北京市房山区高三数学第二次模拟考试 文(房山二模)新人教B版

合集下载

北京房山区房山第二中学2020年高三数学文模拟试卷含解析

北京房山区房山第二中学2020年高三数学文模拟试卷含解析

北京房山区房山第二中学2020年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 三棱锥的四个顶点都在体积为的球的表面上,底面ABC所在的小圆的面积为,则该三棱锥的高的最大值为()A. 7B. 7.5C. 8D. 9参考答案:C2. 已知函数的图像是下列四个图像之一,且其导函数的图像如右图所示,则该函数的图像是()参考答案:B因为,所以在为增函数,又时,为增函数, 所以图象越来越陡峭,时,为减函数, 所以图象越来越平缓。

3. 设曲线y=在点(3,2)处的切线与直线ax+y+3=0垂直,则a=A.2 B.-2 C.D.-参考答案:B函数的导数为,所以函数在的切线斜率为,直线ax+y+3=0的斜率为,所以,解得,选B.4. 将函数的图象上各点的横坐标压缩为原来的倍(纵坐标不变),所得函数在下面哪个区间单调递增()A.B.C.D.参考答案:A将函数的图象上各点的横坐标压缩为原来的倍(纵坐标不变),得到函数的图象,令,解得可得函数的增区间,当时,可得函数在区间单调递增。

故答案选5. 数列{a n}的前n项和为S n,若,则S5等于( )A.1 B.C.D.参考答案:B考点:数列的求和.专题:等差数列与等比数列.分析:利用“裂项求和”即可得出.解答:解:∵,∴…+==.∴.故选B.点评:熟练掌握“裂项求和”的方法是解题的关键.6. 复数,(i为虚数单位),z在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:B【分析】先将化简运算得到,再由对应点的坐标得出结果.【详解】由题意知,其对应点的坐标为(,),在第二象限.故选:B.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.7. 若变量x,y满足约束条件,则点(3,4)到点(x,y)的最小距离为()A.3 B.C.D.参考答案:C【考点】简单线性规划.【分析】由约束条件作出可行域,再由点到直线的距离公式求得点(3,4)到点(x,y)的最小距离.【解答】解:由约束条件作出可行域如图,点(3,4)到点(x,y)的最小距离为P(3,4)到直线x+y﹣4=0的距离.为.故选:C.8. 函数的极值点的个数是A.2B.1C.0D.由a确定参考答案:C函数的导数为,所以函数在定义域上单调递增,所以没有极值点,选C.9. 记定义在区间[a,b]上的连续函数y=f(x),如果存在x0∈[a,b],使得f(x0)=成立,则称x0为函数f(x)在[a,b]上的“平均值点”,那么函数f(x)=x3+2x在[﹣1,1]上“平均值点”的个数为()A.1B.2C.3D.4参考答案:A【分析】由新定义计算定积分可将问题转化为g(x)=x3+2x﹣在x∈[﹣1,1]上的零点个数,由零点判定定理和函数单调性可得.【解答】解:由题意可得(x3+2x)dx=(x4+x2)=,∴函数f(x)=x3+2x在[﹣1,1]上“平均值点”的个数为方程x3+2x=在[﹣1,1]上根的个数,构造函数g(x)=x3+2x﹣,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.故选:A.【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.10. 已知函数f(x)=Asin(ωx+)(A>0, ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2、4、8,则函数f(x)的单调递增区间是().A.[6kπ, 6kπ+3],k∈Z B.[6k―3, 6k],k∈ZC.[6k, 6k+3],k∈Z D.无法确定参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 设,其中满足约束条件,若的最小值,则k的值为_____________.参考答案:1略12. 已知单位圆的圆心在原点,圆周上的六个等分点其中落在x正半轴上,且这六个点分别落在以原点为始点,X非负半轴为始边的∠的终边上,所有的∠可表示为__________________ (用一个含的式子表示)。

2023年北京市房山区高考数学二模试卷+答案解析(附后)

2023年北京市房山区高考数学二模试卷+答案解析(附后)

2022年北京市房山区高考数学二模试卷一、单选题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,集合,则( )A. B.C. D.2.双曲线的焦点坐标为( )A. B.C.D.3.已知,是第一象限角,且角,的终边关于y 轴对称,则( )A. B.C.D.4.已知数列满足,为其前n 项和.若,则( )A. 20B. 30C. 31D. 625.已知函数,则不等式的解集为( )A. B.C. D.6.已知,是两个不同的平面,直线,且,那么“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知数列是公差为d 的等差数列,且各项均为正整数,如果,,那么的最小值为( )A. 13B. 14C. 17D. 188.如表是某生活超市2021年第四季度各区域营业收入占比和净利润占比统计表:生鲜区熟食区乳制品区日用品区其它区营业收入占比净利润占比该生活超市本季度的总营业利润率为营业利润率是净利润占营业收入的百分比,给出下列四个结论:①本季度此生活超市营业收入最低的是熟食区;②本季度此生活超市的营业净利润超过一半来自生鲜区;③本季度此生活超市营业利润率最高的是日用品区;④本季度此生活超市生鲜区的营业利润率超过其中正确结论的序号是( )A. ①③B. ②④C. ②③D. ②③④二、填空题:本题共4小题,每小题5分,共20分。

9.抛物线的准线方程为______10.若复数z满足,则______ .11.已知圆C:和直线l:,则圆心坐标为______;若点P在圆C上运动,P到直线l的距离记为,则的最大值为______.12.已知函数若函数在R上不是增函数,则a的一个取值为______.三、解答题:本题共5小题,共71分。

解答应写出文字说明,证明过程或演算步骤。

13.本小题14分在中,,Ⅰ求;Ⅱ再从下列三个条件中选择一个作为已知,使存在且唯一确定,求BC边上的高.条件①:;条件②:;条件③:的面积为14.本小题14分如图,在四棱锥中,底面在底面ABCD中,,,,Ⅰ求证:平面PAB;Ⅱ若平面PAB与平面PCD的夹角等于,求点B到平面PCD的距离.15.本小题14分北京2022年冬奥会、向全世界传递了挑战自我、积极向上的体育精神,引导了健康、文明、快乐的生活方式.为了激发学生的体育运动兴趣,助力全面健康成长,某中学组织全体学生开展以“筑梦奥运,一起向未来”为主题的体育实践活动.为了解该校学生参与活动的情况,随机抽取100名学生作为样本,统计他们参加体育实践活动时间单位:分钟,得到下表:时间人数类别男51213898性别女69101064初中10学段高中m1312754Ⅰ从该校随机抽取1名学生,若已知抽到的是女生,估计该学生参加体育实践活动时间在的概率;Ⅱ从参加体育实践活动时间在和的学生中各随机抽取1人,其中初中学生的人数记为X,求随机变量X的分布列和数学期望;Ⅲ假设同组中每个数据用该组区间中点值代替,样本中的100名学生参加体育实践活动时间的平均数记为,初中、高中学生参加体育实践活动时间的平均数分别记为,,当m满足什么条件时,结论不要求证明16.本小题15分已知椭圆C:的一个顶点为,一个焦点为Ⅰ求椭圆C的方程和离心率;Ⅱ已知点,过原点O的直线交椭圆C于M,N两点,直线PM与椭圆C的另一个交点为若的面积等于,求直线PM的斜率.17.本小题14分已知数集…,具有性质P:对任意的,,,…使得成立.Ⅰ分别判断数集与是否具有性质P,并说明理由;Ⅱ已知…,求证:;Ⅲ若,求数集A中所有元素的和的最小值.答案和解析1.【答案】B【解析】解:集合,集合,,故AC均错误;,故B正确,D错误.故选:求出集合A,集合B,利用并集和交集定义能求出,本题考查集合的运算,考查交集、并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:双曲线,可知,,,所以双曲线的焦点坐标为故选:直接利用双曲线方程求解焦点坐标即可.本题考查双曲线的简单性质的应用,焦点坐标的求法,是基础题.3.【答案】D【解析】解:是第一象限角,且角,的终边关于y轴对称,,,故选:根据题意可知,,再由诱导公式及同角三角函数的基本关系求解即可.本题考查诱导公式及同角三角函数的基本关系的运用,考查运算求解能力,属于基础题.4.【答案】C【解析】解:,数列为等比数列,且公比为2,,,,故选:根据等比数列的通项公式和求和公式进行计算即可.本题主要考查等比数列的通项公式和求和公式,属于基础题.5.【答案】C【解析】解:,,,不等式的解集为故选:利用对数函数的单调性求解即可.本题主要考查对数不等式的解法,属于基础题.6.【答案】B【解析】解:当直线,且,,则,l与相交,故充分性不成立;当直线,且,时,,故必要性成立,““是“的必要而是不充分条件.故选:根据空间线面位置关系,结合必要不充分条件的概含判断即可.本题考查充分条件、必要条件、充要条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是基础题.7.【答案】B【解析】解:由等差数列的通项公式,得,,只有,,或,时,即,,或,时,有最小值为故选:由,,得到,然后分析出n,d的所有可能取值,从而得到答案.本题考查了等差数列的通项公式,解答的关键是由各项均为正整数得到公差d为正整数,是基础题.8.【答案】D【解析】解:由题中数据知,其它类营业收入占比,为最低的,故①错;生鲜区的净利润占比,故②正确;生鲜区的营业利润率为,故④正确;熟食区的营业利润率为;乳制品区的营业利润率为;其他区的营业利润率为;日用品区为,最高,故③正确.故选:根据表中数据以及营业利润率的概念逐项进行分析并判断.本题考查了概念与统计的相关知识,属于基础题.9.【答案】【解析】解:抛物线的准线方程为:故答案为:直接利用抛物线的标准方程求解准线方程即可.本题考查抛物线的简单性质的应用,是基本知识的考查.10.【答案】【解析】解:,,化为,故答案为:利用复数的运算法则和模的计算公式即可得出.本题考查了复数的运算法则和模的计算公式,属于基础题.11.【答案】【解析】解:由圆的方程知圆心坐标为;由直线l:知直线l过定点,则,当时,圆心C到l距离最大,又圆C的半径为,故答案为:;由圆的村准方程可得圆心的坐标,根据直线l过定点,可知当时,圆心C到l距离最大,则本题考查直线与圆的位置关系,考查了点到直线的距离公式的应用,是基础题.12.【答案】答案不唯一,满足或即可【解析】解:和的图象如图所示:当或时,有部分函数值比的函数值小,故当或时,函数在R上不是增函数.故答案为:作出和的图象,数形结合即可得a的范围,从而得到a的可能取值.本题考查了分段函数的应用,属于基础题.13.【答案】解:Ⅰ由正弦定理及,知,因为,所以,因为,所以,又,所以Ⅱ选择条件①:因为,且,所以,所以,故该不存在.选择条件②:因为,所以,由,知,所以,所以BC边上的高选择条件③:的面积,所以,由余弦定理知,,所以,因为,所以BC边上的高【解析】Ⅰ利用正弦定理化边为角,再结合两角和的正弦公式,即可得解;Ⅱ条件①:由,求出的值,再由,展开运算求得的值,由于,故该三角形不存在;条件②:易知,从而知,再由,展开运算求得的值,然后由,得解;条件③:由,求得c,再利用余弦定理,求出a,然后根据等面积法,得解.本题考查解三角形,熟练掌握正弦定理,余弦定理,两角和的正弦公式是解题的关键,考查逻辑推理能力和运算能力,属于中档题.14.【答案】解:证明:以D为坐标原点,DA,DC所在直线为x,y轴,过点D作平面ABCD的垂线为z轴建立如图所示的空间直角坐标系,设,则,,,,,,,,,,,,,又,平面PAB,平面PAB,平面由可知为平面PAB的一个法向量,由知,,,设平面PDC的一个法向量为,则,令,则,,平面PDC的一个法向量为,,,又平面PAB与平面PCD的夹角等于,,解得,平面PDC的一个法向量为,又,点B到平面PCD的距离为【解析】以D为坐标原点,DA,DC所在直线为x,y轴,过点D作平面ABCD的垂线为z轴建立如图所示的空间直角坐标系,利用向量法证明,,从而得到平面PAB;利用平面PAB与平面PCD的夹角等于,可得,求出a,再利用向量法可求点B到平面PCD的距离.本题考查线面垂直的证明,以及面面角的求法,点到面的距离的求法,属中档题.15.【答案】解:Ⅰ方法一:女生共有人,记事件A为“从所有调査学生中随机抽取1人,女生被抽到”,事件B为“从所有调査学生中随机抽取1人,参加体育活动时间在“,由题意可知,,因此,所以从该校随机抽取1名学生,若已知抽到的是女生,估计该学生参加体育活动时间在的概率为;方法二:女生共有人,记事件M为“从所有调査学生中随机抽取1名学生,若已知抽到的是女生,该学生参加体育活动时间在“,由题意知,从所有调査学生中随机抽取1人,抽到女生所包含的基本事件共45个,抽到女生且参加体育活动时间在所包含的基本事件共9个,所以,所以从该校随机抽取1名学生,若已知抽到的是女生,估计该学生参加体育活动时间在的概率为;Ⅱ方法一:X的所有可能值为0,1,2,时间在的学生有人,活动时间在的初中学生有人,记事件C为“从参加体育活动时间在的学生中随机抽取1人,抽到的是初中学生”,事件D为“从参加体育活动时间在的学生中随机抽取1人,抽到的是初中学生”,由题意知,事件C,D相互独立,且,所以,,,所以x的分布列为:X 0 1 2P故X的数学期望;方法二:X的所有可能值为0,1,2,因为从参加体育活动时间在和的学生中各随机抽取1人是相互独立,且抽到初中学生的概率均为,故,所以,,,所以X的分布列为:X 0 1 2P故X的数学期望;Ⅲ根据男女生人数先补全初中学生各区间人数:时间人数类别男51213898性别女69101064初中81111108学段高中m1312754内初中生的总运动时间,内高中生的总运动时间,则由题,,2,3…11,又,,由可得,当,3…11时成立,故m的取值范围【解析】Ⅰ方法一:根据条件概率公式求解即可;方法二:根据古典概型的方法分析即可;Ⅱ方法一:根据相互独立事件同时发生的概率公式求解即可;方法二:根据二项分布的公式求解;Ⅲ补全初中段的人数表格,再分别计算,,关于m的解析式,代入求解m的范围即可.本题考查了离散型随机变量的分布列与期望,属于中档题.16.【答案】Ⅰ由题设,得,,则,所以椭圆C的方程为,离心率Ⅱ设直线PM的方程为,由得,解得设,,则,,即,同号.根据椭圆的对称性知,,所以,整理得,解得,满足所以,或【解析】Ⅰ根据题意得到b,c,进而求出a,最后得到椭圆方程和离心率;Ⅱ设出直线PM的方程并代入椭圆方程然后化简,再设出点M,Q的坐标,进而表达出面积,然后结合根与系数的关系求出答案.本题主要考查椭圆方程的求解,直线与圆锥曲线的位置关系,韦达定理及其应用等知识,属于中等题.17.【答案】解:Ⅰ,,3,5不具有性质P;,,,具有性质P;证明:Ⅱ集合…,具有性质P,即对任意的,,,使得成立,又…,,,即,,,…,,,将上述不等式相加得……,…,由于,…,…;解:Ⅲ最小值为首先注意到,根据性质P,得到,易知数集A的元素都是整数,构造或者,这两个集合具有性质P,此时元素和为75;下面,证明75是最小的和:假设数集…,…,,满足存在性显然,满足的数集A只有有限个,第一步:首先说明集合…,…,中至少有7个元素:由可知,,…又,,,,,,;第二步:证明,,若,设,,为了使得最小,在集合A中一定不含有元素,使得,从而,假设,根据性质P,对,有,,使得,显然,,而此时集合A中至少还有4个不同于,,的元素,从而,矛盾,,进而,且,同理可证:,同理可以证明:若,则,假设,,根据性质P,有,,使得,显然:,而此时集合A中至少还有3个不同于,,,的元素,从而,矛盾,,且,至此,我们得到了,,根据性质P,有,,使得,我们需要考虑如下几种情形:①,,此时集合中至少还需要一个大于等于4的元素,才能得到元素8,则,②,,此时集合中至少还需要一个大于4的元素,才能得到元素7,则,③,,此时集合的和最小,为75,④,,此时集合的和最小,为【解析】Ⅰ对于,,故可判断它不具有性质P;对于可逐项验证2、3、6均满足对任意的,,,使得成立,故可判断它具有性质P;Ⅱ根据题意可知,,从而,故而可得,,,…,,,将这些式子累加即可得…,从而可变形为要证的结论;Ⅲ根据题中已知条件可得该数集,,从而可得该数集元素均为整数,再根据可构造一个满足性质P的数集或,这两个数集元素之和为75,证明75是最小值即可.本题考查了数列的综合应用,属于难题.。

北京市房山区2020届高三第二次模拟检测数学试题 含答案

北京市房山区2020届高三第二次模拟检测数学试题 含答案
通常用公园实时在园人数与公园的最大承载量(同一时段在园人数的饱和量)之比来表示游园舒适度,
40% 以下称为“舒适”,已知该公园的最大承载量是8 万人. (Ⅰ)甲同学从10 月1日至 7 日中随机选1天的下午14 时去该公园游览,求他遇上“舒适”的概率; (Ⅱ)从10 月1日至 7 日中任选两天,记这两天中这 4 个时间的游览舒适度都为“舒适”的天数为 X ,求
成等比数列?若存在,求出 k 的值;若不存在,说明理由.
从① an+1 − 2an = 0 ,② Sn = Sn−1 + n(n ≥ 2) , ③ Sn = n2 这三个条件中任选一个,补充在上面问题
中并作答. 注:如果选择多个条件分别解答,按第一个解答计分。
3
(18)(本小题 14 分)
“十一”黄金周某公园迎来了旅游高峰期,为了引导游客有序游园,该公园每天分别在10 时,12 时,14 时,16 时公布实时在园人数.下表记录了10 月1日至 7 日的实时在园人数:
北京市房山区 2020 年高考第二次模拟检测
高三数学
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考 试结束后,将本试卷和答题纸一并交回。
第一部分 (选择题 共 40 分)
一、选择题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,选出符合题目 要求的一项。
(B) 3 2
(C) 2 6
(D) 3 3
(3)函数 f (x) = sin πx cos πx 的最小正周期为
(A)1 (C) π
(B) 2 (D) 2π
(4)若双曲线
x2 a2

y2 b2
= 1 (a 0,b 0) 的一条渐近线经过点 (1,

2023-2024学年北京市房山区高考数学质量检测模拟试题(二模)含答案

2023-2024学年北京市房山区高考数学质量检测模拟试题(二模)含答案

2023-2024学年北京市房山区高考数学模拟试题(二模)一、单选题1.已知集合{}{}21,0,1,1A B xx =-=≥∣,则()R A B ⋃=ð()A .{}1,1-B .{}1,0,1-C .{}1xx ≤∣D .{}11xx -≤≤∣【正确答案】D【分析】解一元二次不等式得集合B ,再结合集合的补集、并集运算即可.【详解】因为{}{}21|11B xx x x x =≥=≤-≥∣或,所以{}R |11B x x =-<<ð,又{}1,0,1A =-,所以()R A B ⋃=ð{}11xx -≤≤∣.故选:D.2.已知复数()i 2i z =⋅+,则复数z 在复平面内对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】C【分析】先求得复数z 的代数形式,进而求得其在复平面内对应的点所在象限.【详解】()i 2i 12i z =⋅+=-+,则12z i =--,则复数z 在复平面内对应的点坐标为()1,2--,该点位于第三象限.故选:C3.已知三条不同的直线,,l m n 和两个不同的平面,αβ,下列四个命题中正确的为()A .若,m n αα∥∥,则m n ∥B .若,l m m α⊂∥,则l α∥C .若,∥∥l l αβ,则αβ∥D .若,l l αβ⊥∥,则αβ⊥【正确答案】D【分析】求得,m n 位置关系判断选项A ;求得,l α位置关系判断选项B ;求得,αβ位置关系判断选项C ,D.【详解】选项A :若,m n αα∥∥,则m n ∥或,m n 异面或,m n 相交.判断错误;选项B :若,l m m α⊂∥,则l α∥或l ⊂α.判断错误;选项C :若,∥∥l l αβ,则αβ∥或,αβ相交.判断错误;选项D :若l α∥,则必有,l l l α''⊂∥,又l β⊥,则l β'⊥,则αβ⊥.判断正确.故选:D4.设5250125(21)x a a x a x a x -=++++ ,则125a a a +++= ()A .2-B .1-C .1D .2【正确答案】D【分析】先令0x =计算出0a 的值,再令1x =计算出0125a a a a ++++ 的值,由此可计算出125a a a +++ 的值.【详解】令0x =,所以()5011a -==-,令1x =,所以2515011a a a a +++=+= ,所以125112a a a +++=+= ,故选:D.5.设0.32,sin28,ln2a b c === ,则()A .c b a <<B .b c a <<C .a b c <<D .b a c<<【正确答案】B【分析】根据给定条件,利用指数、对数函数、正弦函数的性质,借助“媒介数”比较判断作答.【详解】00.32,si 2n n212i 81s 30a b >=<===2e <<,则1ln 212<<,即112c <<,所以b<c<a .故选:B6.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD l ⊥于D .若2,60AF DAF ∠== ,则抛物线C 的方程为()A .28y x =B .24y x =C .22y x=D .2y x=【正确答案】C【分析】根据抛物线的定义求得2DF =,然后在直角三角形中利用60DAF ∠=︒可求得2p =,从而可得答案.【详解】如图,连接DF ,设准线与x 轴交点为M抛物线2:2(0)C y px p =>的焦点为,02p F ⎛⎫⎪⎝⎭,准线l :2p x =-又抛物线的定义可得AF AD =,又60DAF ∠= ,所以DAF △为等边三角形,所以2DF AF ==,60DFM ∠=所以在Rt DFM 中,222DF MF p ===,则1p =,所以抛物线C 的方程为22y x =.故选:C.7.已知点P 是双曲线C :x 224y -=1的一条渐近线y =kx (k >0)上一点,F 是双曲线C 的右焦点,若△OPF 的面积为5,则点P 的横坐标为()A .5±B 5C .5±D .25【正确答案】A根据条件得到渐近线方程为:y =2x ,再由面积为5得到yP =5横坐标.【详解】由双曲线方程可得a =1,b =2,则c 415+则渐近线方程为:y =2x ,F 50),又S 12=c •|yP |=5,则yP =5当y =5x 52y==当y =﹣5x 52y==-,故点P 的横坐标为故选:A .本题主要考查了双曲线渐近线方程的应用,求出P 的纵坐标是解题的关键,属于基础题.8.在ABC 中,3,2AC BC AB ===,则AB 边上的高等于()A .BC D .32【正确答案】B【分析】根据余弦定理求cos C ,再得sin C ,利用ABC 的面积公式即可求AB 边上的高.【详解】在ABC 中,因为3,2AC BC AB ===,由余弦定理得222cos2AC BC AB C AC BC +-=⋅因为()0,πC ∈,所以sin 7C ==设AB 边上的高为h ,则11sin 22ABC S AC BC C AB h =⋅⋅=⋅ ,所以3sin 722AC BC Ch AB⋅⋅===,即AB 故选:B.9.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是()A .42B .41C .40D .39【正确答案】C【分析】先求得“不满意度”之和S 的解析式,再利用二次函数的性质求得S 的最小值.【详解】设在第n (212)n ≤≤层下,则[][](2)(3)1112(11)(12)2S n n n n =-+-++⨯++++-+-⨯2(2)(21)(12)(121)35321572222n n n n n n --+--+=+⨯=-+223533532809157157222624n n n ⎛⎫=-+=-+- ⎪⎝⎭又212,N n n ≤≤∈,则9n =时S 取得最小值40.故选:C10.有三支股票,,,28A B C 位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A 股票的人中,持有B 股票的人数是持有C 股票的人数的2倍.在持有A 股票的人中,只持有A 股票的人数比除了持有A 股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A 股票.则只持有B 股票的股民人数是()A .7B .6C .5D .4【正确答案】A【分析】通过设出只持有A 股票的人数和只同时持有了B 和C 股票的人数,表达出持有不同股票的人数,通过持股的总人数即可求出只持有B 股票的股民人数.【详解】由题意,设只持有A 股票的人数为X ,则持有A 股票还持有其它殸票的人数为1X -(图中d e f ++的和),∵只持有一支股票的人中,有一半没持有B 或C 股票,∴只持有了B 和C 股票的人数和为X (图中b c +部分).假设只同时持有了B 和C 股票的人数为a ,∴128X X X a +-++=,即329X a +=,则X 的取值可能是9,8,7,6,5,4,3,2,1,与之对应的a 值为2,5,8,11,14,17,20,23,26,∵没持有A 股票的股民中,持有B 股票的人数是持有C 股票的人数的2倍∴()2a b a c +=+,即3X a c -=,∴8,5X a ==时满足题意,此时1,7c b ==,∴只持有B 股票的股民人数是7,故选:A.本题主要考查了逻辑推理能力,韦恩图在解决实际问题中的应用,解答此题的重点是求持有A 股票的人数,利用韦恩图结合条件即得.二、填空题11.已知向量()(),4,1,a t b t == ,若a b∥,则实数t =______.【正确答案】2±【分析】根据平面向量平行的坐标表示列式即可求出结果.【详解】因为向量()(),4,1,a t b t == 且a b∥,所以410t t ⨯-⨯=,解得2t =±,故2±三、双空题12.设数列{}n a 的前n 项和141n n S -=-,则n a =__________;使得命题“*0,n N n ∀>∈N ,都有1100n n a a +->”为真命题的一个0N 的值为__________.【正确答案】20,1,N 34,2n n n n *-=⎧∈⎨⨯≥⎩3(答案不唯一,03N ≥)【分析】根据给定的前n 项和求出通项n a 即可,由1100n n a a +->求出n 的取值范围作答.【详解】数列{}n a 的前n 项和141n n S -=-,当1n =时,011410a S ==-=,当2n ≥时,1221(41)(41)34n n n n n n a S S -----==---=⨯,显然10a =不满足上式,所以20,1,N 34,2n n n a n n *-=⎧=∈⎨⨯≥⎩;当1n =时,211003a a -<=,不等式1100n n a a +->不成立,当2n ≥时,1221343494n n n n n a a -+--=⨯--⨯=⨯,不等式1291001004n n n a a -+⇔>->,而N n *∈,解得4n ≥,因此对*,3n n ∀>∈N ,不等式1100n n a a +->恒成立,所以“*0,n N n ∀>∈N ,都有1100n n a a +->”为真命题的03N ≥,取0N 的一个值为3.故20,1,N 34,2n n n n *-=⎧∈⎨⨯≥⎩;3四、填空题13.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为__________.【正确答案】3【分析】设()00,P x y ,根据点P 到直线y x =的距离为2,求得22000021x y x y +-=,再由()00,x y 在圆C 上,得到()0010y x -=,取得00y =或01x =,进而求得满足条件的点的个数,得到答案.【详解】设()00,P x y ,由点P 到直线y x =2=两边平方整理得到22000021x y x y +-=①因为()00,x y 在圆C 上,所以()22012x y +-=,即2200021x y y +-=②联立①②得()0010y x -=,解得00y =或01x =,当00y =时,由①②可得201x =,解得01x =或01x =-,即(1,0)P 或(1,0)P -当01x =时,由①②可得20020y y -=,解得00y =或02y =,即(1,0)P 或()1,2P 综上,满足条件的点P 的个数为3.故3.五、双空题14.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=-+>< ⎪⎝⎭满足:()πR,2x f x f x ⎛⎫∀∈+=- ⎪⎝⎭,ππ66f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,且在ππ,123⎛⎫- ⎪⎝⎭上单调递减,则ω=__________;ϕ=__________.【正确答案】23π-/13π-【分析】根据给定条件,探讨函数()f x 的周期及对称中心,结合单调递减区间求解作答.【详解】由()πR,2x f x f x ⎛⎫∀∈+=- ⎪⎝⎭,得π(π)()()2f x f x f x +=-+=,因此π是函数()f x 的一个周期,又函数()f x 在ππ,123⎛⎫- ⎪⎝⎭上单调递减,则函数()f x 的周期ππ5π(31262[T --=≥,因此函数()f x 的最小正周期为π,则2π2πω==,由ππ66f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭知,函数()f x 图象的一个对称中心为π(,0)6,即有π2π,Z 6k k ϕ⨯+=∈,而π||2ϕ<,于是π0,3k ϕ==-,此时π()sin(2)3f x x =--,当ππ(,)123x ∈-时,πππ2(,)323x -∈-,正弦函数sin y x =在ππ(,)23-上单调递增,于是函数()f x 在ππ(,)123-上单调递减,所以2ω=,π3ϕ=-.故2;π3-六、填空题15.已知集合(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:①白色“水滴”区域(含边界)任意两点间距离的最大值为1②在阴影部分任取一点M ,则M 到坐标轴的距离小于等于3;③阴影部分的面积为8π;④阴影部分的内外边界曲线长为8π.其中正确的有__________.【正确答案】①②④【分析】对于①,令0x =,求出[1]y ∈- ,求出点,A B 坐标即得解;对于②,利用圆的参数方程设点,再利用绝对值三角不等式得解;对于③,利用割补法求解;对于④,求出阴影部分的内外边界曲线的各个部分即得解.【详解】对于①,由于22(cos )(sin )4x y θθ-+-=,令0x =时,整理得[]32sin 0,2y y =-∈θ,解得[1]y ∈- ,“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为,点(0,1)B -,白色“水滴”区域(含边界)任意两点间距离的最大值为||1AB =,故①正确;对于②,由于22(cos )(sin )4x y θθ-+-=,整理得:2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩,所以2cos cos ,2sin sin )(M αθαθ++,所以M 到坐标轴的距离为||2cos cos αθ+或|2sin sin |αθ+,因为cos [1,1],sin [0,1]θθ∈-∈,所以2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=,|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=,所以M 到坐标轴的距离小于等于3,故②正确;对于③,由于22(cos )(sin )4x y θθ-+-=,令0y =时,整理得[]32cos 2,2y y=-∈-θ,解得[3,1][1,3]x ∈-- ,因为22(cos )(sin )4x y -+-=θθ表示以()cos ,sin Q θθ为圆心,半径为2r =的圆,则13r OQ OP OQ r =-≤≤+=,且0πθ≤≤,则()cos ,sin Q θθ在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以O 为圆心,半径为1的半圆,阴影的上半部分的外边界是以O 为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以()1,0M -为圆心,半径为2的圆弧,设()1,0N ,则2AN AM MN ===,即 AN 所对的圆心角为π3,同理¼AM 所在圆的半径为2,所对的圆心角为π3,阴影部分在第四象限的外边界为以()1,0N 为圆心,半径为2的圆弧,设()()3,0,3,0G H -,可得π1,3ON OD OND ==∠=, DG 所对的圆心角为2π3,同理 DH所在圆的半径为2,所对的圆心角为2π3,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,所以它的面积是212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯= ⎝弓形半圆V .x 轴上方的阴影半圆的面积为219π3π22⨯=,第四象限的阴影部分面积可以看作是一个直角三角形和一个扇形的面积的和减去14个半圆的面积,且等于2211π5π211π32412⨯⨯+-⨯=+所以阴影部分的面积为95117π2(πππ212262++-++,故③错误;对于④,x 轴上方的阴影部分的内外边界曲线长为1π4132π3223πππ2333⨯⨯+⨯⨯=+=,x 轴下方的阴影部分的内外边界曲线长为111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=,所以阴影部分的内外边界曲线长为13π11π8π33+=,故④正确.故①②④.关键点睛:解答本题有三个关键,其一是写出圆的参数方程,设出点的坐标,其二是利用割补法求不规则图形的面积,其三是利用三角函数的值域求出图形与坐标轴的交点的坐标.七、解答题16.已知函数()2122cos sin f x x x ωω=-.(1)求()0f 的值;(2)从①121,2ωω==;②121,1ωω==这两个条件中任选一个,作为题目的已知条件,求函数()f x 在ππ,26⎡⎤-⎢⎥⎣⎦上的最小值,并直接写出函数()f x 的一个周期.【正确答案】(1)2(2)详见解析【分析】(1)代入公式即可求得()0f 的值;(2)选①时,先化简题给解析式再利用三角函数的性质即可求得函数()f x 的周期和在ππ,26⎡⎤-⎢⎥⎣⎦上的最小值;选②时,利用二次函数性质即可求得函数()f x 在ππ,26⎡⎤-⎢⎥⎣⎦上的最小值,并直接得到函数()f x 的一个周期.【详解】(1)()2122cos sin f x x x ωω=-,则()202cos 0sin0=2f =-(2)选①121,2ωω==时,()2n 2π2cos sin 1cos 2si42s 21f x x x x x x ⎛⎫=-=+-=++ ⎪⎝⎭由ππ,26x ⎡⎤∈-⎢⎥⎣⎦,可得2,2π3π7441πx ⎡⎤+∈-⎢⎥⎣⎦,则πcos 2124x ⎛⎫-≤+≤ ⎪⎝⎭,则π02114x ⎛⎫≤++≤ ⎪⎝⎭,则当244π3πx +=-,即π2x =-时函数()f x 取得最小值0,函数()f x 的周期为2ππ2=选②121,1ωω==时,()2221172cos sin 2sin sin 22sin 48f x x x x x x ⎛⎫=-=--+=-++⎪⎝⎭由ππ,26x ⎡⎤∈-⎢⎥⎣⎦,可得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦,则()1f x ≥则当π2x =-或π6x =时函数()f x 取得最小值1,函数()f x 的周期为π.17.某中学为了解高二年级中华传统文化经典阅读的情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:1号2号3号4号5号6号7号8号9号10号第一轮测试成绩96898888929187909290第二轮测试成绩90909188888796928992(1)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90分的概率;(2)为进一步研究这10名同学的成绩,从考核成绩小于90分的学生中随机抽取两人,记这两人中两轮测试至少有一次大于90分的人数为X ,求X 的分布列与数学期望;(3)记抽取的10名学生第一轮测试的平均数和方差分别为211,x s ,考核成绩的平均数和方差分别为222,x s ,试比较1x 与221,x s 与22s 的大小.(只需写出结论)【正确答案】(1)0.5;(2)X 的分布列见解析,数学期望为1;(3)12x x =;2212s s >.【分析】(1)由题可得10名学生的考核成绩,然后根据古典概型概率公式即得;(2)根据条件可得X 可取0,1,2,然后分别求概率可得分布列进而可得期望;(3)利用平均数和方差公式即得.【详解】(1)这10名学生的考核成绩(单位:分)分别为:93,89.5,89.5,88,90,89,91.5,91,90.5,91.其中大于90分的有1号、7号、8号、9号、10号,共5人,所以样本中学生考核成绩大于90分的频率是50.510=.从该校高二年级随机选取一名学生,估计这名学生考核成绩大于90分的概率为0.5;(2)由题知,考核成绩小于90分的学生共4人,其中两轮测试至少有一次大于90分学生有2人.所以X 可取0,1,2,则()022224C C 10C 6P X ===,()112224C C 21C 3P X ===,()202224C C 12C 6P X ===,所以X 的分布列为X012P162316所以()1210121636E X =⨯+⨯+⨯=;(3)由题可得()119689888892918790929090.310x =⨯+++++++++=,()219389.589.588908991.59190.59190.310x =⨯+++++++++=,()()()2222119690.38990.39090.3 6.2110s ⎡⎤=-+-++-=⎣⎦ ()()()2222219390.389.590.39190.3 1.8110s ⎡⎤=-+-++-=⎣⎦ ,所以12x x =;2212s s >.18.如图,正三棱柱111ABC A B C -中,,E F 分别是棱11,AA BB 上的点,1113A E BF AA ==.(1)证明:平面CEF ⊥平面11ACC A ;(2)若2AC AE ==,求二面角1E CF C --的余弦值.【正确答案】(1)证明见解析【分析】(1)建立空间直角坐标系,求解两个平面的法向量,利用法向量证明面面垂直;(2)求出两个平面的法向量,利用法向量的夹角求出二面角的余弦值.【详解】(1)证明:取BC 的中点O ,连接OA ,在正三棱柱111ABC A B C -中,不妨设12,3AB a AA ==;以O 为原点,,OB OA分别为x 轴和y 轴正方向,建立空间直角坐标系,如图所示,则(),0,0C a -,()()(),0,,0,1,0,,2A F a E ,()()()()12,0,1,,2,,0,0,0,3CF a CE CA a CC ====;设平面CEF 的一个法向量为(),,n x y z = ,则00n CF n CE ⎧⋅=⎪⎨⋅=⎪⎩,2020ax z ax z +=⎧⎪⎨+=⎪⎩,取=1x -,则2y z a ==,即()1,2n a =-;设平面11ACC A 的一个法向量为()111,,m x y z = ,则100m CA m CC ⎧⋅=⎪⎨⋅=⎪⎩ ,即11130ax z ⎧=⎪⎨=⎪⎩,取11y =-得)1,0m =- .因为0m n ⋅=+=,所以平面CEF ⊥平面11ACC A;(2)因为2AC AE ==,由(1)可得1a =,即()1,n =-,易知平面1CFC的一个法向量为()OA =,cos ,n OA n OA n OA⋅==-二面角1E CF C --的余弦值为4.19.已知函数()()21ln 12f x x x =--+,其中0a >.(1)若2x =是()f x 的极值点,求a 的值;(2)求()f x 的单调区间;(3)若()f x 在[)0,∞+上的最大值是0,求a 的取值范围.【正确答案】(1)13a =(2)见解析.(3)[1,)+∞【分析】(1)对函数求导,通过2x =是()f x 的极值点,即求出a 的值;(2)对函数求导,分别讨论a 取不同值时函数的单调性,即可求出()f x 的单调区间;(3)由函数在区间上的最大值,分类讨论在不同a 取值时函数的单调性和值域,即可得出a 的取值范围.【详解】(1)由题意,1x >-,在()()21ln 12f x x ax x =--+中,0a >,()(1)1x ax a f x x--+'=+.∵2x =是()f x 的极值点∴()20f '=,解得.13a =经检验,13a =时符合题意,∴13a =.(2)由题意,1x >-,在()()21ln 12f x x ax x =--+中,0a >,()(1)1x ax a f x x--+'=+.当()0f x '=时,解得1210,1x x a==-.①当01a <<时,,()x f x 与()f x '的情况如下:x()11,x -1x ()12,x x 2x ()2,x +∞()f x '-+-()f x 极小值 极大值()f x 的单调递增区间是10,1a ⎛⎫- ⎪⎝⎭,单调递减区间是(1,0)-和11,a ⎛⎫-+∞ ⎪⎝⎭;②当1a =时,()()21ln 12f x x x x =--+,()201x f x x'-=≤+,∴()f x 的单调递减区间是(1,)-+∞,无增区间;③当1a >时,()()21ln 12f x x ax x =--+,()(1)1x ax a f x x--+'=+,210,,()x x f x -<<与()f x '的情况如下:x()21,x -2x ()21,x x 1x ()1,x +∞()f x '-+-()f x 极小值 极大值∴当1a >时,()f x 的单调递增区间是11,0a ⎛⎫- ⎪⎝⎭,单调递减区间是11,1a ⎛⎫-- ⎪⎝⎭和(0,)+∞.综上,当01a <<时,()f x 的单调递增区间是10,1a ⎛⎫- ⎪⎝⎭,单调递减区间是(1,0)-和11,a ⎛⎫-+∞ ⎪⎝⎭;当1a =时,()f x 的单调递减区间是(1,)-+∞,无减区间;当1a >时,()f x 的单调递增区间是11,0a ⎛⎫- ⎪⎝⎭,单调递减区间是11,1a ⎛⎫-- ⎪⎝⎭和(0,)+∞.(3)由题意,在()()21ln 12f x x ax x =--+中,0a >,()f x 在[)0,∞+上的最大值是0,当01a <<时,()f x 在(0,)+∞的最大值是11f a ⎛⎫- ⎪⎝⎭,∵11(0)0f f a ⎛⎫->= ⎪⎝⎭,不合题意,舍去;当1a ≥时,()f x 在(0,)+∞单调递减,可得()f x 在[0,)+∞上的最大值是(0)0f =,符合题意.∴a 的取值范围[1,)+∞.本题考查了函数的求导,导数法求函数单调性,考查分类讨论法求函数的单调性和求参数的取值范围,具有极强的综合性.20.椭圆2222:1(0)x y C a b a b+=>>的焦距为()2,,0,A a F -为椭圆右焦点,3AF =.(1)求椭圆C 的方程与离心率;(2)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证.ODF OEF∠=∠【正确答案】(1)22143x y +=,12e =.(2)证明见解析.【分析】(1)由题知1c =,3AF a c =+=,求得a ,再由222b a c =-,即可求椭圆C 的方程与离心率.(2)设AP 的方程,代入椭圆方程,利用韦达定理及中点坐标,求得M 坐标,求得直线OM 的方程,分别取得D ,E 点坐标,则EF OM ⊥,DF OE ⊥,在Rt EHO 和Rt DGO 中ODF ∠和OEF ∠都与EOD ∠互余,所以ODF OEF ∠=∠.【详解】(1)椭圆的焦距为2,所以22c =,1c =,又3AF a c =+=,所以2,a =2223b a c =-=,椭圆C 的方程是22143x y+=,离心率为12c e a ==.(2)由(1)得(2,0)A -.设AP 的中点为00(,)M x y ,11(,)P x y .设直线AP 的方程为:(2)(0)y k x k =+≠,将其代入椭圆方程,整理得2222(43)1616120k x k x k +++-=,所以21216243k x k --+=+,所以202843k x k -=+,0026(2)43k y k x k =+=+,即22286(,)4343k kM k k -++,所以直线OM 的斜率是22263438443k k k k k +=--+,所以直线OM 的方程是34y x k=-,令4x =得4(4,)D k -,直线OE 的方程是y kx =,令4x =得(4,4)E k =,由()1,0F ,得直线EF 的斜率是44413k k=-,所以EF OM ⊥,记垂足为H ;因为直线DF 的斜率是3141k k-=--,所以DF OE ⊥,记垂足为G .在Rt EHO 和Rt DGO 中,ODF ∠和OEF ∠都与EOD ∠互余,所以ODF OEF ∠=∠.21.有限数列n A :1a ,2a ,…,n a .(3n ≥)同时满足下列两个条件:①对于任意的i ,j (1i j n ≤<≤),<i j a a ;②对于任意的i ,j ,k (1≤<<≤i j k n ),i j a a ,j k a a ,i k a a ,三个数中至少有一个数是数列n A 中的项.(1)若4n =,且11a =,22a =,3a a =,46a =,求a 的值;(2)证明:2,3,5不可能是数列n A 中的项;(3)求n 的最大值.【正确答案】(1)3a =(2)证明见解析(3)9【分析】(1)利用①推出a 的范围.利用②求解a 的值即可;(2)利用反证法:假设2,3,5是数列n A 中的项,利用已知条件②①,推出23n n a a --=得到矛盾结果.(3)n 的最大值为9,一、令9A :1114,2,1,,,0,,1,2242-----,则9A 符合①②,二、设n A :1a ,2a ,…,n a (3n ≥)符合①②,(i )n A 中至多有三项,其绝对值大于1.利用反证法证明假设n A 中至少有四项,其绝对值大于1,不正确;(ii )n A 中至多有三项,其绝对值大于0且小于1.利用反证法推出矛盾结论、(iii )n A 中至多有两项绝对值等于1.(iv )n A 中至多有一项等于0.推出n 的最大值为9.【详解】(1)由①得:26a <<,由②得:当2i =,3j =,4k =时,2a ,6a ,12中至少有一个是数列1,2,a ,6中的项,但66a >,126>,故26a =,解得:3a =,经检验,当3a =时,符合题意,(2)假设2,3,5是数列n A 中的项,由②可知:6,10,15中至少有一个是数列n A 中的项,则有限数列n A 的最后一项5n a >,且4n ≥,由①,1231n n n n a a a a --->>>>,对于数2n a -,1n a -,n a 由②可知:21n n n a a a --=,对于数3n a -,1n a -,n a ,由②可知:31n n n a a a --=,所以23n n a a --=,这与①矛盾.所以2,3,5不可能是数列n A 中的项.(3)n 的最大值为9,证明如下:一、令9A :1114,2,1,,,0,,1,2242-----,则9A 符合①②,二、设n A :1a ,2a ,…,n a (3n ≥)符合①②,则:(i )n A 中至多有三项,其绝对值大于1.假设n A 中至少有四项,其绝对值大于1,不妨设i a ,j a ,k a ,l a 是n A 中绝对值最大的四项,其中1i j k l a a a a <≤≤≤,则对i a ,k a ,l a 有i l l a a a >,k l l a a a >,故i l a a ,k l a a 均不是数列n A 中的项,即i k a a 是数列n A 中的项,同理:j k a a 也是数列n A 中的项.但i k k a a a >,j k k a a a >,所以i k j k l a a a a a ==,所以i j a a =,这与①矛盾.(ii )n A 中至多有三项,其绝对值大于0且小于1,假设n A 中至少有四项,其绝对值大于0且小于1,类似(i )得出矛盾,(iii )n A 中至多有两项绝对值等于1.(iv )n A 中至多有一项等于0.综合(i),(ii),(iii),(iv)可知n A中至多有9项,由一、二可得,n的最大值为9.。

北京市房山区2020届高三第二次模拟检测数学试题及答案解析

北京市房山区2020届高三第二次模拟检测数学试题及答案解析

房山区2020年高考第二次模拟检测高三数学本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集U =R ,集合2{|0}A x x x =->,那么集合UA =(A )(,0][1,)-∞+∞ (B )(,0)(1,)-∞+∞(C )(0,1)(D )[0,1](2)在△ABC 中,若π4A =,π3B =,a =b =(A )(B )(C )(D )(3)函数()sin πcos πf x x x =的最小正周期为(A )1 (B )2 (C )π(D )2π(4)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点,则该双曲线的离心率为(A (B(C )2(D (5)函数2()e xf x x =-的零点个数为(A )0(B )1 (C )2(D )3(6)“sin sin αβ≠”是“αβ≠”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件俯视图左视图主视图(7)已知函数()lg |1|lg |1|f x x x =++-,则()f x(A )是奇函数,且在(1,)+∞上是增函数 (B )是奇函数,且在(1,)+∞上是减函数 (C )是偶函数,且在(1,)+∞上是增函数 (D )是偶函数,且在(1,)+∞上是减函数(8)某四棱锥的三视图如图所示,则该四棱锥的最长侧棱的长为(9)把物体放在冷空气中冷却,如果物体原来的温度是1C θ,空气的温度是0C θ,经过t 分钟后物体的温度C θ可由公式010()e ktθθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的大于0的常数.现有80C 的物体,放在20C 的空气中冷却,4分钟以后物体的温度是40C ,则k 约等于(参考数据:ln3 1.099≈) (A )0.6 (B )0.5 (C )0.4(D )0.3(10)李明自主创业种植有机蔬菜,并且为甲、乙、丙、丁四家超市提供配送服务,甲、乙、丙、丁四家超市分别需要每隔2天、3天、5天、6天去配送一次.已知5月1日李明分别去了这四家超市配 送,那么整个5月他不用去配送的天数是 (A )12 (B )13 (C )14(D )15(A )2 (B )(C )(D )4EA 1B 1C 1CAB 第二部分 (非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

2023年北京房山高三二模数学试题含答案解析

2023年北京房山高三二模数学试题含答案解析

2023北京房山高三二模数 学本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回,试卷自行保存。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|}0A x x =≥,{12345}B =,,,,,则 (A )A B ⊆ (B )B A ⊆ (C )AB B =(D )AB =∅(2)在复平面内,复数23ii+ 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(3)已知等比数列{}n a 的各项均为正数,{}n a 的前n 项和为n S ,若321S =,29S =,则1a 的值为(A )1(B )2(C )3(D )4满足1()2AP AB AC =+,则AP AB ⋅的值为(5)下列函数中,是偶函数且有最小值的是(A )2()2f x x x =− (B )()|ln |f x x = (C )()sin f x x x=(D )()22x xf x −=+(6)已知圆C 的圆心在抛物线24y x =上,且此圆C 过定点(10),,则圆C 与直线10x +=的位置关系为 (A )相切 (B )相交 (C )相离 (D )不能确定(7)一个高为0H ,满缸水量为0V 的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出. 若鱼缸水深为H 时,鱼缸里的水的体积为V ,则函数()V f H =的大致图象是(A ) (B ) (C ) (D )(8)已知双曲线C 的方程为2214x y −=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是(A )11()22−,(B )(22)−,(C )11()()22−∞−+∞,, (D )(2)(2)−∞−+∞,,(9)已知函数22321()22 1.x ax x f x ax x x ⎧+−⎪=⎨⎪+>⎩,,,≤ 则“0a ≤”是“()f x 在R 上单调递减”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)设集合{()|022}A x y x y ax y x ay =−+−,,,≥≥≤,则(A )当1a =时,(1)1A ∉,(B )对任意实数a ,(1)1A ∈, (C )当0a <时,(1)1A ∉,(D )对任意实数a ,(1)1A ∉,第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

高三数学第二次模拟考试文房山二模,

高三数学第二次模拟考试文房山二模,

房山区2021年高考第二次模拟测试试卷制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

数学〔文〕本套试卷一共5页,150分。

考试时长120分钟。

所有考生必须将答案答在答题纸上,在试卷上答题无效。

在在考试完毕之后以后,将本套试卷和答题纸一起交回。

第一局部 〔选择题 一共40分〕一、 选择题一共8小题,每一小题5分,一共40分。

在每一小题列出的四个选项里面,选出符合题目要求的一项。

〔1〕假设R a ∈,i 为虚数单位,且(i)i 12i a -=+,那么a =〔A 〕1- 〔B 〕0 〔C 〕1〔D 〕2〔2〕双曲线的2221(0)4x y a a -=>的一条渐近线方程是23y x =,那么a =〔A 〔B 〕3 〔C 〕6〔D 〕9〔3〕假设平面向量a 与b 的夹角为60︒,||||1==a b ,那么()⋅-=a a b〔A 〕12 〔B〔C 〕32〔D 〕1〔4〕1a >,log log 0a a x y <<,那么〔A 〕1x y <<〔B 〕1y x <<〔C 〕01x y <<<〔D 〕01y x <<<〔5〕命题p :cos y x =是偶函数,命题q :x R ∃∈,sin 2x =,那么以下判断正确的选项是〔A 〕p ⌝是真命题 〔B 〕q ⌝是假命题 〔C 〕p q ∧是真命题〔D 〕p q ⌝∨是假命题〔6〕将函数sin 2y x =〔A 〕π8x =〔B 〕π8x =-〔C 〕π4x =〔D 〕π4x =-〔7〕对任意两实数a ,b ,定义运算“*〞:a *,,,.a ab b b a b ⎧=⎨<⎩≥ 关于函数()e x f x -=*e x,给出以下四个结论:①函数()f x 的最小值是e ;②函数()f x 为偶函数;③函数()f x 在(0,)+∞上单调递增;④函数()f x 的图象与直线e y x =没有公一共点; 其中正确结论的序号是 〔A 〕①③ 〔B 〕②③ 〔C 〕①④〔D 〕②④〔8〕(0,1)A ,(1,0)B ,点C 在抛物线22y x =的图象上,假设△ABC ,那么点C纵坐标的取值范围为 〔A 〕(4,2)- 〔B 〕(2,4)-〔C 〕(,4)(2,)-∞-+∞ 〔D 〕(,2)(4,)-∞-+∞第二局部 〔非选择题 一共110分〕二、填空题一共6小题,每一小题5分,一共30分。

北京市房山区高三数学第二次(4月)模拟考试试题 文

北京市房山区高三数学第二次(4月)模拟考试试题 文

房山区2015年高三二模数 学(文科)本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合{|21}A x x =-≤≤,B ={}0x x <,则A B =U (A )(,0)-∞(B )(,1]-∞(C )[2,0)-(D )(1,)+∞(2)下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是(A )3y x =(B )ln y x =(C )sin y x =(D )2xy =(3)在△ABC 中,“3A π=”是“1cos 2A =” 的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(4)若,x y 满足0,1,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2z x y =+的最大值为(A )0 (B )1 (C )2(D )23 (5)执行如图所示的程序框图,若输入A 的值为2,则输出的n 值为 (A )3 (B )4 (C )5 (D )6(6)已知△ABC 外接圆的圆心为O ,且1()2AO AB AC =+u u u r u u u r u u u r ,则AB u u u r 与AC u u u r的夹角为(A )6π (B )4π (C )3π (D )2π(7)直线3y kx =+被圆22(2)(3)4x y -+-=截得的弦长为23,则k =(A )±33(B )±3(C )33(D )3(8)为促进资源节约型和环境友好型社会建设,引导居民合理用电、节约用电,北京居民用户类别分档电量(千瓦时/户.月)电价标准 (元/千瓦时)试行阶梯电 价的用户一档1-240(含) 0.4883 二档 241-400(含) 0.5383 三档400以上0.7883北京市某户居民2016年1月的平均电费为0.4983(元/千瓦时),则该用户1月份的 用电量为 (A )350千瓦时(B )300千瓦时(C )250千瓦时(D )200千瓦时二、填空题共6小题,每小题5分,共30分。

北京市房山区2022届高三数学第二次模拟考试模拟押题 文 (2022房山二模)北师大版

北京市房山区2022届高三数学第二次模拟考试模拟押题 文 (2022房山二模)北师大版

俯视图侧(左)视图主(正)视图北京市2022年高考第二次模拟试卷高三数学文科第I 卷 选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项,直接涂在答题纸上。

集合{}10≤≤=x x A ,⎭⎬⎫⎩⎨⎧<=21x x B ,则B A 等于( ) A {}1<x x B {}1≤x x C {}10<≤x x D {}0≤x x2.已知等比数列中,43=a ,216=a ,则公比=( )A 21- B C2 D 213“3πθ=”是“21cos =θ”的( )(A ) 充分不必要条件 (B ) 必要不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件4 一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的侧面积为() (A )24+ (B )24 (C ) (D )5 设12log 3a =,3.031⎪⎭⎫⎝⎛=b ,πln =c ,则( )A a b c <<B a c b <<C c a b <<D b a c <<6.如图是某年青年歌手大奖赛中,七位评委为甲乙两名选手打出的分数的茎叶图(其中为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为,,则一定有( )(A )a 1>a 2 (B )a 1<a 2(C )a 1=a 2 (D )a 1,a2的大小与m 的值有关 7+,则的夹角为( )(A )6π (B )4π (C )3π (D )23π8.已知是定义在上的偶函数,当时,'2()()0xf x f x x ->,且(2)0f -=,则不等式()0f x x >的解集是0795455184464793m甲乙A (2,0)-∪B (,2)-∞-∪(2,)+∞C (2,0)-∪(2,)+∞D (,2)-∞-∪ 二、填空题:本大题共6小题,每小题5分,共30分。

高三数学第二次模拟考试文房山二模新人教B版

高三数学第二次模拟考试文房山二模新人教B版

房山区 高考第二次模拟试卷数 学 (文科)本试卷共4页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.若﹁p ∨q 是假命题,则 A. p ∧q 是假命题 B. p ∨q 是假命题 C. p 是假命题D. ﹁q 是假命题2.下列四个函数中,既是奇函数又在定义域上单调递增的是 A. 1y x =- B. tan y x =C. 2y x=-D. 3y x =3.为了得到函数lg10xy =的图象,只需把函数lg y x =的图象上 A. 所有点向右平移1个单位长度 B. 所有点向下平移1个单位长度C. 所有点的横坐标缩短到原来的110(纵坐标不变) D. 所有点的纵坐标缩短到原来的110(横坐标不变)4.设平面向量(1,2),(2,)y ==-a b ,若a b 2-a b4B. 5C.5.执行如图所示的程序框图.则输出的所有点(,x y A.都在函数1y x =+的图象上 B.都在函数2y x =的图象上 C.都在函数2xy =的图象上 D.都在函数12x y -=的图象上6.已知,M N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是A.2C. D.1727.一个几何体的三视图如图所示,则这个几何体 的表面积为 A.9+B. 18+C. 18+D. 98.定义运算ac x ax cy bd y bx dy +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,称x a y b '⎡⎤⎡=⎢⎥⎢'⎣⎦⎣ c d ⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦为将点(),x y 映到点(),x y ''的 一次变换.若x y '⎡⎤⎢⎥'⎣⎦=2p ⎡⎢⎣ 1q -⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦把直线y x =上的各点映到这点本身,而把直线 3y x =上的各点映到这点关于原点对称的点.则,p q 的值分别是A. 3,3p q ==B. 3,2p q ==-C. 3,1p q ==D. 1,1p q ==二、填空题:本大题共6小题,每小题5分,共30分. 9.在复平面内,复数(2)i i -对应的点的坐标为 . 10.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 11.数列{}n a 是公差不为0的等差数列,11a =,且3a 是19a a ,的等比中项,则数列{}n a 的通 项公式n a = .12.实数,a b 满足25a b +=,则ab 的最大值为.俯视图侧(左)视图正(主视图)13.抛物线2:2C y px =的焦点坐标为1(,0)2F ,则抛物线C 的方程为 ,若点P 在抛物线C 上运动,点Q 在直线50x y ++=上运动,则PQ 的最小值等于 .14.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设'()f x 是函数()y f x =的导数,''()f x 是'()f x 的导数,若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若32111()1326f x x x x =-++,则该函数的对称中心为 ,计算1232012()()()()2013201320132013f f f f ++++= .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)已知函数()sin()(00)f x x ωϕωϕ=+><<π,的最小正周期为π,且图象过点1(,)62π. (Ⅰ)求,ωϕ的值;(Ⅱ)设()()()4g x f x f x π=-,求函数()g x 的单调递增区间.16.(本小题满分14分)如图,ABCD 是正方形, DE ⊥平面ABCD ,DE AF //,22===AF DA DE .(Ⅰ) 求证:AC ⊥平面BDE ; (Ⅱ) 求证://AC 平面BEF ; (Ⅲ) 求四面体BDEF 的体积.17.(本小题满分13分)一个质地均匀的正方体的六个面上分别标有数字0,1,2,3,4,5,一个质地均匀的正四面体的四个面上分别标有数字1,2,3,4.将这个正方体和正四面体同时抛掷一次,正方体正面向上的数字为a ,正四面体的三个侧面上的数字之和为b . (Ⅰ)求事件3b a =的概率;(Ⅱ)求事件“点(,)a b 满足22(5)9a b +-≤”的概率.FEDCBA18.(本小题满分13分)已知函数()(2)e xf x ax =-在1x =处取得极值. (Ⅰ)求a 的值;(Ⅱ)求函数()f x 在[],1m m +上的最小值;(Ⅲ)求证:对任意12,[0,2]x x ∈,都有12|()()|e f x f x -≤.19.(本小题满分14分)已知椭圆12222=+by a x (0>>b a)的焦点坐标为(,离心率为32+=kx y 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在实数k ,使得以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.20.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且*12()nn nS a n a +=∈N ,其中11,0n a a =≠. (Ⅰ)求23,a a ;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设数列{}n b 满足(21)(21)1n bn a --=,n T 为{}n b 的前n 项和,试比较n T 与2log 的大小,并说明理由.房山区 高考第二次模拟考试参考答案数 学 (文科)一、选择题:本大题共8小题,每小题5分,共40分.1A 2D 3B 4D 5C 6B 7A 8B二、填空题:本大题共6小题,每小题5分,共30分.9. (1,2) 10.4,73- 11. n 12.258 13. 22,y x =14. 1(,1),20122三、解答题: 本大题共6小题,共80分. 15(本小题满分13分)(Ⅰ)由最小正周期为π可知 22==Tπω, ………………2分由1()62f π=得 1sin()32πϕ+=,又0ϕπ<<,333πππϕπ<+<+所以 536ππϕ+=2πϕ=, ………………5分(Ⅱ)由(Ⅰ)知 ()sin(2)cos 22f x x x π=+=所以()cos 2sin[2()]cos 2sin 242g x x x x x ππ=⋅-+=1sin 42x = …………………………………………………………………9分解24222k x k ππππ-≤≤+得(Z)2828k k x k ππππ-≤≤+∈ ……………………………12分 所以函数()g x 的单调增区间为[,] (Z)2828k k k ππππ-+∈.…………………………………………………13分16(本小题满分14分)(Ⅰ)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. …………………1分 因为ABCD 是正方形,所以BD AC ⊥, …………………2分GOFEDA因为D BD DE =⋂ …………………3分所以AC ⊥平面BDE . …………………4分 (Ⅱ)证明:设ACBD O =,取BE 中点G ,连结OG FG ,,所以,OG //=12DE . …………………5分 因为DE AF //,AF DE 2=,所以AF //=OG , …………………6分 从而四边形AFGO 是平行四边形,AO FG //. ………………7分 因为FG ⊂平面BEF ,AO ⊄平面BEF , …………………8分 所以//AO 平面BEF ,即//AC 平面BEF . ……………………9分 (Ⅲ)解:因为DE ⊥平面ABCD所以 AB DE ⊥ 因为正方形ABCD 中,AB AD ⊥,所以AB ⊥平面ADEF . …………………11分 因为DE AF //,22===AF DA DE ,所以DEF ∆的面积为122ED AD ⨯⨯=, 所以四面体BDEF 的体积=⨯=∆AB S DEF 3143. ……………14分17(本小题满分13分)(Ⅰ)由题可知a 的取值为0,1,2,3,4,5,b 的取值为6,7,8,9 基本事件空间:Ω={(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),}(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)共计24个基本事件 ……………………3分 满足3b a =的有(2,6),(3,9)共2个基本事件所以事件3b a =的概率为212412= ……………………7分(Ⅱ)设事件B=“点(a,b )满足22(5)9a b +-≤” 当8b =时,0a =满足22(5)9a b +-≤当7b =时,0,1,2b =满足22(5)9a b +-≤ 当6b =时,0,1,2b =满足22(5)9a b +-≤所以满足22(5)9a b +-≤ 的有(0,6),(0,7),(0,8),(1,6),(1,7),(2,6),(2,7), 所以7()24P B =……………………13分18(本小题满分13分)(Ⅰ)'()(2)(2)xxxf x ae ax e ax a e =+-=+- ……………1分由已知得'(1)0f =即(22)0xa e -= ……………2分 解得:1a = …………………………3分 当1a =时,在1x =处函数()(2)xf x x e =-取得极小值,所以1a = (Ⅱ)()()2xf x x e =-, ()()'()+21xxxf x e x e x e =-=-.所以函数()f x 在(),1-∞递减,在()1,+∞递增. ……………………4分当1m ≥时,()f x 在[],1m m +单调递增,min ()()f x f m =me m )2(-=.………………………5分当01m <<时,11m m <<+()f x 在[],1m 单调递减,在[]1,1m +单调递增,min ()(1)f x f e ==-.…………………………6分当0m ≤时,+11m ≤,()f x 在[],1m m +单调递减,1min ()(1)(1).m f x f m m e +=+=-…………………………7分综上 ()f x 在[],1m m +上的最小值min 1(2),1,(),01,(1),0.m m m e m f x e m m e m +⎧-≥⎪=-<<⎨⎪-≤⎩………………………………………8分(Ⅲ)由(Ⅰ)知()()2xf x x e =-, ()()'()+21xxxf x e x e x e =-=-.令'()0f x = 得1x =因为(0)2,(1)e,(2)0f f f =-=-= 所以max min ()0,()ef x f x ==-……………11分所以,对任意12,[0,2]x x ∈,都有12max min |()()|()()e f x f x f x f x -≤-=………………………………………13分19(本小题满分14分)(Ⅰ)由ce a==,2=c ,222c b a += 得3=a ,1=b , 所以椭圆方程是:1322=+y x ……………………4分(Ⅱ)设),(11y x P ,),(22y x Q 则211+=kx y ,222+=kx y将2+=kx y 代入1322=+y x ,整理得0912)13(22=+++kx x k (*) 则121222129,3131k x x x x k k +=-=++ ………………………7分 以PQ 为直径的圆过)0,1(-D ,则PD QD ⊥,即0PD QD ⋅=PD QD ⋅=11221212(1,)(1,)(1)(1)x y x y x x y y +⋅+=+++121212()1x x x x y y =+++++21212(1)(21)()5k x x k x x =+++++21214031k k -+==+. ………………………………12分 解得67=k ,此时(*)方程0>∆,所以 存在67=k ,使得以PQ 为直径的圆过点)0,1(-D . ……14分20(本小题满分13分)(Ⅰ)由于11211222S a a a a ===,21232222()3S a a a a a +=== ………………2分 (Ⅱ)由已知可知112n n n S a a +=,故111211122n n n n n n n a S S a a a a +++++=-=-.因为10n a +≠,所以22n n a a +-=*()n ∈N . ………………4分于是 2112(1)21m a m m -=+-=-,222(1)2m a m m =+-=,所以 n a n =*()n ∈N . ………………6分(Ⅲ)2log n T > …………………………………………7分要比较n T与2log 22,log (21)n n T a +的大小由(21)(21)1n b n a --=,得(21)(21)1,n b n --=2221n bn n =-,故22log 21n nb n =-. …………………………………………8分从而 1222462log 13521n n n T b b b n ⎛⎫=+++=⋅⋅⋅⋅ ⎪-⎝⎭.2246222log 13521n n T n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭222462log 13521n n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭因此22log (21)n n T a -+222462log 13521n n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭2log (21)n -+ 22224621log log 1352121n n n ⎛⎫=⋅⋅⋅⋅+ ⎪-+⎝⎭2224621log []1352121n n n ⎛⎫=⋅⋅⋅⋅⋅ ⎪-+⎝⎭. 设224621()1352121n f n n n ⎛⎫=⋅⋅⋅⋅⋅ ⎪-+⎝⎭, 则22462221(1)135212123n n f n n n n +⎛⎫+=⋅⋅⋅⋅⋅⋅ ⎪-++⎝⎭, 故22(1)2122(22)()2321(23)(21)f n n n n f n n n n n ++++⎛⎫=⋅=⎪++++⎝⎭224841483n n n n ++=>++, 又()0f n >,所以(1)()f n f n +>.所以对于任意 *n ∈N 都有4()(1)13f n f ≥=>,从而222log (21)log ()0n n T a f n -+=>.所以*22log (21)n n T a n >+∈N ,.即 2log n T > ……………………………………………13分。

房山区高考第二次模拟测试试卷

房山区高考第二次模拟测试试卷

房山区2021年高考第二次模拟测试试卷数学〔理〕本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一局部〔选择题共40分〕一、选择题共8小题,每题5分,共40分。

在每题列出的四个选项中,选出符合题目要求的一项。

〔1〕设集合=≤=<<,那么A B ={|2},{|03}A x xB x x〔A〕{}2≤x x〔B〕{|3}x x<〔C〕{|23}x x≤<<<〔D〕{|23}x x〔2〕假设复数iz1i=-+,那么复数z在复平面内对应的点位于〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限〔3〕执行如图的程序框图,输出的S值为1 / 1712 / 1722n S S =+1n n =+33?S ≥3 / 173〔A 〕65〔B 〕64 〔C 〕63〔D 〕33〔4〕实数,x y 满足10,0,0,+-≥⎧⎪≥⎨⎪≥⎩x y x y 那么的取值范围是〔A 〕()01,〔B 〕(]01,〔C 〕[)1+∞,〔D〕+⎫∞⎪⎪⎭〔5〕函数()f x 的图像关于原点对称,且周期为4,假设(1)2f -=,那么(2017)f =〔〕〔A 〕2〔B 〕0〔C 〕2-〔D 〕4-4 / 174〔A 〕4〔B 〕22〔C 〕7〔D 〕2〔7〕ABC ∆的三个内角分别为A ,B ,C ,那么“=B 3π〞是“A ,B ,C 成等差数列〞的〔A 〕充分而不必要条件〔B 〕必要而不充分条件 〔C 〕充要条件〔D 〕既不充分也不必要条件 〔8〕定义:假设存在常数k ,使得对定义域D 内的任意两个()1212,≠x x xx ,均有()()1212-≤-f x f x k x x 成立,那么称函数()f x 在定义域D ())1=≥f x x 满足利普希茨条件,那么常数k 的最小值为〔A 〕4〔B 〕3〔C 〕1〔D 〕12第二局部〔非选择题共110分〕二、填空题共6小题,每题5分,共30分。

北京市房山区高三数学第二次模拟考试 文(房山二模)(含解析)北师大版

北京市房山区高三数学第二次模拟考试 文(房山二模)(含解析)北师大版

2013年北京市房山区高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•房山区二模)若¬p∨q是假命题,则()A.p∧q是假命题B.p∨q是假命题C.p是假命题D.¬q是假命题考点:复合命题的真假.专题:常规题型.分析:由题意,可得¬p,q的真假性,进而得到正确选项.解答:由于¬p∨q是假命题,则¬p是假命题,q是假命题,所以p是真命题,q是假命题,所以p∧q是假命题,p∨q是真命题,¬q是真命题,故选A.点评:本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.2.(5分)(2013•房山区二模)下列四个函数中,既是奇函数又在定义域上单调递增的是()A.y=x﹣1 B.y=tanx C.D.y=x3考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数的奇偶性、单调性的定义逐项判断即可.解答:解:y=x﹣1的图象不过原点,所以y=x﹣1不是奇函数,故排除A;y=tanx在每个区间(kπ﹣,kπ+)(k∈Z)上单调递增,但在定义域内不单调,故排除B;y=﹣在(﹣∞,0),(0,+∞)上单调递增,但在定义域内不单调,故排除C;令f(x)=x3,其定义域为R,且f(﹣x)=(﹣x)3=﹣x3=﹣f(x),所以f(x)为奇函数,又f′(x)=3x2≥0,所以f(x)在R上单调递增,故选D.点评:本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决该类题目的基本方法,要熟练掌握.3.(5分)(2013•房山区二模)为了得到函数的图象,只需把函数y=lgx的图象上()A.所有点向右平移1个单位长度B.所有点向下平移1个单位长度C.所有点的横坐标缩短到原来的(纵坐标不变)D.所有点的纵坐标缩短到原来的(横坐标不变)考点:函数的图象与图象变化.专题:函数的性质及应用.分析:由于函数y=lg=lgx﹣1,把函数y=lgx的图象上所有的点向下平移1个单位长度,可得函数函数y=lg=lgx﹣1的图象,由此得出结论.解答:解:∵函数y=lg=lgx﹣1,∴把函数y=lgx的图象上所有的点向下平移1个单位长度,可得函数函数y=lg=lgx﹣1的图象,故选B.点评:本题主要考查函数的图象平移变换方法,依据x加减左右平移(左加右减),函数值加减上下平移(加向上、减向下),属于基础题.4.(5分)(2013•房山区二模)设平面向量=(1,2),=(﹣2,y),若∥,则|2﹣|等于()A.4B.5C.D.考点:平行向量与共线向量;向量的模.专题:平面向量及应用.分析:利用向量共线定理即可得出y,从而计算出的坐标,利用向量模的计算公式即可得出.解答:解:∵∥,∴﹣2×2﹣y=0,解得y=﹣4.∴=2(1,2)﹣(﹣2,﹣4)=(4,8),∴|2﹣|==.故选D.点评:熟练掌握向量共线定理、向量模的计算公式是解题的关键.5.(5分)(2013•房山区二模)执行如图所示的程序框图.则输出的所有点(x,y)()A.都在函数y=x+1的图象上B.都在函数y=2x的图象上C.都在函数y=2x的图象上D.都在函数y=2x﹣1的图象上考点:程序框图.专题:图表型.分析:开始x=1,y=2,输出(x,y),继续循环,x=x+1,y=2y.x≤4就循环,当x>4时,循环结束.最后看碟输出(x,y)值适合哪一个函数的解析式即可.解答:解:开始:x=1,y=2,进行循环:输出(1,2),x=2,y=4,输出(2,4),x=3,y=8,输出(3,8),x=4,y=16,输出(4,16),x=5,y=32,因为 x=5>4,∴退出循环,则输出的所有点(1,2),(2,4),(3,8),(4,16)都在函数y=2x的图象上.故选C.点评:本题主要考查了直到型循环结构,根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.6.(5分)(2013•房山区二模)已知M,N是不等式组所表示的平面区域内的两个不同的点,则|MN|的最大值是()A.B.C.D.考点:简单线性规划;两点间的距离公式.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得到如图的四边形ABCD.因为四边形ABCD的对角线BD是区域中最长的线段,所以当M、N分别与对角线BD的两个端点重合时,|MN|取得最大值,由此结合两点间的距离公式可得本题答案.解答:解:作出不等式组表示的平面区域,得到如图的四边形ABCD,其中A(1,1),B(5,1),C(,),D(1,2)∵M、N是区域内的两个不同的点∴运动点M、N,可得当M、N分别与对角线BD的两个端点重合时,距离最远因此|MN|的最大值是|BD|==故选:B点评:题给出二元一次不等式组表示的平面区域内动点M、N,求|MN|的最大值,着重考查了二元一次不等式组表示的平面区域和平面内两点间的距离公式等知识,属于基础题.7.(5分)(2013•房山区二模)一个几何体的三视图如图所示,则这个几何体的表面积为()A.B.C.D.9考点:由三视图求面积、体积.专题:计算题.分析:判断三视图对应的几何体的形状,利用三视图的数据求解几何体的表面积即可.解答:解:三视图复原的几何体是长方体的一个角,如图:直角顶点处的三条棱长:3,,3.其中斜侧面的高为:3.几何体的表面积是:=.故选A.点评:本题考查三视图与几何体的关系,判断几何体的形状是解题的关键.8.(5分)(2013•房山区二模)定义运算[][]=[],称[]=[][]为将点(x,y)映到点(x′,y′)的一次变换.若=[][]把直线y=x上的各点映到这点本身,而把直线y=3x上的各点映到这点关于原点对称的点.则p,q的值分别是()A.p=3,q=3 B.p=3,q=﹣2 C.p=3,q=1 D.p=1,q=1考点:系数矩阵的逆矩阵解方程组.专题:新定义.分析:设(1,1)是曲线y=x上的点,在矩阵的作用下的点为(1,1),再设(1,3)是曲线y=3x上的点,在矩阵的作用下的点为(﹣1,﹣3),得出关于p,q的方程组,从而解决问题.解答:解:设(1,1)是曲线y=x上的点,在矩阵的作用下的点为(1,1),即,即P+q=1①设(1,3)是曲线y=3x上的点,在矩阵的作用下的点为(﹣1,﹣3),∴,即p+3q=﹣3②.由①②得p=3,q=﹣2故选B.点评:本小题主要考查几种特殊的矩阵变换、曲线与方程等基础知识,考查运算求解能力,解答的关键是利用待定系数法求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•房山区二模)在复平面内,复数i(2﹣i)对应的点的坐标为(1,2).考点:复数的代数表示法及其几何意义.专题:计算题.分析:利用复数的运算法则化为1+2i,再利用复数的几何意义可得到复数i(2﹣i)对应的点的坐标.解答:解:∵复数i(2﹣i)=1+2i.∴复数i(2﹣i)对应的点的坐标为(1,2).故答案为(1,2).点评:熟练掌握复数的运算法则、复数的几何意义是解题的关键.10.(5分)(2013•房山区二模)已知角A为三角形的一个内角,且,则tanA= ,tan(A+)= ﹣7 .考点:两角和与差的正切函数;同角三角函数间的基本关系.专题:三角函数的求值.分析:利用同角三角函数的基本关系求得sinA的值,可得tanA的值,再利用两角和的正切公式求得tan (A+)的值.解答:解:已知角A为三角形的一个内角,且,则sinA=,∴tanA==.∴tan(A+)===﹣7,故答案为,﹣7.点评:本题主要考查两角和差的正切公式、同角三角函数的基本关系的应用,属于中档题.11.(5分)(2013•房山区二模)数列{a n}是公差不为0的等差数列,a1=1,且a3是a1,a9的等比中项,则数列{a n}的通项公式a n= n .考点:等比数列的性质;等差数列的通项公式.专题:等差数列与等比数列.分析:设公差为d,则由题意可得(1+2d)2=1×(1+8d),解得d=1,由此求得数列{a n}的通项公式.解答:解:∵数列{a n}是公差不为0的等差数列,a1=1,且a3是a1,a9的等比中项,设公差为d,则有(1+2d)2=1×(1+8d),解得d=1,故数列{a n}的通项公式a n=1+(n﹣1)×1=n,故答案为 n.点评:本题主要考查等比数列的性质,等差数列的通项公式,属于中档题.12.(5分)(2013•房山区二模)实数a,b满足2a+b=5,则ab的最大值为.考点:二次函数的性质.专题:不等式的解法及应用.分析:由题目给出的等式,把b用含有a的代数式表示,代回ab后化为关于a的一元二次函数,利用配方法求最大值.解答:解:由2a+b=5,得:b=5﹣2a,所以ab=a(5﹣2a)=﹣2a2+5a=﹣2=.所以ab的最大值为.故答案为.点评:本题考查了二次函数的性质,考查了数学转化思想,训练了利用配方法求函数的最值,解答此题的关键是把要求值的代数式转化为二次函数的最值问题,是基础题.13.(5分)(2013•房山区二模)抛物线C:y2=2px的焦点坐标为,则抛物线C的方程为y2=2x .考点:抛物线的简单性质;抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线y2=2px,可知焦点坐标为(,0),故可求p,从而得到抛物线C的方程.解答:解:由题意,=∴p=1,则抛物线C的方程为 y2=2x.故答案为:y2=2x.点评:本题以抛物线为载体,考查几何性质,属于基础题.14.(5分)(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,则该函数的对称中心为,计算= 2012 .考点:导数的概念.专题:新定义;函数的性质及应用.分析:根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函数f(x)的对称中心.由于函数的对称中心为(,1),可知f(x)+f(1﹣x)=2,由此能够求出所给的式子的值.解答:解:∵,则f′(x)=x2﹣x+,f″(x)=2x﹣1,令f″(x)=2x﹣1=0,求得x=,故函数y=f(x)的“拐点”为(,1).由于函数的对称中心为(,1),∴f(x)+f(1﹣x)=2,∴=2×1006=2012,故答案为(,1),2012.点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,求函数的值以及函数的对称性的应用,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•房山区二模)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且图象过点.(Ⅰ)求ω,φ的值;(Ⅱ)设,求函数g(x)的单调递增区间.考点:y=Asin(ωx+φ)中参数的物理意义;二倍角的正弦;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)利用函数的周期公式求出ω,通过函数图象经过的点直接求解φ的值;(Ⅱ)化简的表达式,通过正弦函数的单调增区间,直接求函数g(x)的单调递增区间.解答:解:(Ⅰ)因为函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,所以T=,ω=2,图象过点.所以,0<φ<π,所以φ=.(Ⅱ)因为=sin(2x+)sin(2x﹣)=cos2xsin2x=sin4x,由2kπ,k∈Z得,所以函数的单调增区间为点评:本题考查三角函数的化简,函数的周期的求法,二倍角的正弦函数,函数的单调性的应用,考查计算能力.16.(14分)(2013•房山区二模)如图,ABCD是正方形,DE⊥平面ABCDAF∥DE,DE=DA=2AF=2.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面BEF;(Ⅲ)求四面体BDEF的体积.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)由题意可得DE⊥AC,AC⊥BD,由线面垂直的判定定理可得;(Ⅱ)设AC∩BD=O,取BE中点G,连结FG,OG,可证AFGO是平行四边形,所以FG∥AO,线面平行的判定定理可得;(Ⅲ)可得AB⊥平面ADEF,结合已知数据,代入体积公式可得答案.解答:(Ⅰ)证明:因为DE⊥平面ABCD,AC⊂平面ABCD,所以DE⊥AC.…(1分)又因为ABCD是正方形,所以AC⊥BD,…(2分)因为DE∩BD=D…(3分)由线面垂直的判定定理可得:AC⊥平面BDE.…(4分)(Ⅱ)证明:设AC∩BD=O,取BE中点G,连结FG,OG,所以OG∥DE,且OG=DE,因为AF∥DE,DE=2AF,所以AF∥OG,AF=OG,所以,OG∥,且OG=.…(5分)因为AF∥DE,DE=2AF,所以AF=OG,且AF∥OG…(6分)故可得四边形AFGO是平行四边形,所以FG∥AO.…(7分)因为FG⊂平面BEF,AO⊄平面BEF,…(8分)所以AO∥平面BEF,即AC∥平面BEF.…(9分)(Ⅲ)解:因为DE⊥平面ABCD,所以DE⊥AB因为正方形ABCD中,AB⊥AD,所以AB⊥平面ADEF.…(11分)因为AF∥DE,DE=DA=2AF=2,所以△DEF的面积为,所以四面体BDEF的体积==.…(14分)点评:本题考查直线与平面平行和垂直的判定,涉及四面体体积的求解,属中档题.17.(13分)(2013•房山区二模)一个质地均匀的正方体的六个面上分别标有数字0,1,2,3,4,5,一个质地均匀的正四面体的四个面上分别标有数字1,2,3,4.将这个正方体和正四面体同时抛掷一次,正方体正面向上的数字为a,正四面体的三个侧面上的数字之和为b.(Ⅰ)求事件b=3a的概率;(Ⅱ)求事件“点(a,b)满足a2+(b﹣5)2≤9”的概率.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(I)由题可知a的取值为0,1,2,3,4,5,b的取值为6,7,8,9,从而得出基本事件空间数,求出满足b=3a的基本事件数,进而可求事件b=3a的概率;(II)满足条件的基本事件空间中基本事件的个数为24,设满足“复数在复平面内对应的点(a,b)满足a2+(b﹣5)2≤9”的事件为B.当b=8时,a=0,当b=7时,a=0,1,2,当b=6时,a=0,1,2,利用古典概率的计算公式可求事件“点(a,b)满足a2+(b﹣5)2≤9”的概率.解答:解:(Ⅰ)由题可知a的取值为0,1,2,3,4,5,b的取值为6,7,8,9基本事件空间:Ω={(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)}共计24个基本事件…(3分)满足b=3a的有(2,6),(3,9)共2个基本事件所以事件b=3a的概率为…(7分)(Ⅱ)设事件B=“点(a,b)满足a2+(b﹣5)2≤9”当b=8时,a=0满足a2+(b﹣5)2≤9当b=7时,a=0,1,2满足a2+(b﹣5)2≤9当b=6时,a=0,1,2满足a2+(b﹣5)2≤9所以满足a2+(b﹣5)2≤9的有(0,6),(0,7),(0,8),(1,6),(1,7),(2,6),(2,7),所以…(13分)点评:本题主要考查了古典概率的计算公式的应用,解答(2)的关键是要由a2+(b﹣5)2≤9要对b的值分类讨论.18.(13分)(2013•房山区二模)已知函数f(x)=(ax﹣2)e x在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e.考点:利用导数求闭区间上函数的最值;利用导数研究函数的极值.专题:综合题;分类讨论;转化思想;导数的综合应用.分析:(Ⅰ)求导数f′(x),由题意得f′(1)=0,可得a值,代入检验即可;(Ⅱ)当a=1时可求出f(x)的单调区间及极值点,按极值点在区间[m,m+1]的左侧、内部、右侧三种情况进行即可求得其最小值;(Ⅲ)对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e,等价于|f(x1)﹣f(x2)|≤f max(x)﹣f min(x)≤e.问题转化为求函数f(x)的最大值、最小值问题,用导数易求;解答:解:(Ⅰ)f'(x)=ae x+(ax﹣2)e x=(ax+a﹣2)e x,由已知得f'(1)=0,即(2a﹣2)e=0,解得:a=1,验证知,当a=1时,在x=1处函数f(x)=(x﹣2)e x取得极小值,所以a=1;(Ⅱ)f(x)=(x﹣2)e x,f'(x)=e x+(x﹣2)e x=(x﹣1)e x.x (﹣∞,1) 1 (1,+∞)f'(x)﹣0 +f(x)减增所以函数f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.当m≥1时,f(x)在[m,m+1]上单调递增,f min(x)=f(m)=(m﹣2)e m.当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,f min(x)=f(1)=﹣e.当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,.综上,f(x)在[m,m+1]上的最小值(Ⅲ)由(Ⅰ)知f(x)=(x﹣2)e x,f'(x)=e x+(x﹣2)e x=(x﹣1)e x.令f'(x)=0得x=1,因为f(0)=﹣2,f(1)=﹣e,f(2)=0,所以f max(x)=0,f min(x)=﹣e,所以,对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤f max(x)﹣f min(x)=e,点评:本题考查利用导数研究函数的单调性、最值,考查分类讨论思想、转化思想,关于恒成立问题往往转化为函数最值问题解决.19.(14分)(2013•房山区二模)已知椭圆(a>b>0)的焦点坐标为,离心率为.直线y=kx+2交椭圆于P,Q两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在实数k,使得以PQ为直径的圆过点D(﹣1,0)?若存在,求出k的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)由焦点坐标可得c,由离心率可得a,由a2=b2+c2得b;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程与椭圆方程消掉y,若存在以PQ为直径的圆过点D (﹣1,0),则,即,根据向量数量积运算、韦达定理即可得关于k的方程,解出k检验是否满足△>0即可;解答:解:(Ⅰ)由,,a2=b2+c2得,,b=1,所以椭圆方程是:;(Ⅱ)设P(x1,y1),Q(x2,y2),则y1=kx1+2,y2=kx2+2,将y=kx+2代入,整理得(3k2+1)x2+12kx+9=0(*),则,以PQ为直径的圆过D(﹣1,0),则,即,所以=(x1+1,y1)•(x2+1,y2)=(x1+1)(x2+1)+y1y2=x1x2+(x1+x2)+y1y2+1=(k2+1)x1x2+(2k+1)(x1+x2)+5=.解得,此时(*)方程△>0,所以存在,使得以PQ为直径的圆过点D(﹣1,0).点评:本题考查直线方程、椭圆方程及其位置关系等知识,考查转化思想,解决(Ⅱ)问的关键是先假设存在,然后把问题转化为向量数量积为0求解.20.(13分)(2013•房山区二模)已知数列{a n}的前n项和为S n,且,其中a1=1,a n≠0.(Ⅰ)求a2,a3;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)设数列{b n}满足,T n为{b n}的前n项和,试比较T n与的大小,并说明理由.考点:数列递推式;不等式比较大小.专题:等差数列与等比数列.分析:(I)利用,其中a1=1,a n≠0,令n分别取1,2即可得出;(II)由已知可知,可得.由于a n+1≠0,转化为一个分奇数项和偶数项分别成等差数列:a n+2﹣a n=2(n∈N*).即可得出通项a n.(III)要比较T n与的大小,只需比较2T n与log2(2a n+1)的大小.利用(II)和已知条件即可得出2T n,令f(n)=2T n﹣log2(2a n+1),比较f(n+1)与f(n)的大小即可得出结论.解答:解:(Ⅰ)∵,其中a1=1,a n≠0.∴,.(Ⅱ)由已知可知,故.∵a n+1≠0,∴a n+2﹣a n=2(n∈N*).于是数列{a2m﹣1}是以a1=1为首项,2为公差的等差数列,∴a2m﹣1=1+2(m﹣1)=2m﹣1,数列{a2m}是以a2=2为首项,2为公差的等差数列,∴a2m=2+2(m﹣1)=2m,∴a n=n(n∈N*).(Ⅲ)可知.下面给出证明:要比较T n与的大小,只需比较2T n与log2(2a n+1)的大小.由,得,,故.从而.=因此2T n﹣log2(2a n+1)=﹣log2(2n+1)==.设,则,故=,又f(n)>0,∴f(n+1)>f(n).所以对于任意 n∈N*都有,从而2T n﹣log2(2a n+1)=log2f(n)>0.所以.即.点评:本题考查了数列的通项a n与S n之间的关系,分类讨论的思想方法,等差数列的通项公式,对数的运算性质,作差法和作商比较两个数的大小等知识与方法,熟练掌握它们是解题的关键.本题需要较强的计算能力和转化能力.。

2022北京房山区高三二模数学试题及答案

2022北京房山区高三二模数学试题及答案

2R TGUUVUWH$UeUeVeUWWf#56 (^WU^]v+'L
E56 (^WU^]v+2R TKK8O
wxRS TGUUVUWH$UeUeVeUWWf#K v~
0123456789
9: ; 4<; 01 '=>8'?@A >BC8 'D8E0F9:G0+HIJKLM NO
PPPPPP=
E)0%009:G0%HJKLM N PPPPPPB
'Q8ERS TGUUVUWHJKLM NX
YZ[\$]]W#_^ `$]^]`]W#a.UU^U`bc

A $2
%
& '()0*+,-./0
.!68A5' $ $! !
3
CCJDEE&CF'GKHL3-IME/NO 5M/
PQ 5RM-STU/V 5 !/ 5M"/ 5' !
'!5'!5!/
5'W5
JK '
"""""""""""" :L
M4NT4RO& 1B42 ()5& &P 'QB'(9 (RB&S ''( B
"""""":U
,,:-#..,Z6VW[\X]:U^Y_.39 `a$bcd3efghij kl0meniOo p
!!#! !!#"!

$ !
%
& '()0*+,-./0

北京市房山区2022届高三二模数学试题

北京市房山区2022届高三二模数学试题

一、单选题二、多选题1. 复数满足,则的最大值为( )A.B.C.D.2. 若二项式的展开式中二项式系数之和为64,则展开式中的系数为( )A .60B .120C .160D .2403. 若干年前,某老师刚退休的月退休金为4000元,月退休金各种用途占比统计图如下面的条形图.该老师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该老师的月退休金为()A .5000元B .5500元C .6000元D .6500元4.已知双曲线方程,则双曲线的离心率为( )A.B.C.D.5.已知集合,,则等于 A.B.C.D.6. 已知直线与圆交于A 、B 两点,若则a =( )A .5B.C.D.7.的递增区间是( )A.B.C.D.8.若等比数列满足,则( )A.B.C.D.9. 从装有5只红球、5只白球的袋中任意取出3只球,下列各对事件为对立事件的有( )A .“取出2只红球和1只白球”与“取出1只红球和2只白球”B .“取出3只红球”与“取出的3只球中至少有1只白球”C .“取出3只红球”与“取出3只白球”.D .“取出的3只球中至少有2只红球”与“取出的3只球中至少有2只白球”10.已知函数,下列说法正确的是( )A .在处的切线方程为B.C .若函数的图象与的图象关于坐标原点对称,则北京市房山区2022届高三二模数学试题北京市房山区2022届高三二模数学试题三、填空题四、解答题D.有唯一零点11. 如图所示,正方体的棱长为2,点E ,F 分别为和的中点,则()A .平面B .平面C.平面截正方体的截面面积为3D .点D 到平面的距离为12. 正方体棱长为4,动点、分别满足,其中,且,;在上,点在平面内,则( )A .对于任意的,且,都有平面平面B.当时,三棱锥的体积不为定值C .若直线到平面的距离为,则直线与直线所成角正弦值最小为.D.的取值范围为13. 如图,在矩形ABCD 中,,AC 与BD 的交点为M ,N 为边AB 上任意点(包含端点),则的最大值为________.14. 已知,,则______.15. 已知椭圆的左焦点为,上顶点为,直线过和,且与圆交于两点,若,则椭圆的离心率为__________.16. 为调查某校学生每周体育锻炼落实的情况,采用分层抽样的方法,收集100位学生每周平均锻炼时间的样本数据(单位:).根据这100个样本数据,制作出学生每周平均锻炼时间的频率分布直方图(如图所示).(Ⅰ)估计这100名学生每周平均锻炼时间的平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由频率分布直方图知,该校学生每周平均锻炼时间近似服从正态分布,其中近似为样本平均数,近似为样本方差.(i )求;(ii )若该校共有5000名学生,记每周平均锻炼时间在区间的人数为,试求.附:,若~,,.17. 已知函数在点处的切线与y轴垂直,且,其中.(1)求的值,并求出的单调区间;(2)设,确定非负实数的取值范围,使不等式在上恒成立.18. 已知数列的前n项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前n项和.19. 某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了 40 名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,,,,,得到如图所示的频率分布直方图:(1)求的值;(2)求抽取的40名学生中月上网次数不少于15次的人数;(3)再从月上网次数不少于20 次的学生中随机抽取2人,求至少抽到1名女生的概率.20. 对于数列、、,若对任意的恒成立,则称数列、、具有性质.设;(1)证明:数列、、具有性质的一个充分条件为:;(2)若,、、满足(1)的充分条件,求;(3)若、、的每一项均为有理数,但每一项均为无理数,试给出数列、、具有性质的充要条件.若在此条件下令,试探究数列的一些性质(如单调性,极限,的最大项等).21. 某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:性别选考方案确定情况物理化学生物历史地理政治男生选考方案确定的有6人663120选考方案待确定的有8人540121女生选考方案确定的有10人896331选考方案待确定的有6人540011(1)试估计该学校高一年级确定选考生物的学生有多少人?(2)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)(3)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.。

2019年房山区第二次高考模拟检测试题高三数学(文科).doc

2019年房山区第二次高考模拟检测试题高三数学(文科).doc

2019年房山区第二次高考模拟检测试题高三数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集U =R ,集合{(3)0}A x x x =->,则U C A =(A) [0,3](B) (,3]-∞(C) (,0)(3,)-∞+∞ (D) (,0][3,)-∞+∞ (2)下列函数中为偶函数的是(A) 3y x x =+(B) 24y x =-(C)y =(D)1y x =+(3)执行如图所示的程序框图,则输出的S 值为(4)若,x y 满足124x y x y +⎧⎨-⎩≤,,≥则3z x y =+的最小值为(A) 6-(B)1-(C) 3(D)4 (A) 4(B) 5(C) 8 (D) 9(5)在以AB 为边,AC 为对角线的矩形中,(3,1),(2,)AB AC k ==,则实数k = (A) 6-(B) 4(C) 2(D)23(6)已知某四面体的三视图如图所示,正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为(7)设a ∈R ,则“1a =”是“直线1:240l ax y ++=与直线2:(1)0l x a y a +++=平行”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件(D) 既不充分也不必要条件(8)高考文科综合由政治、历史、地理三个科目组成,满分300分,每个科目各100分,若规定每个科目60分为合格,总分180分为文科综合合格. 某班高考文科综合各科目合格人数如下:(A) 人13人 (B) 15人(C)17人(D)20人第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)复数3i z =+,其中i 是虚数单位,则=z .(A)4(B) 3(C) 2 (D) 1 正(主)视图俯视图侧(左)视图(10)双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为2y x =,则离心率等于 . (11)函数()sin 2f x x =,若12,x x 满足12()()2f x f x -=,则12x x -的最小值为 .(12)已知圆22:(1)(2)4C x y -+-=与直线:(1)l y k x =+,则圆心C 的坐标为 , 若圆C 关于直线l 对称,则k = .(13)设,a b +∈R ,且1,1a b ≠≠,能说明“若log 3log 3a b >,则b a >”为假命题的一组,a b 的值依次为 .(14)已知函数22,0()3,0,x a x f x x ax a x ⎧-⎪=⎨-+>⎪⎩≤,当0a =时,()f x 的值域为 ; 若()f x 有三个零点,则a 的取值范围是 .三、解答题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

房山区2013年高考第二次模拟试卷数 学 (文科)本试卷共4页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.若﹁p ∨q 是假命题,则 A. p ∧q 是假命题 B. p ∨q 是假命题 C. p 是假命题D. ﹁q 是假命题2.下列四个函数中,既是奇函数又在定义域上单调递增的是 A. 1y x =- B. tan y x =C. 2y x=-D. 3y x =3.为了得到函数lg10xy =的图象,只需把函数lg y x =的图象上 A. 所有点向右平移1个单位长度 B. 所有点向下平移1个单位长度C. 所有点的横坐标缩短到原来的110(纵坐标不变) D. 所有点的纵坐标缩短到原来的110(横坐标不变)4.设平面向量(1,2),(2,)y ==-a b ,若a //b ,则2-a b 等于A. 4B. 5C.5.执行如图所示的程序框图.则输出的所有点(,)x y A.都在函数1y x =+的图象上 B.都在函数2y x =的图象上 C.都在函数2xy =的图象上 D.都在函数12x y -=的图象上6.已知,M N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是A.2C. D.1727.一个几何体的三视图如图所示,则这个几何体 的表面积为 A.9+B. 18+C. 18+D. 98.定义运算ac x ax cy bd y bx dy +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,称x a y b '⎡⎤⎡=⎢⎥⎢'⎣⎦⎣ c d ⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦为将点(),x y 映到点(),x y ''的 一次变换.若x y '⎡⎤⎢⎥'⎣⎦=2p ⎡⎢⎣ 1q -⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦把直线y x =上的各点映到这点本身,而把直线3y x =上的各点映到这点关于原点对称的点.则,p q 的值分别是A. 3,3p q ==B. 3,2p q ==-C. 3,1p q ==D. 1,1p q ==二、填空题:本大题共6小题,每小题5分,共30分. 9.在复平面内,复数(2)i i -对应的点的坐标为 . 10.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 11.数列{}n a 是公差不为0的等差数列,11a =,且3a 是19a a ,的等比中项,则数列{}n a 的通 项公式n a = .12.实数,a b 满足25a b +=,则ab 的最大值为.俯视图侧(左)视图13.抛物线2:2C y px =的焦点坐标为1(,0)2F ,则抛物线C 的方程为 ,若点P 在抛物线C 上运动,点Q 在直线50x y ++=上运动,则PQ 的最小值等于 .14.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设'()f x 是函数()y f x =的导数,''()f x 是'()f x 的导数,若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若32111()1326f x x x x =-++,则该函数的对称中心为 ,计算1232012()()()()2013201320132013f f f f ++++=L .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)已知函数()sin()(00)f x x ωϕωϕ=+><<π,的最小正周期为π,且图象过点1(,)62π. (Ⅰ)求,ωϕ的值;(Ⅱ)设()()()4g x f x f x π=-,求函数()g x 的单调递增区间.16.(本小题满分14分)如图,ABCD 是正方形, DE ⊥平面ABCD ,DE AF //,22===AF DA DE .(Ⅰ) 求证:AC ⊥平面BDE ; (Ⅱ) 求证://AC 平面BEF ; (Ⅲ) 求四面体BDEF 的体积.17.(本小题满分13分)一个质地均匀的正方体的六个面上分别标有数字0,1,2,3,4,5,一个质地均匀的正四面体的四个面上分别标有数字1,2,3,4.将这个正方体和正四面体同时抛掷一次,正方体正面向上的数字为a ,正四面体的三个侧面上的数字之和为b . (Ⅰ)求事件3b a =的概率;(Ⅱ)求事件“点(,)a b 满足22(5)9a b +-≤”的概率.FEDCBA18.(本小题满分13分)已知函数()(2)e xf x ax =-在1x =处取得极值. (Ⅰ)求a 的值;(Ⅱ)求函数()f x 在[],1m m +上的最小值;(Ⅲ)求证:对任意12,[0,2]x x ∈,都有12|()()|e f x f x -≤.19.(本小题满分14分)已知椭圆12222=+by a x (0>>b a)的焦点坐标为(,离心率为3.直线2+=kx y 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在实数k ,使得以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.20.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且*12()nn nS a n a +=∈N ,其中11,0n a a =≠. (Ⅰ)求23,a a ;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设数列{}n b 满足(21)(21)1n bn a --=,n T 为{}n b 的前n 项和,试比较n T 与2log房山区2013年高考第二次模拟考试参考答案数 学 (文科) 2013.05一、选择题:本大题共8小题,每小题5分,共40分.1A 2D 3B 4D 5C 6B 7A 8B二、填空题:本大题共6小题,每小题5分,共30分.9. (1,2) 10.4,73- 11. n 12.25813. 22,y x = 14. 1(,1),20122三、解答题: 本大题共6小题,共80分. 15(本小题满分13分)(Ⅰ)由最小正周期为π可知 22==Tπω, ………………2分由1()62f π=得 1sin()32πϕ+=,又0ϕπ<<,333πππϕπ<+<+所以 536ππϕ+=2πϕ=, ………………5分(Ⅱ)由(Ⅰ)知 ()sin(2)cos 22f x x x π=+=所以()cos 2sin[2()]cos 2sin 242g x x x x x ππ=⋅-+=1sin 42x = …………………………………………………………………9分解24222k x k ππππ-≤≤+得(Z)2828k k x k ππππ-≤≤+∈ ……………………………12分 所以函数()g x 的单调增区间为[,] (Z)2828k k k ππππ-+∈.…………………………………………………13分16(本小题满分14分)(Ⅰ)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. …………………1分 因为ABCD 是正方形,所以BD AC ⊥, …………………2分GOFEDA因为D BD DE =⋂ …………………3分所以AC ⊥平面BDE . …………………4分(Ⅱ)证明:设AC BD O =I ,取BE 中点G ,连结OG FG ,,所以,OG //=12DE . …………………5分 因为DE AF //,AF DE 2=,所以AF //=OG , …………………6分 从而四边形AFGO 是平行四边形,AO FG //. ………………7分 因为FG ⊂平面BEF ,AO ⊄平面BEF , …………………8分 所以//AO 平面BEF ,即//AC 平面BEF . ……………………9分 (Ⅲ)解:因为DE ⊥平面ABCD所以 AB DE ⊥ 因为正方形ABCD 中,AB AD ⊥,所以AB ⊥平面ADEF . …………………11分 因为DE AF //,22===AF DA DE ,所以DEF ∆的面积为122ED AD ⨯⨯=, 所以四面体BDEF 的体积=⨯=∆AB S DEF 3143. ……………14分17(本小题满分13分)(Ⅰ)由题可知a 的取值为0,1,2,3,4,5,b 的取值为6,7,8,9 基本事件空间:Ω={(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),}(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)共计24个基本事件 ……………………3分 满足3b a =的有(2,6),(3,9)共2个基本事件所以事件3b a =的概率为212412= ……………………7分(Ⅱ)设事件B=“点(a,b )满足22(5)9a b +-≤” 当8b =时,0a =满足22(5)9a b +-≤当7b =时,0,1,2b =满足22(5)9a b +-≤ 当6b =时,0,1,2b =满足22(5)9a b +-≤所以满足22(5)9a b +-≤ 的有(0,6),(0,7),(0,8),(1,6),(1,7),(2,6),(2,7), 所以7()24P B =……………………13分18(本小题满分13分)(Ⅰ)'()(2)(2)xxxf x ae ax e ax a e =+-=+- ……………1分由已知得'(1)0f =即(22)0xa e -= ……………2分 解得:1a = …………………………3分 当1a =时,在1x =处函数()(2)xf x x e =-取得极小值,所以1a = (Ⅱ)()()2xf x x e =-, ()()'()+21xxxf x e x e x e =-=-.所以函数()f x 在(),1-∞递减,在()1,+∞递增. ……………………4分 当1m ≥时,()f x 在[],1m m +单调递增,min ()()f x f m =me m )2(-=.………………………5分当01m <<时,11m m <<+()f x 在[],1m 单调递减,在[]1,1m +单调递增,min ()(1)f x f e ==-.…………………………6分当0m ≤时,+11m ≤,()f x 在[],1m m +单调递减,1min ()(1)(1).m f x f m m e +=+=-…………………………7分综上 ()f x 在[],1m m +上的最小值min 1(2),1,(),01,(1),0.m m m e m f x e m m e m +⎧-≥⎪=-<<⎨⎪-≤⎩………………………………………8分(Ⅲ)由(Ⅰ)知()()2xf x x e =-, ()()'()+21xxxf x e x e x e =-=-.令'()0f x = 得1x =因为(0)2,(1)e,(2)0f f f =-=-= 所以max min ()0,()ef x f x ==-……………11分所以,对任意12,[0,2]x x ∈,都有12max min |()()|()()e f x f x f x f x -≤-=………………………………………13分19(本小题满分14分)(Ⅰ)由ce a==,2=c ,222c b a += 得3=a ,1=b , 所以椭圆方程是:1322=+y x ……………………4分(Ⅱ)设),(11y x P ,),(22y x Q 则211+=kx y ,222+=kx y将2+=kx y 代入1322=+y x ,整理得0912)13(22=+++kx x k (*) 则121222129,3131k x x x x k k +=-=++ ………………………7分 以PQ 为直径的圆过)0,1(-D ,则PD QD ⊥u u u r u u u r ,即0PD QD ⋅=u u u r u u u rPD QD ⋅=u u u r u u u r11221212(1,)(1,)(1)(1)x y x y x x y y +⋅+=+++121212()1x x x x y y =+++++21212(1)(21)()5k x x k x x =+++++21214031k k -+==+. ………………………………12分解得67=k ,此时(*)方程0>∆,所以 存在67=k ,使得以PQ 为直径的圆过点)0,1(-D . ……14分20(本小题满分13分)(Ⅰ)由于11211222S a a a a ===,21232222()3S a a a a a +=== ………………2分 (Ⅱ)由已知可知112n n n S a a +=,故111211122n n n n n n n a S S a a a a +++++=-=-.因为10n a +≠,所以22n n a a +-=*()n ∈N . ………………4分于是 2112(1)21m a m m -=+-=-,222(1)2m a m m =+-=,所以 n a n =*()n ∈N . ………………6分(Ⅲ)2log n T > …………………………………………7分要比较n T与2log 22,log (21)n n T a +的大小由(21)(21)1n b n a --=,得(21)(21)1,n b n --=2221n bn n =-,故22log 21n nb n =-. …………………………………………8分从而 1222462log 13521n n n T b b b n ⎛⎫=+++=⋅⋅⋅⋅ ⎪-⎝⎭L L .2246222log 13521n n T n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭L 222462log 13521n n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭L因此22log (21)n n T a -+222462log 13521n n ⎛⎫=⋅⋅⋅⋅ ⎪-⎝⎭L 2log (21)n -+22224621log log 1352121n n n ⎛⎫=⋅⋅⋅⋅+ ⎪-+⎝⎭L 2224621log []1352121n n n ⎛⎫=⋅⋅⋅⋅⋅ ⎪-+⎝⎭L . 设224621()1352121n f n n n ⎛⎫=⋅⋅⋅⋅⋅ ⎪-+⎝⎭L , 则22462221(1)135212123n n f n n n n +⎛⎫+=⋅⋅⋅⋅⋅⋅ ⎪-++⎝⎭L , 故22(1)2122(22)()2321(23)(21)f n n n n f n n n n n ++++⎛⎫=⋅=⎪++++⎝⎭224841483n n n n ++=>++, 又()0f n >,所以(1)()f n f n +>.所以对于任意 *n ∈N 都有4()(1)13f n f ≥=>,从而222log (21)log ()0n n T a f n -+=>.所以*22log (21)n n T a n >+∈N ,.即2log n T > ……………………………………………13分。

相关文档
最新文档