A novel synthesis approach for active leakage power reduction using dynamic supply gating

合集下载

大环内酯类抗生素的发展和研究近况

大环内酯类抗生素的发展和研究近况

大环内酯类抗生素的发展和研究近况1 发展史第一代大环内酯类抗生素于20世纪50-70年代相继问世,包括红霉素(1952 年)、竹桃霉素(oleandomycin, 1960年)、泰乐霉素(tylosin, 1961年)、马立霉素(maridomycin, 1971 年)和罗沙米星(玫瑰霉素,rosaramicin, 1972 年)等。

红霉素是第一个14 元环大环内酯类抗生素,1952 年由礼莱公司开发上市。

红霉素对革兰阳性菌有较强的抗菌活性,治疗肺炎球菌等所致呼吸道感染以及军团菌肺炎、支原体肺炎等有较好的疗效。

但红霉素对胃酸不稳定,胃肠道不良反应较明显[1]。

20 年后,16 元环大环内酯类抗生素罗沙米星和马立霉素相继上市,它们对革兰阳性菌的抗菌活性与14元环大环内酯类抗生素相似,但抗流感嗜血杆菌和卡他莫拉菌等革兰阴性菌的活性更强,还可用于治疗由奈瑟菌、衣原体或溶脲脲原体引起的性传播疾病。

国内在同期引进或仿制了麦地霉素、螺旋霉素、乙酰螺旋霉素和交沙霉素等大环内酯类抗生素。

这些抗生素的抗菌活性虽均不如红霉素,但肝毒性和消化道不良反应较轻微,临床上主要用于口服治疗敏感菌所致呼吸道、五官和口腔等轻症感染。

[1] 董毅. 大环内酯类抗生素的研究进展[J].国外医药合成药生化药制剂分册,2001,22(3): 134-136.[2] 孙路路. 第二代大环内酯类抗生素的临床应用评价[J].中国医院用药评价与分析,2004,4(2): 79-83.第二代大环内酯类抗生素主要于20世纪80年代上市,主要有克拉霉素(1986 年)、阿奇霉素(1986 年)、罗红霉素(1986 年)、罗他霉素(1988 年)和地红霉素(1988 年)。

与红霉素相比,第二代大环内酯类抗生素不仅对酸稳定,而且抗菌谱扩大、抗菌活性增强,对支原体、衣原体和军团菌等胞内病原体作用强,同时口服吸收好、体内分布广、组织浓度高、半衰期长、不良反应少,临床应用十分广泛[2]。

中国科学英文版模板

中国科学英文版模板

中国科学英文版模板1.Identification of Wiener systems with nonlinearity being piece wise-linear function HUANG YiQing,CHEN HanFu,FANG HaiTao2.A novel algorithm for explicit optimal multi-degree reduction of triangular surfaces HU QianQian,WANG GuoJin3.New approach to the automatic segmentation of coronary arte ry in X-ray angiograms ZHOU ShouJun,YANG Jun,CHEN WuFan,WANG YongTian4.Novel Ω-protocols for NP DENG Yi,LIN DongDai5.Non-coherent space-time code based on full diversity space-ti me block coding GUO YongLiang,ZHU ShiHua6.Recursive algorithm and accurate computation of dyadic Green 's functions for stratified uniaxial anisotropic media WEI BaoJun,ZH ANG GengJi,LIU QingHuo7.A blind separation method of overlapped multi-components b ased on time varying AR model CAI QuanWei,WEI Ping,XIAO Xian Ci8.Joint multiple parameters estimation for coherent chirp signals using vector sensor array WEN Zhong,LI LiPing,CHEN TianQi,ZH ANG XiXiang9.Vision implants: An electrical device will bring light to the blind NIU JinHai,LIU YiFei,REN QiuShi,ZHOU Yang,ZHOU Ye,NIU S huaibining search space partition and search Space partition and ab straction for LTL model checking PU Fei,ZHANG WenHui2.Dynamic replication of Web contents Amjad Mahmood3.On global controllability of affine nonlinear systems with a tria ngular-like structure SUN YiMin,MEI ShengWei,LU Qiang4.A fuzzy model of predicting RNA secondary structure SONG D anDan,DENG ZhiDong5.Randomization of classical inference patterns and its applicatio n WANG GuoJun,HUI XiaoJing6.Pulse shaping method to compensate for antenna distortion in ultra-wideband communications WU XuanLi,SHA XueJun,ZHANG NaiTong7.Study on modulation techniques free of orthogonality restricti on CAO QiSheng,LIANG DeQun8.Joint-state differential detection algorithm and its application in UWB wireless communication systems ZHANG Peng,BI GuangGuo,CAO XiuYing9.Accurate and robust estimation of phase error and its uncertai nty of 50 GHz bandwidth sampling circuit ZHANG Zhe,LIN MaoLiu,XU QingHua,TAN JiuBin10.Solving SAT problem by heuristic polarity decision-making al gorithm JING MingE,ZHOU Dian,TANG PuShan,ZHOU XiaoFang,ZHANG Hua1.A novel formal approach to program slicing ZHANG YingZhou2.On Hamiltonian realization of time-varying nonlinear systems WANG YuZhen,Ge S. S.,CHENG DaiZhan3.Primary exploration of nonlinear information fusion control the ory WANG ZhiSheng,WANG DaoBo,ZHEN ZiYang4.Center-configur ation selection technique for the reconfigurable modular robot LIU J inGuo,WANG YueChao,LI Bin,MA ShuGen,TAN DaLong5.Stabilization of switched linear systems with bounded disturba nces and unobservable switchings LIU Feng6.Solution to the Generalized Champagne Problem on simultane ous stabilization of linear systems GUAN Qiang,WANG Long,XIA B iCan,YANG Lu,YU WenSheng,ZENG ZhenBing7.Supporting service differentiation with enhancements of the IE EE 802.11 MAC protocol: Models and analysis LI Bo,LI JianDong,R oberto Battiti8.Differential space-time block-diagonal codes LUO ZhenDong,L IU YuanAn,GAO JinChun9.Cross-layer optimization in ultra wideband networks WU Qi,BI JingPing,GUO ZiHua,XIONG YongQiang,ZHANG Qian,LI ZhongC heng10.Searching-and-averaging method of underdetermined blind s peech signal separation in time domain XIAO Ming,XIE ShengLi,F U YuLi11.New theoretical framework for OFDM/CDMA systems with pe ak-limited nonlinearities WANG Jian,ZHANG Lin,SHAN XiuMing,R EN Yong1.Fractional Fourier domain analysis of decimation and interpolat ion MENG XiangYi,TAO Ran,WANG Yue2.A reduced state SISO iterative decoding algorithm for serially concatenated continuous phase modulation SUN JinHua,LI JianDong,JIN LiJun3.On the linear span of the p-ary cascaded GMW sequences TA NG XiaoHu4.De-interlacing technique based on total variation with spatial-t emporal smoothness constraint YIN XueMin,YUAN JianHua,LU Xia oPeng,ZOU MouYan5.Constrained total least squares algorithm for passive location based on bearing-only measurements WANG Ding,ZHANG Li,WU Ying6.Phase noise analysis of oscillators with Sylvester representation for periodic time-varying modulus matrix by regular perturbations FAN JianXing,YANG HuaZhong,WANG Hui,YAN XiaoLang,HOU ChaoHuan7.New optimal algorithm of data association for multi-passive-se nsor location system ZHOU Li,HE You,ZHANG WeiHua8.Application research on the chaos synchronization self-mainten ance characteristic to secret communication WU DanHui,ZHAO Che nFei,ZHANG YuJie9.The changes on synchronizing ability of coupled networks fro m ring networks to chain networks HAN XiuPing,LU JunAn10.A new approach to consensus problems in discrete-time mult iagent systems with time-delays WANG Long,XIAO Feng11.Unified stabilizing controller synthesis approach for discrete-ti me intelligent systems with time delays by dynamic output feedbac k LIU MeiQin1.Survey of information security SHEN ChangXiang,ZHANG Hua ngGuo,FENG DengGuo,CAO ZhenFu,HUANG JiWu2.Analysis of affinely equivalent Boolean functions MENG QingSh u,ZHANG HuanGuo,YANG Min,WANG ZhangYi3.Boolean functions of an odd number of variables with maximu m algebraic immunity LI Na,QI WenFeng4.Pirate decoder for the broadcast encryption schemes from Cry pto 2005 WENG Jian,LIU ShengLi,CHEN KeFei5.Symmetric-key cryptosystem with DNA technology LU MingXin,LAI XueJia,XIAO GuoZhen,QIN Lei6.A chaos-based image encryption algorithm using alternate stru cture ZHANG YiWei,WANG YuMin,SHEN XuBang7.Impossible differential cryptanalysis of advanced encryption sta ndard CHEN Jie,HU YuPu,ZHANG YueYu8.Classification and counting on multi-continued fractions and its application to multi-sequences DAI ZongDuo,FENG XiuTao9.A trinomial type of σ-LFSR oriented toward software implemen tation ZENG Guang,HE KaiCheng,HAN WenBao10.Identity-based signature scheme based on quadratic residues CHAI ZhenChuan,CAO ZhenFu,DONG XiaoLei11.Modular approach to the design and analysis of password-ba sed security protocols FENG DengGuo,CHEN WeiDong12.Design of secure operating systems with high security levels QING SiHan,SHEN ChangXiang13.A formal model for access control with supporting spatial co ntext ZHANG Hong,HE YePing,SHI ZhiGuo14.Universally composable anonymous Hash certification model ZHANG Fan,MA JianFeng,SangJae MOON15.Trusted dynamic level scheduling based on Bayes trust model WANG Wei,ZENG GuoSun16.Log-scaling magnitude modulated watermarking scheme LING HeFei,YUAN WuGang,ZOU FuHao,LU ZhengDing17.A digital authentication watermarking scheme for JPEG image s with superior localization and security YU Miao,HE HongJie,ZHA NG JiaShu18.Blind reconnaissance of the pseudo-random sequence in DS/ SS signal with negative SNR HUANG XianGao,HUANG Wei,WANG Chao,L(U) ZeJun,HU YanHua1.Analysis of security protocols based on challenge-response LU O JunZhou,YANG Ming2.Notes on automata theory based on quantum logic QIU Dao Wen3.Optimality analysis of one-step OOSM filtering algorithms in t arget tracking ZHOU WenHui,LI Lin,CHEN GuoHai,YU AnXi4.A general approach to attribute reduction in rough set theory ZHANG WenXiuiu,QIU GuoFang,WU WeiZhi5.Multiscale stochastic hierarchical image segmentation by spectr al clustering LI XiaoBin,TIAN Zheng6.Energy-based adaptive orthogonal FRIT and its application in i mage denoising LIU YunXia,PENG YuHua,QU HuaiJing,YiN Yong7.Remote sensing image fusion based on Bayesian linear estimat ion GE ZhiRong,WANG Bin,ZHANG LiMing8.Fiber soliton-form 3R regenerator and its performance analysis ZHU Bo,YANG XiangLin9.Study on relationships of electromagnetic band structures and left/right handed structures GAO Chu,CHEN ZhiNing,WANG YunY i,YANG Ning10.Study on joint Bayesian model selection and parameter estim ation method of GTD model SHI ZhiGuang,ZHOU JianXiong,ZHAO HongZhong,FU Qiang。

双原子催化剂的通用合成方法

双原子催化剂的通用合成方法

双原子催化剂的通用合成方法Finding a universal synthesis method for bimetallic catalysts has been a challenging task in the field of catalysis. Scientists worldwide have been working tirelessly to develop new approaches that can efficiently fabricate these catalysts with enhanced performance.在催化领域,寻找一种通用的双原子催化剂合成方法一直是一项具有挑战性的任务。

全世界的科学家们一直在努力工作,以开发能够高效制备这些具有增强性能的催化剂的新方法。

One promising approach is the use of template-assisted synthesis, where the structure of the catalyst is controlled by a template that directs the formation of the bimetallic active sites. This method has shown great potential in producing well-defined bimetallic catalysts with tailored properties.一种有前途的方法是利用模板辅助合成,通过模板控制催化剂的结构,从而指导双金属活性位点的形成。

这种方法在生产具有定制特性的明确定义的双原子催化剂方面表现出巨大潜力。

Another approach involves the utilization of self-assembly techniques, where the bimetallic catalyst is formed through the spontaneous organization of metal atoms into a specific structure. This method has been successful in creating highly active and stable catalysts that exhibit superior catalytic performance.另一种方法涉及利用自组装技术,通过金属原子的自发组织形成特定结构的双原子催化剂。

研究生科研创新项目英文

研究生科研创新项目英文

研究生科研创新项目英文Title: A Novel Approach for Improving Drug Delivery Systems Abstract:The purpose of this research project is to develop a novel approach for improving drug delivery systems. Current drug delivery systems often rely on conventional methods that have limited efficiency and accuracy. Therefore, there is a need for an innovative approach that can ensure efficient and targeted delivery of drugs to specific cells or tissues.This project will explore the use of nanotechnology in drug delivery systems. Nanoparticles can provide unique advantages such as enhanced drug solubility, controlled release, and targeted delivery. By encapsulating drugs into nanoparticles, it is possible to protect them from degradation and increase their bioavailability. Moreover, the surface modifications of nanoparticles can enable specific binding to target cells or tissues, improving selectivity and reducing off-target effects.The research will involve the synthesis and characterization of different types of nanoparticles using various materials. These nanoparticles will be loaded with different drugs and tested for their efficiency in drug release and targeted delivery. The project will also investigate the influence of various factors, such as particle size, surface charge, and surface functionalization, on the performance of drug-loaded nanoparticles.Furthermore, this project will address potential challenges and limitations associated with the use of nanoparticles in drugdelivery systems. Issues like toxicity, stability, and scalability will be considered and appropriate strategies will be developed to overcome them.Ultimately, this research aims to contribute to the development of more effective drug delivery systems that can improve patient outcomes and reduce side effects. The results of this study may have significant implications for the pharmaceutical industry and pave the way for the design of targeted therapies for various diseases.Keywords: drug delivery systems, nanotechnology, nanoparticles, targeted delivery, controlled release, bioavailability, surface modifications, toxicity, stability.Note: This is a generic template for a graduate research and innovation project. Please adapt and modify the content based on your specific research area and objectives.。

基于AMEsim的冷轧运卷小车液压系统设计

基于AMEsim的冷轧运卷小车液压系统设计

撑最外层钢卷,一个用于测量钢卷内径。
2.1 设计计算
(1)负载计算
钢卷小车是将大约 30吨的钢卷运输到指定
地点完成上卷和卸卷过程,本次主要设计小车的
升降系统,其中是升降系统又有三个回路,现假设
主回路液压缸所承受外载荷为 300kN。对于内劲
测量回路它的负载为 30kN,对于起外支撑作用的
回路来说它的负载为 60kN。
任意位置停止。为了本文针对冷轧运卷小车的升 降液压系统进行优化设计研究,优化设计了多级 调速系统替代常见的比例伺服系统,在确保根据 工况及安全要求的基础上大大节约了制造成本。 2 优化设计
钢卷小车需要完成上升上卷和下降卸卷两个 动作并且要求小车在运动过程中平稳运行。其中 上卷和卸 卷 两 个 动 作 又 分 为 低 速 和 高 速 两 个 工 况,其中低速为 30mm/s,高速为 120mm/s。它通 过节流调速回路的控制完成相应动作。通过控制
① 作者简介:杨小娇,女,1991年生,硕士,工程师,邮箱:857218435@qq.com
— 27—
总第 289期 冶 金 设 备
2024年 2月第 1期
换向阀的得电以失电以及相关阀的控制作用达到
控制液压缸完成相应动作使小车完成工作要求。
并且钢卷小车还有两个辅助液压系统一个用于支
KEYWORDS Coldrolling;Coilcarriage;Hydrauliccomponents;AMEsim simulation
1 前言 在现代冶金设备中钢卷小车是冷轧生产线重
要辅助设备,其作用是将钢卷通过固定轨道从开 卷卷取机运输到下一步的工序设备。钢卷小车主 要分为平移装置和升降装置,其中平移装置由主 要由电机驱动、升降装置由液压系统控制。其中 小车升降液压系统设计要求及其严格,不仅需要 满足钢卷举升力、升降速度、高度等工艺参数,而 且要求小车在承载近 30吨钢卷的情况下,要求升 降系统满足不同的上升下降速度且可以平稳地在

sci引用文献格式

sci引用文献格式

sci引用文献格式SCI引用文献格式是科学引用文献的一种标准格式,其主要特点是简洁明了、规范统一。

SCI引用文献格式适用于各类学术论文、科技报告、学位论文等各类科技文献的引用和参考。

SCI引用文献格式的基本要求如下:1. 文章题目:使用斜体字体,放在文章标题下方,与文章标题之间空一行。

2. 作者名字:使用缩写形式,姓名后面加上逗号。

3. 文章来源:包括期刊名称、卷号、期号和页码。

4. 发表年份:放在文章来源后面,以括号包围。

5. DOI编号:如果有DOI编号,则应该在发表年份后面加上“doi:”和DOI编号。

6. 参考文献列表:按作者姓氏字母顺序排列,并按字母顺序排列。

每个参考文献单元格之间应空一行。

7. 期刊名称缩写:期刊名称应使用标准缩写形式,并以斜体字体书写。

8. 页码格式:如果是连续页码,则使用“-”表示;如果不连续,则使用“,”分隔开来。

9. 出版地点和出版社信息:只有对于书籍等不同类型的文献才需要提供。

下面是一个SCI引用文献格式的示例:[1] Wang, J., Zhang, Y., Liu, X., et al. (2019). A novel approach for the preparation of graphene oxide–silver nanoparticle composites and their application in antibacterial coatings. Journal of Colloid and Interface Science, 537, 82-92.doi:10.1016/j.jcis.2018.11.067[2] Chen, S., Wu, W., Liang, Y., et al. (2018). Preparation and characterization of a novel magnetic chitosan/graphene oxide composite for the removal of hexavalent chromium from aqueous solutions. Journal of Hazardous Materials, 341, 424-433.[3] Liang, Y., Wu, W., Chen, S., et al. (2017). Synthesis and characterization of a novel magnetic chitosan/graphene oxide composite for the removal of heavy metal ions from aqueous solutions. Journal of Environmental Chemical Engineering, 5(2), 1720-1729.[4] Zhang, J., Huang, L., Lv, X., et al. (2016). A facile preparation method for graphene oxide–iron oxide nanocomposites with high performance in water treatment applications. Chemical Engineering Journal, 283(1), 1155-1164.[5] Wang, X., Sun, G., Wang Gaoqiang , et al.(2015). Preparation and characterization of graphene oxide–polyvinyl alcohol composite films with enhanced mechanical properties.Journal of Applied Polymer Science,132(7)。

石墨烯相关研究文献汇总

石墨烯相关研究文献汇总

石墨烯相关研究文献汇总1.取少量鳞片石墨溶于芘-1-磺酸钠盐(Py-1-SO3)溶液,然后对溶液进行超声分散、离心洗涤,然后取上层溶液,进行表征。

经AFM 测试可知石墨片大小在0.2~0.4um,厚度在1~4nm。

从拉曼光谱得知,提高超声的处理时间可以减小石墨片的大小,并能得到较高的D 峰。

具体实验:取1mg芘-1-磺酸钠盐溶于10ml 蒸馏水中,并向其中加入30mg 鳞片石墨,超声80min后,离心(1000rpm,20min)去除大块未剥离的石墨,然后对上层液再离心(12000rpm,20min)收集上层液,向离心管下层加蒸馏水超声后再次离心收集上层液,如此重复三次。

将四次收集的上层液再次离心,去除石墨微粒,即为石墨烯分散液。

本文献还采用芘的其他磺酸盐和NMP进行分散作为对比研究。

文献:A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon,53 (2013) 357 –365.2.将天然石墨溶于IPA(2-丙醇)或DMF(二甲基甲酰胺)有机溶剂中,然后对溶液进行超声分散、离心后取400ul上层液,进行表征。

具体实验:取适量天然石墨分散在2-丙醇或者DMF中(1mg/mL),然后对溶液进行长时间超声,离心取上层溶液(400ul),滴于多孔无定形碳上(400目)进行TEM测试,另取400ul滴于氧化硅基底或者玻璃基底上,进行SEM及拉曼测试。

本文对不同的超声时间、有机溶剂以及超声时水的温度做了系统的探究,得出以下结论:随着超声时间的增加,石墨的碎片化显著增加(通过拉曼光谱ID /IG=C(λ)/La,La石墨碎片的平均尺寸);石墨分散在一些与其表面自由能相近的溶剂中,其混合后的晗变接近于零,这样剥离石墨烯所需的能量较小(这样溶剂-石墨的相互作用是范德华力而不是共价键)。

如何培养科研能力

如何培养科研能力

2017-01-12本科生往往只是在老师的指导下做些科研方面的工作,对于学术研究务必遵循的学术规范并不是很了解,也缺乏独立完成一项科研的能力,那么需要什么样的科研能力才可以做好科研呢?科研能力又怎么提高呢?不同的学科、专业的博士生,科研能力的培养要求有所不同。

但总的来说科研能力至少应包括以下几个方面:01.坚实的基础,宽广的知识面随着科学技术的迅猛发展,各学科之间的交叉日益增多,出现了许多新兴的交叉学科。

以纳米科技的研究为例,该研究领域既属于化学学科又属于物理学科,因此,需要物理和化学学科的科研工作者共同合作携手从事这一领域的前沿研究。

例如,用一种新颖的化学还原法,我制备出了Cu2O纳米线。

最近,我利用化学和物理相结合的方法,提出了一种合成Mn3O4,SnO2和NiO纳米线的新方法。

02.掌握学科前沿的最新动态当你要从事某一领域的研究的时候,你必须了解国际国内的同行研究者们在这一学科研究领域的最新研究动态以及该领域的前沿研究内容和成果,以判定你即将从事的研究内在的学术地位和价值。

你可以从网上,期刊(尤其是最新的外文期刊),国际国内学术会议中获取这方面的信息。

03.科研创新性搞科研不能总是重复别人的实验,这样做你就只能一直跟在别人的后面,永远做不出有创新性的工作。

任何一项新科研成果的取得都是叠加在前人工作的基础上的。

但重复不是目的,重复只是一种手段,通过重复,你要提出自己的观点,设计出你自己的实验方案。

例如,通过大量的调研,我设计出一种简单而新颖的合成纳米棒的方法,即一步固体化学法。

利用该方法我制备出CuO纳米棒,这一实验结果被英国国际著名杂志Chemical Commun接收了。

引起法国Covalent Materials Inc研究中心(Senior Scientist)Jean-Christophe P.Gabriel博士,和一些英国、印度、香港等地的学者的来信或E-mail与我研讨。

我用一种新颖的化学还原法合成出Cu2O纳米线,该实验结果发表在Advanced Materials杂志上;又比如,我将物理方法和化学方法相结合起来,发展了一种合成纳米线的新方法,利用该方法,我合成出多种氧化物纳米线和纳米棒,其中《Mn3O4纳米线的制备》一文发表在《Advanced Materials》上,审稿人是这样高度评价它的:“This paper reports a novel approach for the synthesis of Mn3O4 nanowires.The technique is simple and the results are nice.The content of the paper is new and the results are exciting.I believe the result is of great interest to a wide spectrum of people".04.与导师的合作和沟通一方面,导师能洞察你从事研究领域的最前沿研究课题,把握住你的研究方向;另一方面,经常与导师沟通,将你的想法告诉导师,只要在导师研究方向的大范围内,让导师给你一个宽松的学习和科研环境,不要让导师把你的研究课题限制得太死,这样你可以充分发挥你的潜力,有利于你提出新的观点和方法,做出创新性的工作。

journalofenergystorage参考文献格式

journalofenergystorage参考文献格式

Journal of Energy Storage 参考文献格式在撰写与能源储存相关的论文时,Journal of Energy Storage (JES) 是一个重要的参考文献。

本文将介绍 JES 参考文献的格式要求。

下面是本店铺为大家精心编写的2篇《Journal of Energy Storage 参考文献格式》,供大家借鉴与参考,希望对大家有所帮助。

《Journal of Energy Storage 参考文献格式》篇11. 标题JES 参考文献的标题应该简洁明了,准确地反映文章的主题。

标题应使用全名,如“A Study on XYZ for Energy Storage Applications”。

2. 作者在引用 JES 文章时,请确保列出所有作者的姓名。

如果有多个作者,请使用逗号分隔。

例如:“ABC, DEF, GHI”。

3. 发表时间在参考文献中,应包括 JES 文章的发表时间。

这有助于读者了解文献的时效性和可靠性。

格式如下:“Year, Month”。

4. 期刊名称在参考文献中,应准确列出 JES 期刊的名称。

完整的期刊名称为“Journal of Energy Storage”。

5. 卷、期、页码在参考文献中,应包括 JES 文章的卷、期和页码信息。

格式如下:“Volume, Issue, Page Range”。

6. DOIJES 文章的 DOI(数字对象标识符)是唯一标识文章的编码。

在参考文献中,应包括文章的 DOI。

以下是一个 JES 参考文献的示例:示例:“A Study on Lithium-Ion Batteries for Energy Storage Applications”, by XYZ, Journal of Energy Storage, 2020, 1, 23-35. DOI: 10.1016/j.jes.2020.09.007.请注意,参考文献格式可能会根据具体的期刊要求而有所不同。

neural radiance fields 原文

neural radiance fields 原文

neural radiance fields 原文Neural Radiance Fields (NeRF) is a recent method in computer vision that aims to reconstruct the 3D structure and appearance of a scene from 2D images. It was introduced in a paper titled "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis" by Ben Mildenhall et al.In traditional methods, 3D scene reconstruction involves estimating the depth and surface normals from multiple images and then integrating them into a 3D model. However, this approach often leads to inaccurate and noisy reconstructions due to errors in depth estimation.NeRF takes a different approach by representing the scene as a continuous 3D scene function, known as a "neural radiance field". This function takes a 3D coordinate as input and outputs the corresponding color and density at that point.To train the NeRF model, a set of images and camera poses are used to supervise the network. The network is trained to predict the color and density at each 3D point that projects to a pixel in the images. This allows the model to learn the appearance and geometry of the scene simultaneously.Once the NeRF model is trained, it can be used for novel view synthesis. Given a new camera pose, the model can generate a novel view of the scene by ray-marching through the neural radiance field and accumulating the color and opacity along the ray. NeRF has shown impressive results in generating photo-realisticnovel views of scenes, even in challenging lighting conditions and with complex geometry. It has also been extended to dynamic scenes and real-time applications.Overall, Neural Radiance Fields provide a promising approach for scene reconstruction and view synthesis, offering a new way to represent and manipulate 3D scenes using neural networks.。

研究生文献汇报

研究生文献汇报
Macromolecules, 2003, 36 (6), 1988–1993.
CSPs are structured composite particles consisting of at least two different components, one in principle forms the core and another forms the shell of the particles.
① consecutive emulsion
✓multi-step Disadvantage: expensive ,
seed partictilmesecaosnasucmorieng material second or third stage monomer is polymerized in the seed latex particles
Macromolecules, 2009 ,42 (13), 4511–4519 Part A: Polym. Chem. , 2001 ,39 (19), 3434– 3442
③Example Fig. 3 illustrates common
methods to prepare CSPs described by Li and Stover.
photodetectors ,
Use
d
Adv. Mater. , 2009 ,21 (5), 509–534.
J. Am. Chem. Soc. , 2010 , 132(35), 12218–
biomedical and sensor applications.
J. Mater. Chem. , 2012 ,22 (22), 113701–212123178.

微波辅助合成英语

微波辅助合成英语

微波辅助合成英语Microwave-Assisted SynthesisMicrowave-assisted synthesis, a revolutionary technique in the field of organic chemistry, has gained widespread recognition for its efficiency, versatility, and environmentally friendly nature. This powerful methodology has revolutionized the way chemists approach the synthesis of various organic compounds, offering significant advantages over traditional heating methods.At the core of microwave-assisted synthesis is the utilization of electromagnetic radiation in the microwave region of the electromagnetic spectrum. This radiation interacts directly with the reaction mixture, causing the molecules to vibrate and generate heat through molecular friction and dipole rotation. This targeted heating approach leads to a rapid and uniform rise in temperature, dramatically accelerating the reaction kinetics and often resulting in higher yields and increased selectivity compared to conventional heating methods.One of the primary benefits of microwave-assisted synthesis is the significant reduction in reaction times. Whereas traditional heatingmethods can take hours or even days to complete a reaction, microwave irradiation can often complete the same process in a matter of minutes or even seconds. This time-saving advantage is particularly valuable in the pharmaceutical and fine chemical industries, where rapid optimization and scale-up are crucial for efficient and cost-effective production.Another compelling aspect of microwave-assisted synthesis is its ability to promote the formation of novel and complex molecular structures. The intense and localized heating generated by microwaves can drive the formation of products that may be difficult to obtain through conventional heating methods. This unique property has been exploited in the synthesis of a wide range of organic compounds, including heterocyclic molecules, natural products, and pharmaceutically relevant compounds.Importantly, microwave-assisted synthesis also offers environmental benefits. By reducing reaction times and energy consumption, this technique contributes to a more sustainable and eco-friendly approach to chemical synthesis. Additionally, the precise control over reaction conditions and the ability to use smaller reaction volumes can lead to a significant reduction in waste production, further enhancing the green credentials of this method.The versatility of microwave-assisted synthesis is another keyadvantage. It can be applied to a diverse range of organic transformations, including esterifications, oxidations, reductions, cycloadditions, and cross-coupling reactions, among others. This versatility has led to its widespread adoption in both academic and industrial settings, where it has become an indispensable tool in the arsenal of modern organic chemists.Furthermore, the development of specialized microwave reactors and instrumentation has further expanded the capabilities of this technique. These advanced systems allow for the precise control of temperature, pressure, and irradiation power, enabling researchers to fine-tune reaction conditions and optimize the synthesis of target compounds.In the field of medicinal chemistry, microwave-assisted synthesis has played a crucial role in the rapid development and optimization of drug candidates. The ability to quickly screen and synthesize large numbers of compounds has accelerated the drug discovery process, leading to the identification of promising lead compounds and the efficient exploration of structure-activity relationships.Beyond organic synthesis, microwave-assisted techniques have also found applications in a variety of other scientific disciplines, such as materials science, analytical chemistry, and even biology. The versatility and efficiency of this approach have made it an invaluabletool for researchers working in diverse fields.In conclusion, microwave-assisted synthesis has emerged as a game-changing technique in the world of organic chemistry. Its ability to dramatically reduce reaction times, promote the formation of novel structures, and contribute to more sustainable and environmentally friendly practices has cemented its place as an indispensable tool in the modern chemical laboratory. As research and development in this field continue to progress, the impact of microwave-assisted synthesis is poised to grow even further, revolutionizing the way we approach the synthesis of complex organic compounds.。

原料药开发英文模板

原料药开发英文模板

原料药开发英文模板Captivating the pharmaceutical industry with a cutting-edge approach, the development of active pharmaceutical ingredients (APIs) is a cornerstone of modern medicine. This process involves meticulous research, stringent quality control, and a deep understanding of chemical synthesis. APIs are the heart of any drug, and their development is a complex journey from concept to commercialization.The quest for developing APIs begins with identifying the target molecule, which is the active component that will interact with biological targets to produce a therapeutic effect. This is followed by a comprehensive literature review to ensure that the molecule is novel and not infringing on existing patents. Once the target molecule is selected, the next step is to design a synthesis route that is bothefficient and scalable.The synthesis route is meticulously planned to minimize the number of steps and maximize the yield of the API. It involves selecting appropriate starting materials, reagents, and catalysts, as well as determining the optimal reaction conditions. Each step of the synthesis must be carefully monitored to ensure that the desired product is formed without the generation of unwanted by-products.After the synthesis is complete, the API must undergo rigorous purification processes to remove any impurities thatcould affect the safety and efficacy of the final drug product. This includes techniques such as crystallization, chromatography, and filtration. The purity of the API is then confirmed through analytical methods such as high-performance liquid chromatography (HPLC) and mass spectrometry.Quality control is paramount in API development. Each batch of API must meet strict specifications for identity, strength, quality, and purity. This is achieved through a combination of in-process testing and final product testing. In-process testing ensures that each step of the synthesis is proceeding as planned, while final product testing confirms that the API meets all required specifications.Safety assessment is another critical component of API development. This includes evaluating the API for potential toxic effects, genotoxicity, and carcinogenicity. The data from these studies is used to establish the safety profile of the API and to guide the design of clinical trials.Finally, the API must be formulated into a drug product that is suitable for administration to patients. This involves selecting the appropriate dosage form, such as tablets, capsules, or injectables, and developing a formulation that ensures the API is stable, bioavailable, and delivers the desired therapeutic effect.In conclusion, the development of APIs is a multifaceted process that requires expertise in chemistry, biology, and pharmaceutical science. It is a journey of discovery andinnovation, with the ultimate goal of improving the health and well-being of patients around the world.。

新型金(Ⅰ)络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用

新型金(Ⅰ)络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用

第23卷第1期2024年1月杭州师范大学学报(自然科学版)J o u r n a l o f H a n g z h o uN o r m a l U n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n )V o l .23N o .1J a n .2024收稿日期:2023-06-13 修回日期:2023-07-29基金项目:国家自然科学基金面上项目(22071039);浙江省教育厅科研基金项目(Y 202147386).通信作者:李志芳(1975 ),男,教授,博士,主要从事金属有机化学和有机硅化学及材料的研究.E -m a i l :z h i f a n gl e e @h z n u .e d u .c n D O I :10.19926/j.c n k i .i s s n .1674-232X.2023.06.131文献引用:朱宏志,徐剑,齐帆,等.新型金(I )络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用[J ].杭州师范大学学报(自然科学版),2024,23(1):1-5.Z H U H o n g z h i ,X UJ i a n ,Q I F a n ,e t a l .N o v e l g o l d (I )c o m p l e x :s y n t h e s i s a n d i t s a p p l i c a t i o no n c a t a l y t i c h yd r o a m i n a t i o n re a c t i o n of a l k y n e a n da n i l i n e [J ].J o u r n a l o fH a ng zh o uN o r m a lU ni v e r s i t y(N a t u r a l S c i e n c eE d i t i o n ),2024,23(1):1-5.新型金(I)络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用朱宏志1,徐 剑2,齐 帆2,李志芳2(1.河南平煤神马尼龙工程技术有限公司,河南平顶山467000;2.杭州师范大学材料与化学化工学院有机硅化学及材料技术教育部重点实验室,浙江杭州311121)摘 要:亚胺类化合物是十分重要的基础化工原料,通过开发高活性催化剂,催化苯炔与芳胺的氢胺化反应制备亚胺是一种有效的方法.论文利用二烷基烯锡与氯化金A u C l 键的插入反应,合成了一类新型烯锡配位的一价金络合物3.该一价金络合物表现出较强的 嗜碳性 ,可以活化碳碳不饱和碳,从而实现苯胺与苯炔的氢胺化反应,高产率合成了亚胺类化合物.关键词:一价金络合物;催化反应;氢胺化反应中图分类号:T Q 426.6 文献标志码:A 文章编号:1674-232X (2024)01-0001-05一价金催化苯乙炔和苯胺的氢胺化反应生成亚胺在有机合成和药物化学领域得到了广泛应用[1-3].在金催化的反应中,有一个重要的化学过程 金去质子化(pr o t o d e a u r a t i o n ) ,可以理解为形成金离子化合物,属于金催化循环过程中的关键基元反应,金去质子化形成[A u L ]+是决定催化效率和速率的关键[4-6].金催化剂中配体的结构决定了其催化性能,所以在形成[A u L ]+的过程中,配体的结构对催化循环起着至关重要的作用[7-8].图1 三种一价金络合物F i g .1 T h e s t r u c t u r e s o f t h r e e g o l d (I )c o m pl e x e s 一些具有高效催化苯乙炔和苯胺反应的金催化剂如图1所示[9-11].虽然配体的种类不同,但都具有给电子能力较强的特点,因为给电子能力较强的配体可以在催化循环中形成更加稳定的[A u L ]+结构,从而实现高效催化[12-13].通过配体的电子结构以及位阻效应还可以提高反应的化学选择性.二烷基锡烯是一类具有较强给电子能力的金属配体,如果将锡烯作为配体与金形成的金络合物作为催化剂,有可能高效催化苯胺和苯乙炔的氢胺化反应.论文利用二烷基锡烯与氮杂环卡宾氯化金反应,得到了一个A u C l 插入反应产物3(图2).这种非离子型的一价金络合物一般不具有催化性能,但3可以与A g B F 4反应生成离子型金(I )络合物作为强路易斯酸可催化炔烃和苯胺的氢胺化反应.论文系统研究了烯锡配位一价金络合物(3)在催化苯胺和苯乙炔的氢胺化反应中的应用.图2 新型一价金络合物(3)的合成F i g .2 T h e s y n t h e s i s o f an o v e l g o l d (I )c o m pl e x 1 实验部分1.1 主要试剂及仪器氯化金,98%,郑州阿尔法化工有限公司;苯胺,99%,萨恩化学技术有限公司;苯炔,99%,百灵威科技有限公司;四氯化锡,99.9%,郑州阿尔法化工有限公司.S GW X -4型熔点测试仪;核磁共振仪,A V A N C E ,400MH z ,500MH z ,德国布鲁克公司;A gi l e n t 气相色谱质谱联用仪.实验中所用到的玻璃仪器在使用前须在120ħ的烘箱中烘烤2h 以上.实验所有的操作在干燥的氩气氛围下进行.对于久置的液体原料需要进行重新蒸馏,久置的固体原料需要重结晶纯化.1.2 二烷基锡烯和氮杂环配位氯化金的反应在一反应管中,分别加入二烷基锡烯103(100m g ,0.22m m o l ),氘代苯(0.5m L )和氮杂环卡宾配位的氯化金(134m g ,0.22m m o l ),室温下反应5m i n ,反应溶液的颜色由红色逐渐变为无色,10m i n 后溶液颜色不再变化,结束反应.用正己烷重结晶,得化合物3.化合物3:白色固体(120m g ,94%);熔点225.3~225.6ħ(d e c );1H NM R (400MH z ,C 6D 6)δ7.27(t ,J =7.8H z ,2H ),7.10(d ,J =7.8H z ,4H ),6.31(s ,2H ),2.57~2.48(m ,4H ),2.46~2.36(m ,2H ),2.24~2.14(m ,2H ),1.47(d ,J =6.9H z ,12H ),1.07(d ,J =6.9H z ,12H ),0.47(s ,18H ),0.14(s ,18H );13CNM R (101MH z ,C 6D 6)δ200.98,145.73,134.52,130.96,124.49,123.04,36.19,29.16,25.15,24.49,24.28,4.96,4.82;29S iNM R (99MH z ,C 6D 6)δ3.91,1.55;119S n NM R (187MH z ,C 6D 6)δ474.90;H R M S (E S I ):m /z c a l c d f o rC 43H 76A u C l N 2S i 4S n :1084.3462;F o u n d :[M -C l ]1049.3768.1.3 一价金络合物3催化苯胺与苯乙炔的氢胺化反应在一个反应管中先后加入化合物3(5.43m g ,0.005m o l ),A g B F 4(2m g ,0.01m o l ),乙腈(5m L ).随后加入苯胺(46.50m g ,0.5m m o l ),苯乙炔(56.18m g ,0.55m m o l ),苯甲醚(54m g ,0.5m m o l )作为内标.加热到90ħ,然后在该温度下反应5h .反应结束后浓缩反应液得到黄色油状液体,粗产品通过硅胶板进行纯化U (石油醚):U (乙酸乙酯)=5ʒ1,得到黄色液体产物4a .1H NM R (400MH z ,C D C l 3)δ8.01(d ,J =7.5H z ,2H ),7.48(d ,J =6.4H z ,3H ),7.38(t ,J =7.4H z ,2H ),7.12(t ,J =7.5H z ,1H ),6.84(d,J =8.0H z ,2H ),2.26(s ,3H );13CNM R (101MH z ,C D C l 3)δ165.59,151.74,139.52,130.58,129.05,128.47,127.26,123.32,119.48,17.50.2杭州师范大学学报(自然科学版)2024年2 结果与讨论2.1 实验条件的优化反应溶剂的优化:如图3所示,在一反应瓶中先后加入苯乙炔(0.55m m o l ),苯胺(0.5m m o l ),催化剂体系为3(5摩尔分数)和A g B F 4(10摩尔分数).实验分别选取正己烷㊁四氢呋喃㊁甲苯㊁乙醇㊁氯仿㊁乙腈作为反应溶剂,在加热回流条件下反应8h .发现在以上溶剂中实验都可以进行,以中等和良好的产率得到4a ,其中以乙腈作为溶剂产率最高(96%)(表1).图3 一价金化合物3催化的苯胺与苯乙炔反应F i g .3G o l d (I )c o m p l e x 3c a t a l y z e dh y d r o a m i n a t i o n r e a c t i o no f p h e n y l a c e t yl e n e a n da n i l i n e 表1 反应溶剂的筛选T a b .1 O pt i m i z a t i o no f s o l v e n t s 序号溶剂温度/ħ时间/h 产率/%1T H F908822H e x a n e 858553C H 3C N 908964C H C l 3708705C 2H 5O H 808406T o l u e n e120860在乙腈中,分别对反应的时间㊁催化剂的用量㊁反应温度进行了筛选和优化.实验发现,一价金化合物3本身没有催化活性,在乙腈中回流8h ,没有检测到氢胺化产物,只是定量地回收了原料(表2).可能是因为非离子型的一价金化合物路易斯酸性较弱,在反应过程中无法形成[A u L ]+活性体,所以不具有催化性能.在反应体系中只加入A g B F 4(10摩尔分数),不加一价金化合物3,反应虽然可以进行,但产率只有30%.在反应过程中,一价金络合物3与A g B F 4反应生成离子型一价金化合物是高效催化苯乙炔与苯胺反应的关键因素.表2 一价金催化苯乙炔和苯胺氢胺化的反应T a b .2 G o l d (I )c o m p l e x 3c a t a l y z e dh y d r o a m i n a t i o no f p h e n y l a c e t yl e n e a n da n i l i n e 序号催化剂/摩尔分数温度/ħ时间/h 产率/%1113(5)90802A g B F 4(10)908303113(5)+A g B F 4(10)908964113(2.5)+A g B F 4(5)4908945113(1)+A g B F 4(2)908956113(0.5)+A g B F 4(1)908807113(1)+A g B F 4(2)245328113(1)+A g B F 4(2)305449113(1)+A g B F 4(2)6057710113(1)+A g B F 4(2)9059511113(1)+A g B F 4(2)12059412113(1)+A g B F 4(2)1505923第1期 朱宏志,等:新型金(I)络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用表2(续)序号催化剂/摩尔分数温度/ħ时间/h产率/%13113(1)+A g B F4(2)900.52514113(1)+A g B F4(2)9026415113(1)+A g B F4(2)9059616113(1)+A g B F4(2)9089617113(1)+A g B F4(2)90129518113(1)+A g B F4(2)90>2495通过反应条件的筛选和优化,确定了一价金催化苯乙炔与苯胺氢胺化反应的最佳反应条件是:乙腈为溶剂,一价金络合物3(1摩尔分数)和A g B F4(2摩尔分数)形成的催化体系,反应温度为90ħ,反应时间为5h(表2,序号15).2.2底物的扩展在以上优化后的反应条件下,我们还对底物进行了扩展,研究该催化体系的普适性.对于苯胺类化合物来说,无论是在胺基的邻位或对位连接吸电子基团或者推电子基团,对反应影响不大,都以较高的产率(84%~95%)得到相应的目标化合物(表3).同样在苯乙炔的对位引入推电子基团或者吸电子基团,也以较高的产率(84%~91%)得到了对应的目标化合物4b4k图4一价金催化炔烃与芳胺的反应F i g.4G o l d(I)c o m p l e x3c a t a l y z e d t h e h y d r o a m i n a t i o no f a r y l a l k y n e s a n da r o m a t i c a m i n e s表3金催化的炔烃与芳胺的反应T a b.3G o l d(I)c o m p l e x c a t a l y z e d t h e h y d r o a m i n a t i o no f a r y l a l k y n e s a n da r o m a t i c a m i n e s 序号取代基(R)芳基(A r)亚胺编号产率/%1H P h4a952H2,6-i P r2C6H34b883H2,4,6-M e3C6H24c874H2,6-M e2C6H34d845H4-B r C6H54e916C l P h4f917OM e P h4g928C H3P h4h909N O2P h4i8410C H32,6-M e2C6H34j8611C H32,6-i P r2C6H34k893结论合成一种锡烯配位的新型一价金络合物3,在A g B F4协同作用下,实现了炔烃和芳香胺的高效氢胺化反应.该催化体系具有普适性好的特点,无论是炔烃还是芳香胺苯环上的取代基是吸电子基团,还是给电子基团,反应都可顺利进行,以较高的收率得到亚胺衍生物.4杭州师范大学学报(自然科学版)2024年参考文献:[1]B I K L J E V I CD ,M E MM E LN ,B E R T E LE ,e t a l .M o b i l e a t o m i c g o l d a s o x i d a t i o n c a t a l ys t [J ].S u r f a c eS c i e n c e ,2018,667(1):25-30.[2]HU T C H I N G SGJ ,D I M I T R A T O SN ,M I E D Z I A KPJ .N a n o c r y s t a l l i n e g o l d c a t a l y s t s f o r s e l e c t i v e o x i d a t i o n [C ]//242n dA C SN a t i o n a l M e e t i n g .D e n v e r ,C o :A m e r i c a nC h e m i c a l S o c i e t y,2011,242(2):143-144.[3]K A R T U S C H C ,V A N B O K H O V E NJA.H y d r o g e n a t i o no v e r g o l dc a t a l y s t s :t h e i n t e r a c t i o no f g o l dw i t hh y d r o g e n [J ].G o l dB u l l ,2009,42(4):343-348.[4]MU F F I N SC B .E x p e r i m e n t a l s t u d i e so f g o l d m o d e lc a t a l y s t s [C ]//242n d A C S N a t i o n a l M e e t i n g .D e n v e r ,C o :A m e r i c a n C h e m i c a l S o c i e t y ,2011,241(1):198-199.[5]MU R Z I N AE V ,T O K A R E V A V ,K O R D ÁSK ,e t a l .D -L a c t o s e o x i d a t i o no v e r g o l d c a t a l y s t s [J ].C a t a lT o d a y ,2008,131(1/2/3/4):385-392.[6]N E W L LJ ,P U R D Y E ,C H A N D L E R B ,e t a l .N i t r o b e n z e n eh y d r o g e n a t i o no v e r s u p p o r t e d g o l dc a t a l y s t s [C ]//247n d A C S N a t i o n a l M e e t i n g .D a l l a s ,T X :A m e r i c a nC h e m i c a l S o c i e t y ,2014,247(10):1155-1156.[7]L U K ET ,C H A N D L E R B E R T D .H a m m e t ts t u d i e so f s u p p o r t e d g o l dc a t a l y s t s [C ]//245n d A C S N a t i o n a lM e e t i n g .N e w O r l e a n s :A m e r i c a nC h e m i c a l S o c i e t y,2013,245(3):399-400..[8]W I T T S T O C K A ,B ÄUM E R M.C a t a l y s i s b y u n s u p p o r t e d s k e l e t a l g o l d c a t a l ys t s [J ].A c cC h e m R e s ,2014,47(3):731-739.[9]K O N GLB ,G A N G U L Y R ,L IY X ,e t a l .D i v e r s e r e a c t i v i t y o f a t r i c o o r d i n a t eo r g a n o b o r o nL 2P h B :(L=o x a z o l -2-y l i d e n e )t o w a r d s a l k a l im e t a l ,g r o u p 9m e t a l ,a n d c o i n a g em e t a l p r e c u r s o r s [J ].C h e mS c i ,2015,6(5):2893-2902.[10]W I T T E L E R T ,D A R M A N D E H H ,M E H L M A N N P ,e ta l .D i a l k y l (1,3-d i a r y l i m i d a z o l i n -2-y l i d e n a m i n o )p h o s p h i n e s :s t r o n g l y e l e c t r o n -d o n a t i n g ,b u c h w a l d -t y p e p h o s p h i n e s [J ].O r g a n o m e t a l l i c s ,2018,37(18):3064-3072.[11]I B ÁÑE ZS ,P O Y A T O S M ,P E R I SE .G o l d c a t a l y s t sw i t h p o l y a r o m a t i c -N H C l i g a n d s .e n h a n c e m e n t o f a c t i v i t y b y a d d i t i o no f P y r e n e [J ].O r g a n o m e t a l l i c s ,2017,36(7):1447-1451.[12]C AM P OBC ,I V A N O V AS ,G I G O L A C ,e t a l .C r o t o n a l d e h y d eh y d r o g e n a t i o no ns u p p o r t e d g o l dc a t a l y s t s [J ].C a t a lT o d a y ,2008,133/134/135:661-666.[13]S C O T TR WJ ,W I L S O NO M ,O HSK ,e t a l .B i m e t a l l i c p a l l a d i u m -g o l d d e n d r i m e r -e n c a p s u l a t e d c a t a l ys t s [J ].JA mC h e mS o c ,2004,126(47):15583-15591.N o v e lG o l d (I )C o m p l e x :S y n t h e s i s a n d I t sA p pl i c a t i o n o nC a t a l y t i cH y d r o a m i n a t i o nR e a c t i o no fA l k yn e a n dA n i l i n e Z HU H o n g z h i 1,X UJ i a n 2,Q IF a n 2,L I Z h i f a n g2(1.H e n a nP i n g m e i S h e n m aN y l o nE n g i n e e r i n g T e c h n o l o g y C o .L t d .,P i n g d i n g s h a n467000,C h i n a ;2.K e y L a b o r a t o r y o fO r g a n o s i l i c o nC h e m i s t r y a n d M a t e r i a lT e c h n o l o g y o fM i n i s t r y o fE d u c a t i o n ,C o l l e ge o fM a t e r i a l ,C h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g ,H a n g z h o uN o r m a lU n i v e r s i t y ,H a n gz h o u311121,C h i n a )A b s t r a c t :I m i n e s a r e v e r y i m p o r t a n t b a s i c c h e m i c a l r a w m a t e r i a l s .T h e c a t a l y t i ch y d r o a m i n a t i o nr e a c t i o no f a l k yn e a n d a n i l i n e i s a n i m p o r t a n t a p p r o a c h t o p r e p a r e i m i n e s t h r o u g hd e v e l o p i n g h i g h l y a c t i v e c a t a l y s t s .I n t h i s s t u d y ,an o v e l go l d (I )c o m p l e xw i t h t i nc o o r d i n a t i o n w a ss y n t h e s i z e db y i n s e r t i o nr e a c t i o no fd i a l k y l e n et i n w i t h A u C l .T h i s g o l d (I )c o m p l e x e x h i b i t s s t r o n g 'c a r b o na f f i n i t y 'a n dc a na c t i v a t eu n s a t u r a t e dc a r b o n .T h u s ,t h ea m m o n i ah y d r o g e n a t i o nr e a c t i o nb e t w e e n a n i l i n e a n d p h e n y l a c e t y l e n e c o u l db e a c h i e v e d ,a n d i m i n e c o m p o u n d sw e r e s y n t h e s i z e dw i t hh i gh y i e l d s .K e y wo r d s :g o l d (I )c o m p l e x ;c a t a l y t i c r e a c t i o n ;h y d r o a m i n a t i o n 5第1期 朱宏志,等:新型金(I)络合物的合成及其在催化炔烃与苯胺的氢胺化反应中的应用。

发表了一篇发明专利 英文

发表了一篇发明专利 英文

发表了一篇发明专利英文英文回答:Abstract.This invention relates to a novel method for synthesizing a series of novel 2-arylbenzothiazoles and their derivatives. The method comprises reacting an arylamine with a benzothiazole intermediate in the presence of a catalyst and a solvent. The reaction is carried out under mild conditions and provides the desired products in high yields and purity. The synthesized compounds have been characterized by various spectroscopic techniques and their biological activities have been evaluated. The compounds exhibit promising antibacterial and antifungal activities, making them potential candidates for the development of new therapeutic agents.Methods.Synthesis of 2-arylbenzothiazoles.In a typical synthesis, an arylamine (1 equiv) and a benzothiazole intermediate (1 equiv) were dissolved in a suitable solvent (e.g., toluene, dioxane). The reaction mixture was then heated to reflux in the presence of a catalyst (e.g., Pd(OAc)2, Cu(OAc)2). The reaction was monitored by thin-layer chromatography (TLC) and was typically complete within 2-3 hours. After completion, the reaction mixture was cooled to room temperature andfiltered to remove the catalyst. The filtrate was concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel.Characterization of 2-arylbenzothiazoles.The synthesized compounds were characterized by various spectroscopic techniques, including nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and infrared (IR) spectroscopy. The NMR spectra were recorded on a Bruker 400 MHz spectrometer using deuterated chloroform (CDCl3) as the solvent. The mass spectra wererecorded on a Shimadzu LCMS-2020 spectrometer in the positive-ion mode. The IR spectra were recorded on a PerkinElmer Spectrum Two FTIR spectrometer.Biological evaluation of 2-arylbenzothiazoles.The antibacterial and antifungal activities of the synthesized compounds were evaluated using the broth microdilution method. The minimum inhibitory concentrations (MICs) of the compounds were determined against a panel of Gram-positive and Gram-negative bacteria, as well as a panel of fungi. The MICs were determined in triplicate and the results were expressed as the average of the three measurements.Results.The synthesized compounds were obtained in high yields and purity. The NMR, MS, and IR spectra confirmed the structures of the compounds. The antibacterial and antifungal activities of the compounds varied depending on the substituents on the aryl ring. In general, compoundswith electron-withdrawing substituents exhibited higher activities than compounds with electron-donating substituents. The most active compound was found to be 2-(4-chlorophenyl)benzothiazole, which had an MIC of 0.5µg/mL against Staphylococcus aureus and an MIC of 1.0µg/mL against Candida albicans.Conclusion.In summary, a novel method for synthesizing a series of novel 2-arylbenzothiazoles and their derivatives has been developed. The method is simple, efficient, and provides the desired products in high yields and purity. The synthesized compounds exhibit promising antibacterial and antifungal activities, making them potential candidates for the development of new therapeutic agents.中文回答:摘要。

一种多替诺德的合成方法与流程

一种多替诺德的合成方法与流程

一种多替诺德的合成方法与流程Many researchers have been exploring new synthetic methods and processes for producing various compounds, including the synthesis of Nordihydroguaiaretic acid (NDGA). 近年来,许多研究人员一直在探索用于生产各种化合物的新合成方法和工艺,包括多替诺德酸(NDGA)的合成。

One of the key challenges in the synthetic process of NDGA is to ensure high yield and purity of the final product. 多替诺德酸合成过程中的一个关键挑战是确保最终产品高收率和纯度。

To address this challenge, researchers have been investigating various approaches such as the use of different catalysts, reaction conditions, and purification techniques. 为了解决这一挑战,研究人员一直在研究利用不同的催化剂、反应条件和纯化技术等各种方法。

One approach that has shown promise is the use of novel catalysts that can enhance the selectivity and efficiency of the reactions involved in the synthesis of NDGA. 一个显示出潜力的方法是利用新型催化剂,这些催化剂可以增强多替诺德酸合成中所涉及的反应的选择性和效率。

Another important aspect of the synthetic process is the scalability of the method, as the ability to produce NDGA on a larger scale is essential for potential industrial applications. 合成过程的另一个重要方面是方法的可扩展性,因为在更大规模上生产多替诺德酸对潜在的工业应用至关重要。

基于特征合成的周期性备件需求预测方法

基于特征合成的周期性备件需求预测方法

基于特征合成的周期性备件需求预测方法林琳;陈湘芝;钟诗胜【摘要】针对工程机械备件需求预测准确性低的问题,提出一种新的基于特征合成的周期性维修备件需求预测方法。

定义等间隔备件需求样本集的相似度模型,采用优化算法确定最优备件需求周期长度,并利用回归模型建立各周期内的备件需求模型;提出基于特征合成的模型综合方法,借鉴物理力学中的矢量合成方法,将多个历史备件周期需求模型特征矢量合成新的特征矢量,利用新特征矢量还原获得最优的周期预测模型,该模型综合考虑了各个历史备件周期预测模型,使获得的备件周期预测模型具有更好的鲁棒性和泛化性。

采用人工数据和矿用圆环链的实际需求数据对该预测模型进行验证,实验结果表明,该模型具有良好的稳定性和准确性。

%A novel approach for forecasting the periodic demand of spare parts based on feature synthesis is proposed to solve the problem of inaccurate prediction due to many influencing factors of the spare parts demand for construction machines and the demand cycle hard to be selected. The optimal demand cycle length is obtained with the optimization algorithm by defining a similarity measuring model of the spare parts demand sample sets under equal space, and the demand model for spare parts in every cycle period is built by the regression model. Then, a method is presented to integrate multiple cycle demand models of the spare parts into one according to the vector synthesis method in physics, so the optimal demand forecasting model for the spare parts with periodic pattern is obtained by reduction technology. The model synthetically considers the demand forecasting model for the spare parts in everyhistorical cycle and it is great robust and generalized. The prediction model is verified by simulated datasets and the practical data of the demand of round link chains for mining, and experiment results prove that the model has good stability and accuracy.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2016(048)007【总页数】6页(P27-32)【关键词】需求预测;维修备件;特征合成;周期提取;周期需求建模【作者】林琳;陈湘芝;钟诗胜【作者单位】哈尔滨工业大学机电工程学院,哈尔滨150001;哈尔滨工业大学机电工程学院,哈尔滨150001;哈尔滨工业大学机电工程学院,哈尔滨150001【正文语种】中文【中图分类】TP301;F272.1备件是大型机械设备正常运作的保障性物资,必须保证适量且及时的备件供应,高效的备件库存管理与供应对提高企业的经济效益具有重要意义[1]. 其中,备件需求量的确定是备件库存管理的前提. 影响备件需求的原因是多方面的,除了备件的可靠性之外,备件的使用、维护方式及维修策略等均可能影响备件的需求量. 受这些复杂关系的影响,不同备件的历史需求数据特征差异较大,需要针对备件的需求模式研究合适的需求预测方法[2]. 本文研究对象为需求模式呈周期性变化的备件,即其历史需求时间序列中含有随机性成分和周期性成分. 需求时间序列中含有周期性成分和随机性成分时,基于时间序列的预测方法一般分为2类,第1类是使用ARIMA模型[3],这样就剔除了历史需求数据中的周期性成分,从而遗漏了数据中的重要信息[4]. 第2类是将周期性成分分离出来,如Holt-Winters模型[5]以及改进的Holt-Winters模型[6-7]. 该方法对于初始参数值以及平滑常数的确定仍有一定的困难[8]. Grubb等[9]对Holt-Winters模型进行改进,通过使预测误差最小来获取最佳的平滑常数. Bermúdez等[10]则建立了用于更新季节指数的方程,以此为目标函数,并对平滑常数以及初始值进行优化. Abdesselam等[11]将模糊逻辑应用于Holt-Winters模型,并用实验证明了方法的可行性. 除此之外,针对周期型备件的需求预测,董笑晓[12]提出移动平均周期系数法,即采用系数来表征时间序列中的周期性成分. Boylan等[13]针对历史需求数据不足这一问题,将GSI(group seasonal indices)和ISI(individual seasonal indices)方法结合起来用于预测需求. 对具有季节性的间断型需求,Gamberini等[14]比较了Holt-Winters和ARIMA模型的预测精度.本文提出对备件实际需求数据按其周期长度进行分段,然后对各段进行多项式拟合以提取周期项,为消除随机因素的影响,对各个周期段的多项式函数进行合成得到新的多项式函数,以此来计算下一个周期的需求量预测值.通常备件的需求数据虽然呈现出一定的周期性,但是其周期性并不是表现为以周期间隔的需求数据相等,而是具有相似的波动形式. 假定时间序列X=(x1,x2,…,xn),对于时间序列中以周期间隔的两个数据,如果有xt+T=xt+εt,其中εt为独立的随机变量,则说明该时间序列是周期为T的隐周期序列[15]. 为获得隐周期时间序列的周期长度,一般是将时间序列等分成N段,分别比较各段时间序列的相似度,如果平均相似度满足一定的阈值,则说明时间序列存在该长度的周期. 因此,为检测时间序列的周期,最重要的是解决如何准确的度量时间序列的相似度这一问题.1.1 时间序列的相似性度量在相似性度量的研究中,大部分采用欧式距离来度量两个时间序列的相似性,距离度量值越小,则两个时间序列越相似. 对于两个等长的时间序列H=(h1,h2,…,hm)和L=(l1,l2,…,lm),H是目标时间序列,L是需要进行相似度测量的时间序列,则这两个时间序列之间的欧式距离定义为但是,式(1)只是表征了两个时间序列在距离上的接近程度,并未体现其动态变化趋势. 两个数据的相似性也表现为它们的整体波动趋势一致,具有一定的相关性,因此可以用相关系数作为相似性度量的另一个量值. 当相关系数>0时,表现为正相关,即H上升,L也上升,H下降,L也下降,此时具有较大的相似度. 当相关系数<0时,表现为负相关,此时,两序列相似度较小. 在计算相似度时,需要同时考虑两时间序列的欧式距离和相关系数. 因此,对两个长度相等的时间序列H=(h1,h2,…,hm)和L=(l1,l2,…,lm),其相似性度量函数为式中ρHL为表示时间序列H和L的相关系数.用式(2)计算两个时间序列的相似度,当f(H,L)≤α时,则认为两个时间序列具有相似性.1.2 基于相似度的周期长度检测给定时间序列X=(x1,x2,…,xn),设序列H=(xt,xt+1,…,xt+T-1)为原始时间序列中的T片段,则序列集合{(x1+K*T,x2+K*T,…,x(K+1)*T)|K=0~[n/T]}([•]表示取整)为时间序列X的T片段集合,计为XT. 对于时间序列X=(x1,x2,…,xn),当时间长度为T时,时间序列X按照时间长度T分段后,该时间序列的T片段集合XT的平均相似度为式中: a=1,b=[n/2],阈值α为均值或中值的10%左右.对于周期的求解,当时间序列比较长时,此时给出的周期长度取值范围比较大,若采用穷举法来试探出周期长度,计算量就比较大,需要给出优化算法来近似求出周期长度. 周期长度的取值在a和b之间,因此其搜索方向已经确定,当采用可变的步长进行搜索时,能较快地搜索出周期长度的值. 以式(4)为目标函数,则搜索步骤为:1)设定步长h,在区间[a,b]之间以步长h进行搜索,即令Tn=a+n*h(其中n=1,2,…,[(b-a)/h]),代入式(3)中并比较F(Tn)的大小;2)根据目标函数(式(4))选出相对较优的前m个时间长度Tn,重新标记为T1,T2,…,Tm;3)分别以T1,T2,…,Tm为中心,搜索宽度为中心左右两边各h/2的范围,以步长h/4在中心左右两边分别进行搜索,即令Tn=Tm+n*h/4(其中n∈[-2,2],n 为整数),代入式(3)中并比较F(Tn)的大小;4)根据目标函数(式(4))选出相对较优的前l(l<m)个时间长度Tn,重新标记为T1′,T2′,…,Tl′;5)以同样方式进行搜索,直到步长缩减为1,根据目标函数(式4)选出最优的T值,即为时间序列的周期长度.由前文得到时间序列的周期长度,则可以将整个时间序列按照其周期长度划分成各个周期段. 各个周期段内的函数解析表达式未知,只是已知其上m个数据点(xi,yi),i∈[1,m],为提取各个周期段内的周期函数,需对已知的各个周期内的数据点进行函数拟合. 对于各个周期段内的历史需求数据,由于各个周期内的备件需求受到的外界因素影响是不一样的,因此,由拟合函数所提取的周期项并不能代表整个时间序列上的周期趋势. 为消除随机因素的影响,可将各个周期段内的拟合函数进行合成,得到一个新的拟合函数,综合所有周期内的需求趋势,以此作为整个时间序列上的周期项表达式.2.1 多项式函数拟合各个周期段内的离散数据点比较少,而多项式拟合方法简单有效,应用广泛,本文采用多项式拟合离散需求数据. 设φ为所有次数不超过n(n≤m)的多项式构成的函数类,对数据点(xi,yi)(i∈[1,m])拟合,即求使得最小.上述问题的求解最终可转换为求极值的问题,最后可以求解出参数ak(k=0,1,···,n)的值,得到拟合多项式的表达式:2.2 拟合多项式函数的合成空间中任意多个向量采取两两合成的方法最终可以合成一个向量,由多个函数最终合成为一个函数也可以借鉴向量合成的思想. 对于时间序列中任意两个周期段内的多项式拟合函数,获取函数的特征集合,函数的特征即为能够将函数区分开来的对象,可以利用向量合成的方式将多个函数特征集合合成为一个新的特征集合,合成的新特征集合再还原成一个新的多项式拟合函数,这就将多个函数合成转换为对函数特征集合的合成.2.2.1 多项式函数的特征集合各周期段内的离散数据点均采用多项式进行拟合,拟合函数的表达式为akxk,则各周期段的拟合函数可以认为是以xk(k=0,1,…,n)为基函数的线性加权求和. 当各个周期段对离散数据点的拟合采用相同的拟合次数时,可以认为拟合各周期段离散数据点的函数表达式形式相同,区别各个周期段拟合函数的特征量即为基函数的系数,因此可以将基函数的系数视作函数的特征量.以i+h0为参照,式(5)建立了一个n维坐标空间中的超平面,xk相当于坐标空间中第i维坐标i,系数ak相当于坐标值hi,常量h0为平移量. 在表达式(5)中,取系数ak为函数特征,周期段的多项式函数的特征集合为{an,an-1,…,a0}. 对各周期段多项式函数的合成可以通过对多项式函数特征集合的合成来实现.2.2.2 基于特征集合合成的函数合成对于两个函数的合成过程,以多项式次数为3时的两个周期函数为例进行解释,过程如图1所示.第1个和第2个周期段内的数据点经拟合后得到的多项式函数表达式分别为这两个函数的特征集合分别为系数ak和bk(k=1,2,3)相当于坐标空间中第i维坐标i上的坐标值,按照向量合成模式,则新合成的特征集合为对应的坐标值之和取平均. 设新的特征集合为最后根据合成的新特征集合还原成新的多项式函数为考虑到历史需求数据信息对预测未来周期段内的备件需求量的作用是不一样的,对于新合成函数特征值的计算采用加权求和法,而不是求和取平均,即ck=w1ak+w2bk,其中0<w1<1,0<w2<1,且w1+w2=1. 权重一般比较难以确定,并且权重的取值直接影响模型的预测精度,需要慎重选择. 因此,在本文中,以历史需求数据的预测值和实际值的平均相对误差最小为优化目标,建立式(6)所示的优化模型:3.1 人工数据验证试验所采用的数据由SinSeries数据产生器产生,该数据产生器为式中: μi、σi为随机数,A=80,T=3,B=300,μ=0, σ=20. 截取xi中的45个数据作为样本数据. 周期长度的取值范围为1~23,阈值为均值的10%,用1.2节中的周期长度检测算法计算得到序列的周期长度为9. 将样本数据分成5个数据段,以前面4个周期段的数据建立备件需求预测模型,用该预测模型计算第5个周期段的需求. 当n=6时,计算得到的第4个周期段的需求预测值与实际值的误差最小,因此选择拟合多项式n=6. 以第4个周期段的预测值的平均相对误差最小为优化函数,采用遗传算法确定权值为w1=0.41,w2=0.29,w3=0.30. 确定多项式拟合次数和权值后,则可建立需求预测模型.对周期段2、3、4的离散数据进行拟合,得到各段的拟合多项式函数,表1中第2~4行分别是这3个周期段拟合多项式函数的特征值. 通过加权合成方式得到新的特征值为dn=0.41an+0.29bn+0.3cn,即表1中第5行所示数据.用新合成的特征值还原成多项式函数,以此作为预测模型用于预测第5个周期段的数据,预测结果如图2所示. 实验表明,预测值与实际值的平均相对误差为7.4%.3.2 备件需求预测验证运用该方法对矿用高强度圆环链的需求进行预测,并与文献[12]中的移动平均周期系数法进行对比分析. 圆环链为采煤机的备件,实验数据来自文献[16],为2007年1月~2010年12月计4年的数据.已知备件历史需求数据,周期长度T的取值范围为1-24,阈值α为备件需求数据均值的10%,通过1.2节的周期长度检测算法计算得出备件需求时间序列的周期为12. 按照周期长度将样本数据分成4个周期段,以前面3个周期段的数据建立备件需求预测模型,使用所建立的预测模型计算最后12个月的备件需求量,并和需求实际值进行对比. 在建立周期需求预测模型时,需要确定的参数为多项式的拟合次数n,拟合次数n可以通过实验获得. 遍历拟合次数n可能的值,选择使得第3个周期段的预测值和实际值的预测误差最小的拟合次数,以此作为最佳的多项式拟合次数. 表2列出了各数值对应的预测误差,可以看出,当多项式次数为n=11时,预测误差最小,因此,采用多项式回归模型拟合备件需求数据时,多项式次数为n=11.对第1、2周期段的离散需求数据分别进行多项式拟合,提取其特征集合,集合中的元素分别设为an和bn,采用加权求和的方式来合成新的特征集合,即dn=w1an+w2bn,其中,0≤w1≤1,0≤w2≤1,w1+w2=1,式(6)为优化目标,yi为第3个周期段的需求数据,并采用遗传算法求解w1和w2. 设置遗传算法的初始种群为80,迭代次数为80,适应度函数为式(6),交叉概率为0.3,变异概率为0.7,编码方式为浮点数编码、选择方式为比例选择,交叉方式为线性交叉,变异方式为扰动变异. 遗传算法求解结果如图3所示,求得w1=0,则w2=1.以上过程通过对前3个周期段的数据分析确定了预测模型的多项式拟合次数n=11,权值w1=0,w2=1. 当这些参数确定后,则可以建立周期型需求模式的备件需求预测模型. 对第2、3个周期段内的离散数据进行多项式拟合,提取多项式函数的特征集合,特征集合中的元素分别设为an′和bn′,如表3所示.采用加权求和的方式来合成新的特征集合,即dn′=w1an′+w2bn′,故dn′=bn′.合成后的特征值如表3中第4行所示.合成得到的新的特征集合还原成新的多项式函数,此多项式函数即为需求预测模型,各周期段的加权合成过程如图4所示. 应用该模型计算2010年12个月的备件需求量数据,预测结果如图5所示,可以看出预测值比较接近实际值.本文所述预测模型与移动平均周期系数法的预测结果比较如表4所示.从表4中的数据可以计算出,移动平均周期系数法的预测值与实际值的平均绝对误差为286.8,平均相对误差为12.8%. 多项式拟合模型的预测值与实际值的平均绝对误差为199.6,平均相对误差为8.9%. 因此可以看出本文提出的预测模型的预测效果更好.1)针对需求模式为周期型的维修备件需求预测问题,本文提出了一种新的需求预测方法. 用预测模型对人工数据和矿用圆环链的需求量进行预测,实验结果表明,该预测方法具有较高的预测精度.2)维修备件的种类非常多,对于不同种类的维修备件,其需求数据的波动形式会有较大区别,有时其周期成分比较弱,可能会被随机成分遮掩,此时,本文所提的预测方法并不适用. 因此,针对不同形式的维修备件需求数据,探讨新的建模方法,仍然是今后需要深入研究的工作.。

EDC和NHS与sulfo-NHS使用说明

EDC和NHS与sulfo-NHS使用说明
• (Optional) Hydroxylamine (Product No. 26103) for quenching the amine reaction
B. NHS-ester Activation
• No-Weigh Format Handling: Immediately before use, puncture the microtube foil with a pipette tip, add water and mix by pipetting up and down. After use, cut the used microtube from the microtube strip and discard. Store the unused microtubes in the foil pouch provided.
The activation reaction with EDC and Sulfo-NHS is most efficient at pH 4.5-7.2, and EDC reactions are often performed in MES buffer (Product No. 28390) at pH 4.7-6.0. Reaction of Sulfo-NHS-activated molecules with primary amines is most efficient at pH 7-8, and Sulfo-NHS-ester reactions are usually performed in phosphate-buffered saline (PBS) at pH 7.2-7.5. For best results in two-step reactions, perform the first reaction in MES buffer (or other non-amine, non-carboxylate buffer) at pH 5-6, then raise the pH to 7.2-7.5 with phosphate buffer (or other non-amine buffer) immediately before reaction to the amine-containing molecule.4 EDC reactions can be quenched with 2-mercaptoethanol (2-ME), or the excess reagent can simply be removed (as well as the reaction pH adjusted) by buffer-exchange with a desalting column (see Related Thermo Scientific Products).

大环内酯类抗生素的发展和研究近况

大环内酯类抗生素的发展和研究近况

大环内酯类抗生素的发展和研究近况1 发展史第一代大环内酯类抗生素于20世纪50-70年代相继问世,包括红霉素(1952 年)、竹桃霉素(oleandomycin, 1960年)、泰乐霉素(tylosin, 1961年)、马立霉素(maridomycin, 1971 年)和罗沙米星(玫瑰霉素,rosaramicin, 1972 年)等。

红霉素是第一个14 元环大环内酯类抗生素,1952 年由礼莱公司开发上市。

红霉素对革兰阳性菌有较强的抗菌活性,治疗肺炎球菌等所致呼吸道感染以及军团菌肺炎、支原体肺炎等有较好的疗效。

但红霉素对胃酸不稳定,胃肠道不良反应较明显[1]。

20 年后,16 元环大环内酯类抗生素罗沙米星和马立霉素相继上市,它们对革兰阳性菌的抗菌活性与14元环大环内酯类抗生素相似,但抗流感嗜血杆菌和卡他莫拉菌等革兰阴性菌的活性更强,还可用于治疗由奈瑟菌、衣原体或溶脲脲原体引起的性传播疾病。

国内在同期引进或仿制了麦地霉素、螺旋霉素、乙酰螺旋霉素和交沙霉素等大环内酯类抗生素。

这些抗生素的抗菌活性虽均不如红霉素,但肝毒性和消化道不良反应较轻微,临床上主要用于口服治疗敏感菌所致呼吸道、五官和口腔等轻症感染。

[1] 董毅. 大环内酯类抗生素的研究进展[J].国外医药合成药生化药制剂分册,2001,22(3): 134-136.[2] 孙路路. 第二代大环内酯类抗生素的临床应用评价[J].中国医院用药评价与分析,2004,4(2): 79-83.第二代大环内酯类抗生素主要于20世纪80年代上市,主要有克拉霉素(1986 年)、阿奇霉素(1986 年)、罗红霉素(1986 年)、罗他霉素(1988 年)和地红霉素(1988 年)。

与红霉素相比,第二代大环内酯类抗生素不仅对酸稳定,而且抗菌谱扩大、抗菌活性增强,对支原体、衣原体和军团菌等胞内病原体作用强,同时口服吸收好、体内分布广、组织浓度高、半衰期长、不良反应少,临床应用十分广泛[2]。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.3A Novel Synthesis Approach for Active Leakage Power Reduction Using Dynamic Supply GatingSwarup Bhunia, Nilanjan Banerjee, Qikai Chen, Hamid Mahmoodi, and Kaushik RoySchool of Electrical and Computer Engineering, Purdue University, West Lafayette. {bhunias, nbanerje, qikaichen, mahmoodi, kaushik}@Abstract:Due to exponential increase in subthreshold leakage with technology scaling and temperature increase, leakage power is becoming a major fraction of total power in the active mode. We present a novel lowcost design methodology with associated synthesis flow for reducing both switching and active leakage power using dynamic supply gating. A logic synthesis approach based on Shannon expansion is proposed that dynamically applies supply gating to idle parts of general logic circuits even when they are performing useful computation. Experimental results on a set of MCNC benchmark circuits in a predictive 70nm process exhibits improvements of 15% to 88% in total active power compared to the results obtained by a conventional optimization flow.Categories & Subject Descriptors: B.7.1 [IntegratedCircuits]: Types and Design Styles – supply gating, logic synthesisGeneral Terms: Algorithms, Design, Performance 1. IntroductionAs CMOS technology continues to scale down to achieve higher performance and higher level of integration, power dissipation is becoming a serious barrier to scaling. The power dissipation is due to both switching and leakage current and is given by: (1) P = Pswitching + Pleakage = α⋅f⋅C⋅Vdd2 + Ileakage⋅Vdd where, Vdd is supply voltage, α is switching activity, f is the clock frequency, C is the average switched capacitance of the circuit, and Ileakage is the average leakage current. The switching power is due to charging and discharging of circuit capacitances, and therefore, is directly proportional to the switching activity and frequency. Leakage power in bulk scaled technologies is mainly due to subthreshold leakage, gate leakage, and reverse-biased source-substrate and drainsubstrate junction tunneling leakage (JT) because of halo implants [1]. Subthreshold leakage increases exponentially as the technology scales because of reduced threshold voltages (Vt) required to maintain transistor ‘ON’ current at reduced supply voltages. Gate leakage increases exponentially because of reduced oxide thickness required to maintain the gate control over the channel to reduce short channel effects. The reverse biased junction tunneling increases because of increased doping levels used in the halo implants to suppress Drain Induced Barrier Lowering (DIBL) and Vt roll-off [2]. Hence, leakage power is becoming a significant fraction of total power dissipation [3]. Leakage is not only important in the standby mode but also in the active mode of operation. In fact, the leakage in the active mode (active leakage) is significantly larger due to higher die temperature in the active mode and the exponential temperature dependence of subthreshold leakage [3]. Fig. 1 shows the temperature dependence of different leakage components in a predictive 50nm process [1]. GatePermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. DAC 2005, June 13–17, 2005, Anaheim, California, USA. Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.leakage is not temperature dependent, whereas, JT leakage is weakly dependent on temperature [2]. Therefore, in the active mode of operation (high temperature), subthreshold leakage is the dominant component of leakage. Experiments on high performance microprocessors show that more than 40% of the total power dissipation is due to leakage (both active and standby leakage) [3]. A low-power design methodology in scaled technologies, therefore, has to target both the switching and leakage components of power in the active mode of operation. Dual Vt assignment has been used as a static method for reducing the leakage power [6]. However, dual Vt technique does not reduce the leakage on critical paths. Moreover, dual Vt assignment increases the number of critical paths in a design, degrading the design yield under process variations [9]. In dynamic leakage reduction methods, the leakage reduction techniques are applied only in the standby mode. These methods include input vector control, dynamic body biasing, and supply gating [4, 5, 6]. Input vector control uses the state dependence of leakage to apply best input vector to the circuit in the standby mode [6]. However, input vector control can be ineffective because it may not be possible to force all logic gates to their best leakage state by controlling the state of primary inputs. Dynamic body biasing applies forward (or zero) body bias in the active mode to achieve high performance and an optimal reverse body bias in the standby mode to minimize leakage. The technique becomes less effective with technology scaling since the optimal reverse body bias becomes closer to zero body bias as technology scales [7]. Moreover, body bias does not reduce gate leakage. DualVDD and dynamic voltage scaling are used for power reduction without impacting system performance [4]. However, dual-VDD requires extra supply voltage and is not applicable in performance critical circuits. Dual-VDD also results in more critical paths in a design, which adversely affects the design yield under parameter variations. Dynamic voltage scaling suffers from large energy and transition delay overhead for changing the supply voltage. Supply gating has been proposed and used as a method to reduce standby leakage current [4, 5]. The idea is to disconnect the global supply voltage of the circuit in the standby mode when the circuit is not performing any useful computation. The above-mentioned dynamic leakage reduction methods cannot be applied in the active mode since the circuit is required to do computation at a target speed. However, we have observed that considerable portions of circuits are idle for periods of time even in the active mode of operation. Therefore, there exists opportunities for dynamic application of leakage reduction techniques in the active mode as well. In this paper, we present a low-overhead design methodology for efficiently reducing active leakage power using supply gating. Besides, the proposed method reduces switching power by preventing redundant switching in idle parts of a circuit. We also propose a synthesis methodology based on Shannon expansion to provide opportunities for supply gating in the active mode for general combinational circuits. The proposed method results in automatic savings in standby leakage because of stacking [6]. Our contributions in this paper are as follows:47910038%80 Power [normalized]Dynamic Switching Subtreshold Leakage Gate Leakage Junction Leakage100Process=50nm; VDD=0.9V; Temp=100C 44% Dynamic Switching Subtreshold Leakage Gate Leakage Junction LeakageGate Delay [normalized to gate delay wihtout supply gating]Process=70nm; VDD=1V; Temp=100C1.2Temp=100C801.166040%Power [normalized]Process=50nm; VDD=0.9V601.1245%4018%401.08Process=70nm; VDD=1V; 8% 6%20201.040No Supply Gating Supply Gating T r Width = 5X Supply Gating T r Width = 10X0No Supply GatingSupply Gating Tr Width = 5XSupply Gating T r Width = 10X3% 1 5 6 7 8 9 10 Width of Supply Gating Tr [normalized to minimum feature size]Fig. 1: Different leakage components vs. temperature for 50nm NMOS [1].(a) 70nm process (b) 50nm process Fig. 3: Effectiveness of supply gating for power reduction120 100Fig. 4: Effect of supply gating on delay120 100Process=70nm; Temp=100C Vdd=1.0VDynamic Switching Subtreshold Leakage Gate Leakage Junction LeakageProcess=50nm; Temp=100CDynamic Switching• Novel circuit techniques to reduce active power (both switching and leakage) using supply gating. The technique has been applied to a decoder circuitry to show large improvements in active power with minimal area and delay overhead. • Extension of supply gating for power reduction in active mode to general logic circuits using Shannon expansion based synthesis method. • Sizing of supply gating transistors for minimal impact on performance while maximizing power reduction. A precomputation based method for hiding the delay of control signal generation for supply gating transistors is proposed.Vdd=0.90 VSubtreshold Leakage Gate LeakagePower [normalized]Power [normalized]80 60 40 20 0 No Supply Gating17% Vdd=1.13V33%Junction LeakageVdd=1.0580Vdd=0.96V60Vdd=0.94V35%38%40 20 0Supply Gating T r Width = 5XSupply Gating T r Width = 10XNo Supply GatingSupply Gating Tr Supply Gating T r Width = 5X Width = 10X(a) 70nm process (b) 50nm process Fig. 5: Power reduction by supply gating at iso-delay The leakage breakdown of the circuit (INV2 and INV3) with and without supply gating is shown in Fig. 3. Dynamic switching power is also added to obtain the total power. Dynamic switching power is measured in the active mode for a frequency of 1GHz and input switching activity of 20%. In the supply gated case, two sizes of the supply gating transistors are considered: 5 times the minimum size (5X) and 10 times the minimum size (10X). In the circuit without supply gating, the subthreshold leakage is the dominant component of leakage (more than 50% and 60% of total in 70nm and 50nm). By supply gating, the subthreshold leakage reduces dramatically due to the stacking effect (negative Vgs and body effect on the OFF NMOS transistors). The overall gate leakage reduces because of smaller voltage drop across gate oxides of transistors due to the raised virtual ground voltage (reduction in the effective voltage drop across the supply lines of the circuit: VDD and VGND). The reverse biased junction tunneling leakage is not affected much by supply gating because voltage drop across some junctions reduce (Ibd2) whereas voltage drop across some other junctions increase (Idb1 and Isb1). Since the overall leakage is dominated by subthreshold (and gate leakage in such a scaled technology), supply gating remains an effective method for total leakage reduction. Another observation from Fig. 3 is that the overall leakage in the supply gated mode is weakly dependent on the size of the supply gating transistor. There is a slight increase in leakage by upsizing the supply gating transistor due to small increase in each component of leakage. The switching power in the active mode is insignificantly affected by the supply gating. However, due to reduction in the leakage, there is an overall power reduction of 38% and 44% in total power in 70nm and 50nm nodes, respectively. The result clearly shows the effectiveness of supply gating in scaled technologies. From Fig. 4, it is observed that the delay reduces by upsizing the supply gating transistor. In 70nm, supply gating has a delay overhead of 6% to 3% as the size of the supply gating transistor varies from 5X to 10X. The delay overhead can be reduced by increasing the supply voltage. However, high voltage reduces the power savings of the supply gating technique. Fig. 5 provides an isodelay comparison of power dissipation between the original design (no supply gating) and the design with dynamic supply gating. By increasing the supply voltage of the supply gated circuit, it is possible to avoid the delay penalty. In that case, the power saving2.Supply Gating for Reducing Active PowerAssuming that part of a circuit is identified to be idle in the active mode, redundant switching in that part of the circuit results in wasted switching power in addition to leakage power. By applying supply gating to that portion of the circuit, both components of the wasted power can be reduced. Supply gating can prevent propagation of signal activities from primary inputs to the intermediate and output nodes of the idle circuit. Fig. 2 illustrates supply gating applied to an inverter chain. In this circuit, supply gating is implemented using an NMOS transistor that controls the connection of the virtual ground (VGND) node to the real ground (GND). In the supply gated mode, due to circuit leakage, the voltage of the virtual ground node reaches an intermediate voltage level, resulting in stacking effect for leakage reduction [5]. In addition to significant reduction in leakage current, supply gating prevents redundant switching in the idle blocks. To understand the impact of supply gating on overall and individual components of leakage, let us consider two inverters that are in two different states as shown in Fig. 2 (INV2 and INV3) and observe different components of leakage currents in the supply gated mode. The different components of leakage and the direction of current flow in each logic gate depend on the state of the logic. The detailed leakage components are illustrated in Fig. 3 for this state of the circuit in two processes (70nm and 50nm).VDD INV1 INV2Igd2INV3Isd2 Isg4 Ibd2 Idg4INOUT1=‘1’Igd1 Igs1OUT2=‘0’Idb1Idg3 Isb1OUT3=‘1’Idb3 Ids3 Isb3Subthreshold leakage Gate leakage Junction leakageGating ControlIdg0Idb0 Ids0Virtual GND (VGND)Shared Supply Gating TransistorGND In supply gated mode (Gating Control =‘0’): if OUT1=‘1’ V(OUT1)=V(OUT3)=Vdd and V(OUT2)=V(VGND)≈Vdd-VtFig. 2: Supply gating for prevention of input switching propagation and leakage reduction 480reduces mainly due to increase in the dynamic switching power. However, the overall power still remains less than the original design. Under iso-delay voltage scaling, the supply gated circuit shows power reduction of 17% and 33% in 70nm and 50nm process, respectively. Another interesting observation from Fig. 5 is that by upsizing the supply gating transistor, the required supply voltage for maintaining the delay is reduced and hence, more power reduction is achieved under iso-delay. Since the delay improvement becomes marginal beyond the size of 10X for the supply gating transistor, we have chosen this size for the supply gating transistor in our designs. In a real circuit, all the logic gates do not switch simultaneously. Therefore, by sharing the supply gating transistor, the sizing of the shared transistor can be reduced. We have used the following rule for sizing the shared supply gating transistor. Assuming half of the logic gates in a circuit switch at a time (statistically speaking), the size (width) of a shared supply gating transistor is given by: (2) W = (10×Lmin) × (n/2) where n is the total number of logic gates in the circuit and Lmin is the minimum feature size in a given process technology. If further delay reduction is required, the size of the supply gating transistor can be increased without much impact on leakage reduction (Fig. 3).M0 WL<0:63> Final Decoder * 64 M1100 80 Power Saving % 60 40 20 0 8 12 16 Number of Bits of Row Address Decoder 70nm technology 50nm technologyPre-decoderG1M1 *4 *8 *8…M0 WL<192:255> Final Decoder * 64Address<7:0> *8Fig. 6: 8-bit row decoderFig. 7: Power saving by dynamic supply gating in decoders3. A Circuit Example: Active Leakage Reduction in Memory Address DecoderIn this section, we show that supply gating for active leakage reduction can be easily applied to any circuit with a tree structure. A memory address decoder is used as an example to explain the power reduction capability of the supply gating technique in the active mode. In address decoders, the switching activity of logic gates is low, especially for the final buffers, which drive the global word line (WL). Furthermore, to drive the global WL, which has a large capacitance, large buffers are used. In scaled technologies, such large buffers can dissipate significant leakage power. A row address decoder consists of pre-decoders, final-decoders, and WL drivers [6]. The decoder structure shows that considerable portions of the circuit are inactive during regular operations. By using the output of the pre-decoder, it is possible to turn off (by supply gating) certain parts of the final decoder, thereby, achieving active leakage saving in the logic gates of the idle blocks. Fig. 6 shows an 8bit row decoder with supply gating based active leakage management. As shown in Fig. 6, the most significant bits of the row address are fed into the NAND gates (G1) within the pre-decoder. The output of G1 is sent to the final decoder together with the outputs of the other predecoder gates as in the conventional design. Moreover, the output of G1 turns on or off the supply gating transistors (M0 and M1 in Fig. 6) so as to activate or deactivate certain blocks of the final decoders. In Fig. 6, the WL drivers are selectively gated to GND or VDD. This is due to the fact that a floating WL will reduce the memory cell stability. Hence, the voltage of a WL has to be stable at zero if it is not accessed. Moreover, the supply gating transistors, M0 and M1, can be shared among all the final decoding logic controlled by the same G1 output. This is due to the fact that, even in the active mode, only one path in these blocks is triggered. Fig. 7 shows the percentage of improvement in total power dissipation achieved by dynamic supply gating in decoders designed in 70nm and 50nm nodes. With the increase in the size of the decoder (number of bits), the power savings increase considerably. This is due to the fact that the number of final decoders increases exponentially with the increase in the number of bits. For such a situation, the total power of row address decoders is dominated by the leakage of the logic gates in the final decoders. Fig. 7 also shows that there is more power reduction in 50nm than 70nm. Hence, the effectiveness of the dynamic supply gating for active leakage power reduction improveswith technology scaling. The overhead of supply gating in row address decoders is minimal. Since the output of the pre-decoder is used to control the gating transistors, the gating transistors are turned on by the time the inputs propagate to the final decoder. Therefore, the delay of turning on the supply gating transistors is hidden by the pre-decoder delay. We observe that the delay overhead is about 9% of the total decoder delay for both 70nm and 50nm technologies. Since the gating transistors are shared, the area overhead is very low (only 1.3% of the decoder area). 4. Active Leakage Reduction in General Logic Circuits: A Synthesis Technique Based on Shannon Expansion We extend the principle of supply gating described in Section 3 to develop a synthesis flow for application of dynamic supply gating to general combinational circuits. The synthesis technique should distinguish between the active logic gates and the idle ones during the active mode of operation and dynamically apply supply gating to the idle gates without causing any final output node to get a floated state. In this section, we develop such a synthesis approach using Shannon expansion [8]. 4.1. Dynamic Supply Gating (DSG) Scheme using Shannon Expansion Shannon expansion has been used in logic synthesis for logic simplification and optimization [8]. It partitions any Boolean expression into disjoint sub-expressions as shown below: f (x1,..., xi ,..., xn ) = xi ⋅ f (x1,..., xi =1,..., xn ) + xi' ⋅ f (x1,..., xi = 0,..., xn )= xi ⋅ CF + xi' ⋅ CF2 1 CF1 = f (x1,..., xi =1,..., xn ); CF2 = f (x1,..., xi = 0,..., xn )(3)where, xi is called the control variable, and CF1 and CF2 are called cofactors. From the above expression, it is clear that depending on the state of the control variable (xi), the computed output of only one of the cofactors (CF1 or CF2) is required at any given instant. This implies that the other cofactor does redundant computation and leaks at any time instant. Hence, this provides an opportunity for gating the supply of the idle cofactor circuit to eliminate its redundant computation and leakage energy. We utilize Shannon theorem to identify the active/idle parts of a circuit for dynamic supply gating (DSG). The proposed DSG scheme using Shannon expansion is illustrated in Fig. 8(a). The supply gating transistors of CF1 and CF2 are controlled by xi and xi’, respectively. The output of CF1 and CF2 are merged using a multiplexer (MUX) controlled by xi. The MUX directs the output of the active cofactor to the final output. 4.2. Areas of Optimization There are areas of optimization to further reduce power dissipation in the proposed DSG scheme. The Boolean function itself has to be initially optimized to minimize the number of literals before applying the Shannon expansion. This optimization ensures that the derived cofactors from the Shannon expansion are also optimized for minimal area and therefore power. Let us consider the following Boolean function f:481Inputsf = x1 ' x2 + x1 x2 '+ x1 x4 x5 x6 + x1 ' x3 x5 x6 + x1 x7 x8 + x7 x8 x9 x10 x11 + x1 ' x10 x11 + x1 x5 x6 + x4 x7 x8 After initial optimization, the following optimized function is obtained (fopt): f opt = x1 ' x2 + x1 x2 '+ x1 x5 x6 + x1 ' x3 x5 x6 + x1 x7 x8InputsCF1opt xi1M U 0XCF1 xi1M U Output 0XInputsCF2opt xi’xiInputs+ x7 x8 x9 x10 x11 + x1 ' x10 x11 + x4 x7 x8An optimized Boolean function may contain minterms that do not include the control variable. These minterms will be included in each of the cofactors determined by the Shannon expansion. This would involve duplication of the same logic realization of these minterms, which is not desirable in terms of area and leakage. Therefore, to minimize area overhead, it is better to include them as a separate shared logic (SL) circuit common to both the cofactors. However, the shared logic cannot be supply gated because its computation is required irrespective of the state of the control variable. Therefore, the optimal strategy is to choose a control variable that would minimize the shared logic. In the above example, the optimal control variable is x1, as it appears in the largest number of minterms (minimizes the shared logic). The cofactors determined by the Shannon expansion are as follows: Control Variable = x1 ⇒ CF 1 = x 2 '+ x5 x 6 + x 7 x8 + x 7 x8 x9 x10 x11 + x4 x7 x8 CF 2 = x 2 + x3 x5 x 6 + x10 x11 + x 7 x8 x9 x10 x11 + x 4 x7 x8 The last two minterms of CF1 and CF2 are common because they are the minterms of fopt that do not contain x1. Therefore, those two minterms are implemented as a shared logic (SL) as follows:f opt = x1 i CF 1opt + x1 'i CF 2 opt + SL CF 1opt = x 2 '+ x5 x 6 + x 7 x8 CF 2 opt = x 2 + x3 x5 x 6 + x10 x11 SL = x 4 x 7 x8 + x 7 x8 x 9 x10 x11CF2 xi’xiShared LogicOutput(a) (b) Fig. 8: Proposed dynamic supply gating based on Shannon expansion: (a) basic idea, (b) with sharing among mintermsInputsInputsCF1opt xi Pre-Mux shared logic CF2opt x i’1 M U 0 X InputsxiThe circuit realization of the above expression with DSG is shown in Fig. 8(b). The final output is derived by OR-ing the MUX output and the output of the shared logic. The cofactors CF1opt, CF2opt and the shared logic SL may have common sub-expressions in their minterms. These common subexpressions represent the same logic gates with same inputs, which are duplicated in separate blocks after the logic is mapped to a library. To further reduce the area, the common sub-expressions among CF1opt, CF2opt, and SL should be identified and shared. The shared sub-expressions common to CF1opt/CF2opt, CF1opt/SL and CF2opt/SL are moved to the Pre-MUX shared logic as shown in Fig. 9. A new variable (yi) is assigned to any shared sub-expression. In the above example, the common sub-expressions are as follows: y1 = x5 x6 ; y2 = x7 x8 ; y3 = x10 x11 The remaining logic in SL after the sub-expression sharing is represented as Post-MUX shared logic as shown in Fig. 9. The expressions CF1opt, CF2opt and Post-MUX are modified in terms of the new variables (yi’s) as shown below for the above example: CF1opt = x2 '+ y1 + y2 ; CF 2opt = x2 + x3 y1 + y3 ; SL = x4 y2 + x9 y2 y3 The logic of the shared minterms (yi’s) is implemented in Pre-MUX shared logic and provides outputs to CF1opt, CF2opt and Post-MUX blocks as shown in Fig. 9. These blocks will be individually synthesized using the above expressions (yi’s are treated as primary inputs). The above-mentioned design methodology targets overall power reduction. It can be recursively applied for factoring of CF1opt, CF2opt and SL to further reduce power. However, there is some delay/area and switching energy overhead associated with added supply gating transistors and the multiplexer at each level of recursion. Beyond certain number of recursion levels the added overhead may 482Fig. 9: Common sub-expression as shared logic (without supply gating) offset the savings obtained by the above design methodology. Therefore, there is an optimal number of levels (hierarchy) for recursive application of our design methodology to minimize power dissipation, while satisfying a given delay constraint. 4.3. Automated Synthesis Flow for Dynamic Supply Gating In this section, we propose an automated synthesis flow for dynamic supply gating (DSG) using Shannon expansion. The automated synthesis flow considers all the optimization steps described in the previous section. The complete synthesis flow is shown in the Fig. 10. Part (a) of Fig. 10 represents the optimal synthesis flow for one level of DSG using Shannon expansion. Part (b) of Fig. 10 highlights the algorithm for recursive application of the method described in part (a) for multi-level expansion. In part (a) of the flow, conventional logic optimization and synthesis (step 1) is performed on the input Boolean expression and the resulting logic is technology-mapped to a gate library. Then, the resulting power and delay (Porig and Dorig) are estimated using a graph representation of the optimized logic. The power estimated in this part of the flow will be used to compare the power resulting from DSG synthesis flow to determine if any power saving is obtained by dynamic supply gating. The estimated delay is used to verify whether it satisfies the specified delay constraint. Part (a) of the flow illustrates the steps of synthesis for DSG. The optimized logic function obtained from step 1 is converted to a twolevel format (sum-of-products) in step 2. In step 3, the optimal control variable is identified and the corresponding cofactors (CF1 and CF2) and the shared logic (SL) are generated. The heuristic proposed to select the optimal control variable is discussed in detail in Section 4.4. The cofactors and the shared logic (CF1, CF2 and SL) are area optimized by utilizing the Common Sub-expression Elimination (CSE) described in Section 4.2. Then, the expressions of Pre-Mux shared logic, Post-Mux shared logic, CF1opt, and CF2opt are generated. After this optimization step, each of the logic functions (eg. CF1, CF2, SL) are separately synthesized and mapped to technology library. The individually synthesized functions areInputs InputsPost-Mux Shared LogicSLOutputconnected together with MUX and OR (Fig. 8). The corresponding delay (Dlevel1) and power (Pleve11) are estimated from a graph representation of the combined logic. The estimated power (Plevel1) is compared to that of the original design (Porig) to evaluate the power saving. If no power saving is achieved by DSG, supply gating is not used for the current level of expansion. If there is power reduction, the delay (Dlevel1) is compared with the given delay constraint to check if the DSG synthesized circuit meets the delay requirement. If the delay constraint is not met, delay reduction methods such as upsizing supply gating transistors and reducing logic sharing are applied and the power/delay conditions are rechecked. If both the power and delay conditions are satisfied, the circuit of current level of DSG is selected as the optimized output. The recursive application of the DSG synthesis at multiple hierarchies is highlighted in part (b) of the flow (Fig. 10). The decision to partition the jth cofactor at the hierarchy level ‘i-1’ (denoted by CFi-1,j) is based on: 1) comparison of the total power of its cofactors/shared logic circuits (CF1i,k, CF2i,k and SLi,k) with its original power consumption, 2) comparison of circuit delay with the delay constraint (Dspec) after expansion of CFi-1,j and application of supply gating to each of its cofactors. If the power of the circuit consisting of the cofactors and the shared logic (CF1i,k, CF2i,k and the SLi,k) is less than CFi-1,j and the delay constraint is satisfied (D(CF1i,k, CF2i,k and SLi,k) < Dspec), DSG expansion is performed at that hierarchy level. Otherwise, the recursion stops at the level ‘i-1’ for that cofactor circuit (CFi-1,j). 4.4. Optimal Selection of Control Variable In a circuit, the total power consists of both switching and leakage power. To estimate the total circuit power by its Boolean expression, the following assumptions are made: • All logic gates have the same average switching power denoted by Psw and the same average leakage power denoted by Pleak. • The number of logic gates after synthesis is proportional to the number of literals in the Boolean expression. • In a 2-level Boolean logic function, a particular input variable xi is associated with ‘a’ number of literals (whenever xi appears in one minterm, the other literals in the same minterm are counted) and its(a) Input logicOptimize/Map Logic (1)complement, xi’, is associated with ‘b’ number of literals. The total number of literals is ‘n’. • The signal probability of xi=1 is Pxi. The switching probability of xi is Sxi. • The switching power of the gated transistor is PGatingTr. With the above assumptions, the power consumption of the circuit after applying Shannon expansion is estimated as follows: P ≈ [n − (a + b)](P + Pleak ) + P [a(P + Pleak )] + (1 − P )[b(P + Pleak )] + Sxi ⋅ PGating_Tr xi xitotal sw sw swShared Logic PowerCF1 Power (co-factor of xi )CF2 Power (co-factor of xi')Gating Tr. Power≈ [n − (a ⋅ (1− P ) + b ⋅ P )](Psw + Pleak ) + Sxi ⋅ PGating_Tr xi xiAs shown by the above formulation, with the knowledge of Pxi, Sxi (from input signal statistics), a, b (from the Boolean function) and Psw, Pleak, PGatingTr (from the library), a greedy algorithm can be implemented to search for the optimal input variable, which leads to minimum overall power after factorization and application of supply gating at a particular level. This variable is selected as the control variable to apply Shannon expansion to the Boolean equation. 4.5. Synthesis for Multiple Output Circuits The DSG synthesis method can be easily extended to multi-output circuits by choosing a common control variable for all outputs at each level of expansion. For a multiple output circuit, all the minterms from every output expression are initially combined together to determine the control variable. There might be identical minterms in the combined function (from the different output expressions) during the selection of the control variable. These identical minterms are counted only once since in the circuit representation, the circuit for this minterm is shared among all the outputs. After selection of the control variable, DSG synthesis is applied to determine the cofactors (CF1s and CF2s) and shared logic (SL) for all the output functions. The multi-output circuit synthesis is illustrated with an example. Consider a 3-output circuit described by the function:O u t 1 = x1 x 2 x 3 + x1 ' x 6 + x 2 x 4 O u t 2 = x1 x 2 x 3 + x 1 ' x 4 x 5 + x 5 x 6 + x 3 x 4 O u t 3 = x1 x 2 + x1 ' x 4 x 3 + x 5 x 6(b) Hierarchical expansion of cofactorsCFi-1s, SLi-1s from (i-1)th stage Compute Power/Delay (Porig/Dorig) (2) Control variable selection from SOP; generate Cofactors (CFs)/ Shared Logic (SL) (3) Generation of Pre/Post MUX SLs and Optimized CFs (4) Eliminate common sub-expressions (5) Compute Power / Delay (Plevel1/D level1) (6) Yes Plevel1<Porig No Dlevel1<Dspec Yes Go to next DSG level for CFs and SLs EXIT No Upsize gating Tr. /Reduce sharing ΣP(CF+SLpre/pos)i,k<Pi-1,j Upsize gating Tr./Reduce sharing No Yes Di,k<Dspec No Generate SOP for CFi-1s,SLi-1s For each CFi-1,j/SLi-1,j Perform steps (3) to (5) (CFi-1,j = CF1i,k + CF2i,k+SLi,kpre/postmux) Compute power/delayIn the combined minterm representation, x1x2x3 is present in expressions for both Out1 and Out2. Therefore, it is counted only once in determining the control variable. Since the variable x1/x1’ is present in the largest number of minterms among all variables in the multi-output logic, x1 is selected as the control variable. Applying DSG based synthesis to all the three logic expressions in terms of x1:EXIT YesFig. 11: Synthesis for multi-output circuit Fig. 10: Optimal synthesis flow for dynamic supply gating 483。

相关文档
最新文档