2017年高考新课标Ⅲ卷理数试题解析(原卷版)

合集下载

2017年高考新课标Ⅲ卷理数试题解析(解析版)

2017年高考新课标Ⅲ卷理数试题解析(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【解析】 A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合, 故A B I 表示两直线与圆的交点,由图可知交点的个数为2,即A B I 元素的个数为2. 故选B.【考点】交集运算;集合中的表示方法【点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2CD .2【答案】C【解析】由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i21i2z===+.故选C.【考点】复数的模【点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6) 1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误.故选A.【考点】折线图【点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律. 4.()()52x y x y+-的展开式中33x y的系数为A .80-B .40-C .40D .80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B【解析】 因为双曲线的一条渐近线方程为y ,则b a =① 又因为椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b ==C 的方程为22145x y -=.故选B. 【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x b ω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=-= ⎪⎝⎭则圆柱体体积23ππ4V r h ==.故选B.【考点】圆柱的体积公式【点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .13【答案】A【解析】因为以12A A 为直径为圆与直线20bx ay ab -+=相切,所以圆心到直线距离d 等于半径,所以d a ==,又因为0,0a b >>,则上式可化简为223a b =因为222b ac =-,可得()2223a a c=-,即2223c a =,所以c e a ==故选A.【考点】椭圆的离心率的求解;直线与圆的位置关系【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3B .22C .5D .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2017年新课标全国卷3高考理科数学试题及答案

(完整版)2017年新课标全国卷3高考理科数学试题及答案

(完整版)2017年新课标全国卷3⾼考理科数学试题及答案绝密★启⽤前2017年普通⾼等学校招⽣全国统⼀考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考⽣务必将⾃⼰的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每⼩题答案后,⽤铅笔把答题卡上对应题⽬的答案标号涂⿊。

如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。

回答⾮选择题时,将答案写在答题卡上。

写在本试卷上⽆效。

3.考试结束后,将本试卷和答题卡⼀并交回。

⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分。

在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满⾜(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客⼈数的变化规律,提⾼旅游服务质量,收集并整理了2014年1⽉⾄2016年12⽉期间⽉接待游客量(单位:万⼈)的数据,绘制了下⾯的折线图.根据该折线图,下列结论错误的是 A .⽉接待游客量逐⽉增加 B .年接待游客量逐年增加C .各年的⽉接待游客量⾼峰期⼤致在7,8⽉份4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的⼀条渐近线⽅程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的⽅程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的⼀个周期为?2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的⼀个零点为x =6πD .f (x )在(2π,π)单调递减 7.执⾏下⾯的程序框图,为使输出S 的值⼩于91,则输⼊的正整数N 的最⼩值为A .5B .4C .3D .28.已知圆柱的⾼为1,它的两个底⾯的圆周在直径为2的同⼀个球的球⾯上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的⾸项为1,公差不为0.若a 2,a 3,a 6成等⽐数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离⼼率为A.3B.3C3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯⼀零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆⼼且与BD 相切的圆上.若AP u u u r =λAB u u u r +µAD u u u r,则λ+µ的最⼤值为A .3B .CD .2⼆、填空题:本题共4⼩题,每⼩题5分,共20分。

(完整word)2017年全国三卷理科数学高考真题及答案解析,推荐文档

(完整word)2017年全国三卷理科数学高考真题及答案解析,推荐文档

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

2017年全国统一高考数学试卷与解析word(理科)(新课标Ⅲ)

2017年全国统一高考数学试卷与解析word(理科)(新课标Ⅲ)

2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2017年新课标全国卷3高考理科数学试题及答案,推荐文档

(word完整版)2017年新课标全国卷3高考理科数学试题及答案,推荐文档

2绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合 A ={( x , y │) x 2 + y 2 = 1},B ={( x , y │ y = x },则 A B 中元素的个数为 A .3B .2C .1D .02.设复数 z 满足(1+i)z =2i ,则∣z ∣=A.1B.2 C.D .2223.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳5 -1= - 1= - 1= x = 对称,π)4.( x + y )(2 x - y )5 的展开式中 x 3 y 3 的系数为 A .-80B .-40C .40D .80x 2 y 2 5.已知双曲线 C : 2 - = 1 (a >0,b >0)的一条渐近线方程为 y = x ,且与椭圆x 2 y 2a b 22+ = 12 31有公共焦点,则 C 的方程为 x 2 y 2 - = 1 B. x 2 y 2 C. x 2 y 2 D. x 2 y 2 8 104 55 44 36. 设函数 f (x )=cos(x + ),则下列结论错误的是3A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线 83C .f (x +π)的一个零点为 x =6D .f (x )在(单调递减 27. 执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数 N 的最小值为A .5B .4C .3D .28. 已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为 B. 3πA. π4C.π2D.π49. 等差数列{a n }的首项为 1,公差不为 0.若 a 2,a 3,a 6 成等比数列,则{a n }前 6 项的和为 A .-24B .-3C .3D .8A .25x y ⎪⎩⎩2 210. 已知椭圆C : + = 1,(a >b >0)的左、右顶点分别为 A 1,A 2,且以线段 A 1A 2 为 a 2 b 2直径的圆与直线bx - ay + 2ab = 0 相切,则 C 的离心率为A. 6 D. 3 3B. 3C.311. 已知函数 f (x ) = x 2 - 2x + a (e x -1 + e -x +1) 有唯一零点,则 a =A.- 1 2B.1 3C.1 2D .112. 在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若AP = λ AB + μAD,则λ + μ 的最大值为A .3B .2C .D .2二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2017年高考真题(全国Ⅲ卷)数学理科含解析

2017年高考真题(全国Ⅲ卷)数学理科含解析

2017年普通高等学校招生统一考试全国卷Ⅲ理科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}22x y y x│,则A B=(,)(,)1│,B={}x y x y+=中元素的个数为A.3 B.2 C.1D.0【答案】B【解析】【考点】交集运算;集合中的表示方法。

【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。

集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。

2.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12 BCD .2【答案】C 【解析】【考点】 复数的模;复数的运算法则 【名师点睛】共轭与模是复数的重要性质,注意运算性质有: (1)1212z zz z ±=± ;(2) 1212z z z z ⨯=⨯;(3)22z z z z⋅== ;(4)121212z z z z z z -≤±≤+ ;(5)1212z zz z =⨯ ;(6)1121z z z z =。

3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】动性大,选项D说法正确;故选D。

【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

统计、解析几何、导数五大版块和二选一问题。以知识为载体,立意于能力。 4、命题考察的沿续性 2017 年新课标 III 卷,在力求创新基础上,也有一些不变的东西。例如 2017 年
新课标 III 卷在集合、复数、算法、线性规划的命题方式基本完全一致。 【命题趋势】 1.函数知识:以导数知识为背景的函数问题;分段函数与不等式结合的题目;三角函数的性质及其讨论; 从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。 2.函数零点问题:函数零点的应用主要表现在利用零点求参数范围,这也体现了数形结合思想的应用. 3.不等式知识:突出工具性,不等式的性质与分段函数,绝对值的性质综合起来进行考查,考查学生的等 价转化能力和分类讨论能力; 4.立体几何知识:2016 年已经变得简单,2017 年难度依然不大, 16 题填空题将立体几何的知识与运动问 题相联系,然后确定最值及取值范围;第 8 题考查圆柱的体积问题,要求学生的空间想象能力比加强. 5.解析几何知识:解答题主要考查直线、抛物线和圆的知识,考试的难度与往年持平,选择题 5 题考查共 焦点问题,属于常规题目,10 题综合了抛物线、圆和直线的问题,需要对位置关系有透彻的理解。 6.导数知识: 导数是研究函数的单调性、 极值(最值)最有效的工具, 而函数是高中数学中重要的知识点, 21 题加强了与不等式的联系,要求学生的对导数的深层含义能准确把握,12 题涉及零点问题,由唯一性确定
(5) z1 z2 z1 z2 ;(6)
z z1 1 。 z2 z1
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至 2016 年 12 月期 间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7,8 月 D.各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳 【答案】A 【解析】

(完整版)2017年全国三卷理科数学高考真题及答案解析,推荐文档

(完整版)2017年全国三卷理科数学高考真题及答案解析,推荐文档

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【考点】交集运算;集合中的表示方法【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C 2D .2【答案】C 【解析】试题分析:由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i21i2z===+.故选C.【考点】复数的模【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6)1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选A.【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律.4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D 【解析】试题分析:函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确;当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D 【解析】试题分析:阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为A.24-B.3-C.3 D.8 【答案】A【解析】试题分析:设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .6 B .3 C .2 D .13【答案】A 【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为 A .3B .2C 5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

(完整)2017年新课标全国卷3高考理科数学试题及答案,推荐文档

(完整)2017年新课标全国卷3高考理科数学试题及答案,推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017新课标全国卷3高考理科数学试题(卷)与答案解析

2017新课标全国卷3高考理科数学试题(卷)与答案解析

D. 80
y 5 x , 且与椭圆 2
x2 y2
A.
1
8 10
x2
B.
4
y2 1
5
x2
C.
5
y2 1
4
x2
D.
4
y2 1
3
6.设函数 f(x)=cos(x+ ),则下列结论错误的是 3
A .f(x)的一个周期为 -2 π
B . y=f(x)的图像关于直线 x= 8 对称 3
C. f(x+π)的一个零点为 x= 6
1 的 x 的取值范围是 _________。
2
16. a,b 为空间中两条互相垂直的直线,等腰直角三角形
ABC 的直角边 AC 所在直线与 a,
b 都垂直,斜边 AB 以直线 AC 为旋转轴旋转,有下列结论: ①当直线 AB 与 a 成 60°角时, AB 与 b 成 30°角;
②当直线 AB 与 a 成 60°角时, AB 与 b 成 60°角;
③直线 AB 与 a 所成角的最小值为 45°;
④直线 AB 与 a 所成角的最小值为 60°;
其中正确的是 ________。(填写所有正确结论的编号)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第
17~21 题为必考题,
每个试题考生都必须作答。第 22、 23 题为选考题,考生根据要求作答。
18.( 12 分) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶
4 元,售价每瓶 6 元,
未售出的酸奶降价处理, 以每瓶 2 元的价格当天全部处理完. 根据往年销售经验, 每天需求
量与当天最高气温(单位:℃)有关.如果最高气温不低于

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【考点】交集运算;集合中的表示方法【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .2【答案】C 【解析】试题分析:由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i221i2z===+.故选C.【考点】复数的模【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6)1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选A.【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律.4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D 【解析】试题分析:函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确;当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D 【解析】试题分析:阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为A.24-B.3-C.3 D.8 【答案】A【解析】试题分析:设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .13【答案】A 【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为 A .3B .22C .5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径25r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤,即221514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

2017新课标Ⅲ全国高考理科数学试卷含答案

2017新课标Ⅲ全国高考理科数学试卷含答案

2017新课标III 理一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0【解析】A 表示圆x 2+y 2=1上所有点的集合,B 表示直线y =x 上所有点的集合,故A ∩B 表示两直线与圆的交点,由图可知交点的个数为2,即A ∩B 元素的个数为2,故选B .联立⎩⎪⎨⎪⎧x 2+y 2=1,y =x ,解得⎩⎨⎧x =22,y =22或⎩⎨⎧x =-22,y =-22,则A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,有2个元素.2.设复数z 满足(1+i)z =2i ,则∣z ∣=( )A .12B .22C . 2D .2【解析】方法一 由(1+i)z =2i ,得z =2i1+i=1+i ,∴|z |=2.方法二 ∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i ,∴|z |=2.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图,根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 解析:由折线图可知,各年的月接待游客量从8月份后存在下降趋势,故选A .4.(x +y )(2x -y )5的展开式中x 3y 3的系数为() A .-80 B .-40 C .40 D .80【解析】由二项式定理可得,原式展开中含x 3y 3的项为x C 25(2x )2(-y )3+y C 35(2x )3(-y )2=40 x 3y 3,则x 3y 3的系数为40,故选C .5.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为()A.x28-y210=1 B.x24-y25=1 C.x25-y24=1 D.x24-y23=1【解】由题设知ba=52①,又由椭圆x212+y23=1与双曲线有公共焦点,易知a2+b2=c2=9②,由①②解得a=2,b=5,则双曲线C的方程为x24-y25=1.6.设函数f(x)=cos (x+π3),则下列结论错误的是()A.f(x)的一个周期为2π-B.y=f(x)的图像关于直线x=8π3对称C.f(x+π)的一个零点为x=π6D.f(x)在(π2,π)单调递减【解析】函数f(x)=cos (x+π3)的图象可由y=cos x向左平移π3个单位得到,如图可知,f(x)在(π2,π)上先递减后递增,D选项错误,故选D.π23π53-π36πg xyO解析A项,因f(x)的周期为2kπ(k∈Z且k≠0),故f(x)的一个周期为-2π,A项正确.B项,因f(x)图象的对称轴为直线x=kπ-π3(k∈Z),当k=3时,直线x=8π3是其对称轴,B项正确.C项,f(x +π)=cos⎝⎛⎭⎫x+4π3,将x=π6代入得到f⎝⎛⎭⎫7π6=cos3π2=0,故x=π6是f(x+π)的一个零点,C项正确.D 项,因f(x)=cos⎝⎛⎭⎫x+π3的递减区间为⎣⎡⎦⎤2kπ-π3,2kπ+2π3(k∈Z),递增区间为⎣⎡⎦⎤2kπ+2π3,2kπ+5π3(k ∈Z),故⎝⎛⎭⎫π2,2π3是减区间,⎣⎡⎭⎫2π3,π是增区间,D项错误.7.执行如图所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.2解析:当输入的正整数N是所给选项中最小的正整数2时,t=1,M=100,S=0,则第一次循环,S =0+100=100,M =-10010=-10,t =2;第二次循环,S =100-10=90,M =--1010=1,t =3,此时t ≤2不成立,输出S =90<91.故选D .8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .ΠB .3π4C .π2D .π4【解】球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r =32,故该圆柱的体积V =π×(32)2×1=3π4.9.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为()A .-24B .-3C .3D .8【解析】因{a n }为等差数列,且a 2,a 3,a 6成等比数列,设公差为d .则a 23=a 2a 6,即(a 1+2d )2=(a 1+d )(a 1+5d ),又a 1=1,代入上式可得,d 2+2d =0,又d ≠0,则d =-2,故S 6=6a 1+15d =-24,故选A .10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63 B .33 C .23 D .13【解】以线段A 1A 2为直径的圆的圆心为坐标原点O (0,0),半径为a .由题意,圆心到直线bx -ay +2ab =0的距离为2ab a 2+b 2=a ,即a 2=3b 2.又e =c a =a 2-b 2a =1-⎝⎛⎭⎫132=63,故e =63,故选A .11.已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A .-12B .13C .12 D .1【解】由f (x )=x 2-2x +a (e x -1+e -x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1] =x 2-4x +4-4+2x +a (e 1-x+e x -1)=x 2-2x +a (e x -1+e-x +1),故f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,故f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a =12. 12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为A .3B .2 2C .5D .2【解析】以A 为坐标原点,AB ,AD 所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距()A O DxyBP gCE离为212+22=25,圆C :(x -1)2+(y -2)2=45,因P 在圆C 上,故P (1+255cos θ,2+255sin θ),AB →=(1,0),AD →=(0,2),AP →=λAB →+μAD →=(λ,2μ),故⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3,tan φ=2,选A . 二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.【解析】画出可行域如图阴影部分所示.由z =3x -4y ,得y =34x -z 4,作出直线y =34x ,平移使之经过可行域,观察可知,当直线经过点A (1,1)处取最小值,故z min =3×1-4×1=-1.14.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.【解析】由{a n }为等比数列,设公比为q .⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,即⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②,显然q ≠-1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1,故a 4=a 1q 3=1×(-2)3=-8. 15.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f (x -12)>1的x 的取值范围是________.【解析】当x ≤0时,f (x )+f (x -12)=(x +1)+(x -12+1),原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f (x -12)=2x +(x -12+1)原不等式化为2x +x +12>1,该式恒成立,当x >12时,f (x )+f (x -12)=2x +2x -12,又x >12时,2x+2x -12>212+20=1+2>1恒成立,综上可知,不等式的解集为(-14,+∞).【解二】因f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,,f (x )+f (x -12)>1,即f (x -12)>1-f (x )由图象变换可画出y =f (x -12)与y =1-f (x )的图象如下:g12-g 1211(,)44-g1()2y f x =-1()y f x =-yx由图可知,满足f (x -12)>1-f (x )的解为(-14,+∞).16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①.当直线AB 与a 成60°角时,AB 与b 成30°角; ②.当直线AB 与a 成60°角时,AB 与b 成60°角; ③.直线AB 与a 所称角的最小值为45°; ④.直线AB 与a 所称角的最小值为60°; 其中正确的是________.(填写所有正确结论的编号)【解析】由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD →的方向为x 轴正方向,CB →的方向为y 轴正方向,CA →的方向为z 轴正方向建立空间直角坐标系.则D (1,0,0),A (0,0,1),直线a 的单位方向向量a =(0,1,0),|a |=1.B 点起始坐标为(0,1,0),直线b 的单位方向向量b =(1,0,0),|b |=1.设B 点在运动过程中的坐标B ′(cos θ,sin θ,0),其中θ为CB ′→与CD →的夹角,θ∈[0,2π).那么AB ′在运动过程中的向量AB ′→=(cos θ,sin θ,-1),|AB ′→|=2.设直线AB ′与a 所成的夹角为α∈[0,π2],cos α=22|sin θ|∈[0,22].故α∈[π4,π2],故③正确,④错误.直线AB ′与b 所成的夹角为β,则β∈[0,π2],cos β=|AB ′→·b ||b ||AB ′→|=22|cos θ|.当AB ′与a 成60°角时,α=π3,|sin θ|=2cos α=2cos π3=2×12=22.因cos 2θ+sin 2θ=1,故|cos θ|=22.故cos β=22|cos θ|=12.因β∈[0,π2],故β=π3,此时AB ′与b 成60°角.故②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【解析】(1)由已知可得tan A =-3,故A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,故∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,故△ABD 的面积为3.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知P (X =200)=2+1630×3=0.2,P (X =300)=3630×3=0.4,P (X =500)=25+7+430×3=0.4.因此X 的分布列为(2)200≤n ≤500.当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ,若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n ;因此E (Y )=2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n .当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n ;因此E (Y )=2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n .故n =300时,Y 的数学期望达到最大值,最大值为520元.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABD ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【解析】(1)由题设可得,△ABD ≌△CBD ,从而AD =DC .又△ACD 是直角三角形,故∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又由于△ABC 是正三角形,故BO ⊥AC .故∠DOB 为二面角D -AC -B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,故BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.故平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E (0,32,12).故AD →=(-1,0,1),AC →=(-2,0,0),AE →=(-1,32,12).设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0.可取n =(1,33,1).设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0.同理可取m =(0,-1,3).则cos 〈n ,m 〉=n·m |n||m|=77.故二面角D -AE -C 的余弦值为77.DBC EO20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.【解析】(1)设l :x =my +2,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=2x ,x =my +2,消去x 得y 2-2my -4=0,Δ=4m 2+16恒大于0,y 1+y 2=2m ,y 1y 2=-4.OA →·OB →=x 1x 2+y 1y 2=(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m (y 1+y 2)+4=-4(m 2+1)+2m ·2m +4=0.故OA →⊥OB →,即O 在圆M 上.(2)由(1)可得,x 1+x 2=m (y 1+y 2)+4=2m 2+4.故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0,故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0,即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0.由(1)可得y 1y 2=-4,x 1x 2=4.故2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为(94,-12),圆M 的半径为854,圆M 的方程为(x -94)2+(y +12)2=8516. 21.(12分)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)·…·(1+12n )<m ,求m 的最小值.【解】(1)f (x )的定义域为(0,+∞),①.若a ≤0,因f (12)=-12+a ln 2<0,故不满足题意.②.若a >0,由f ′(x )=1-a x =x -ax 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,故f (x )在(0,a )单调递减,在(a ,+∞)单调递增,故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,故当且仅当a =1时,f (x )≥0,故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0,令x =1+12n ,得ln(1+12n )<12n .从而ln(1+12)+ln(1+122)+…+ln(1+12n )<12+122+…+12n =1-12n <1.故(1+12)(1+122)…(1+12n )<e ,又(1+12)(1+122)…(1+12n )>(1+12)(1+122)·(1+123)=13564>2,故当n ≥3时,(1+12)(1+122)…(1+12n )∈(2,e),由于(1+12)(1+122)…(1+12n )<m ,且m ∈N *.故整数m 的最小值为3. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt ,(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解析:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k (x+2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).故C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,故交点M 的极径为5.23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解析:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1解得x >2.故f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m 得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-(|x |-32)2+54≤54,且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为(-∞,54].。

2017年高考新课标3理科数学真题及答案详解

2017年高考新课标3理科数学真题及答案详解

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅲ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为A.3B.2C.1D.0 (2)设复数z 满足(1i)2i z +=,则z =A.12 D.2(3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(4)5()(2)x y x y +-的展开式中33x y 的系数为A.-80B.-40C.40D.80(5)已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y x =,且与椭圆221123x y+=有公共焦点.则C 的方程为A.221810x y -=B.22145x y -= C.22154x y -= D.22143x y -= (6)设函数π()cos()3f x x =+,则下列结论错误的是 A.()f x 的一个周期为2π-B.()y f x =的图像关于直线8π3x =对称 C.()f x π+的一个零点为π6x = D.()f x 在π(,π)2单调递减(7)执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2(8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4 C.π2 D.π4 (9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列, 则{}n a 前6项的和为A.-24B.-3C.3D.8(10)已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13(11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a = A.-12 B.13 C.12 D.1(12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A.3B.D.2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. (13)若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.(14)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. (15)设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.(16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤. (一)必考题:共60分. (17)(12分) ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A +=,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[),,需求量为300瓶;如果最高气温低于20,需求量为200瓶,2025为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形.∠ABD=∠CBD,AB BD=.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分.求二面角D AE C--的余弦值.DAB CE已知抛物线2:2=,过点(2,0)的直线l交C于A,B两点,圆M是C y x以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2-),求直线l与圆M的方程.已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)...(1)222n m+++<,求m 的最小值.(二)选做题:共10分。

2017新课标全国卷3高考理科数学试题和答案解析

2017新课标全国卷3高考理科数学试题和答案解析

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017年全国统一高考新课标版Ⅲ卷全国3卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅲ卷全国3卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅲ卷全国3卷理科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=( )A. B. C. D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x-y)5的展开式中的x3y3系数为 ( )A.-80B.-40C.40D.805.(5分)已知双曲线C:-=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.-=1B.-=1C.-=1D.-=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.C.D.9.(5分)等差数列{an }的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )A.-24B.-3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.11.(5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=( )A.-B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2017年理科数学全国III卷试题及解析(精校版)

2017年理科数学全国III卷试题及解析(精校版)

2017年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学试题及解析一、选择题:(本题共12小题,每小题5分,共60分) 1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合, 故A B I 表示两直线与圆的交点,由图可知交点的个数为2,即A B I 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =( )A .12B.CD .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则z = C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年 根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为( )A .-80B .-40C .40D .80【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为5y x=,则5b a=① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是( ) A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2⎛⎫ ⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πgxyO7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( ) A .5 B .4 C .3 D .2【答案】D【解析】程序运行过程如下表所示:S Mt初始状态 0 100 1 第1次循环结束10010-2第2次循环结束 90 1 3此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4 【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =,则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D .8【答案】A 【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d .则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d +=又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b +=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.B.C.3D .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a=∴c e a ==,故选A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =( ) A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得: 221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=, 解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB ADλμ=+u u u r u u u r u u u r ,则λμ+的最大值为( ) A .3B.CD .2【答案】A【解析】由题意,画出右图. 设BD 与C e 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD =∵BD 切C e 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C e.∵P 在C e 上. ∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r∴0112x μθ==+,01y λθ==+.两式相加得:()A O Dxy BP gCE112)2sin()3λμθθθϕθϕ+=+++=++=++≤ (其中sin ϕ=,cos ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图: 目标函数为34z x y =-,则直线344z y x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________.【答案】8-【解析】{}n a Q 为等比数列,设公比为q . 121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②,显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭ 【解析】()1,02 ,0+⎧=⎨>⎩Q x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭. 16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号)【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图. 不妨设图中所示正方体边长为1, 故||1AC =,AB =斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD u u u r 为x 轴正方向,CB u u u r为y 轴正方向, CA u u u r为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A , 直线a 的方向单位向量(0,1,0)a =r,||1a =r.B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)b =r,||1b =r .设B 点在运动过程中的坐标(cos ,sin ,0)B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈. 那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--u u u r,||2AB '=u u u r.设AB 'u u u r 与a r 所成夹角为π[0,]2α∈, 则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]a AB θθαθ--⋅==∈'r u u u r.故ππ[,]42α∈,所以③正确,④错误. 设AB 'u u u r 与b r 所成夹角为π[0,]2β∈, cos (cos ,sin ,1)(1,0,0)2|cos |AB bb AB b AB βθθθ'⋅='-⋅='=u u u r rr u u u rr u u u r .当AB 'u u u r 与a r 夹角为60︒时,即π3α=, 12sin 2cos 2cos232πθα====.∵22cos sin 1θθ+=,∴|cos |θ=.∴1cos |cos |22βθ==.∵π[0,]2β∈.∴π=3β,此时AB 'u u u r 与b r夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A +=,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈, ∴ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=. ∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD由勾股定理AD ==又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABD S AD AB =⋅⋅△.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯ ()257425003035P X ++===⨯.⑵①当200n ≤时:()642Y n n =-=,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=此时max 520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n -=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 【解析】(1)由题设可得,,ABD CBD AD DC ∆≅∆=从而 又ACD ∆是直角三角形,所以0=90ACD ∠ 取AC 的中点O ,连接DO,BO,则DO ⊥AC,DO=AO 又由于ABC BO AC ∆⊥是正三角形,故 所以DOB D AC B ∠--为二面角的平面角2222222220,Rt AOB BO AO AB AB BD BO DO BO AO AB BD ACD ABC∆+==+=+==∠⊥在中,又所以,故DOB=90所以平面平面(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OAu u u r 为单位长,建立如图所示的空间直角坐标系O xyz -,则DABCE-(1,0,0),(0(1,0,0),(0,0,1)A B C D由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E 10,,22⎛⎫⎪ ⎪⎝⎭.故()()11,0,1,2,0,0,1,,22AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭u u u r u u u r u u u r 设()=x,y,z n 是平面DAE的法向量,则00,即100,22x z AD x y z AE -+=⎧⎧=⎪⎪⎨⎨-++==⎪⎪⎩⎩u u u r g u u u r g n n可取113=,⎛⎫⎪ ⎪⎝⎭n设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u rg u u u rg m m同理可得(01,=-m则cos ,==g n m n m n m 所以二面角D -AE -C的余弦值为720.(12分)已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程. 【解析】(1)设()()11222A x ,y ,B x ,y ,l :x my =+由222x my y x=+⎧⎨=⎩可得212240则4y my ,y y --==- 又()22212121212==故=224y y y y x ,x ,x x =4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x g 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =u u u r u u u rg ,故()()()()121244220x x y y --+++=即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x , 所以2210m m --=,解得11或2m m ==-. 当m=1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M ,圆M 的方程为()()223110x y -+-= 当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭ 21.(12分)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++鬃?<,求m 的最小值.【解析】⑴ ()1ln f x x a x =--,0x > 则()1a x af x x x -'=-=,且(1)0f = 当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意 综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤ 则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1) (11)2222222n n n ++++++<+++=-<,即2111(1)(1)...(1)e222n +++<. 另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=> 当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈ ∵*m ∈N ,2111(1)(1)...(1)222n m+++<,∴m 的最小值为3.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m m y k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程:(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+0,M 为l 3与C 的交点,求M 的极径. 【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k =+ ……②①⨯②消k 可得:224x y -= 即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y += ……③联立曲线C 和3l 2204x y x y ⎧+=⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩由cos sin x y ρθρθ=⎧⎨=⎩解得ρ= 即M.23.[选修4-5:不等式选讲](10分) 已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围. 【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥; ③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m≥等价为()2-+f x x x m≥,令()()2g x f x x x=-+,则()g x m≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦; ②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。

2017年高考新课标Ⅲ卷理数试题 (原卷版)

2017年高考新课标Ⅲ卷理数试题 (原卷版)

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i )z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.()()52x y x y +-的展开式中x 3y 3的系数为 A .80-B .40-C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=6.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别学@科*网为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2017年普通高等学校招生全国统一考试(新课标Ⅲ)
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡
皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题
目要求的。

1.已知集合A ={
}22
(,)1x y x y +=│
,B ={}
(,)x y y x =│,则A B 中元素的个数为 A .3
B .2
C .1
D .0
2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .
1
2
B .
22
C .2
D .2
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网
根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月份
D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80
B .-40
C .40
D .80
5.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5
2
y x =,且与椭圆221123x y +
=有公共焦点,则C 的方程为
A .
22
1810
x y -= B .
22
145x y -= C .
22
154x y -= D .
22
143
x y -= 6.设函数f (x )=cos(x +
3
π
),则下列结论错误的是 A .f (x )的一个周期为−2π
B .y =f (x )的图像关于直线x =83
π
对称 C .f (x +π)的一个零点为x =

D .f (x )在(
2
π
,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为
A .5
B .4
C .3
D .2
8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π
B .
3π4
C .
π2
D .
π4
9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24
B .-3
C .3
D .8
10.已知椭圆C :22
221x y a b
+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线
20bx ay ab -+=相切,则C 的离心率为
A .
63
B .
33
C .
23
D .
13
11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =
A .12
-
B .
13
C .
12
D .1
12.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD

则λ+μ的最大值为 A .3
B .22
C .5
D .2
二、填空题:本题共4小题,每小题5分,共20分。

13.若x ,y 满足约束条件y 0
200x x y y -≥⎧⎪
+-≤⎨⎪≥⎩
,则z 34x y =-的最小值为__________.
14.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________.
15.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,
则满足1
()()12f x f x +->的x 的取值范围是_________。

16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边
AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所称角的最小值为45°; ④直线AB 与a 所称角的最小值为60°;
其中正确的是________。

(填写所有正确结论的编号)
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生
都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)
△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;
(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积.
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?学科*网
19.(12分)
如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.
20.(12分)
已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;
(2)设m 为整数,且对于任意正整数n ,2111
1+
+1+)222
n ()(1)(﹤m ,求m 的最小值. (二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,直线l 1的参数方程为2+,
,x t y kt =⎧⎨=⎩
(t 为参数),直线l 2的参数方程为
2,
,x m m m y k =-+⎧⎪

=⎪⎩
(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.
23.[选修4-5:不等式选讲](10分)
已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;
(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.。

相关文档
最新文档