D选项错误,故选D.10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x >0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.二、填空题(本大题共6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.若,则=.【考点】比例的性质.【分析】根据分比定理【分比定理:如果a:b=c:d,那么(a﹣b):b=(c﹣d):d(b、d≠0)】解答.【解答】解:∵,∴==.故答案为:.12.如图,Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=4cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2C D.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4cm.13.如图,李明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知李明的身高是1.5米,则BC=3米.【考点】相似三角形的应用;中心投影.【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.【解答】解:∵=,当李明在CG处时,Rt△DCG∽Rt△DBA,即=,当李明在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得:y=3,经检验y=3是原方程的根.则BC=3(m).故答案为:3.14.反比例函数y=在每一个象限内,y的值随x值的增大而增大,则满足条件的一个数值k为﹣1.【考点】反比例函数的性质.【分析】根据反比例函数的单调性即可得出k<0,取其内的任意一个数即可得出结论.【解答】解:∵反比例函数y=在每一个象限内,y的值随x值的增大而增大,∴k<0.∵﹣1<0,∴可以取k=﹣1.故答案为:﹣1.15.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,若△EDF的周长为9,则△BCF的周长为18.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】只要证明△FED∽△FBC,推出=,再证明BC=2DE,即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴DE∥BC,AD=BC,∴△FED∽△FBC,∴=∵AE=DE,∴BC=2DE,∵△EDF的周长为9,∴△FBC的周长为18.故答案为18.16.如图,反比例函数y=(x>0)的图象和矩形ABCD都在第一象限内,AD与x轴平行,已知点A的坐标是(2,6),AB=2,AD=4.现将矩形ABCD向下平移m个单位,要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是1≤m≤5.【考点】反比例函数图象上点的坐标特征.【分析】根据矩形性质得出AB=CD=2,AD=BC=4,即可得出B(2,4),C(6,4),D(6,6),根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);当B点落在反比例函数的图象上时,把x=2代入y=得,y=3,∴m=4﹣3=1,当D点落在反比例函数的图象上时,把x=6代入y=得,y=1,∴m=6﹣1=5,∴要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是1≤m≤5.故答案为1≤m≤5.三、解答题(本大题有9小题,共58分.请在答题卡的相应位置作答)17.解方程:x2﹣2x﹣1=0.【考点】解一元二次方程﹣公式法.【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.【解答】解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:(x﹣1)2=2∴∴,.18.“低碳生活,绿色出行”,自行车日益成为人们喜爱的交通工具.某商场2013年销售自行车3万辆,2015年销售自行车3.63万辆.求这两年的年均增长率.【考点】一元二次方程的应用.【分析】设这两年的年均增长率为x.等量关系为:2013年的销售量×(1+增长率)2=2015年的销售量,把相关数值代入求解即可.【解答】解:设这两年的年均增长率为x,根据题意列方程:3(1+x)2=3.63,解得x1=﹣210%(不合题意,舍去),x2=10%.答:这两年的年均增长率为10%.19.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.【解答】解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.红蓝绿红×√×蓝√××P(配紫色)=,P(没有配紫色)=,∵,∴这个游戏对双方不公平.20.如图,菱形ABCD的对角线AC,BD相交于点O,且AC=16,BD=12.(1)求菱形ABCD的周长;(2)过点O作OE⊥AB于点E,求sin∠BOE的值.【考点】菱形的性质;解直角三角形.【分析】(1)由已知条件可求出菱形的边长,进而可求出其周长;(2)由△AOB的面积为菱形面积的四分之一,可求出OE的长,进而可求出sin∠BOE的值.【解答】解:(1)∵四边形ABCD是菱形,AC=16,BD=12,∴AC⊥BD,AO=OC=AC=8,BO=BD=BD=6,在Rt△AOB中,由勾股定理得:AB==10,∴菱形ABCD的周长=4AB=40;(2)∵菱形ABCD的面积=AC•BD=96,∴△AOB的面积=×96=24,∴OE==4.8,∴BE=3.6,∴sin∠BOE==.21.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A(﹣1,m),B(n,﹣1)两点.(1)若C(x1,y1),D(x2,y2)是反比例函数的图象上的两点,且0<x1<x2,试比较y1,y2的大小得y1<y2;(2)求这个一次函数点的表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数的性质即可直接判断;(2)首先把A和B的坐标代入反比例函数解析式求得m和n的值,然后利用待定系数法求得函数解析式.【解答】解:(1)∵比例系数k=﹣2<0,∴当且0<x1<x2时,y1<y2.故答案是:<;(2)把A(﹣1,m)和B(n,﹣1)代入y=﹣得:m=2,n=2.则A的坐标是(﹣1,2),B的坐标是(2,﹣1).根据题意得,解得:,则一次函数的解析式是y=﹣x+1.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.【解答】解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.23.如图,已知四边形ABCD中,∠B=∠C,AB=8,BC=10,CD=3,E是BC上一点,BE=4.(1)求证:△ABE∽△ECD;(2)求证:∠AED=∠B;(3)已知点F在BC上,且∠AFD=∠AE D.请画出∠AFD,并简要叙述画法,说明理由.【考点】相似三角形的判定与性质;作图—相似变换.【分析】(1)由AB=8,BC=10,CD=3,BE=4,易得AB:EC=BE:CD,又由∠B=∠C,即可证得:△ABE∽△ECD;(2)由△ABE∽△ECD,可得∠BAE=∠CED,然后由三角形外角的性质,证得结论;(3)根据同弧所对的圆周角相等,可得作△ADE的外接圆⊙O,则⊙O与BC的交点即为点F.【解答】证明:(1)∵BC=10,BE=4,∴EC=BC﹣BE=6,∵AB=8,CD=3,∴AB:EC=8:6=4:3,BE:CD=4:3,∴AB:EC=BE:CD,∵∠B=∠C,∴△ABE∽△ECD;(2)∵△ABE∽△ECD,∴∠BAE=∠CED,∵∠B+∠BAE=∠AED+∠CED,∴∠AED=∠B;(3)如图,作△ADE的外接圆⊙O,则⊙O与BC的交点即为点F.24.(1)问题情境,如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)探究发现:如图2,直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E、F,连接EF.你发现(1)EF与MN有怎样位置关系?(2)ME与NF有什么数量关系?【考点】反比例函数综合题.【分析】(1)分别过点C、D作CG⊥AB、DH⊥AB,垂足为G、H,根据三角形的面积求出CG=DH,推出平行四边形CGDH即可;(2)①证△EMF和△NEF的面积相等,根据(1)即可推出答案;②设出M、N的坐标,根据M、N分别为直线与反比例函数的交点,代入两解析式可得到ME和NF的关系.【解答】(1)证明:分别过点C、D作CG⊥AB、DH⊥AB,垂足为G、H,如图①,则∠CGA=∠DHB=90°.∵CG⊥AB、DH⊥AB,∴∠CGA=∠DHA=90°,∴∠CGA+∠DHA=180°,∴CG∥DH.∵△ABC与△ABD的面积相等,∴CG=DH,∴四边形CGHD为平行四边形,∴AB∥CD;(2)①证明:连接MF,NE,如图②,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),∵点M,N在反比例函数y=(k>0)的图象上,∴x1y1=k,x2y2=k,∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,∴S△EFM=x1y1=k,S△EFN=x2y2=k,∴S△EFM=S△EFN,由(1)中的结论可知:MN∥EF;②设点M的坐标为(x1,y1),点N的坐标为(x2,y2),∵直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,∴,消去b可得y1﹣y2=a(x1﹣x2)(*),且,图1代入(*)式可得﹣=a (x 1﹣x 2),整理可得k (x 2﹣x 1)=a (x 1﹣x 2)x 1x 2,∴k =﹣ax 1x 2, ∴=﹣ax 1,即y 2=﹣ax 1,∴NF =﹣aME .北师大版九年级上学期第二次月考数学试卷(考试时间:100分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是( ) A .02=++c bx ax B .162-+x xC .02142333=--x x D .032)3(22=-++x x m 2.分别以下列四组数为一个三角形的边长① 6,8,10 ② 5,12,13 ③ 8,15,16④ 4,5,6,其中能构成直角三角形的有( )A .①④B .②③C .①②D .②④3.有三条公路相交如图1,现计划修建一个油库,要求到三条公路的距离相等,则符合条件的油库的位置有( )A .1处B .2处C .3处D .4处4.根据下表的对应值,判断方程02=++c bx ax (c b a a ,,,0≠为常数)的一个解x 的范围是( )x3.23 3.24 3.25 3.26 c bx ax ++2-0.06-0.020.030.09A .3<x <3.33B .3.23<x <3.24C .3.24<x <3.25 D. 3.25<x <3.26 5.方程0422=-+x x 的根的情况是( )A .有两个不相等实数根 B. 有两个相等实数根C. 有一个实数根D.没有实数根6.关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是( )A .1->k B. 1>k C. 0≠k D. 1->k 且0≠k 7.已知等腰三角形的一个内角为30°,则这个等腰三角形的顶角..为( ) A. 30° B. 75° C. 75°或120° D. 30°或120°8.九年级(2)的每个同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了2550张,若全班有x 名学生,根据题意列方程为( ) A.2550)1(=+x x B.2550)1(=-x x C.2550)1(2=+x xD.25502)1(⨯=-x x9.如图2,在△ABC 与△DEF 中,已有条件AB =DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能..添加的一组条件是( ) A .∠B =∠E ,BC =EF B. BC =EF ,AC =DFC . ∠A =∠D ,∠B =∠E D. ∠A =∠D ,BC =EF10.如图3,在等腰△ABC 中,AB =AC ,∠A =30°,线段AC 的垂直平分线交AC 于D ,交AB 于E ,连接CE ,则∠BCE 等于( )A.70°B.60°C.45°D.50° 二、填空题(每小题4分,共24分)11.22____)(_____8-=+-x x x12.已知等腰△ABC 的腰AB =AC =10㎝,底BC =12㎝,则∠A 的平分线长是________㎝。
2024-2025学年鲁教新版九年级数学下册月考试卷954
2024-2025学年鲁教新版九年级数学下册月考试卷954考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、反比例函数(k为常数,k≠0)的图象位于()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限2、四根铁棒的长分别为4cm,6cm,10cm,15cm,以其中三根的长为边长,焊接成一个三角形框架,则这个框架的周长可能是()A. 31cmB. 29cmC. 25cmD. 20cm3、若一个正多边形的一个外角大于它的一个内角.则它的边数是()A. 3B. 4C. 5D. 无法确定4、下列说法:①如果a大于b,那么a的倒数小于b的倒数;②立方等于其本身的数是0、±1;③若a=b,则;④一个角的补角一定大于这个角.其中正确说法的个数是()A. 1个B. 2个C. 3个D. 4个5、-3的倒数为()A. -3B. -C. 3D.6、方程x2+3x-6=0与x2-6x+3=0所有根的乘积等于()A. -18B. 18C. -3D. 37、据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A. 2.5×108B. 2.5×107C. 2.5×106D. 25×1068、把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. y=-(x-1)2-3B. y=-(x+1)2-3C. y=-(x-1)2+3D. y=-(x+1)2+3评卷人得分二、填空题(共9题,共18分)9、四边形ABCD的对角线AC、BD相交于O,若BD=6,AC=8,∠BOC=135°,则四边形ABCD的面积为.10、一元二次方程5x2-1=4x的一般形式是,其中二次项是,一次项是.11、写出一个经过原点的抛物线解析式为.12、面积为5cm2的正方形的边长为.13、若式子有意义,则x的取值范围是.14、写一个一元二次方程.15、如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有条面积等分线,平行四边形有条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.16、三角形的面积是12,三角形底边长y是高x的函数,在平面直角坐标系中,它的图象只能在第象限.17、若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为.评卷人得分三、判断题(共5题,共10分)18、如果一个三角形的两个角分别为60和72,另一个三角形有两个角分别为60°和48°,那么这两个三角形可能不相似..(判断对错)19、“三角形三条角平分线交点到三边距离相等”这个命题的逆命题是真命题..20、钝角三角形的外心在三角形的外部.( )21、当x与y乘积一定时,y就是x的反比例函数,x也是y的反比例函数22、到角的两边距离相等的点在角的平分线上.评卷人得分四、证明题(共1题,共9分)23、求证:顺次连接矩形四边中点所得的四边形是菱形.评卷人得分五、综合题(共4题,共28分)24、在梯形ABCD中,AD∥BC,∠D=90°,以AB为直径作⊙O.①如图①,⊙O与DC相切于点E;(1)求证:∠BAE=∠DAE;(2)若AB=6,求AD+BC的值.②如图②,⊙O与DC交于点E、F.(1)图中哪一个角与∠BAE相等?为什么?(2)试探究线段DF与CE的数量关系,并说明理由.25、平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.(1)求此抛物线的解析式;(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.26、在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.27、如图,一过原点的直线y=mx(m>0)与反比例函数(k>0)的图象交于A、B两点,过A、B两点分别向x轴、y轴作垂线,垂足分别为C、D两点,连接CD.(1)四边形ACDO的面积与四边形BDCO的面积的数量关系是;(2)求证:AB∥CD且AB=2CD;(3)若k=8,当m的大小发生变化时,四边形ABDC的面积是否发生变化?若不变,求出四边形ABDC的面积;若变化,请说明理由.。
重庆市重庆一中2022-2023学年九年级上学期第二次月考数学试卷
2022-2023学年重庆一中九年级(上)第二次月考数学试卷一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣的相反数是()A.﹣B.C.D.﹣2.(4分)下列4个图形中,既是中心对称图形又是轴对称的图形是()A.B.C.D.3.(4分)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=66°,则∠2=()A.123°B.128°C.132°D.142°4.(4分)一辆汽车行驶的速度(km/h)与时间(min)之间的变化关系如图所示,说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3min时匀速行驶C.汽车在3~8min时匀速行驶D.汽车最快的速度是10km/h5.(4分)如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1)B.C.D.(﹣2,﹣1)6.(4分)如果m=﹣1,那么m的取值范围是()A.0<m<1B.1<m<2C.2<m<3D.3<m<47.(4分)端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗.某超市以10元每袋的价格购进一批粽子,根据市场调查,售价定为每袋16元,每天可售出200袋;若售价每降低1元,则可多售出80袋,问此种粽子售价降低多少元时,超市每天售出此种粽子的利润可达到1440元?若设每袋粽子售价降低x元,则可列方程为()A.(16﹣x﹣10)(200+80x)=1440B.(16﹣x)(200+80x)=1440C.(16﹣x﹣10)(200﹣80x)=1440D.(16﹣x)(200﹣80x)=14408.(4分)如图所示,正方形ABCD中,AB=4,点E为BC中点,BF⊥AE于点G,交CD 边于点F,连接DG,则DG长为()A.B.4C.D.9.(4分)如图所示,一圆弧形拱门,其中路面AB=2,CD垂直平分AB且CD=3,则该拱门的半径为()A.B.2C.D.310.(4分)若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为y≤1,则符合条件的所有整数a的和为()A.15B.12C.11D.1011.(4分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为12,则k的值为()A.12B.8C.6D.312.(4分)有5个正整数a1,a2,a3,a4,a5,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①a1,a2,a3是三个连续偶数(a1<a2<a3),②a4,a5是两个连续奇数(a4<a5),③a1+a2+a3=a4+a5.该小组成员分别得到一个结论:甲:取a2=6,5个正整数不满足上述3个条件;乙:取a2=12,5个正整数满足上述3个条件;丙:当a2满足“a2是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数a1,a2,a3,a4,a5满足上述3个条件,则a5=3k+4(k为正整数);戊:5个正整数满足上述3个条件,则a1,a2,a3的平均数与a4,a5的平均数之和是10p(p为正整数);以上结论正确的个数有()个.A.2B.3C.4D.5二、填空题:(本大题共4小题,每小题4分,共16分)将每小题的答案直接填写在答题卡中对应的横线上.13.(4分)|﹣3|+=.14.(4分)从一副扑克牌中挑出一张红桃、三张黑桃.把它们背面朝上洗匀放在桌子上,随机从中抽取一张,记下花色后放回,再次洗匀放在桌上并随机再抽取一张,两次抽到的扑克牌花色一样的概率是.15.(4分)如图,在矩形ABCD中,AB=2,AD=4,以BC为直径的半圆O与AD相切于点E,连接BE,以点B为圆心,BE长为半径画弧交BC于点F,则图中阴影部分的面积是.(结果保留π)16.(4分)节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盒的从本价定赵二什水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高25%之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为20%,则该单位一共有名员工.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x﹣2)2﹣x(x+2);(2)(﹣1)÷.18.(8分)如图,在△ABC中,点D为BC边上的中点,连接AD.(1)尺规作图:在BC下方作射线BF,使得∠CBF=∠C,且射线BF交AD的延长线于点E(不要求写作法,保留作图痕迹);(2)在(1)所作的图中,连接CE,若CE=AC,求证:四边形ABEC是菱形.(请补全下面的证明过程)证明:∵点D为BC边上的中点,∴DC=DB,在△ADC和△EDB中,∴△ADC≌(ASA),∴AC=,∵∠CBF=∠ACB,∴AC∥.∴四边形ABEC是平行四边形.又∵,∴平行四边形ABEC是菱形.四、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)“创文明校园,创卫生校园”一直是学校的重要工作,为了解学生对创文创卫工作的认识,某小学进行了问卷调查,现从五、六年级各随机抽取了20名学生的调查结果(满分为100分,分数用x表示,共分成四个等级:A:x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100)若低于90分记为不合格,已知下面的信息.五年级随机抽取了20名学生的分数是:72,80,81,82,86,88,90,90,91,91,91,92,93,93,95,95,96,96,99,99.六年级随机抽取了20名学生的分数中,A、B两组数据个数相等.B、C两组的数据是:86,88,90,90,91,91,91,92,92,93.年级五年级六年级平均数9091.5中位数91a众数b91合格率70%m%根据以上信息,回答下列问题:填空:(1)a=;b=;m=.(2)根据以上数据分析,你认为五、六年级哪个年级学生对创文创卫工作了解得更好?请说明理由(写出一条理由即可).(3)若该校五年级有200名学生,六年级有210名学生,估计这两个年级对创文创卫工作了解情况为合格的共有多少人?20.(10分)如图,抛物线y=x2﹣x+c和反比例函数y=的图象都经过A(2,).(1)求抛物线顶点B的坐标和反比例函数的表达式,并在同一坐标系中画出函数y=的图象;(2)点C(﹣1,m)在反比例函数y=的图像上,求△ABC的面积;(3)根据函数图象,直接写出不等式的解集.21.(10分)某风景区准备修一条长6400米步道,在修了1600米后,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用68天完成了全部任务.(1)原来每天修多少米步道?(2)若承包商安排工人加班后每天支付给工人的工资增加了30%,完成整个工程后承包商共支付工人工资329600元,请问安排工人加班前每天需支付工人工资多少元?22.(10分)今年暑假,妈妈带着明明去草原骑马.如图,妈妈位于游客中心A的正北方向的B处,其中AB=2km.明明位于游客中心A的西北方向的C处.烈日当空,妈妈准备把包里的太阳帽给明明送去,于是,妈妈向正西方向匀速步行,同时明明骑马向南偏东60°方向缓慢前进.15分钟后,他们在游客中心A的北偏西37°方向的点D处相遇.(1)求妈妈步行的速度;(2)求明明从C处到D处的距离.(参考数据:sin37°≈0.8,cos37°≈0.8,tan37°≈0.75,≈1.73,≈1.41,结果保留两位小数)23.(10分)料一:如果一个自然数右边的数字总比左边的数字大,我们称它为“上升数”.如果一个三位“上升数”满足百位数字与十位数字之和等于个位数字,那么称这个数为“完全上升数”.例如:A=123,满足1<2<3,且1+2=3,所以123是“完全上升数”;B=346,满足3<4<6,且3+4≠6,所以346不是“完全上升数”.材料二:对于一个“完全上升数”m=100a+10b+c(1≤a,b,c≤9且a,b,c为整数)交换其百位和个位数字得到新数m′=100c+10b+a,规定:F(m)=m′3﹣3m.例如:m=123为“完全上升数”,m′=321,F(m)==6.(1)判断“上升数”168,235是否为“完全上升数”,并说明理由.(2)若m是“完全上升数”,且m与m′的和能被7整除,求F(m)的值.24.(10分)如图1,抛物线y=﹣x2+3x+4与x轴交于A、B两点(A在B的左侧),与y 轴交于点C,连接AC、BC.(1)求△ABC的面积;(2)如图2,点P为直线BC上方抛物线上的动点,过点P作PD∥AC交直线BC于点D,过点P作直线PE∥x轴交直线BC于点E,求PD+PE的最大值及此时P的坐标;(3)在(2)的条件下,将原抛物线y=﹣x2+3x+4沿射线AC方向平移个单位,点M是新抛物线与原抛物线的交点,N是平面内任意一点,若以P、B、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.25.(10分)在等腰Rt△ABC,且AB=AC,∠BAC=90°.(1)如图1,若点D是AB中点,过点D作DE⊥BC于点E,AB=AC=4,连接AE,求线段AE的长度.(2)如图2,R,T是斜边BC上的三等分点,在△ABC外部取一点H,使得Rt△BRH 为等腰直角三角形,其中∠BHR=90°,HB=HR,连接HT,求证:AT=HT.(3)如图3,在△ABC内部有一动点M,满足∠MBC+∠MCB=45°,将△ABC沿AB 翻折至△ABF,取AF的中点N,P为线段FM上的一动点,连接NP,将△NPF沿直线NP翻折至△NPG,在P、M运动的过程中,当MF取得最小值时,且∠FPG=60°,求的值.(直接写出答案即可)2022-2023学年重庆一中九年级(上)第二次月考数学试卷(参考答案与详解)一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣的相反数是()A.﹣B.C.D.﹣【解答】解:﹣的相反数是,故选:C.2.(4分)下列4个图形中,既是中心对称图形又是轴对称的图形是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.(4分)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=66°,则∠2=()A.123°B.128°C.132°D.142°【解答】解:如图:∵∠1=66°,∴∠BAC=180°﹣∠1=180°﹣66°=114°,∵AE平分∠BAC,∴∠3=∠BAC=×114°=57°,∵AC∥BD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣57°=123°.故选:A.4.(4分)一辆汽车行驶的速度(km/h)与时间(min)之间的变化关系如图所示,说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3min时匀速行驶C.汽车在3~8min时匀速行驶D.汽车最快的速度是10km/h【解答】解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车在3~8分钟,匀速运动,故选项C符合题意;汽车最快速度是30千米/时,故选项D不符合题意;故选:C.5.(4分)如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1)B.C.D.(﹣2,﹣1)【解答】解:作AH⊥x轴于H,CG⊥x轴于G,∴△OCG∽△OAH,∴,∵A(4,3),∴OH=4,AH=3,∵△BOA∽△DOC,且OA:OC=3,∴OG=,CG=1,∴C(﹣,﹣1),故选:B.6.(4分)如果m=﹣1,那么m的取值范围是()A.0<m<1B.1<m<2C.2<m<3D.3<m<4【解答】解:∵3<<4,∴,即,∴m的取值范围是2<m<3.故选:C.7.(4分)端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗.某超市以10元每袋的价格购进一批粽子,根据市场调查,售价定为每袋16元,每天可售出200袋;若售价每降低1元,则可多售出80袋,问此种粽子售价降低多少元时,超市每天售出此种粽子的利润可达到1440元?若设每袋粽子售价降低x元,则可列方程为()A.(16﹣x﹣10)(200+80x)=1440B.(16﹣x)(200+80x)=1440C.(16﹣x﹣10)(200﹣80x)=1440D.(16﹣x)(200﹣80x)=1440【解答】解:当每袋粽子售价降低x元时,每袋粽子的销售利润为(16﹣x﹣10)元,每天可售出(200+80x)袋,依题意得:(16﹣x﹣10)(200+80x)=1440.故选:A.8.(4分)如图所示,正方形ABCD中,AB=4,点E为BC中点,BF⊥AE于点G,交CD 边于点F,连接DG,则DG长为()A.B.4C.D.【解答】解:如图,作DL⊥AE于点H,交AB于点L,∵BF⊥AE,∴DL∥BF,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD,∠ABE=∠C=90°,∴BL∥DF,∴四边形BFDL是平行四边形,∵∠AGB=90°,∠BAE=90°﹣∠ABG=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵E为BC中点,∴BE=CF=BC=CD,∴DF=CF=CD,∴BL=DF=CD=AB,∴AL=BL=AB,∴==1,∴AH=GH,∵DA=AB=4,∴DG=DA=4,故选:B.9.(4分)如图所示,一圆弧形拱门,其中路面AB=2,CD垂直平分AB且CD=3,则该拱门的半径为()A.B.2C.D.3【解答】解:如图,取圆弧形的圆心为O,连接OA,设⊙O的半径为r,则OC=OA=r,∵拱高CD=3,∴OD=3﹣r,OD⊥AB,∵AB=2,∴AD=BD=AB=1,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=,∴该拱门的半径为,故选:A.10.(4分)若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为y≤1,则符合条件的所有整数a的和为()A.15B.12C.11D.10【解答】解:,,x+2﹣a=3(x+1),解得x=,且x≠1,∵解为非负数,∴,,解得a≤5且a≠3,,解不等式①,得y≤0,解不等式②,得y<a,∵关于y的不等式组的解集为y≤1,∴a>0,∴0<a≤5且a≠3,∵a为整数,∴a为1、2、4、5,∴符合条件的所有整数a的和为:1+2+4+5=12,故选:B.11.(4分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为12,则k的值为()A.12B.8C.6D.3【解答】解:如图,连接BD,OF,过点A作AN⊥OE于点N,过点F作FM⊥OE于点M,∵AN∥FM,AF=FE,∴MN=ME,∴FM=AN,∵点A,F在反比例函数图象上,∴S△AON=S△FOM=k,∴×ON×AN=×OM×FM,∴ON=OM,∴ON=MN=EM,∴ME=OE,∴S△FME=S△FOE,∵AD平分∠AOE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE=12,∴S△FOE=S△AOE=6,∴S△FME=S△FOE=2,∴S△FOM=S△FOE﹣S△FME=6﹣2=4,∴k=4,∴k=8,故选:B.12.(4分)有5个正整数a1,a2,a3,a4,a5,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①a1,a2,a3是三个连续偶数(a1<a2<a3),②a4,a5是两个连续奇数(a4<a5),③a1+a2+a3=a4+a5.该小组成员分别得到一个结论:甲:取a2=6,5个正整数不满足上述3个条件;乙:取a2=12,5个正整数满足上述3个条件;丙:当a2满足“a2是4的倍数”时,5个正整数满足上述3个条件;丁:5个正整数a1,a2,a3,a4,a5满足上述3个条件,则a5=3k+4(k为正整数);戊:5个正整数满足上述3个条件,则a1,a2,a3的平均数与a4,a5的平均数之和是10p (p为正整数);以上结论正确的个数有()个.A.2B.3C.4D.5【解答】解:甲:若a2=6,由条件①可得:a1=4,a3=8,由条件②得:由条件③得:4+6+8=a4+a4+2,解得:a4=8,而a4是奇数,∴“甲:取a2=6,5个正整数不满足上述3个条件”,结论正确;乙:若a2=12,由条件①知:a1=10,a3=14,由条件②知:a5=a4+2,由条件③,得:10+12+14=a4+a4+2,解得:a4=17,a4是奇数,符合题意,∴“乙:取a2=12,5个正整数满足上述3个条件”,结论正确;丙:若a2是4的倍数,设a2=4n(n是正整数),由条件①知:a1=4n﹣2,a3=4n+2,由条件②知:a5=a4+2,由条件③,得4n﹣2+4n+4n+2=a4+a4+2,解得:a4=6n+1,a4是奇数,符合题意,∴“丙:当a2满足‘a2是4的倍数’时,5个正整数满足上述3个条件”,结论正确;丁:设a1=2k(k是正整数),由条件①知:a2=2k+2,a3=2k+4,由条件②知:a4=a5﹣2,a4、a5是奇数,由条件③,得2k+2k+2+2k+4=a5﹣2+a5,解得:a5=3k+4,∵k是正整数,∴3k+4也是正整数,∴“丁:5个正整数a1,a2,a3,a4,a5满足上述3个条件,则a5=3k+4(k为正整数)”,结论正确;戊:设a1=2m(m是正整数),由条件①知:a2=2m+2,a3=2m+4,由条件②知:a4=a5﹣2,a4、a5是奇数,由条件③,得:2m+2m+2+2m+4=a5﹣2+a5,解得:a5=3m+4,∴a4=a5﹣2=3m+2,∴a1,a2,a3的平均数为=2m+2,a4,a5的平均数为=3m+3,∴a1,a2,a3的平均数与a4,a5的平均数之和为2m+2+3m+3=5m+5=5(m+1),∵m是正整数,∴5(m+1)是5的倍数,不一定是10的倍数,∴“戊:5个正整数满足上述3个条件,则a1,a2,a3的平均数与a4,a5的平均数之和是10p(p为正整数)”结论错误.综上所述,结论正确的个数有4个.故选:C.二、填空题:(本大题共4小题,每小题4分,共16分)将每小题的答案直接填写在答题卡中对应的横线上.13.(4分)|﹣3|+=8.【解答】解:原式=3+1+4=8.故答案为:8.14.(4分)从一副扑克牌中挑出一张红桃、三张黑桃.把它们背面朝上洗匀放在桌子上,随机从中抽取一张,记下花色后放回,再次洗匀放在桌上并随机再抽取一张,两次抽到的扑克牌花色一样的概率是.【解答】解:列表如下:红红红黑红(红,红)(红,红)(红,红)(黑,红)红(红,红)(红,红)(红,红)(黑,红)红(红,红)(红,红)(红,红)(黑,红)黑(红,黑)(红,黑)(红,黑)(黑,黑)由表知,共有16种等可能结果,其中两次抽到的扑克牌花色一样的有10种结果,所以两次抽到的扑克牌花色一样的概率为=,故答案为:.15.(4分)如图,在矩形ABCD中,AB=2,AD=4,以BC为直径的半圆O与AD相切于点E,连接BE,以点B为圆心,BE长为半径画弧交BC于点F,则图中阴影部分的面积是6﹣π.(结果保留π)【解答】解:连接OE,∵AD是半圆O的切线,∴OE⊥AD,∵∠A=∠ABO=90°,OB=OE,∴四边形ABOE为正方形,∴AE=AB=2,∴BE=2,∠ABE=45°,∴∠EBF=45°,∴S阴影部分=2×4﹣×2×2﹣=6﹣π,故答案为:6﹣π.16.(4分)节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盒的从本价定赵二什水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高25%之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为20%,则该单位一共有140名员工.【解答】解:设一个红心猕猴桃的成本价为x元,一个阿克苏糖心苹果成本价为y元,一个奉节脐橙的成本价为z元,依题意有:,解得,∴甲种鲜果礼盒的成本价为6x+4×x+6×x=x元,乙种鲜果礼盒的成本价为8x+4×x+6×x=x元,丙种鲜果礼盒的成本价为4x+8×x+8×x=28x元,∴甲的利润为x×25%=x元,乙的利润为2×x=x元,它的利润率为x÷x=,∴丙的利润为28x×=4x元,设预订乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,依题意有:80×x+xm+4xn=20%(80×x+xm+28xn),5m+6n=320,解得n=,∵预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,∴12≤m﹣n≤28,即12≤m﹣≤28,解得≤m≤,∵m为正整数,∴m的值可能为36,37,38,39,40,41,42,43,44,∵n为正整数,∴为正整数,∴320﹣5m是6的倍数,∴m=40,n=20,∴该单位一共有80+40+20=140名员工.故答案为:140.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x﹣2)2﹣x(x+2);(2)(﹣1)÷.【解答】解:(1)(x﹣2)2﹣x(x+2)=x2﹣4x+4﹣x2﹣2x=﹣6x+4;(2)(﹣1)÷=•=﹣.18.(8分)如图,在△ABC中,点D为BC边上的中点,连接AD.(1)尺规作图:在BC下方作射线BF,使得∠CBF=∠C,且射线BF交AD的延长线于点E(不要求写作法,保留作图痕迹);(2)在(1)所作的图中,连接CE,若CE=AC,求证:四边形ABEC是菱形.(请补全下面的证明过程)证明:∵点D为BC边上的中点,∴DC=DB,在△ADC和△EDB中,∴△ADC≌△EDB(ASA),∴AC=BE,∵∠CBF=∠ACB,∴AC∥BE.∴四边形ABEC是平行四边形.又∵CE=AC,∴平行四边形ABEC是菱形.【解答】(1)解:如图,射线BF即为所求;(2)证明:∵点D为BC边上的中点,∴DC=DB,在△ADC和△EDB中,,∴△ADC≌△EDB(ASA),∴AC=BE,∵∠CBF=∠ACB,∴AC∥BE.∴四边形ABEC是平行四边形.又∵CE=AC,∴平行四边形ABEC是菱形.故答案为:△EDB,BE,BE,CE=AC.四、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)“创文明校园,创卫生校园”一直是学校的重要工作,为了解学生对创文创卫工作的认识,某小学进行了问卷调查,现从五、六年级各随机抽取了20名学生的调查结果(满分为100分,分数用x表示,共分成四个等级:A:x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100)若低于90分记为不合格,已知下面的信息.五年级随机抽取了20名学生的分数是:72,80,81,82,86,88,90,90,91,91,91,92,93,93,95,95,96,96,99,99.六年级随机抽取了20名学生的分数中,A、B两组数据个数相等.B、C两组的数据是:86,88,90,90,91,91,91,92,92,93.年级五年级六年级平均数9091.5中位数91a众数b91合格率70%m%根据以上信息,回答下列问题:填空:(1)a=92;b=91;m=80.(2)根据以上数据分析,你认为五、六年级哪个年级学生对创文创卫工作了解得更好?请说明理由(写出一条理由即可).(3)若该校五年级有200名学生,六年级有210名学生,估计这两个年级对创文创卫工作了解情况为合格的共有多少人?【解答】解:(1)六年级成绩的中位数a=×(92+92)=92,五年级成绩的众数b=91,六年级的合格率为×100%=80%,∴m=80,故答案为:92;91;80;(2)六年级学生对创文创卫工作了解得更好,理由如下:六年级成绩的平均数和中位数均大于五年级;(3)200×70%+210×80%=308(名).答:估计这两个年级对创文创卫工作了解情况为合格的共有308人.20.(10分)如图,抛物线y=x2﹣x+c和反比例函数y=的图象都经过A(2,).(1)求抛物线顶点B的坐标和反比例函数的表达式,并在同一坐标系中画出函数y=的图象;(2)点C(﹣1,m)在反比例函数y=的图像上,求△ABC的面积;(3)根据函数图象,直接写出不等式的解集.【解答】解:(1)把A(2,)代入y=x2﹣x+c得,=×22﹣2+c,解得c=,∴y=x2﹣x+=(x﹣1)2+1,∴抛物线顶点B的坐标为(1,1);把A(2,)代入y=得,k=3,∴反比例函数的表达式为y=;在同一坐标系中画出函数y=的图象如图所示;(2)∵点C(﹣1,m)在反比例函数y=的图像上,∴m==﹣3,∴点C(﹣1,﹣3),∴△ABC的面积=3×4+﹣﹣=;(3)由函数图象知,不等式的解集为x<0或x>2.21.(10分)某风景区准备修一条长6400米步道,在修了1600米后,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用68天完成了全部任务.(1)原来每天修多少米步道?(2)若承包商安排工人加班后每天支付给工人的工资增加了30%,完成整个工程后承包商共支付工人工资329600元,请问安排工人加班前每天需支付工人工资多少元?【解答】解:(1)设原来每天修x米步道,则每天加班后修(1+25%)x米,由题意得:+=68,解得:x=80,经检验,x=80是原方程的解,且符合题意,答:原来每天修80米步道;(2)由(1)得:(1+25%)x=(1+25%)×80=100(米),设安排工人加班前每天需支付工人工资y元,根据题意得,y+y×(1+30%)=329600(元),解得y=4000,答:安排工人加班前每天需支付工人工资4000元.22.(10分)今年暑假,妈妈带着明明去草原骑马.如图,妈妈位于游客中心A的正北方向的B处,其中AB=2km.明明位于游客中心A的西北方向的C处.烈日当空,妈妈准备把包里的太阳帽给明明送去,于是,妈妈向正西方向匀速步行,同时明明骑马向南偏东60°方向缓慢前进.15分钟后,他们在游客中心A的北偏西37°方向的点D处相遇.(1)求妈妈步行的速度;(2)求明明从C处到D处的距离.(参考数据:sin37°≈0.8,cos37°≈0.8,tan37°≈0.75,≈1.73,≈1.41,结果保留两位小数)【解答】解:(1)根据题意可知:AB=2km,∠BAD=37°,∴BD=AB•tan37°≈2×0.75=1.5(km),∴1.5÷=6(km/h),答:妈妈步行的速度为6km/h;(2)如图,过点C作CE⊥AB交AB延长线于点E,∵∠CAE=45°,∠AEC=90°,∴△AEC是等腰直角三角形,∴AE=CE,设AE=CE=akm,过点D作DF⊥CE于点F,得矩形BEFD,∴EF=DB=1.5(km),DF=BE=AE﹣AB=(a﹣2)km,∴CF=CE﹣EF=(a﹣1.5)km,在Rt△CDF中,tan∠DCF=,∴tan30°≈,∴(a﹣1.5)=a﹣2,∴a=,∴DF=a﹣2=,∴CD=2DF=≈1.37(km).答:明明从C处到D处的距离约为1.37km.23.(10分)料一:如果一个自然数右边的数字总比左边的数字大,我们称它为“上升数”.如果一个三位“上升数”满足百位数字与十位数字之和等于个位数字,那么称这个数为“完全上升数”.例如:A=123,满足1<2<3,且1+2=3,所以123是“完全上升数”;B=346,满足3<4<6,且3+4≠6,所以346不是“完全上升数”.材料二:对于一个“完全上升数”m=100a+10b+c(1≤a,b,c≤9且a,b,c为整数)交换其百位和个位数字得到新数m′=100c+10b+a,规定:F(m)=m′3﹣3m.例如:m=123为“完全上升数”,m′=321,F(m)==6.(1)判断“上升数”168,235是否为“完全上升数”,并说明理由.(2)若m是“完全上升数”,且m与m′的和能被7整除,求F(m)的值.【解答】解:(1)∵1<6<,8,1+6≠8,∴168不是“完全上升数”,∵2<3<5,2+3=5,∴235是“完全上升数”;(2)∵m=100a+10b+c,∴m′=100c+10b+a,∴m+m′=101a+20b+101c,∵m是“完全上升数”,∴a+b=c,∴m+m′=101a+20b+101a+101b=202a+121b,m′﹣m=99b,∵202÷7=28......6,121÷7=17......2,∴当6a+2b能被7整除时,m+m′能被7整除,∴当a=1,b=4时,6a+2b=14符合题意,m′﹣m=99×4=396,∴F(m)==12,当a=3,b=5时,6a+2b=28符合题意,m′﹣m=99×5=495,∴F(m)==15,∴F(m)=12或15.24.(10分)如图1,抛物线y=﹣x2+3x+4与x轴交于A、B两点(A在B的左侧),与y 轴交于点C,连接AC、BC.(1)求△ABC的面积;(2)如图2,点P为直线BC上方抛物线上的动点,过点P作PD∥AC交直线BC于点D,过点P作直线PE∥x轴交直线BC于点E,求PD+PE的最大值及此时P的坐标;(3)在(2)的条件下,将原抛物线y=﹣x2+3x+4沿射线AC方向平移个单位,点M是新抛物线与原抛物线的交点,N是平面内任意一点,若以P、B、M、N为顶点的四边形是平行四边形,请直接写出点N的坐标.【解答】解:(1)令y=0,则﹣x2+3x+4=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),∴OA=1,BO=4,令x=0,则y=4,∴C(0,4),∴OC=4,∴S△ABC=5×4=10;(2)∵OA=1,BO=4,OC=4,∴AB=5,AC=,∵PE∥AB,∴∠PED=∠CBA,∵PD∥AC,∴∠EPD=∠CAB,∴△ABC∽△PED,∴=,即=,∴PD=PE,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+4,设P(t,﹣t2+3t+4),则E(t2﹣3t,﹣t2+3t+4),∴PE=﹣t2+4t,∴PE+PD=(1+)(﹣t2+4t)=﹣(1+)(x﹣2)2+4(1+),∴当t=2时,PE+PD的值最大,最大值为4+,此时P(2,6);(3)∵原抛物线y=﹣x2+3x+4沿射线AC方向平移个单位,∴原抛物线y=﹣x2+3x+4沿x轴正方向平移2个单位,沿y轴正方向平移8个单位,∴平移后的抛物线的解析式为y=﹣(x﹣)2+,联立方程组,解得,∴M(,),设N(x,y),①当PB为平行四边形的对角线时,,解得,∴N(,);②当PM为平行四边形的对角线时,,解得,∴N(﹣,);③当PN为平行四边形的对角线时,,解得,∴N(,﹣);综上所述:N点坐标为(,)或(﹣,)或(,﹣).25.(10分)在等腰Rt△ABC,且AB=AC,∠BAC=90°.(1)如图1,若点D是AB中点,过点D作DE⊥BC于点E,AB=AC=4,连接AE,求线段AE的长度.(2)如图2,R,T是斜边BC上的三等分点,在△ABC外部取一点H,使得Rt△BRH 为等腰直角三角形,其中∠BHR=90°,HB=HR,连接HT,求证:AT=HT.(3)如图3,在△ABC内部有一动点M,满足∠MBC+∠MCB=45°,将△ABC沿AB 翻折至△ABF,取AF的中点N,P为线段FM上的一动点,连接NP,将△NPF沿直线NP翻折至△NPG,在P、M运动的过程中,当MF取得最小值时,且∠FPG=60°,求的值.(直接写出答案即可)【解答】(1)解:如图1中,过点A作AH⊥BC于点H.。
天津市和平区天津市第五十五中学2023-2024学年九年级上学期第二次月考数学试题
天津市和平区天津市第五十五中学2023-2024学年九年级上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....22-的开口方向和对称轴分别为(A.80︒B∠=∠4.如图,已知12()∠=∠A.B DC.AB AD=BC DE5.在一次炮弹发射演习中,记录到一门迫击炮发射的炮弹的飞行高度A .30B .407.如图,O 是正五边形ABCDE 上的一点,则MPN ∠的度数为A .55︒B .608.用配方法解方程238x x +-A .219(4)3x +=C .242539x ⎛⎫+= ⎪⎝⎭9.如图.四边形ABCD 是平行四边形.连接EF ,分别交AD 、CD 于点A .EA EG BE EF =B .AD BF 10.如图,AD 与BC 相交于点若:2:7AO AD =,4AB =,则A .4B .11.如图,D ,E 分别是F .:1:3EF FB =,则ABCS S A .19B .13对12.抛物线2(y ax bx c a =++≠推断:①若1t =,则1a =;②若使得()1a t λ-为定值.其中推断正确的是(A .①③B .①④二、填空题13.正六边形的半径为3,则正六边形的边心距为14.已知圆锥的母线长12cm ,底面半径是15.为了让学生养成热爱图书的习惯,某学校2022年用于购买图书的费用是16.已知点()39,2A a a --关于原点对称的点为在第四象限,那么a 的取值范围是17.如图,在Rt ABC △中,∠中点,将BO 绕点B 顺时针旋转为.(1)DB =.(2)请用无刻度直尺,画出AB 弧的中点三、解答题19.(1)用适当的方法解下列方程:(2)已知关于x 的方程242x x -+求k 的值.20.如图,AB 为O 的直径,ACD (1)求BAC ∠的度数;(2)若点E 为OB 中点,5CE =,求21.如图,在△ABC 中,∠ABC=80°相交于点D ,E ,连接BD ,求证:△22.如图,已知,⊙O 的半径r =直线交AB 延长线与点F ,且DF=EF解答下列问题:(1)用含t 的式子表示:以P 、Q 、B 为顶点的三角形和(2)设五边形PEDCQ 的面积为最小?24.如图,在ABC 中,AD 绕点A 顺时针旋转(1)如图1,若3BD =,9CD =,求AB 和AD 的长;(2)如图2,连接DE ,交AC 于点N ,过点B 作BM EN DM =;(3)在(2)的条件下,若6AB =,点D 在BC 上运动过程中,当出MD 的长度.(1)求此抛物线的解析式;(2)若点C的坐标是(0,)m,将线段①若点E在此抛物线上,求出②若点P是y轴上的任一点,当。
天津市嘉诚中学2022-2023学年九年级下学期第二次月考数学试题
天津市嘉诚中学2022-2023学年九年级下学期第二次月考数学试题一、单选题1.计算1(5)5-÷的结果等于( )A .25-B .1-C .1D .25245︒的值等于( )A .12B C D .13.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( ). A .84610⨯B .84.610⨯C .94.610⨯D .104.610⨯5.如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A .B .C .D .63的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间7.化简21211a a a a -+--结果为( ) A .11a a +- B .1a -C .aD .18.如图,在平面直角坐标系中,四边形OABC 为菱形,()0,0O ,()4,0A ,60AOC ∠=o ,则对角线交点E 的坐标为( )A .(B .)C .)D .(9.方程组2421m n m n -=-⎧⎨-=⎩的解为( )A .32m n =-⎧⎨=-⎩B .32m n =-⎧⎨=⎩C .32m n =⎧⎨=-⎩D .32m n =⎧⎨=⎩10.若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =21m x +(m 为常数)的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 111.如图,在菱形ABCD 中,已知4AB =,60ABC ∠=o ,60EAF ∠=o ,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE CF =;②EAB CEF ∠=∠;③ABE EFC ∆∆:;④若15BAE ∠=o ,则点F 到BC 的距离为2.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,抛物线()20y ax bx c a =++≠的顶点为()2,0M .下列结论:(1)0ac <;(2)20a b +=;(3)若关于x 的方程20ax bx c t ++-=有两个不相等的实数根,则0t >;(4)若221122ax bx ax bx +=+,且12x x ≠,则122x x +=.其中正确的结论有( ).A .1个B .2个C .3D .4个二、填空题13.计算23()()a a -⋅-的结果等于.14.计算(23的结果等于.15.不透明袋子中装有13个球,其中有2个红球、5个黄球和6个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是蓝球的概率是. 16.已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.17ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =.三、解答题18.如图,在每个小正方形的边长为1的网格中,点A ,点B 均落在格点上,AB 为O e 的直径.(1)AB 的长等于______;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB 为斜边、面积为5的Rt PAB V ,并简要说明点P 的位置是如何找到的(不要求证明).19.解不等式组45215118x x x x +≥-⎧⎪⎨+>-⎪⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.20.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.21.如图,已知:AB 是O e 的直径,点C 在O e 上,CD 是O e 的切线,AD CD ⊥于点D ,E 是AB 延长线上一点,CE 交O e 于点F ,连接OC 、AC .(1)求证:AC 平分DAO ∠. (2)若105DAO ∠=︒,30E ∠=︒ ①求OCE ∠的度数;②若O e 的半径为EF 的长.22.数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈ 1.73≈)23.一艘游轮从甲地出发,途经乙地前往丙地,路线图如图①所示.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km /h ,离开甲地的时间记为t (单位:h ),两艘轮船离甲地的路程s (单位:km )关于t 的图象如图②所示(游轮在停靠前后的行驶速度不变).货轮比游轮早1.6h 到达丙地. 根据相关信息,解答下列问题:(1)填表:(2)填空:①游轮在乙地停靠的时长为h;②货轮从甲地到丙地所用的时长为h,行驶的速度为km/h;③游轮从乙地出发时,两艘轮船相距的路程为km.(3)当0≤t≤24时,请直接写出游轮离甲地的路程s关于t的函数解析式.24.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.25.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B 在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。
新疆维吾尔自治区乌鲁木齐市第十五中学2021-2022学年九年级上学期第二次月考数学试卷
2021-2022学年乌鲁木齐市第十五中学九年级上学期第二次月考数学试卷满分:150分 考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每小题5分,共45分)1.一元二次方程4x 2+5x ﹣1=0的常数项为( )A .4B .5C .1D .﹣1 2.用配方法解关于x 的一元二次方程2230x x --=,配方后的方程可以是( ) A .2(1)4x -= B .2(1)4x += C .2(1)7x -= D .2(1)7x += 3.一元二次方程 2243x x +=的根的情况是( )A .有两个不相等的实数根B .只有一个实数根C .有两个相等的实数根D .没有实数根4.2020年赛季中国男子篮球职业联赛,采用循环制(每两队之间都进行一场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程( )A .()123802x x -= B .()113802x x -= C .()113802x x += D .x(x+1)=3805.下列二次函数中,图象以直线x =2为对称轴、且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-36.如图,AB 为O 的直径,弦CD AB ⊥于点E ,若8AE =,2BE =则AC 的长度为( ).A .5B .4C .45D .87.如图所示,要建一个面积为2130m 的仓库,并在与墙平行的一边开一道宽1m 的门,仓库有一边靠墙(墙长16m ),围建仓库的材料共有32m 长,则仓库的长是( )A .10mB .20mC .13mD .6.5m 或10m8.在同一平面直角坐标系中,一次函数y =ax+c 和二次函数y =﹣ax 2+c(a≠c)的图象大致为( )A .B .C .D .9.点A ,B 的坐标分别为()2,3-和()1,3,抛物线2(0)y ax bx c a =++<的顶点在线段AB 上运动时,形状保持不变,且与x 轴交于C ,D 两点(C 在D 的左侧),给出下列结论:①3c <;②当3x <-时,y 随x 的增大而增大;③若点D 的横坐标最大值为5,则点C 的横坐标最小值为5-;④当四边形ACDB 为平行四边形时,43a =-.其中正确的是( ) A .②④ B .②③ C .①③④ D .①②④第II 卷(非选择题)二、填空题(每小题5分,共30分)10.已知平行四边形ABCD 的两条对角线相交于平面直角坐标系中的原点O ,点A (-1,3),则点C 的坐标为____________.11.抛物线22y ax ax =-与直线22y x a =-在同一平面直角坐标系中,若抛物线始终在直线的同一侧不与直线相交,则a 的取值范围是_____.12.某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有________名学生. 13.如图所示,在ABC 中,AB AC =,以AB 为直径作半圆O ,交BC 于点D ,交AC 于点E .若44BAC ∠=︒, 2BD =,则DC 的长为___.14.二次函数图像如图所示,当0y <时,x 的取值范围是______.15.如图,点A 是抛物线26y x x =-对称轴上的一动点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ',当O '恰好落在抛物线上时,点A 的坐标为______.三、解答题(共75分)16.(8分)解方程:(1)x 2﹣4=21(2)8(x ﹣1)3=2717.(8分)如图,有一张长6cm 、宽5cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,用剩余(阴影)部分可制成底面积为6cm 2的有盖长方体铁盒.求剪去的正方形的边长.18.(8分)已知,如图OB BA =,150OBA ∠=︒,线段BA 绕点A 逆时针旋转90°得到线段AC .连接BC ,OA ,OC ,过点O 作OD AC ⊥于点D .(1)依题意补全图形;(2)求DOC ∠的度数.19.(8分)如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20米,如果水位上升3米,则水面CD 的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?20.(8分)已知二次函数2y ax =,当3x =时,3y =.(1)当2x =-时,求y 的值;(2)写出该函数图象的开口方向、对称轴和顶点坐标,并求当x 为何值时,函数y 随x 的增大而增大.21.(10分)某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的销售价为x 元,则每天的销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?(3)如果物价部门规定这种零件的销售价不得高于每件28元,该公司销售价应当定为多少元时,每天获得的销售利润最大?最大利润是多少?22.(12分)如图,在Rt △ABC 中,△C =90°,以BC 为直径的△O 交AB 于点D ,DE 交AC 于点E 且△A =△ADE .(1)求证:DE是△O的切线;(2)若AD=8,DE=5,求BC的长.23.(13分)如图所示,平面直角坐标系中,直线y=﹣x+3交坐标轴与B、C两点,抛物线y=ax2+bx+3经过B、C两点,且交x轴于另一点A(﹣1,0).点D为抛物线在第一象限内的一点,过点D作DQ△CO,DQ交BC于点P,交x轴于点Q.(1)求抛物线解析式;(2)设点P的横坐标为m,在点D的移动过程中,存在△DCP=△DPC,求出m值;(3)在抛物线取点E,在坐标系内取点F,问是否存在以C、B、E、F为顶点且以CB为边的矩形?如果有请求出点E的坐标;如果不存在,请说明理由.参考答案:1.D2.A3.A4.B5.C6.C7.C8.B9.A10.(1,-3)11.21a <或21a >12.4013. 214.24-<<x15.()3,1-或()3,016.(1)x =±5;(2)x =5217.剪去的正方形的边长为118.(1)(2)△DOC =15°.19.(1)2125y x =- (2)在正常水位时,此船能顺利通过这座拱桥20.(1)当2x =-时,43y =; (2)函数图象开口向上,对称轴是y 轴,顶点坐标是(0,0),当0x >时,函数y 随x 的增大而增大.21.(1)每天的销售量为(80﹣2x )件;(2)想要每天获得150元的销售利润,销售价应当为25元;(3)该公司销售价应当定为28元时,每天获得的销售利润最大,最大利润是192元22.(1)证明:(2)BC的长15 223.(1)y=﹣x2+2x+3;(2)m=2;(3)存在,当点E(1,4)或(﹣2,﹣5)时,以C、B、E、F为顶点且以CB为边的矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泉塘中学九年级数学第二次月考试题
时间:100分钟 分数:120分
年级 班级 姓名
一、选择题(每小题3分,共30分)
1、sin60°的值等于( )
A 、
21 B 、2
2 C 、23
D 、1 2、已知2
1=y
x ,则y
x y x +-的值为( ) A 、3
1 B 、3
1- C 、3 D 、-3
3、方程x 2-2(3x -2)+(x +1)=0的一般形式是( )
A 、x 2-5x +5=0
B 、.x 2+5x +5=0
C 、x 2+5x -5=0
D 、x 2+5=0 4、下列函数中,是反比例函数的是( )
A 、y x =-2
B 、y x =-12
C 、y x =-11
D 、y x =12
5、如图,A 、C 是反函数图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过 点C 作y 轴的垂线,垂足为D ,记RtΔAOB 的面积为S 1,Rt △COD 的面积为S 2, 则( )
A 、S 1>S 2;
B 、S 1<S 2;
C 、S 1 =S 2;
D 、S 1和S 2的大小关系不能确定
6
、把方程
28
90x x ++=配方后得( )
A 、2(4)7x +=
B 、2(4)25x +=
C 、2(4)9x +=-
D 、2(8)7x +=
7、如图,在ΔABC 中,DE ∥BC ,且AD ∶DB=2∶1,那么DE ∶BC 等于( ) A 、2∶1 B 、1∶2 C 、2∶3 D 、3∶2
8、已知在Rt ABC △中,3
90sin 5
C A ∠==°,
,则tan B 的值为( ) A 、43 B 、45 C 、54 D 、
34
9、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值、余弦值都( )
A 、缩小2倍
B 、扩大2倍
C 、不变
D 、不能确定 10、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果
平均每月增长率为x ,则由题意列方程应为( )
A 、200(1+x)2=1000
B 、200+200×2x=1000
C 、200+200×3x=1000
D 、200[1+(1+x)+(1+x)2]=1000
二、填空题(每小题3分,共30分)
11、已知
35a c e b d f ===,则______=++++f
d b
e c a ;3232a c e b d
f -+-+= ______。
12、已知sinα=
2
3
,且α为锐角,则α= 。
13、如图,直线y =kx(k >0)与双曲线x
y 4
=
交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 1-7x 2y 2=___________。
14、反比例函数y a x
a a =---()3224
的函数值为4时,自变量x 的值是_________。
15、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= _____, b=_____。
16、如图,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长 为 ____.
17、雨后初晴,一学生在运动场上玩耍,从他前面2m 远一块小积水处,他看到旗杆
顶端的倒影,如果旗杆底端到积水处的距离为40m ,该生的眼部高度是1.5m ,那么旗杆的高度是___________m 。
18、如果21x
-2x -8=0,则1
x 的值是________。
19、若x=-1是关于x 的一元二次方程ax 2+bx-2=0(a≠0)的一个根,则2014-2a+2b 的值
为________。
20、如果x 2-10x+y 2-16y+89=0,则
x
y
的值为________。
三、解答题(共60分)
21、(8分)计算:
(1)tan30°-sin60°sin30° (2)o 45cos 230sin 2-︒ 22、(8分)解下列方程:
(1)9x 2 = 16 (2)x 2
+4x-5=0
23、(7分)直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k x
=相交于B 、C
两点,已知B 点坐标为(-12
,4),求直线和双曲线的解析式。
24、(9分)如图,在平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交
于点F ,CD DE 2
1
=。
(1)求证:△EFD ∽△EBC ;
(2)若△DEF 的面积为2,求□ABCD 的面积。
25、(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,
平均每天可售出100千克。
后来经市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃想要平均每天获利2240元,则每千克核桃应降价多少元?
26、(10分) 已知:如图,Rt △ABC 中,∠C =90°,求证:
(1)sin 2A +cos 2A =1; (2)⋅=
A
A
A cos sin tan
27、(10分) 如图,在平面直角坐标系中,已知OA =12cm ,OB =6cm ,点P 从O 点开
始沿OA 边向点A 以1cm /s 的速度移动:点Q 从点B 开始沿BO 边向点O 以1cm /s 的速度移动,如果P 、Q 同时出发,用t (s )表示移动的时间(06t ≤≤),那么:
(1)设△POQ 的面积为y ,求y 关于t 的函数解析式。
(2)当t 为何值时, △POQ 与△AOB 相似?
F A D E B C。