2017年高考新课标Ⅰ卷文数试题解析(正式版)(解析版)
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年 全国统一高考数学 试卷及解析(文科)(新课标ⅰ)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x <}B.A∩B=∅C.A∪B={x|x <}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1A .B .C .D .5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为()A .B .C .D .6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A .B .C .D .7.(5分)设x,y 满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()2A .B .C .D .9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入()3A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A .B .C .D .12.(5分)设A,B是椭圆C :+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年全国高考1卷数学文Word版解析
2017年普通高等学校招生全国统一考试1卷文科数学本试卷共5页,满分150分。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D. 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是【答案】A【解析】由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ.故A 不满足,选A. 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D.8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意选择321000n n->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017高考新课标1文数含答案解析
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年全国统一高考语文试卷(新课标ⅰ)(含解析版)
2017 年全国统一高考语文试卷(新课标Ⅰ)一、现代文阅读(35 分)1.(9 分)(一)论述类文本阅读。
阅读下面的文字,完成下列各题。
气候正义是环境主义在气候变化领域的具体发展和体现。
2000 年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题。
公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务。
就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
我们这一代既是受益人,有权使用并受益于地球,又是受托人,为下一代掌管地球。
我们作为地球的受托管理人,对子孙后代负有道德义务。
实际上,气候变化公约或协定把长期目标设定为保护气候系统免受人为原因引起的温室气体排放导致的干扰,其目的正是为了保护地球气候系统,这是符合后代利益的。
至少从我们当代人已有的科学认识来看,气候正义的本质是为了保护后代的利益,而非为其设定义务。
2017年高考数学全国卷1文(附参考答案及详解)
!槡#!##33#!#9!
%
%
槡 槡 2$#7)#%$ 2$)7))5%$
7'!
7'!
$#!$本小题满分!$分%设 "#$ 为曲线&&)'#2$ 上 两 点#" 与$ 的 横 坐 标 之 和 为 2! $!%求直线 "$ 的斜率* $$%设 + 为曲线& 上 一 点#& 在 + 处 的 切 线 与 直 线 "$ 平 行# 且 "+0$+#求直线 "$ 的方程!
槡 经 计
算
得
#'
! !&
!&
2
7'!
#7
' 9!94#8 '
!!&72!'&!$#7)#%$ '
槡 槡 !!&$72!'&!#7$)!&#$%3 #!$!$#
!&
2$7)3!"%$ 3 !3!2(9#
7'!
!&
2$#7)#4%$7)3!"%')$!43#其 中 #7 为 抽 取 的 第7 个 零 件 的
-!#!#$ #% 的 中 位 数
(!下 列 各 式 的 运 算 结 果 为 纯 虚 数 的 是 ! !
*!0!10$
+!0$!)0
,!!10$
-!0!10
2!如图正方形 "$&' 内的图形来自中国古代的太极图!正 方 形 内
切圆中的黑色部分和白色部分关于正方形的中心成中心对称!
!!
*
+
2017年全国卷1高考文科数学真题及答案解析(完整版)
2017年全国卷1高考文科数学真题及答案解析(完整版)
高考是人生的一大考试,成败与否,心态最为重要。
希望大家能保持一颗平常的心态,积极迎战!请大家谨记,为理想奋斗的宝贵过程其意义远远大于未知的结果。
高考频道会及时为广大考生提供[2017年全国卷1高考文科数学真题及答案解析(完整版)],更多高考分数线、高考成绩查询、高考志愿填报、高考录取查询信息等信息请关注我们网站的更新!
2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)。
【高考数学】2017年全国卷(Ⅰ)(文)Word版含解析
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的―准考证号、姓名、考试科目‖与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D. 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是【答案】A【解析】由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB∥NQ ,则直线AB ∥平面MNQ.故A 不满足,选A. 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D.8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意选择321000n n->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)
的最高点、最 点, 析函数的最值、极值,利用特值检验,较难的需要研究 的走向 势, 析函数的单调性、周期性等.
9.已知函数 f (x ) = lnx + ln(2 − x ) ,则 A. f (x ) 在 0,2 单调递增 C.y= f (x ) 的 答案 C 关于直线 x=1 B. f ( x ) 在 0,2 单调递 关于点 1,0
2. 评估一种农作物的种植效果,选了 n 块地作试验 xn, 面给出的指标中可以用来评估 种农作物亩产
稳定程度的是
A.x1,x2,…,xn 的 均数 C.x1,x2,…,xn 的最大值 答案 B 解析
B.x1,x2,…,xn 的标准差 D.x1,x2,…,xn 的中 数
试题 析 评估 种农作物亩产 稳定程度的指标是标准差或方差,故选 B. 考点 样本特征数 师点睛 众数 一组数据出 次数最多的数叫众数,众数 映一组数据的多数水 中 数 一组数据中间的数 均数 方差 小 起到 水岭的作用 ,中 数 映一组数据的中间水
映一组数据的 均水 映一组数据偏离 均数的程度,用来衡 一批数据的波 大小 即 批数据偏离 均数的大
.在样本容 相 的情况 ,方差 大,说明数据的波
大,
稳定.
标准差是方差的算术 方根,意 在于 映一组数据的离散程度. 3. 列各式的运算结果 纯虚数的是
A.i(1+i)2 答案 C 解析 试题 析
B.i2(1−i)
于 D,易知 AB∥NQ,则直线 AB∥ 面 MNQ.故排除 B,C,D,选 A.
考点 空间 置关系判断
师点睛 法
本题 要考查线面 行的判定定理以及空间想象能力,属容易题.证明线面 行的常用方
利用线面 行的判定定理, 使用 个定理的关键是设法在 面内找到一条 已知直线 行的直线, 行四边形、 找比例式证明两
2017年高考真题答案及解析:文科数学(全国Ⅰ卷)
2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。
A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A 【难度】简单2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。
A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单3.下列各式的运算结果为纯虚数的是( )。
A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是( )。
A .14B .π8C .12D .π 4【答案】B 【难度】一般5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为( )。
2017年全国高考1卷数学文Word版解析
2017年全国高考1卷数学文Word版解析2017年普通高等学校招生全国统一考试1卷文科数学本试卷共5页,满分150分。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R【答案】A 【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A.2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B3.下列各式的运算结果为纯虚数的是A.i(1+i)2B.i2(1-i) C.(1+i)2D.i(1+i)【答案】C【解析】由2(1)2i i+=为纯虚数知选C.4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B5.已知F是双曲线C:x2-23y=1的右焦点,P是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.3【答案】D【解析】如图,目标函数z x y=+经过(3,0)A时最大,故max303z=+=,故选D.8..函数sin21cosxyx=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【答案】C10.如图是为了求出满足321000nn ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2 【答案】D【解析】由题意选择321000nn ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考全国文数(新课标Ⅰ)答案
2017年全国普通高校招生统一考试·乙卷(新课标Ⅰ)1.A 【解析】∵3{|}2B x x =<,∴3{|}2AB x x =<, 选A .2.B 【解析】由统计知识可知,评估这种农作物亩产量稳定程度的指标是标准差,选B . 3.C 【解析】由2(1)2i i +=为纯虚数知选C .4.B 【解析】设正方形的边长为2a ,由题意可知,太极图的黑色部分的面积是圆的面积的一半,由几何概率的计算公式,所求概率为221248a a ππ=,选B . 5.D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=, 得(2,3)P ±,所以||3PF =,又A 的坐标是(1,3),所以点A 到PF 的距离为1, 故APF ∆的面积为133(21)22⨯⨯-=,选D . 6.A 【解析】由正方体的线线关系,易知B 、C 、D 中AB MQ ∥,所以AB ∥平面MNQ ,只有A 不满足.选A . 7.D 【解析】可行域如图阴影部分,由图可知,目标函数z x y =+过(3,0)点z 取最大值3.选D . 8.C 【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin 20>,cos 20<,故0y >,排除A .故选C .9.C 【解析】解法一 由题易知,()ln ln(2)f x x x =+-的定义域为(0,2),2()ln[(2)]ln[(1)1]f x x x x =-=--+,由复合函数的单调性知,函数()ln ln(2)f x x x =+-在(0,1)单调递增,在(1,2)单调递减,所以排除A ,B ;又1113()lnln(2)ln 2224f =+-=,3333()ln ln(2)ln 2224f =+-=, 所以133()()ln 224f f ==,所以排除D ,故选C .解法二 由题易知,()ln ln(2)f x x x =+-的定义域为(0,2),2(1)()(2)x f x x x -'=-,由()002f x x '>⎧⎨<<⎩,得01x <<;由()002f x x '<⎧⎨<<⎩,得12x <<,所以函数()ln ln(2)f x x x =+-在(0,1)单调递增,在(1,2)单调递减,所以排除A ,B ;又1113()ln ln(2)ln 2224f =+-=,3333()ln ln(2)ln 2224f =+-=,所以133()()ln 224f f ==,所以排除D ,故选C . 10.D 【解析】程序框图中32nnA =-,故判断框中应填入1000A ≤,由于初始值0n =,要求满足321000nnA =->的最小偶数,所以矩形框内填入2n n =+,故选D. 11.B 【解析】由sin sin (sin cos )B AC C +-0=,得sin()sin (sin cos )0A C A C C ++-=,即sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,所以sin (sin cos )0C A A +=,因为C 为三角形的内角,所以sin 0C ≠, 故sin cos 0A A +=,即tan 1A =-,所以34A π=. 由正弦定理sin sin a c A C =得,1sin 2C =,由C 为锐角,所以6C π=,选B . 12.A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=≥,得01m <≤; 当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞,选A . 13.7【解析】∵(1,3)m +=-a b ,∴()=0+⋅a b a所以(1)230m --+⨯=,解得7m =.14.1y x =+【解析】∵212y x x '=-,又11y x '==,所以切线方程为21(1)y x -=⨯-,即1y x =+.15【解析】由tan 2α=得sin 2cos αα= 又22sin cos 1αα+=,所以21cos 5α=因为(0,)2πα∈,所以cos αα==因为cos()cos cossin sin444πππααα-=+==16.36π【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥. 因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC . 设OA r =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=.17.【解析】(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ , 解得2q =-,12a =-.故{}n a 的通项公式为(2)n n a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.18.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .PACD E(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得AD =,2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,AD BC ==,PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+19.【解析】(1)由样本数据得(,)(1,2,,16)ix i i =的相关系数为16()(8.5)0.18ix x ir--==≈-∑.由于||0.25r<,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于9.97,0.212x s=≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s-+以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134iix==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈.20.【解析】(1)设11(,)A x y,22(,)B x y,则12x x≠,2114xy=,2224xy=,x1+x2=4,于是直线AB的斜率12121214y y x xkx x-+===-.(2)由24xy=,得2xy'=.设33(,)M x y,由题设知312x=,解得32x=,于是(2,1)M.设直线AB的方程为y x m=+,故线段AB的中点为(2,2)N m+,|||1|MN m=+.将y x m=+代入24xy=得2440x x m--=.当16(1)0m∆=+>,即1m>-时,1,22x=±从而12||AB x x-=.由题设知||2||AB MN =,即2(1)m +,解得7m =. 所以直线AB 的方程为7y x =+.21.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①若0a =,则2()x f x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>, 所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2ax =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>, 故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增. (2)①若0a =,则2()x f x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a af a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.22.【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a -≥时,d=8a =; 当4a <-时,d=16a =-. 综上,8a =或16a =-.23.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤; 当1x >时,①式化为240x x +-≤,从而1x < 所以()()f x g x ≥的解集为{|1x x -<. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.。
2017年全国高考1卷数学文Word版解析
2017年普通高等学校招生全国统一考试1卷文科数学本试卷共5页,满分150分。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A 。
2.为评估一种农作物的种植效果,选了n 块地作试验田。
这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i (1+i )2 B .i 2(1-i ) C .(1+i)2 D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3)。
则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D 。
2017年高考真题全国Ⅰ卷(文)(解析版)
2017年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为( )A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .38.函数sin21cos xy x=-的部分图像大致为( )9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年-新课标Ⅰ文数高考真题文档版(含答案)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF 的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x=+-,则A.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考新课标全国1卷文科数学试题和答案解析
2017年高考新课标全国1卷文科数学试题和答案解析2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:1.已知集合A={x|x0},则 B={x|x<3/2}。
2.为评估一种农作物的种植效果,选了n块地作试验田。
这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是B。
x1,x2,…,xn的标准差。
3.下列各式的运算结果为纯虚数的是 A。
i(1+i)2.4.如图,正方形ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是 D。
4/y^2.5.已知F是双曲线C:x^2/3-y^2/2=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3)。
则△APF的面积为 C。
3/3.6.已知函数f(x)=2x^3-3x^2-12x+5,g(x)=x^2+3x+1,则f(g(x))=2x^6+3x^5-25x^4-51x^3-33x^2+19x+7.7.设x,y满足约束条件{x+3y≤3.y≥0},则z=x+y的最大值为 1.8.函数y=ln(x+1)的图像经过点(0,0),且在点(0,0)处的切线方程为y=x,则x=e-1.BP=3,DP=4,PC=6,AP=8,求四棱锥P-ABCD的体积。
19.(12分)已知函数f(x)=x3-3x2+3x-1,g(x)=f(x-1),h(x)=f(x+1),求函数g(x)和h(x)的零点个数,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2
2.为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位:kg)分别为 x1,x2,…,
xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A.x1,x2,…,xn 的平均数
B.x1,x2,…,xn 的标准差
C.x1,x2,…,xn 的最大值
D.x1,x2,…,xn 的中位数
120 ,则
a b
tan
60
3,
即 3 3 ,得 0 m 1 ;当 m 3 时,焦点在 y 轴上,要使 C 上存在点 M 满足 AMB 120 ,则 m
分别填入
和 两个空白框中,可以
4
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.A>1000 和 n=n+1
B.A>1000 和 n=n+2
C.A≤1000 和 n=n+1
D.A≤1000 和 n=n+2
【答案】D
【解析】由题意,因为 3n 2n 1000 ,且框图中在“否”时输出,所以判定框内不能输入 A 1000 ,故填 A 1000 ,又要求 n 为偶数且初始值为 0,所以矩形框内填 n n 2 ,故选 D.
9.已知函数 f (x) lnx ln(2 x) ,则
A. f (x) 在(0,2)单调递增
B. f (x) 在(0,2)单调递减
C.y= f (x) 的图像关于直线 x=1 对称
D.y= f (x) 的图像关于点(1,0)对称
【答案】C
10.下面程序框图是为了求出满足 3n 2n 1000 的最小偶数 n,那么在
要求的.
1.已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.A
B=
x|x
3 2
C.A
B
x|x
3 2
B.A B D.A B=R
【答案】A
【解析】由 3 2x 0 得 x 3 ,所以 A B {x | x 2}{x | x 3} {x | x 3} ,选 A.
的部分图像造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.
B.
C.
D.
【答案】C
【解析】由题意知,函数
y
sin 2x 1 cos x
为奇函数,故排除
B;当
x
π
时,
y
0
,故排除
D;当
x
1
时,
y
sin 2 1 cos
2
0
,故排除
A.故选
C.
x 3y 3,
7.设 x,y 满足约束条件
x
y
1,
则 z=x+y 的最大值为
y 0,
A.0
B.1
C.2
D.3
【答案】D
【解析】如图,作出不等式组表示的可行域,则目标函数 z x y 经过 A(3, 0) 时 z 取得最大值,故
zmax 3 0 3 ,故选 D.
8.函数
y
sin2x 1 cosx
是
5
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A. (0,1][9, ) C. (0,1][4, )
B. (0, 3] [9, ) D. (0, 3] [4, )
【答案】A
【解析】当 0
m
3 时,焦点在
x
轴上,要使
C
上存在点
M
满足 AMB
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目
2
2
6.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方
体中,直线 AB 与平面 MNQ 不平行的是
2
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.
B.
C.
D.
【答案】A 【解析】对于 B,易知 AB∥MQ,则直线 AB∥平面 MNQ;对于 C,易知 AB∥MQ,则直线 AB∥平面 MNQ; 对于 D,易知 AB∥NQ,则直线 AB∥平面 MNQ.故排除 B,C,D,选 A.
3),则△APF 的面积为 A. 1 3
【答案】D
B. 1 2
C. 2 3
D. 3 2
【解析】由 c2 a2 b2 4 得 c 2 ,所以 F (2, 0) ,将 x 2 代入 x2 y2 1,得 y 3 ,所以 | PF | 3 , 3
又点 A 的坐标是(1,3),故△APF 的面积为 1 3 (2 1) 3 ,选 D.
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
绝密★启用前
2017 年普通高等学校招生全国统一考试
文科数学
本试卷共 5 页,满分 150 分。 考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形 码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方 形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A. 1 4
【答案】B
B. π 8
C. 1 2
D. π 4
5.已知 F 是双曲线 C: x2 y 2 1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,学/网点 A 的坐标是(1, 3
11.△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 sin B sin A(sin C cos C) 0 ,a=2,c= 2 ,
则 C=
π
A.
12
【答案】B
π
B.
6
π
C.
4
π
D.
3
12.设 A,B 是椭圆 C: x2 y2 1长轴的两个端点,若 C 上存在点 M 满足∠AMB=120°,则 m 的取值范围 3m
【答案】B
【解析】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选 B.
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2
B.i2(1−i)
C.(1+i)2
D.i(1+i)
【答案】C
1
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
【解析】由 (1 i)2 2i 为纯虚数知选 C.