初二数学答题纸
2022-2023学年重庆八中八年级上学期期末数学试卷及参考答案
2022-2023学年重庆八中初二数学第一学期期末试卷一、选择题。
(共10小题,每小题4分,满分40分) 1.下列北京冬奥会运动标识图案是轴对称图形的是( )A .B .C .D .2.函数3y x =+中,自变量x 的取值范围是( ) A .3x >−B .3x −C .3x ≠−D .3x −3.下列运算正确的是( ) A .246a a a ⋅=B .325(2)2a a =C .632x x x −÷=−D .222x x x −=4.下列等式中,从左到右的变形是因式分解的是( ) A .321836a bc a b ac =⋅ B .211(2)22ab a a b a −=−C .241(4)1x x x x −+=−+D .22(1)21x x x +=++5.已知点P 在第四象限,且到x 轴的距离是2,到y 轴的距离是7,则点P 的坐标为( )A .(7,2)−B .(2,7)−C .(7,2)D .(2,7)6.甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲 乙丙 丁 平均数x (单位:环)9.7 m 9.3 9.6 方差2s0.25n0.280.27根据表中数据,可以判断乙是四人中成绩最好且发挥最稳定的,则m 、n 的值可以是( ) A .9.9m =,0.3n = B .9.9m =,0.2n = C .9m =,0.3n =D .9m =,0.2n =7.将直线26y x =−+向左移1个单位,所得到的直线解析式为( ) A .27y x =−+B .25y x =−+C .28y x =−+D .24y x =−+8.如图,在ABC ∆中,13AB CB ==,BD AC ⊥于点D 且12BD =,AE BC ⊥于点E ,连接DE ,则DE 的长为()A .52B .72C .5D .69.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有60张正方形纸板和140张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,设做x 个竖式无盖纸盒,y 个横式无盖纸盒,则可列方程组( )A .46023140x y x y +=⎧⎨+=⎩B .26043140x y x y +=⎧⎨+=⎩C .36024140x y x y +=⎧⎨+=⎩D .36042140x y x y +=⎧⎨+=⎩10.如图,直线3y x =+分别与x 轴、y 轴交于点A ,C ,直线y mx m =−分别与x 轴、y 轴交于点B 、D ,则下列说法正确的有( )A .直线AC 与x 轴夹角为45︒B .直线BD 经过点(1,0)C .当0m <时,直线BD 经过两个点1257(,),(,)22P y Q y ,则12y y <D .直线AC 与直线BD 相交于点(,2)M a ,则不等式3x mx m +−的解集为1x −二、填空题。
初二数学试卷带答案解析
初二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列命题错误的是 ( ) A .平行四边形的对角相等 B .正方形的对角线相等C .对角线相等的平行四边形是矩形D .对角线互相垂直的四边形是菱形2.等腰三角形一腰上的高与另一腰的夹角为50°,则该三角形的顶角的度数为( )A .40°B .50°C .40°或140°D .50°或140° 3.下列各组数中不能作为直角三角形的三边长的是( ) A .1.5,2,2.5 B .7,24,25 C .8,12,13 D .9,12,15 4.如图,反比例函数的图象经过点A (﹣1,﹣2).则当x >1时,函数值y 的取值范围是( )A .y >1B .0<y <lC .y >2D .0<y <25.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( )A .50°B .51°C .51.5°D .52.5°6.下列说法错误的是…………………………………………………( ▲ ) A .等腰三角形两腰上的中线相等B.等腰三角形底边的中线上任一点到两腰的距离相等C.等腰三角形两腰上的高线相等D.等腰三角形的中线与高重合7.下列四点中,在直线y=2x -1上的点是()A.(-2,4) B.(1,1) C.(1,3) D.(2,4)8.如图,已知∠AOB,王华同学按下列步骤作图:(1)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D,分别以点C、点D为圆心,大于CD的长为半径作弧,两弧交于点E,作射线OE;(2)在射线OE上取一点F,分别以点O、点F为圆心,大于OF的长为半径作弧,两弧交于两点G、H,作直线GH,交OA于点M,交OB于点N;(3)连接FM、FN.那么四边形OMFN一定是()A.梯形 B.矩形 C.菱形 D.正方形9.如图,在△ABC中,D是边BC上一点,BD=2DC,,,那么等于()A. B. C. D.10.已知三角形三边长为、、,则代数式的值为()A.正数 B.负数 C. D.非负数二、判断题11.近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内的浓度,并在浓度超过正常值时吸收以净化空气.小强家的浓度随着时间变化的图象如图所示,请根据图象解答下列问题:(1)写出点的实际意义;(2)在第小时内,与的一次函数表达式;(3)已知第小时是小强妈妈做晚餐的时间,厨房内油烟导致浓度升高.若该净化器吸收的速度始终不变,则第小时之后,预计经过多长时间室内浓度可恢复正常?12.已知关于x的两个一元二次方程,方程①:=0,方程②:=0.(1)若这两个方程中只有一个有实数根,请说明哪个方程没有实数根;(2)如果这两个方程有一个公共根a,求代数式的值.13.如图,点E,F在BC上,AB=DC,∠A=∠D,∠B=∠C.求证:BE=FC.14.如图,在方格纸中,已知格点△ABC和格点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为.(写出所有可能的结果)15.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,给出证明;若不成立,说明理由.三、填空题16.如图,∠CAE是△ABC的外角,且AD∥BC,AD平分∠EAC,若∠B=63°,则∠BAC=_____.17.当=-1时,二次根式的值是.18.已知数轴上点A 表示的数是,点B 表示的数是-1,那么数轴上到点B 的距离与点A 到点B 的距离相等的另一点C 表示的数是________.19.已知:如图所示,AB ∥CD ,若∠ABE=130°,∠CDE=152°,则∠BED= 度.20.若x 2﹣ax+25是完全平方式,则a= .四、计算题21.22.解不等式(组)(1)5x>3(x-2)+2 (2)五、解答题23.(8分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)求证:△ACD ≌△AED ; (2)若∠B=30°,CD=1,求BD 的长.24.如图,在平面直角坐标系xOy 中,一次函数的图象经过点A(,),且与正比例函数的图象交于点B (,).(1)求的值及一次函数的解析式;(2)若一次函数的图象与x 轴交于点C ,且正比例函数的图象向下平移m (m>0)个单位长度后经过点C ,求m 的值;(3)直接写出关于x的不等式的解集.参考答案1 .D【解析】试题分析:因为平行四边形的两组对角相等,所以选项A正确;因为正方形的对角线垂直、相等且互相平分,所以选项B正确;因为对角线相等的平行四边形是矩形,所以选项C正确;因为对角线互相垂直的平行四边形是菱形,所以选项D错误;故选:.D考点:1.平行四边形的性质;2.正方形的性质;3.矩形的判定;4.菱形的判定.2 .C【解析】试题分析:当为锐角三角形时可以画图,高与右边腰成50°夹角,由三角形内角和为180°可得,顶角为40°;当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为40°,三角形的顶角为140°.故选C.考点:等腰三角形的性质.3 .C 【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、72+242=252,符合勾股定理的逆定理,故错误;C、82+122≠132,不符合勾股定理的逆定理,故正确;D、92+122=152,符合勾股定理的逆定理,故错误.故选C.4 .D.【解析】试题分析:已知反比例函数的图象经过点A(﹣1,﹣2),可求得,把x=1代入可得y=2,结合反比例函数的图象即可得当x>1时,函数值y的取值范围是0<y<2.故答案选D.考点:反比例函数的图象;反比例函数图象上点的坐标特征.5 .D【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.点评:本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.6 .D【解析】此题考查等腰三角形的性质;等腰三角形两腰上的高线、中线相等,可以通过三角形全等进行证明,因为等腰三角形底边上的中线是顶角的平分线,根据角平分线的性质定理可知:角平分线上的点到角的两边的距离相等,所以A,B,C正确;等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”,所以D错误;7 .B【解析】把点的坐标代入y=2x -1中,(1,1)适合该函数,故该点在直线y=2x -1上,故选B 8 .C【解析】由作法可知:OF平分∠AOB,即∠MOF=∠NOF,MN是线段OF的垂直平分线,所以MO=MF,所以∠MOF=∠MFO,所以∠MFO=∠NOF,所以MF∥ON,同理MO∥NF,所以四边形OMFN是平行四边形,又因为MO=MF,所以平行四边形OMFN是菱形.故选:C.点睛:本题考查了基本作图,菱形的判定方法等知识,解题的关键是灵活运用所学知识解决问题.9 .C【解析】由BD=2DC,,可求得,又由三角形法则,即可求得.解:∵,BD=2DC,∴==,∵,∴=﹣=﹣.故选C.10 .B.【解析】试题分析:=,∵,,∴,∴的值为负数,故选B.考点:1.因式分解-运用公式法;2.三角形三边关系.11 .(1)点表示的实际意义为:当使用空气净化器小时时,浓度恰好降低至的正常值.(2);(3).【解析】试题分析:(1)由函数图象可以得出变量是时间t和PM2.5的浓度;(2)1小时后PM2.5的浓度达到正常值25;(3)设第1小时内,y与t的一次函数表达式为y=kt+b,由待定系数法求出其解即可;(4)设经过a小时后室内PM2.5浓度可恢复正常,由工程问题的数量关系建立方程求出其解即可.试题解析:(1)由函数图象,得题中的变量是时间t和PM2.5的浓度;(2)点M的实际意义是:1小时后PM2.5的浓度达到正常值25;(3)设第1小时内,y与t的一次函数表达式为y=kt+b,由题意,得,解得:,∴y=-60t+85(;(4)设经过a小时后室内PM2.5浓度可恢复正常,由题意,得125-60a=25,解得:a=.答:预计经过时间室内PM2.5浓度可恢复正常.【点睛】本题考查了一次函数的解析式的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出函数的解析式是关键.12 .(1)方程①没有实数根;(2)-4【解析】试题分析:(1)分别计算这两个方程的根的判别式的值,比较即可;(2)把a分别代入这两个方程,用所得的方程相减即可求得代数式ak-a-2k的值.试题解析:(1)∵△1=(k+2)2-4=k2+4k△2=(2k+1)2-4(-2k-3)=4k2+12k+13=(2k+3)2+4>0而方程①②只有一个有实数根∴方程①没有实数根(2)∵方程①②有一个公共根a,则有:=0,①=0. ②②-①后有:=0,即:=-4点睛:本题考查了一元二次方程ax2+b x+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程的解.13 .证明见解析【解析】试题分析:根据已知条件,利用ASA证明△ABF≌△DCE,根据全等三角形的性质可得BF=CE,再由BF-EF=CE-EF,即可得BE=CF.试题解析:在△ABF与△DCE中,∴△ABF≌△DCE(ASA)∴BF=CE ∴BF-EF=CE-EF,∴BE=CF点睛:全等三角形的判定和性质是中考中比较常见的知识点,一般难度不大,需熟练掌握.14 .(1)作图见解析(2)点D的坐标为(﹣2,2),(﹣2,﹣4)(2,﹣2)【解析】试题分析:(1)将△ABC绕着点O旋转180°,即可作出其关于点O对称的△A′B′C′;(2)根据平行四边形的不同位置,分三种情况进行讨论,得出点D的三种不同的坐标.试题解析:(1)如图:△A′B′C′即为所求;(2)如图,四边形ACOD1、四边形AD2CO、四边形ACD3O都是平行四边形,由图可得,D1(﹣2,2),D2(﹣2,﹣4),D3(2,﹣2)故点D的坐标为(﹣2,2),(﹣2,﹣4),(2,﹣2)。
初二数学试卷
初二数学试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A .B .3C .D .2.把分式中的和都扩大2倍,分式的值 ( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍3.已知实数x ,y 满足,则x —y 等于A .3B .0C .1D .—14.如图,数轴上点P 表示的数可能是( )A .B .C .﹣3.2D .5.对于圆内接四边形ABCD ,要证明:“如果∠A≠∠C ,那么BD 不是直径”当用反证法证明时,第一步应是:假设()A .∠A≠∠CB .∠A=∠C C .BD 不是直径 D .BD 是直径 6.如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=10,AC=6,则△ACD 的周长为( )A .14B .16C .18D .20 7.下列各种说法正确的是A .面积相等的两个三角形一定全等B .周长相等的两个三角形一定全等C .顶角相等的两个等腰三角形一定全等D.底边相等的两个等腰直角三角形一定全等8.人数相等的甲、乙两班学生参加同一次数学测验,班级平均分和方差分别为83分,83分,245分,190分,成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定9.等腰三角形的一个内角为50°,则另外两个角的度数分别为()A.65°,65°B.50°,80°C.65°,65°或50°,80°D. 50°,50°10.等腰三角形有一个角为50°,则它的顶角度数是( )A.50° B.65° C.80° D.50°或80°二、判断题11.-52的平方根为-5.()12.解不等式组;(1)13.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.(1)当运动时间t为多少秒时,PQ∥CD.(2)当运动时间t为多少秒时,以点P,Q,E ,D 为顶点的四边形是平行四边形14.(1)约分(2)通分和15.如图,在方格纸中,已知格点△ABC和格点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若以点A 、O 、C 、D 为顶点的四边形是平行四边形,则点D 的坐标为.(写出所有可能的结果)三、填空题16.如图是一个立方体表面展开图,将图折叠起来,得到一个立方体,则“华”的对面是“ ”字.17.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于 度.18.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线长为68cm ,这个桌面__________ (填“合格”或“不合格”)。
2023北京西城区初二(下)期末数学试题及答案
2023北京西城初二(下)期末数 学2023.7注意事项:1.本试卷共8页,共两部分,四道大題,26道小题.其中第一大题至第三大题为必做题,第四大道为选做道,计入总分,考试时间100分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将考试材料一并交回.第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)1. 下列各式中,是最简二次根式的是( )2. 以下列各组数为边长,能构成直角三角形的是( )A. 2,3,3B. 2,3,4C. 2,3,5D. 233. 下列计算,正确的是( )3=-=23=⨯2÷=4. 下列命题正确的是( )A. 对角线相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是菱形C. 对角线垂直且互相平分的四边形是矩形D. 对角线垂直、相等且互相平分的四边形是正方形5. 在Rt ABC △中,90ACB ∠=︒,D 为斜边AB 的中点.若8AC =,6BC =,则CD 的长为( )A. 10B. 6C. 5D. 46. 小雨在参观故宫博物馆时,被太和殿窗棂的三交六椀菱花图案所吸引,他从中提取出一个含60︒角的菱形ABCD (如图1所示).若AB 的长度为a ,则菱形ABCD 的面积为( )C. 2a 27. 台风影响着人们的生产和生活.人们为研究台风,将研究条件进行一定的合理简化,把近地面风速画在一个以台风中心为原点,以台风半径为横轴,风速为纵轴的坐标系中,并在图中标注了该台风的12级、10级和7级风圈半径,如12级风圈半径是指近地面风速衰减至32.7m /s 时,离台风中心的距离约为150km .那么以下关于这场台风的说法中,正确的是( )A. 越靠近台风中心位置,风速越大B. 距台风中心150km 处,风速达到最大值C. 10级风圈半径约为280kmD. 在某个台风半径达到最大风速之后,随台风半径的增大,风速又逐渐衰减8. 在平面直角坐标系xOy 中,矩形OABC ,()0,3A ,()2,3B ,()2,0C ,点M 在边OA 上,1OM =.点P 在边AB 上运动,连接PM ,点A 关于直线PM 的对称点为A '.若PA x =,MA A B y +'=',下列图像能大致反映y 与x 的函数关系的是( ).A. B.C. D.第二部分 非选择题二、填空题9. 在实数范围内有意义,则实数x 的取值范围是______.10. 0=,则=a ______,b =______.11. 若ABC 的周长为6,则以ABC 三边的中点为顶点的三角形的周长等于______.12. 某商场招聘员工,现有甲、乙两人参加竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)和各项占比如下表所示,那么从甲、乙两人各自的平均成绩看,应该录取:______测试项目计算机语言商品知识在平均成绩中的占比50%30%20%甲的成绩708090乙的成绩90807013. 如图,直线y mx n =+与直线y kx b =+的交点为A ,则关于x ,y 的方程组,y mx n y kx b =+⎧⎨=+⎩的解是______.14. 小杰利用教材中的剪纸活动设计了一个魔术.他将一个长方形纸片对折两次,剪下一个45︒角(图1),展平后得到一个带正方形孔洞的魔术道具(图2),这个正方形孔洞ABCD 的边长为2cm (图4).他试图将一个直径为3cm 的圆形铁环(铁环厚度忽略不计)穿过这个孔洞,没有成功,于是他对这个道具进行折叠、旋转(图5、图6),并调整纸片产生一个新的“孔洞”(图3).请你计算调整前后的孔洞最“宽”处的“宽度”来说明魔术的效果.图4中的“宽度”BD =______cm ;图6中的“宽度”BD ''=______cm .15. 如图,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,CF 平分BCD ∠交AD 于点F ,BE 与CF 的交点在ABCD Y 内.若5BC =,3AB =,则EF =______.16. 在ABC 中,3BC =,BD 平分ABC ∠交AC 于点D ,DE BC ∥交AB 于点E ,EF AC ∥交BC 于点F .有以下结论:①四边形EFCD 一定是平行四边形;②连接DF 所得四边形EBFD 一定是平行四边形;③保持ABC ∠的大小不变,改变BA 的长度可使BF FC =成立;④保持BA 的长度不变,改变ABC ∠的大小可使BF FC =成立.共中所有的正确结论是:______.(填序号即可)三、解答题17. 计算:(1(2)+--.18. 在平面直角坐标系xOy 中,直线:26m y x =+与x 轴的交点为A ,与y 轴的交点为B ,将直线m 向右平移3个单位长度得到直线l .(1)求点A ,点B 的坐标,画出直线m 及直线l ;(2)求直线l 的解析式;(3)直线l 还可以看作由直线m 经过其他方式的平移得到的,请写出一种平移方式.19. 尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 及直线l 外一点P .求作:直线m ,使得m l ∥,且直线m 经过点P .;作法:①在直线l 上取一点A ,连接AP ,以点A 为圆心,AP 的长为半径画弧,交直线l 于点B ;②分别以点P ,点B 为圆心,AP 的长为半径画弧,两弧交于点C (不与点A 重合);③经过P ,C 两点作直线m .直线m 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BC .∵AP = = = ,∴四边形PABC 是(填“矩形”“菱形”或“正方形”)( )(填推理的依据).∴m l ∥( )(填推理的依据).20. 如图,在ABCD Y 中,AE BC ⊥于点E ,CF AD ⊥于点F .(1)求证:四边形AECF 是矩形;(2)连接BD ,若30CBD ∠=︒,5BC =,BD =DF 的长.21. 已知甲、乙两地相距60km ,小徐和小马两人沿同一条公路从甲地到乙地,小徐骑自行车3h 到达.小马骑摩托车比小徐晩1h 出发,骑行30km 时追上小徐,停留h n 后继续以原速骑行.在整个行程中,两人与甲地的距离y 与小徐骑行时间x 的对应关系分别如图中线段OA 和折线段BCDE 所示,DE 与OA 的交点为F .(1)线段OA 所对应的函数表达式为 ,相应自变量x 的取值范围是 ,线段BC 所对应的函数表达式为 ,相应自变量x 的取值范围是 ;(2)小马在BC 段的速度为 km/h ,n = ;(3)求小马第二次追上小徐时与乙地的距离.22. 某校为了解课外阅读情况,在初二年级的两个班中,各随机抽取部分学生调查了他们一周的课外阅读时长(单位:小时),并对数据进行了整理、描述和分析.下面给出了部分信息.a .甲班学生课外阅读时长(单位:小时):7,7,8,9,9,11,12b .乙班学生课外阅读时长的折线图:c .甲、乙两班学生阅读时长的平均数、众数、中位数:平均数中位数众数甲班m9t乙班9n9根据以上信息,回答下列问题:(1)写出表中m ,t ,n 的值;(2)设甲、乙两班数据的方差分别为21s ,22s ,则21s 22s (填“>”“=”或“<”).23. 在平面直角坐标系xOy 中,对于非零的实数a ,将点(),P x y 变换为,y P ax a ⎛⎫⎪⎝⎭'称为一次“a -变换”.例如,对点()2,3P 作一次“3-变换”,得到点()6,1P '.已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B .若对直线l 上的各点分别作同样的“a -变换”,点A ,B 变换后的对应点分别为A ',B '.(1)当2a =-时,点A '的坐标为 ;(2)若点B '的坐标为()0,6,则a 的值为 ;(3)以下三个结论:①线段AB 与线段A B ''始终相等;②BAO ∠与B A O ∠''始终相等;③AOB 与A OB ''△的面积始终相等.其中正确的是 (填写序号即可),并对正确的结论加以证明.24. 在菱形ABCD 中,60ABC ∠=︒,M ,N 两点分别在AB ,BC 边上,BM BN =.连接DM ,取DM 的中点K ,连接AK ,NK .(1)依题意补全图1,并写出AKN ∠的度数;(2)用等式表示线段NK 与AK 的数量关系,并证明;(3)若6AB =,AC ,BD 的交点为O ,连接OM ,OK ,四边形AMOK 能否成为平行四边形?若能,求出此时AM 的长;若不能,请说明理由.四、选做题25. 在单位长度为1的正方形网格中,如果一个凸四边形的顶点都是网格线交点,我们称其为格点凸四边形.如图,在平面直角坐标系xOy 中,矩形ORST 的四个顶点分别为()0,0O ,()0,5R,()8,0T ,()8,5S .已知点()2,4E ,()0,3F ,()4,2G .若点P 在矩形ORST 的内部,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6,所有符合题意的点P 的坐标为 .26. 在平面直角坐标系xOy 中,对于正方形ABCD 和它的边上的动点P ,作等边OPP '△,且O ,P ,P '三点按顺时针方向排列,称点P '是点P 关于正方形ABCD 的“友好点”.已知(),A a a -,(),B a a ,(),C a a -,(),D a a --(其中0a >).(1)如图1,若3a =,AB 的中点为M ,当点P 在正方形的边AB 上运动时,①若点P 和点P 关于正方形ABCD 的“友好点”点P '佮好都在正方形的边AB 上,则点P '的坐标为 ;点M 关于正方形ABCD 的“友好点”点M '的坐标为 ;②若记点P 关于正方形ABCD 的“友好点”为(),P m n ',直接写出n 与m 的关系式(不要求写m 的取值范围);(2)如图2,()1,1E --,()2,2F .当点P 在正方形ABCD 的四条边上运动时,若线段EF 上有且只有一个点P 关于正方形ABCD 的“友好点”,求a 的取值范围;(3)当24a ≤≤时,直接写出所有正方形ABCD 的所有“友好点”组成图形的面积.参考答案第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)题号12345678答案BDCDCBDA第二部分 非选择题二、填空题9. 2x ≥.10. 1,5-.11. 3.12.乙.13. 13x y =⎧⎨=⎩14. 4.15. 1.16.①③.三、解答题17. (1)2=+=+=.(2)+--225=--1=-.18. (1)解:对于直线:26m y x =+,当0x =时,6y =当0y =时,260x +=,解得3x =-,∴()30A -,,()06B ,,经过()30A -,,()06B ,两点的直线即为直线m ,然后将直线m 向右平移3个单位长度得到直线l ,所以m l ∥,且直线l 经过()00O ,;作出直线m 及直线l 的图象如图所示:(2)解:因为直线:26m y x =+向右平移3个单位长度得到直线l ,所以直线():236l y x =-+,即直线l 的解析式为2y x =;(3)解:∵直线:26m y x =+,直线:2l y x =,∴直线m 向下平移6个单位长度得到直线l (答案不唯一).19. (1)如图,直线m 即为所求作;(2)证明:连接BC ,∵AP AB PC BC ===,∴四边形PABC 是菱形.(四条边相等的四边形是菱形).∴m l ∥(菱形的对边平行).故答案为:AB ;PC ;BC ;菱形;四条边相等的四边形是菱形;菱形的对边平行.20. (1)证明:如图3.∵四边形ABCD 是平行四边形,∴AD BC ∥.∴180AEC EAF ∠+∠=︒,∵AE BC ⊥于点E ,CF AD ⊥于点F ,∴90AEC ∠=︒,90AFC ∠=︒.∴18090EAF AEC ∠=︒-∠=︒.∴90AEC EAF AFC ∠=∠=∠=︒.∴四边形AECF 是矩形.(2)如图4,作DG BC ⊥,交BC 的延长线于点G .∵在Rt DBG △中,90DGB ∠=︒,30DBG ∠=︒,BD =,∴2BDDG ==6BG ==.∵5BC =,∴1CG BG BC =-=.同理可得四边形FCGD 是矩形.∴1DF CG ==.21. (1)解:由题意得,线段OA 是小徐的函数图象,折线段BCDE 是小马的函数图象,∴小徐的骑行速度为60320km /h ÷=,∴线段OA 所对应的函数表达式为20y x =,其中相应自变量x 的取值范围是03x ≤≤;在20y x =中,当2030y x ==, 1.5x =,∴在小徐出发1.5h 时,小马追上小徐,∴小马的骑行速度为3060km/h 1.51=-,∴线段BC 所对应的函数表达式为()6016060y x x =-=-,其中相应自变量x 的取值范围是1 1.5x ≤≤;故答案为:20y x =,03x ≤≤,6060y x =-,1 1.5x ≤≤;(2)解:由(1)得小马在BC 段的速度为60km/h ,2 1.50.5n =-=,故答案为:60,0.5;(3)解:设小马在小徐出发t 小时后第二次追上小徐,由题意得,()2030602t t =+-,解得 2.25t =,∴小马在小徐出发2.25小时后第二次追上小徐,∴小马第二次追上小徐时与乙地的距离为60 2.252015km -⨯=.22. (1)平均数1(778991112)97=++++++=,故9m =,出现次数最多的有7和9,故7,9t =;由图知,乙班中位数为9,故9n =.(2)222222221122(79)(79)(89)(99)(99)(119)(129)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦222222222146(59)(79)(99)(99)(99)(109)(149)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦∴2212S S <.23. (1)直线24y x =-+与x 轴交于点A ,令0y =,即240x -+=,解得2x =,(2,0)A ∴,当2a =-时,点A '的坐标为0(22,)2-⨯-,即(4,0)-;故答案为(4,0)-(2)直线24y x =-+与y 轴交于点B ,令0x =时,4y =,(0,4)B ∴,若点B '的坐标为()0,6,即4(0,)a a ⨯,46a ∴=,解得23a =,经检验23a =是分式方程的解,则a 的值为23;故答案为23(3)③正确,理由如下:证明:∵直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,∴()2,0A ,()0,4B .∵点A ,B 变抰后的对应点分别为A ',B ',∴()2,0A a ',40,B a ⎛⎫⎪⎝⎭'.∵12442AOB S =⨯⨯=△,14242A OB S a a ''=⨯⨯=△,∴A OB AOB S S ''= ,即③正确.故答案为③24. (1)解:补全图形如图所示:.延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,∵AK EK =,∴NK AE ⊥,即90AKN ∠=︒.(2)解:NK ,证明如下:延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.∵K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,MAN CNE ∠=∠.∵ANC ABC BAN ∠=∠+∠,ANC ANE CNE ∠=∠+∠,∴60ANE ABC ︒∠=∠=∴ANE 为等边三角形,60NAK ∠=︒,在Rt ANK △中,90AKN ∠=︒,60NAK ∠=︒,可得30ANK ∠=︒,∴2AN AK=∴NK ==.(3)解:如图:四边形AMOK 能成为平行四边形,理由如下:∵菱形ABCD 的对角线AC ,BD 的交点为O ,∴BO OD =.∵DM 的中点为K ,∴OK 为DMB 的中位线.∴2BM OK =.∵四边形AMOK 为平行四边形,∴AM OK =.∴23AB AM BM AM OK AM =+=+=.∵6AB =,∴123AM AB ==.四、选做题25. 解:如图,111421214223222EFG S =⨯-⨯⨯-⨯⨯-⨯⨯=V ,113232P EG S =⨯⨯= ,∴11336EFG P EG P EFG S S S =+=+=四边形 ,此时,格点1P 的坐标为()5,4,过格点1P 作EG 的平行线,过格点23,P P ,则有:2313P EG P EG P EG S S S === ,∴26P EFG S =四边形,36P EFG S =四边形,∴()26,3,P ()37,2,P 又()411112422213,222P FG S =⨯+⨯-⨯⨯-⨯⨯= ∴41336EFG P FG P EFG S S S =+=+=四边形 ∴()42,1,P 所以,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6的点P 有四处,坐标为()()()()6,3,5,4,7,2,2,1,故答案为:()()()()6,3,5,4,7,2,2,1.26. (1)①);32⎫⎪⎪⎭;如图,OP OP PP ''==∴PM P M '=,3OM =,30MOP MOP ¢Ð=Ð=°∴2OP MP ¢¢=∴Rt OMP ¢ 中,222OM MP OP ¢¢+=,2223(2)MP MP ¢¢+=,解得MP '=∴P ;如图,过点M '作M F x '⊥轴,垂足为F ,则90OFM ¢Ð=°,3OM ¢=,∴9030M OF MOM ¢¢Ð=°-Ð=°∴1322M F OM ¢¢==∴OF ===∴32M ⎫'⎪⎪⎭②6n +.如图,直线P M ''交x 轴于点G ,∵60POP MOM ¢¢Ð=Ð=°∴POP MOP MOM MOP ¢¢¢¢Ð-Ð=Ð-Ð即POM P OM ¢¢Ð= 又,OP OP OM OM ¢¢==∴POM P OM ¢¢@ ∴90OM P OMP ¢¢Ð=Ð=°∵906030M OG ¢Ð=°-°=°,∴90903060OGM M OG ¢¢Ð=°-Ð=°-°=°,点(,)P m n '在直线M G '上,设直线解析式为(0)y kx b k =+≠,则332b b +=+=解得6k b ⎧=⎪⎨=⎪⎩∴6n +;(2)如上图,由(1)知若 (),A a a -,则OM OM a ¢==,Rt OM G ¢ 中,12M G OG ¢=,2221()2a OG OG +=,解得OG =,即点,0)G ,由(1)知点P 在线段AB 上时,直线P M ''与x 轴相交锐角为60︒,可设直线M G '为y q =-+,代入,0)G a ,解得2q a =,故点P '在直线2y a =-+上,即A B ''解析式为2y a =-+;如下图所示,同理可得,直线C D ''解析式为2y a =-,经过()1,1E --,则1(1)2a -=--,解得a =;如下图所示时,直线A B ''的解析式为2y a =+,经过()2,2F,则222a =+解得1a =+.1a <+.(3)如图,当2a =时,点P '轨迹所在四边形A B C D ''''的面积为2(22)16´=,当4a =时,点P '轨迹所在四边形的面积为2(24)64´=,故24a ≤≤时,正方形ABCD 的所有“友好点”组成图形的面积为641648-=.。
北京二中教育集团2024—2025学年上学期 八年级数学期中考试卷(含答案)
北京二中教育集团2024—2025学年度第一学期初二数学期中考试试卷考查目标1.知识:人教版八年级上册《三角形》、《全等三角形》、《轴对称》、《整式的乘法与因式分解》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.考生须知 1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡7页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共 16分)一、选择题(共16分,每题2分,以下每题只有一个正确的选项)1.中国古典建筑中有着丰富多彩的装饰纹样,以下四个纹样中,不是轴对称图形的是() A.B.C.D.2.下列计算正确的是( )A. B. C. D.3.如图是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,那么判定图中两三角形全等的条件是( )A.SSSB.SASC.AASD.ASA 4.如图,在中,边上的高是()32m m m -=326m m m ⋅=624m m m ÷=()239m m =ABC △BCA. B. C. D.5.如图,在中,,于D ,点B 关于直线的对称点是点,若,则的度数为( )A.8°B.10°C.20°D.40°6.已知式子的计算结果中不含x 的一次项,则a 的值为()A. B.3 C.1.5D.07.根据下列已知条件,不能画出唯一的是()A.,, B.,,C.,, D.,,8.如图,和分别是的内角和外角的角平分线,,连接.以下结论:①;②;③;④,其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.已知等腰三角形的两条边长分别为2和5,则这个等腰三角形的周长为______.10.若有意义,则x 的取值范围是______.11.如图,摄影师在拍照时为了确保照片的清晰度,往往会放一个三脚架来固定和支撑相机,这里用到的数学道理是______.BD CE BE AFABC △90BAC ∠=︒AD BC ⊥AD B '50B ∠=︒B AC '∠()()23x x a +-3-ABC △10AB =6BC =5CA =10AB =6BC =30A ∠=︒10AB =6BC =60B ∠=︒10AB =6BC =90C ∠=︒BD AD ABC △ABC ∠CAE ∠AD BC P CD AB AC =2BAC BDC ∠=∠4EAC ADB ∠=∠90ADC ABD ∠+∠=︒()021x -12.如图是一个五边形,图形中x 的值为______°.13.如图,在长方形中,,垂足为E ,交于点F ,连接.请写出一对面积相等但不全等的三角形______.14.若,,则______.15.如图,在等腰中,,,,,点C 的坐标是______.16.如图,等边的边长为5,点E 在上,,射线,垂足为点C ,点P 是射线上一动点,点F 是线段上一动点,当的值最小时,的长为______.ABCD AF BD ⊥AF BC DF 3a x =2b x =3a b x +=Rt ABC △90CAB ∠=︒AB AC =2OA =3OB =ABC △BC 2CE =CD BC ⊥CD AB EP FP +BF三、解答题(共68分,其中第17-21,23题每题5分,第22,24,25,26题每题6分,第27-28题每题7分)17.计算:.18.因式分解:.19.因式分解:.20.已知,求代数式的值.21.如图,中,,于点E ,于点D ,与相交于点F .求证:.22.如图,已知.(1)根据要求尺规作图:①作的平分线;②在上取点C ,作边的垂直平分线交于点D ,连接;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求证:.解:平分 垂直平分线段(____________)(填推理依据) (____________)(填推理依据)()2533a a a⋅--2328x y y -()()314x x +-+2410m m --=()()()22311m m m ---+ABC △45ABC ∠=︒BE AC ⊥AD BC ⊥BE AD BF AC =AOB ∠AOB ∠OP OP OC MN OA CD CD OB P OC AOB ∠AOC BOC ∴∠=∠MN OCDO DC ∴=AOC DCO ∴∠=∠BOC DCO ∴∠=∠CD OB∴P23.如图:在平面直角坐标系中,其顶点坐标如下:,,.(1)画出关于x 轴对称的图形.其中A 、B 、C 分别和、、对应;(2)点P 在y 轴上,若为等腰三角形,则满足条件的点P 的个数是______个.24.如图,是等边三角形,于D ,为边中线,,相交于点O ,连接.(1)判断的形状,并说明理由(2)若,求的长.25.如图1有三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形,老师用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2的面积关系,写出一个数学公式______;(2)根据数学公式,解决问题:已知,,求的值.26.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,例如:计算,可用竖式除法.步骤如下:①把被除式、除式按某个字母降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),再把两式相减;ABC △xOy ()3,1A -()1,2B --()1,3C ABC △111A B C △1A 1B 1C ACP △ABC △BD AC ⊥AE BC AE BD DE CDE △2OD =OB 7a b +=2229a b +=()2a b -()()43267121x x x x ---÷+46x 2x 33x 33x ()21x +()4363x x +④把相减所得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.余式为0,可以整除.请根据阅读材料,回答下列问题(直接填空):(1)请在两个方框内分别填入正确的数或式子;(2)多项式除以商式为______,余式为______;(3)多项式的一个因式是,则该多形式因式分解的结果为______.27.已知,,,连接和.(1)如图1,①求证:;②当时,的延长线交于点F ,写出与的数量关系并证明;(2)如图2,与的延长线交于点P ,连接,直接写出的度数(用含的式子表示)28.在平面直角坐标系,中,已知点,过点且垂直于x 轴的直线记为直线,过点且垂直于y 轴的直线记为直线.给出如下定义:将图形G 关于直线对称得到图形,再将图形关于直线得到图形,则称图形是图形G 关于点M 的双对称图形.(1)已知点M 的坐标为,点关于点M 的双对称图形点的坐标为______;()3210x x-- 432671x x x ∴---21x +2357x x +-2x +324839x x x +--1x -AB AC =AD AE =BAC DAE α∠=∠=BD CE BD CE =AD BD ⊥ED BC BF CF CE DB AP APB ∠αxOy (),M m n (),0m x m =()0,n y n =x m =1G 1G y n =2G 2G ()0,1()2,3N 2N(2)如图,的顶点坐标是,,.①已知点M 的坐标为,点,点,线段关于点M 的双对称图形线段位于内部(不含三角形的边),求n 的取值范围;②已知点M 的坐标为,直线l 经过点且平行于第一三象限的角平分线,当关于点M 的双对称图形与坐标轴有交点时,直线l 上存在满足条件的双对称图形上的点,直接写出k 的取值范围.北京二中教育集团2024—2025学年度第一学期初二数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.ACADB 6-8.CBD二、填空题(共16分,每小题2分)9.12 10.11.三角形具有稳定性 12.121°13.和(和,和,和)14.24 15. 16.3.5三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分,第27-28题每题7分)17.原式18.原式19.原式20.解:原式当时 原式21.证明:, ABC △()2,3A -()4,1B -()0,1C ()1,1-()4,P n ()4,1Q n +PQ 22P Q ABC △(),3m m -+()0,k ABC △222A B C △222A B C △12x ≠ABF △DBF △ABD △AFD △BCD △AFD △ABE △DEF △()5,2--66698a a a=-=-()()()2224222y x yy x y x y =-=+-()222234211x x x x x =+-+=++=+2224129131210m m m m m =-+-+=-+2410m m --=31013=+=BE AC ⊥ AD BC ⊥90ADB ADC BEC ∴∠=∠=∠=︒, 在与中 22.(1)图略(2)线段垂直平分线上的点与线段两个端点距离相等 等边对等角23.解:(1)图略 (2)524.(1)等边三角形证:在等边中,,, 又为边上的中线 又 是等边三角形(2),,,为边上的中线, 在中, 25.解:(1)(2)9又 26.解:(1)2,(2),(3)27.解:(1)①证: 90EBC C ∴∠+∠=︒90DAC C ∠+∠=︒EBC DAC ∴∠=∠45ABC ∠=︒ 9045BAD ABC ∴∠=︒-∠=︒ABC BAD∴∠=∠AD BD ∴=BFD △ACD △ADB ADC BD ADEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFD ACD ∴≌△△BF AC∴=ABC △AB BC AC ==60C ABC BAC ∠=∠=∠=︒AB BC = BD AC ⊥12CD AC ∴=AE BC 12CE BC ∴=CD CE ∴=60C ∠=︒ CDE ∴△AB BC = AB AC =BD AC ⊥AE BC 1302ABD ABC ∴∠=∠=︒1302BAE CAE BAC ∠=∠=∠=︒ABD BAE ∴∠=∠OA OB ∴=BD AC ⊥ 90BDA ∴∠=︒ Rt AOD △30CAE ∠=︒24OA OD ∴==4OB OA ∴==()2222a b a ab b +=++7a b += ()249a b ∴+=()()()22222a b a b a b ++-=+ ()2229499a b ∴-=⨯-=32105x x--31x -5-()()2123x x -+BAC DAE α∠=∠= BAC CAD DAE CAD ∴∠+∠=∠+∠在与中 ②法1:延长至G ,使,连接。
初二数学第一学期期末试卷
初二数学期末试卷班级学号姓名一、选择题(本大题共12小题,每小题3分,共36分。
)1.以下五家银行行标中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个2.在实数:..12.4, ,-2,722,0.6732323232,中,无理数的个数是( )A、1个B、2个C、3个D、4个3.下列图形不能体现y是x的函数关系的是( )4.将△ABC向右平移3个单位后得到△A′B′C′,若点A的坐标是(-2,3),则点A′的坐标是()A.(1,3)B.(-2,6)C.(-5,3)D.(-2,0)5、若一组数据1234,,.,,鬃nx x x x x的平均数为2003,那么++++12345,5,5,5x x x x …,5+nx这组数据的平均数是:()A、2005B、2006C、2007D、20086.如果菱形的边长是2cm,一条对角线的长也是2cm()(A)3cm (B)4cm (C)√3 cm (D)2√3cm7.若一次函数y=kx+b中,k>0,b<0则它的图像大致为()(A) (B) (C) (D)8.下列条件不能够判定“平行四边形ABCD是菱形”的是 ( )A、AB=BCB、AC⊥BDC、AD=CDD、AC=BD9.如图所示,DE 是△ABC 的中位线,FG 为梯形BCED 的中位线,若BC=8,则FG 等于( ) A .2cm B .3cm C .4cm D .6cm 10.如图,是象棋盘的一部分,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )上.A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2) 12.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它 从原点运动到(01),,然后接着按图中箭头所示方向运动 [即(00)(01)(11)(10),,,,],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( )A .(40),B .(50),C .(05),D .(55),二、填空题(本大题共12小题,每小题3分,共36分。
初二数学试卷
初二数学试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若xy>0,则点(x ,y )在直角坐标系中位于( ).A .x 轴上B .y 轴上C .第一或第三象限D .第二或第四象限 2.如图,将一张一个角为60°的直角三角形纸片,沿其一条中线剪开后,不能拼成的四边形是( ).A .邻边不等的矩形B .等腰梯形C .有一个角是锐角的菱形D .正方形3.把抛物线向右平移1个单位,所得抛物线的函数解析式为( ) A .B .C .D .4.直线y=2x+2沿y 轴向下平移6个单位后与x 轴的交点坐标是( )A .(-4,0)B .(-1,0)C .(0,2)D .(2,0) 5.如图,数学书的上下边可看作两条平行线,小明课间把老师的三角板的直角顶点放在上,已知,则的度数为( ▲ )A .B .C .D .6.(2013山东菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A.16B.17C.18D.197.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°8.下列各数中是无理数的是().A.4 B. C. D.9.以下分别为绿色食品、回收、节能、节水标志,其中是轴对称图形的是().10.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.32二、判断题11.(8分)如图,已知在中,,为边的中点,过点作,垂足分别为.(1)求证:;(2)若,=,求的周长.12.判断:只要是分式方程,一定出现增根. ()13.(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?14.判断:×===6()15.判断下列命题的真假,写出它们的逆命题,并判断逆命题的真假.(1)长方形是轴对称图形;(2)任何一条直线都是由无数个点组成的;(3)等腰三角形的两个底角相等;(4)如果两个数互为倒数,那么它们的积为1;(5)如果a+b>0,那么a>0,b>0.三、填空题16.如图,AB=AC,,若使△ABE≌△ACF,则还需要添加的条件是________.(只要写出一个答案).17.一个等腰三角形有两条边长分别为5和8,则它的周长是.18.当x 时,多项式x2+4x+6的最小值是.19.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________________cm.20.已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围___.四、计算题21.计算:(2﹣π)0﹣()﹣1+(﹣1)2016.22.如图所示,三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按(1)、(3)两个大三角形内填数的规律,在大三角形(2)的中间填上恰当的数,则这个数是多少?五、解答题23.如图1,将两块全等的直角三角形纸片△ABC 和△DEF 叠放在一起,其中∠ACB =∠E =90°,BC =DE =6,AC =FE =8,顶点D 与边AB 的中点重合.(1)若DE 经过点C ,DF 交AC 于点G ,求重叠部分(△DCG )的面积; (2)合作交流:“希望”小组受问题(1)的启发,将△DEF 绕点D 旋转,使DE ⊥AB 交AC 于点H ,DF 交AC 于点G ,如图2,求重叠部分(△DGH )的面积.24.如图1,在一张矩形纸片ABCD 上任意画一条线段GF ,将纸片沿线段GF 折叠,(1)重叠部分的△EFG 是等腰三角形吗?请说明理由.(2)若使点C 与点A 重合,折叠为GF ,如图2,△AFG 的面积记为S 1,图3中沿BD 折叠,△EBD 的面积记为S 2,试问S 1和S 2相等吗?请说明理由.参考答案1 .A.【解析】试题分析:∵xy>0,∴x、y同号,∴点M(x,y)在第一象限或第三象限.故选:A.考点:点的坐标.2 .D【解析】可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选D.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.3 .D.【解析】试题解析:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移一个单位得到对应点的坐标为(1,0),所以平移后的函数解析式为y=(x-1)2.故选D.考点:二次函数图象与几何变换4 .D.【解析】试题解析:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2-6=2x-4,当y=0时,x=2,因此与x轴的交点坐标是(2,0),故选D.考点:一次函数图象与几何变换.5 .B【解析】分析:先根据平行线的性质求出∠3的度数,再由两角互余的性质求出∠2的度数即可.解答:解:∵直线a∥b,∠1=55°,∴∠1=∠3=55°,∵三角板的直角顶点放在b上,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-55°=35°.故选B.6 .B【解析】根据等腰直角三角形、勾股定理先求出面积为S1的正方形的边长是大正方形对角线长的,面积为S2的正方形的对角线长是大正方形对角线长的一半.∵边长为6的大正方形中,对角线长为.∴面积为S1的小正方形的边长为,∴;面积为S2的小正方形的边长为3,所以S2=32=9,∴S1+S2=8+9=17.故选B.7 .D【解析】试题分析:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°,∴∠B=180°﹣80°=100°.故选D.考点:1.轴对称的性质;2.三角形内角和定理.8 .B【解析】=2,=2.5,=1.732…,故选B9 .A.【解析】试题分析:轴对称图形是如果一个图形沿着某条直线折叠,直线两旁的部分能互相重合,那么这个图形就是轴对称图形,显然A选项图形符合定义,故选A.考点:轴对称图形定义.10 .B【解析】试题分析:根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案.解:过点A做AD⊥BC于点D,∵等腰三角形底边上的高为8,周长为32,∴AD=8,设DC=BD=x,则AB=(32﹣2x)=16﹣x,∴AC2=AD2+DC2,即(16﹣x)2=82+x2,解得:x=6,故BC=12,则△ABC的面积为:×AD×BC=×8×12=48.故选:B.考点:勾股定理;等腰三角形的性质.11 .证明:(1),,,.是的中点,.(AAS).(2)解:,,∴△ABC为等边三角形.∴,,∴,∴BE=BD,,∴BD=2,∴BC=2BD=4,∴的周长为12.【解析】(1)根据DE⊥AB,DF⊥AC,AB=AC,证得∠B=∠C.再利用D 是BC的中点,即得△BED≌△CFD.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.12 .错【解析】试题分析:根据增根的定义即可判断.因为增根是使原方程的分母等于0的根,所以不是所有的分式方程都有增根,故本题错误.考点:本题考查的是分式方程的增根点评:解答本题的关键是熟练掌握分式方程的增根是使原方程的分母等于0的根.13 .(1)560 (2)54º(3)如图(4)1800【解析】试题分析:(1)要求去全体的人数,只要找到部分的具体数字去除以对应的百分数即可,所以一共抽查了的学生人数为224÷40%=560.(2)求出部分在圆中所占的度数,即求出该部分的百分数,用部分除以总数,即84÷560=15%,即360°×15%=54º.(3)由总人数560人可知,“讲解题目”的学生有560-84-168-224=84(人)(4)因为抽查的这些人中,“独立思考”的学生占总数的比例为168÷560=30%,所以6000名初三学生“独立思考”的初三学生约有6000×30%=1800(人)本题涉及了统计图的应用,该题是常考题,主要考查学生对统计图的读解以及对各种数据所占比例的计算。
初二数学试卷带答案解析
初二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若关于的方程组的解满足,则k 的取值范围是A .B .C .D .2.实数a 、b 在数轴上的位置如图所示,则化简代数式的结果是( )A .B .C .D .3.要使分式有意义,则x 的取值范围是( )A .x≠1B .x>1C .x<1D .x≠-14.如果等腰三角形两边长是9cm 和4cm ,那么它的周长是( )。
A .17 cm B .22cm C .17或22 cm D . 无法确定5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个 6.如图,在正方形ABCD 中,以AB 为边在正方形ABCD 内作等边△ABE ,连接DE ,CD ,则∠CED 的大小是( )A .160°B .155°C .150°D .145° 7.把多项式x 2一4x+4分解因式,所得结果是( )A .x(x 一4)+4B .(x 一2)(x+2)C .(x 一2)2D .(z+2)2 8.﹣2的相反数是( )A .2B .﹣|﹣2|C .D .﹣9.如图所示,∠1=∠2,则下列结论正确的是( )A.∠4=∠3B.∠2=∠4C.∠3+∠4=180°D.c//d10.在△ABC中,已知AB=3,AC=4,BC=5,则该三角形为().A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形.二、判断题11.解下列方程组(1)(2)12.某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的,两种长方体形状的无盖纸盒,现有正方形纸板张,长方形纸板张,刚好全部用完,问能做成多少个型盒子?多少个型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了个型纸盒,个型纸盒,则甲同学所列方程组应为_______;而乙同学设做型纸盒用张正方形纸板,做型纸盒用张正方形纸板,则乙同学所列方程组应为___。
初二数学考试试卷
初二数学考试试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一次函数的图象如图所示,当<0时,的取值范围是( )A .<0B .>0C .<2D .>22.如图所示,有三个矩形,其中是相似形的是( )A .甲和乙B .甲和丙C .乙和丙 D.甲、乙和丙3.在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( ) A .三边中线的交点 B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点4.如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为 ( )A .14B .15C .16D .175.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( )A.y>0B.y<0C.-2<y<0D.y<-26.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为().A.9 B.3 C. D.7.当k<0,反比例函数和一次函数的图象大致是()8.点M(1,-2)关于轴对称点的坐标为: ( )A.(2,-1) B.(-2,-1) C.(1,-2) D.(-1,-2)9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于().A.2cm B.3cm C.4cm D.5cm10.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球()A.6个 B.7个 C.9个 D.12个二、判断题11.如图,已知直线,且线段,若,则的度数是______:12.判断正误并改正:=0()13.如图,在中,AD是高,E、F分别是AB、AC的中点,(1)AB=10,AC=8,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系,证明你的结论.14.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长;(2)当P、C两点的距离为时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t 值,使得?若存在,请求出t的值;若不存在,请说明理由.备用图15.如图,,,点在轴上,且.(1)求点的坐标;(2)求的面积.(3)数轴上是否存在点,使以,,三点为顶点的三角形的面积为若存在,请直接写出点的坐标;若不存在,请说明理由.三、填空题16.已知点P (5,-2),点Q (3,a+1),且直线PQ 平行于x 轴,则a= .17.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 18.如图,△ABC 中,∠ACB=90°,以它的各边为边向外作三个等边 三角形,面积分别为S 1、S 2、S 3,已知S 1=20、S 3=100,则S 2=__19.如图,在三角形纸片ABC 中,∠C =90°,BC =4,将∠A 沿DE 折叠,使点A 与点B 重合,折痕和AC 交于点E ,AC =8,则AE 的长为_________.20.一个多边形的内角和等于外角和的3倍,那么这个多边形为______边形.四、计算题21.计算下列各题:(每小题5分,共10分) (1) (2)+22.化简下列二次根式,并指出被开方数相同的最简二次根式. (1); (2)(a >0); (3);(4)(a >0,b >0); (5)(a >0); (6);(7)(a >0,b >0); (8)(a >0,b >0).五、解答题23.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF。
初二数学试卷带答案解析
初二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列即是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.下列实际情景运用了三角形稳定性的是( ) A .人能直立在地面上 B .校门口的自动伸缩栅栏门C .古建筑中的三角形屋架D .三轮车能在地面上运动而不会倒 3.﹣2013×2015的计算结果是( ).A .1B .﹣1C .2D .﹣24.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,∠B=20°,则∠A 4=( )A .10°B .15° C .30° D .40°5.某一天的不同时刻老板把信交给秘书打字,每次都将信放在秘书信堆的最上面,秘书有时间就将信堆最上面的那封信取来打.假定共有5封信,且老板以1、2、3、4、5的顺序交来,在下列各顺序中,哪一顺序不可能是秘书打字的顺序?( )A .12345B .54321C .23541D .235146.在实数中:,-3|,,,,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有( ) A .4个 B .3个 C .2个 D .1个7.(2006•成都二模)下列命题中真命题的是( )A.有一组邻边相等的四边形是菱形B.对角线相等的四边形是矩形C.有一个角是直角的菱形是正方形D.有一组对边平行的四边形是梯形8.已知三角形两边长分别为3和9,则该三角形第三边的长可能是()A.6 B.11 C.12 D.139.如图:一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>0的解集是()A.x>0 B.x>2 C.x>﹣3 D.﹣3<x<210.化简的结果是A. B. C. D.二、判断题11.如图,直线分别与,轴交于、两点,过点的直线交轴负半轴与,且(1)求直线的函数表达式;(2)直线交直线于,交直线于点,交轴于,是否存在这样的直线,使得?若存在,求出的值;若不存在,说明理由.(3)如图,为轴上点右侧的一动点,以为直角顶点,为一腰在第一象限内作等腰直角三角形,连接并延长交轴于点.当点运动时,点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.12.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y (米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计).(1)直接写出点A坐标,并求出线段OC 的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?13.如图1,△ABC和△ADE都是等边三角形.(1)求证:BD=CE;(2)如图2,若BD的中点为P,CE的中点为Q,请判断△APQ的形状,并说明理由.14.分解因式,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:;(2)△ABC三边,,满足,判断△ABC的形状.15.在一次数学课上,周老师在屏幕上出示了一个例题,在中,,分别是,上的一点,与交于点,画出图形(如图),给出下列三个条件:①;②;③.要求同学从这三个等式中选出两个作为已知条件,可判定是等腰三角形.请你用序号在横线上写出其中一种情形,答:_________;并给出证明.三、填空题16.已知关于的不等式组的整数解共有3个,则的取值范围_____________17.△ABC和△A′B′C′关于直线l对称,若△ABC的周长为12cm,△A′B′C′的面积为6cm2,则△A′B′C′的周长为cm,△ABC的面积为cm2.18.如图,在△ABC中,BD是∠ABC的角平分线,已知∠ABC=80°,则∠DBC=°.19.____________;__________.20.如图,将长AB=5cm ,宽AD=3cm 的矩形纸片ABCD 折叠,使点A 与C 重合,折痕为EF ,则AE 长为 cm .四、计算题21.计算: (1)+|﹣1| (2)×+()0×3.22.(1)在平行四边形ABCD 中,若∠A ︰∠B =5︰4,求∠C ;(2)平行四边形ABCD 的周长为28cm ,AB ︰BC =3︰4,求它的各边长.五、解答题23.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作____天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费 2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?24.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、l0分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. 甲校成绩统计表乙校成绩扇形统计图 乙校成绩条形统计图(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.参考答案1 .C【解析】中心对称图形的定义:一个图形绕某一点旋转180°后能够与原图形完全重合,这个图形是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由此可得选项A 不是轴对称图形,是中心对称图形;选项B 不是中心对称图形,是轴对称图形;选项C 是中心对称图形也是轴对称图形;选项D 是中心对称图形,不是轴对称图形.故选C . 2 .C【解析】试题解析:古建筑中的三角形屋架是利用了三角形的稳定性, 故选C 3 .A . 【解析】试题分析:根据平方差公式得出﹣(2014﹣1)×(2014+1),再计算即可.原式=﹣(2014﹣1)×(2014+1)=﹣+1=1. 故选:A .考点:平方差公式. 4 .A【解析】试题分析:由∠B=20°根据三角形内角和公式可求得∠BA 1A 的度数,再根据等腰三角形的性质及三角形外角的性质找∠BA 1A 与∠A 4的关系即可解答.解:∵AB=A 1B ,∠B=20°,∴∠A=∠BA 1A=(180°﹣∠B )=(180°﹣20°)=80°. ∵A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4, ∴∠A 1CD=∠A 1A 2C , ∵∠BA 1A 是△A 1A 2C 的外角, ∴∠BA 1A=2∠CA 2A 1=4∠DA 3A 2=8A 4, ∴∠A 4=10°. 故选A .考点:等腰三角形的性质. 5 .D 【解析】试题分析:要将这个事件分解为两个事件:老板将信件交给秘书,先交来的在最下边;秘书打印信件,先打的在上面. 解:D 是不可能的.原因是:先打印2,说明下面已经有信件1了,这时候老板又拿来了信件3,秘书打印信件3,再打印信件5,说明此时下面已经有信件1,4了,而且信件4应该在信件1上面,接下来的顺序应该是5、4、1,而不可能是5、1、4.故选D.点评:此题考查了推理与论证,难度不大,解决问题的关键是读懂题意,找到所求的量的等量关系.6 .B【解析】试题分析:无理数是实数,且无理数是无限不循环小数。
初二数学试卷附答案解析
初二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50°2.下列给出的条件中,能判定一个四边形是菱形的是( )A .有一组对边平行且相等,有一个内角是直角B .两组对边分别相等,且有一组邻角相等C .有一组对边平行,另一组对边相等,且对角线互相垂直。
D .有一组对边平行且相等,且有一条对角线平分一个内角。
3.一个圆柱形桶,底面直径为24cm ,高为32cm ,则桶内所能容下的最长木棒长为(不计桶的厚度)( ) A .20cm B .50cm C .40cm D .45cm4.如图Rt △ABC 和Rt △A′B′C′中,∠C=∠C′=90°,再添两个条件不能够全等的是( )A .AB=A′B′,BC=B′C′B .AC=AC′,BC=BC′C .∠A=∠A′,BC=B′C′D .∠A=∠A′,∠B=∠B′5.下列函数中,表示y 是x 的正比例函数的是( ) A .y=2x 2 B .y= C .y=2(x -3) D .y=6.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.若是一个完全平方式,则的值为( )A .30B .±30C .±15D .15 8.使分式的值等于零的x 是( )A .6B .-1或6C .-1D .-69.(2014•新疆)如图,四边形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=3,BC=5,则EF 的值是( )A. B.2 C. D.210.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或150°D .60°或120°二、判断题11.(9分)把长方形沿对角形线AC 折叠,得到如图所示的图形,已知∠BAO=30°,求∠AOC 和∠BAC 的度数; 若AD =,OD=,求CD 的长12.如图,在△ABC中,AB=AC,M是BC的中点,MD⊥MB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为D、E、F、G,DF、EG相交于点P,四边形MDPE是菱形吗?为什么?13.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.14.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF="ED," EF⊥ED.求证: AE平分∠BAD.15.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠ABC=60°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在给出的网格图上找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.三、填空题16.已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD 的取值范围是.17.在一次函数y =kx+2中,若y随x的增大而增大,则k______0.(填“>”或“<”),它的图象不经过第______象限.18.不等式 2x-1<3的非负整数解是 .19.若有意义,则________.20.已知a 、b 、c 位置如图所示,试化简:|a+b ﹣c|+=_____.四、计算题21.某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数情况:同时已知,进球3个以上(包括3个)的人平均每人投进3.5个球;进球4个以下(包括4个)的人平均每人投进2.5个球,问:投进3个球和4个球的各有多少人? 22.关于的两个不等式①与②.()若两个不等式的解集相同,求的值.()任不等式①的解都是②的解,求的取值范围. 五、解答题23.如图,在ΔABC 中,∠BAC =90°,AB =AC ,点D 在BC 上,且BD =BA ,点E 在BC 的延长线上,且CE =CA ,(1)试求∠DAE 的度数.(2)如果把第(1)题中“AB =AC ”的条件舍去,其余条件不变,那么∠DAE 的度数会改变吗?(3)如果把第(1)题中“∠BAC =90°”的条件改为“∠BAC >90°”,其余条件不变,那么∠DAE 与∠BAC 有怎样的大小关系?24.因式分解:(1)-3ma 2+12ma -12m ;(2)n 2(m -2)+4(2-m);参考答案1 .D【解析】试题分析:要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.考点:全等图形.2 .D【解析】试题分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,根据方法判定即可.A、错误,可判定为矩形,而不一定是菱形;B、可判定为矩形,而不一定是菱形;C、可判定为等腰梯形,而不是菱形;D、正确,有一组对边平行且相等可判定为平行四边形,有一条对角线平分一个内角,则可判定有一组邻边相等,而一组邻边相等的平行四边形是菱形,故选D.考点:本题考查菱形的判定方法点评:解答本题的关键是掌握好菱形的判定方法:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.3 .C【解析】由勾股定理得(cm),故选C.4 .D【解析】试题分析:解答此题的关键是要熟练掌握直角三角形全等的判定方法,然后逐项分析即可得出答案.解:A选项,AB=A′B′,BC=B′C′,可利用HL 判定Rt△ABC≌Rt△A′B′C′,同理B选项,也可利用HL 判定Rt△ABC≌Rt△A′B′C′,C选项∠A=∠A′,BC=B′C′,可利用AAS判定Rt△ABC≌Rt△A′B′C′,D选项,∠A=∠A′,∠B=∠B′,只能证明Rt△ABC∽Rt△A′B′C′,不能证明Rt△ABC≌Rt△A′B′C′.故选D.点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,解答此题的关键是熟练掌握直角三角形全等的判定方HL,AAS.SAS,ASA,SSS.5 .D【解析】试题分析:正比例函数的定义:形如的函数叫做正比例函数. A、是二次函数,B、是反比例函数,C、是一次函数,但不是正比例函数,故错误;D、符合正比例函数的定义,本选项正确.考点:本题考查的是正比例函数的定义点评:本题属于基础应用题,只需学生熟知正比例函数的定义,即可完成.6 .B.【解析】试题解析:∵AC=6cm,BC=8cm,∠C=90°∴AB=10cm,∵AE=6cm(折叠的性质),∴BE=4cm,设CD=x,则在Rt△DEB中,42+x2=(8﹣x)2,∴x=3cm.故选B.考点:勾股定理.7 .B【解析】分析:由于9x2-my+25y2是一个完全平方式,而9x2=(3x)2,25y2=(5y)2,然后根据完全平方公式即可得到m的值.解:∵9x2-my+25y2是一个完全平方式,而 9x2=(3x)2,25y2=(5y)2,∴m=±2×3×5=±30.故选B.8 .A【解析】试题分析:分式的值为0的条件:分式的分子为0且分母不为0时,分式的值为0.由题意得,解得,则故选A.考点:分式的值为0的条件点评:本题属于基础应用题,只需学生熟练掌握分式的值为0的条件,即可完成.9 .A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B 恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选:A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.10 .D【解析】试题分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.11 .(1)∠AOC=120°,∠BAC=60°(2)CD=【解析】试题分析:(1)利用平行线的性质,三角形的外角定理解决即可;(2)利用等角对等边性质定理和勾股定理解决即可.试题解析:(1)∵四边形是矩形∴AD∥ ,∴∠1=∠3∵翻折后∠1=∠2∴∠2=∠3∵翻折后∠BAO=30°∴∴∠2=∠3=30°∴(2)∵∠2=∠3∴AO=CO∵AD=,OD=∴AO=CO=∵四边形是矩形∴∠D是直角∴在中,点睛:图形的翻折问题中,翻着前后的线段和角分别对应相等,本题还要注意矩形隐含的条件——平行线,这个也是解题的关键.12 .四边形MDPE为菱形.理由见解析.【解析】在同一平面内垂直于同一直线的两条直线平行,可证出ME∥DF,MD∥EG,即可得出结论四边形MDPE是平行四边形,再利用角平分线上的点到角两边的距离相等,可得到MD=ME,根据一组邻边相等的平行四边形是菱形,即可得出结论.解:四边形MDPE为菱形.理由如下:连接AM.∵ME⊥AC,DF⊥AC,∴ME∥DF,∵MD⊥AB,EG⊥AB,∴MD∥EG,∴四边形MDPE是平行四边形;∵AB=AC,M是BC的中点,∴AM是角平分线,∴MD=ME,∴四边形MDPE为菱形.点睛:本题主要考查菱形的判定定理:一组邻边相等的平行四边形是菱形.解决本题的关键在于应用“AB=AC,M是BC的中点”这两个条件得出AE是∠A的平分线,再利用角平分线的性质“角平分线上的点到角两边的距离相等”从而得出MD=ME这一邻边相等的条件来证明平行四边形MDPE是菱形.13 .证明见解析.【解析】试题分析:由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.试题解析:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.14 .证明见解析【解析】要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE,又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定,和矩形的性质,可确定ASA.即求证.证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.又∵EF=ED,∴△EBF≌△DCE.∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°.∴∠BAE=∠EAD.∴AE平分∠BAD.15 .(1)证明见解析;(2)作图见解析;(3)135°,90°或45°.【解析】试题分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC 为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.试题解析:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.考点:四边形综合题.16 .4<BD<20.【解析】试题分析:首先要作辅助线,利用平行四边形的性质得CE=BD,BE=CD=AB=6,再利用三角形,两边之和大于第三边,两边之差小于第三边即可求得.试题解析:如图,过点C作CE∥BD,交AB的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB=6,∴在△ACE中,AE=2AB=12,AC=8,AE-AC<CE<AE+AC,即12-8<BD<12+8,∴4<BD<20.考点:1.平行四边形的性质;2.三角形三边关系.17 .> 三【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限。
大丰区2016-2017学年八年级上第一次调研考试数学试题含答案
大丰区第一共同体2016-2017学年度第一学期八年级数学第一次调研一、选择题。
(每小题3分,共24分。
)1、在下列常见的手机软件小图标中,是轴对称图形的是()A. B. C. D.2、下列几组数中,能构成直角三角形三边的是()A.2,3,5 B.3,4,4 C.32,42,52 D.6,8,103、等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的腰长为()A.3cm B. 6cm C.3cm或6cm D.3cm或9cm4、如图,小明做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS(第4题)(第5题)(第6题)5、如图,在△ABC中,AB=AC,AD是BC边上中线.若AB=10,AD=8,则BC的长度是()A.6 B.10 C.12 D.166、如图,在△ABC中,AB=AD=DC,B=70°,则C的度数为().A.35° B.40° C.45° D.50°7、如图:已知∠AOP=∠BOP=15°,PC∥OA, PD⊥OA,若PC=6,则PD= ()。
A.6 B.4 C.3 D.28、将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的边长为( )A.25 B.12 C.7 D.5(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分.)9、已知等腰三角形一个外角等于80°,则这个等腰三角形的顶角的度数是__________.10、直角三角形两边长为6和8,那么第三边的平方为____________。
初二年级数学答题纸第一学期月考
说明:1、考试时间100分钟,总分120分。
2、请把答案答在答题纸上,否则不得分。
一、选择题。(每题3分,共24分)
题号
1
2
3
4
5
6
7
8
答案
二、填空题。(每题3分,共24分)
9、10、11、12、
13、14、15、16、
三、解答题(本大题共72分。解答应写出必要的计算过程、推演步骤或文字说明)
17、(本题满分6分)用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹)
(1)作∠ABC的角平分线(2)过点P作L的垂线
18、(本题满分8分,见右图)
19、(本题满分8分,见右图)
20、(本题满分8分,见右图)
21、(本题满分10分,见右图)
22、(本ቤተ መጻሕፍቲ ባይዱ满分10分,见右图)
23、(本题满分10分,见右图)
(1)
(2)
24、(本题满分12分,每小题6分)
(1)
(2)
江苏省苏州市-学年数学阳光指标学业模拟试卷 八年级数学(PDF版含答案答题卡)
·
·
(第 13 题) 14. 如图, 正方形网格中, 每一小格的边长为 1. 网格内有△
(第 14 题) , 则∠ +∠ 的度数是 ▲ .
初二数学 第二页 (共六页)
15. 一次函数 = +2 与 轴、 轴围成的三角形面积为 ▲ . (用含有 的代数式表示) 16. 在平面直角坐标系 中, (4, 2), 绕原点 旋转 90° 得到 , 则 的坐标是 ▲ .
1. 下面的四个化学实验器材中, 是轴对称图形的是
量筒
锥形瓶
酒精灯
2. √3 729 的算术平方根等于
9
±9
3
3. 在平面直角坐标系中,点 (-2, 2+1)所在的象限是
为常数, 且 (3 +3, +1), 则该点于正比例函数
导管 ±3
第四象限
=3
= -3
=1
=3 -1
15. 2
16.(-2, 4)或(2, -4) 17. 1 <3
18.7√3
三、解答题(本大题共 10 小题, 共 64 分. 请在答.题.卡.指.定.区.域.内.作.答.. 解答时应写出文字说明、证明或演 算步骤. )
19. (本题满分 5 分) 解: 原式=1+√3-√3-1
=0
20. (本题满分 5 分) (1)9 192 631 770 (2)9 192 631 770≈9 190 000 000=9.19×109
在 △ 中,∠ =90°,所以 =√2×42=4√2.
26. (本题满分 7 分) (1)因为∠ =∠ =2∠ ,
所以 5∠ =180°, 所以∠ =36°, ∠ =∠ =72°, 所以∠ABC=36°, ∠BDC=72°. 以为∠ =∠ =72°,所以 = . (2)36°,72°,72° 或 36°,36°,102°.
福建省泉州市鲤城区2023-2024学年八年级上学期期末数学试题(含答案)
2023—2024学年上学期八年级期末考试数 学 试 题(满分:150分 考试时间:120分钟)班级__________ 姓名__________ 座位号__________友情提示:所有答案必须填写到答题卡相应的位置上.在此卷上答题无效.(第Ⅰ卷 选择题 共40分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位内填涂)1,,0.101001,其中,无理数的个数是( )A .1个B .2个C .3个D .4个2.在下列二次根式中,属于最简二次根式的是( )A BC D 3.下列运算中,正确的是( )A .B .C .D .4.如图,,,,则直接判定的理由是()A .B .C .D .5.下列各式从左到右的变形为因式分解的是( )A .B .C .D .6.如图,在中,对角线与相交于点O ,则下列结论错误的是()A .B .C .D .7.下列命题中,其逆命题是真命题的是( )A .对顶角相等B .全等三角形面积相等1073π-()237xx x ⋅=623x x x÷=323x x x-=22(3)6x x=AB BD ⊥CD BD ⊥AD BC =Rt Rt ABD CDB ≌△△HL ASA SASSSS222()x y x y -=-22816(4)x x x -+=-2(2)(1)2a a a a +-=+-243(2)(2)3a a a a a-+=+-+ABCD AC BD AB CD ∥OB OD =AB AD =ABC ADC∠=∠C .如果,那么D .平行四边形对角线互相平分8.如图,在中,,的面积等于.根据作图痕迹,计算出的面积为()A .B .C .D .9.如图,在边长为的正方形①中剪去一个边长为的小正方形,然后在图②中沿虚线剪开,拼成图③(不重叠无缝隙),则图③的面积是()A .2B .C .D .10.如图,中,,,点P 、Q 在上,且,于E ,交于D ,联结.下列结论:①;②;③;④.其中正确的是( )A .①②B .②③C .①②④D .②③④(第Ⅱ卷 非选择题 共110分)二、填空题(本题共6小题,每小题4分,共24分,在答题卡的相应位作答)11.因式分解:__________.12.计算:__________.a b =||||a b =ABCD :3:1CE DE =AOE △23cm ABCD 216cm212cm210cm28cm1a +1a -(1)a >2a 4a 21a -ABC △AB AC =90BAC ∠=︒BC BP CQ =PD AQ ⊥AC AP 45PAQ ∠=︒PA PD =()22221/4AB AP BC PQ -=-2222BP CP AP +=2x x -=()221055ab a b ab -÷=13.若能分解成一个含x 的一次多项式的平方,则k 的值是__________.14.如图,在正方形网格图中,每个网格小正方形的边长都为1,的三个顶点均在网格点上,则的周长等于__________.15.在和中,,,,若,则__________(用含的代数式表示).16.规定两数a 、b 之间的一种运算,记作:如果,那么.例如:因为,所以.根据上述规定,填空:(1)__________;(2)若,,则的值为__________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(818.(8分)先化简,再求值:,其中,.19.(8分)如图,在中,O 为的中点,过点O 且分别交、于点E 、F .求证:.20.(8分)学习了完全平方和差公式后,教师布置了这样一道数学题:已知,求的值.小英同学的作业解答如下:解:设,,依题意得:,,第①步,第②步,第③步26x x k ++33⨯ABC △ABC △ABC △A B C '''△30B B ∠=∠'=︒6AB A B =''=4AC A C =''=C β∠=C ∠'=β(,)a b ca b =(,)a b c =328=(2,8)3=(3,27)=(2,10)x =(2,5)y =222x y -1--[(2)(2)()(3)]x y x y y x y x x +-++-÷2x =1y =ABCD BD EF AB CD OBE ODF ≌△△(4)(3)3x x +-=22(4)(3)x x ++-4a x =+3b x =-(4)(3)3ab x x =+-=7a b -=2222(4)(3)x x a b ∴++-=+2()2a b ab =--,第④步.第⑤步(1)若基于上一步骤正确的前提下,你认为小英在__________步骤出了错误(只填序号);(2)写出你的正确解答过程.21.(8分)为摸底学生体能素质,体育组在八年级随机抽取一部分学生,测试一分钟跳绳次数,成绩分为五组记录:A 组:次,6人;B 组:次,8人;C 组:次,漏记;D 组:次,18人;E 组:次,6人.然后绘制出这五组数据的条形统计图1和扇形统计图2.根据图中信息回答下列问题:(1)本次测试共抽取了__________名学生;(2)将频数分布条形统计图1补充完整,并求出图2中阴影部分扇形的圆心角的度数.22.(10分)我们在学习二次根式时,这种分母含有无理式的式子,需要通过分式性质和平方差公式来进行化简.我们称之为“分母有理化”..请你应用“分母有理化”知识,解决下面问题解答过程中出现分母含有无理式的式子:如图,在中,.(1)尺规作图:在上作一点D ,使得点D 到边的距离等于.(保留作图痕迹,不写作法)(2)若,,求的值.23.(10分)如图,阅读下列材料,回答问题.2723=-⨯43=80100x ≤<100120x ≤<120140x ≤<140160x ≤<160180x ≤≤==1===-ABC △90C ∠=︒BC AB DC 1AC =45B ∠=︒ACDC【任务】如图1,测量车祸现场A 、B 两点之间的距离.车祸现场因保护需要,测量不能进入场内.【工具】如图2,一把皮尺(测量长度略小于的两倍)和一个量角器,皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);量角器的功能是测量以内的角.除笔纸和上述工具外,再无任何工具可借用.小明利用皮尺测量,求出了车祸现场A 、B 两点之间的距离,测量及求解过程如下:①【测量过程】如图3,在车祸场地外选点C ,测量米,取中点O ,测量米,并将皮尺延长至D ,使米,测量米.②【求解过程】由测量知,,,,,(米).答:A 、B 两点之间的距离为c 米.(1)小明求得,用到的几何知识是____________________;(2)小明仅利用皮尺,通过4次测量,求得.请你同时利用皮尺和量角器,通过测量长度(用字母a 、b 、c …表示)和角度(用字母、表示),并利用初二年上学期所学知识,求出车祸现场A 、B 两点之间的距离,并写出你的测量及求解过程.24.(12分)对于一个几何拼接图形,通过不同的方法计算它的面积,可以解释一些数学等式.如图1,先单个计算阅览室(正方形)、卫生间P (正方形)和图书室(长方形)的面积,然后整体计算面积,可以得到数学等式:.(1)观察图2,填空__________;(2)因式分解:,图3表示面积为的几何拼接图,请你补充完整(涂上阴影);(3)学校准备利用现有教学楼墙重建图书馆,重建资金额定(即墙厚度和总长度为定值).图4是图书馆地面一层的平面设计图,由1个长方形阅览室和2个正方形图书室组成,各开了一个1米宽的门相通.若计算面积时不考虑墙体厚度,用总长67米的墙重建长方形图书馆的地面一层.问重建后,图书馆地面一层最大面积是多少平方米?25.(14分)已知:如图1,在四边形中,,.P 是边上一动点,AB 180︒2AC a =AC OB b =OD OB b ==CD c =OA OC a ==OB OD b ==AOB COD ∠=∠ OAB OCD ∴≌△△AB CD c ∴==AB AB αβ2222()a ab b a b ++=+()(2)a b a b ++=222a ab b +-222a ab b +-ABCD ABCD //AD BC ABC ADC α∠=∠=BC联结,将绕点P 顺时针方向旋转,得到,联结.(1)求证:四边形是平行四边形;(2)M 是延长线上一点,联结,且.①若,求证:;②如图2,若,,联结、,求证:.2023—2024学年上学期八年级期末考试数学参考答案及评分标准注明:本卷只给出参考,其它解法的评分标准,由各试题评分组商量确定.一、选择题(40分)题号12345678910答案ABAABCDACD10.D .解:①长度变化,大小不定,①错;②作于H ,易证:,,又,,,,,,,②正确;③,,,③正确;④设,,则,,,即:,④正确.PA PA αPQ AQ ABCD BC QM AB BC =MC BP =MC MQ =MP BP =90α=︒DM DQ DM =PQ PAQ ∴∠AD BC ⊥AP AQ =QAH PAH ∴∠=∠PD AQ ⊥QAH QPD ∴∠=∠45C CAH ∠=∠=︒ 45PDA QPD ∴∠=︒+∠45PAD QAH ∠=︒+∠PDA PAD ∴∠=∠PA PD ∴=222AB BH AH =+ 222AP PH AH =+()22222212AB AP BH PH BC PQ ∴-=-=-CP a =BP b =1()2AH BC a b ==+1()2PH a b =-()2222212AP AH PH a b ∴=+=+2222AP CP BP =+二、填空题(24分)16.(1)3;(2)50解:(1),;(2),,,,,,.三、解答题(86分)17.(8分)解:原式.18.(8分)解:原式,当,时,.19.(8分)解:是的中点,;四边形是平行四边形,,,在与中,,.3327= (3,27)3∴=(2,10)x = (2,5)y =210x ∴=25y=2102225x x yy -=== 22210550x y x y +=⋅=⨯=()22()()222250x yxy x y x y x yx y +--+-+∴====(3212=-+-=()()2222423x yyxy y x ⎡⎤=-+--÷⎣⎦22x xy x ⎡⎤=-÷⎣⎦2x y =- 2x =1y =22210x y -=-⨯=O BD OB OD ∴= ABCD //AB CD ∴OBE ODF ∴∠=∠OBE △ODF △OBE ODFOB OD BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩OBE ODF ∴≌△△20.(8分)解:(1)③;(2).21.(8分)解:(1)50;(2)频数条形统计图的补充如图所示,、C 两组频数和为,在扇形统计图中,B 、C 两组频数和所对应的扇形的圆心角的度数.22.(10分)解:(1)如图所示,平分交于D ;(2)作于E ,,,,和都是等腰直角三角形,,又,.,,.23.(10分)解:(1)全等三角形判定与性质;2222()272355a b a b ab +=-+=+⨯=B 81220+=∴2036014450=⨯︒=︒AD CAB ∠BC DE AB ⊥90C ∠=︒ DE DC ∴=45B ∠=︒ ABC ∴△BDE △1BC AC ∴==AB ==AD ADDC DE =⎧⎨=⎩Rt Rt ADC ADE ∴≌△△1AE AC ∴==1DC BE AB AE ∴==-=-1ACDC∴==+(2)【测量过程】:在场外选择点C ,用皮尺从点A 起到C 再到B 拉直摆放.①测量米,②测量,然后将量角器沿翻折,将皮尺绕点C 旋转至D ,③使(需要测量,由旋转所得,不需要测量)④最后测量米就是的距离.【求解过程】:在与中,,中,米.24.(12分)解:(1);(2),补图如下图1所示(3)设米,依题意得:米,米,,,.答:重建后,图书馆地面一层最大面积是350平方米.25.(14分)解:(1)如图1,BC b =ACB α∠=AC CB ACD α∠=ACD ∠CD CB AD c =AB ACB △ACD △AC AC ACB ACD CB CD =⎧⎪∠=∠⎨⎪=⎩ACB ACD ≌△△AB AD c ∴==22()(2)32a b a b a ab b ++=++222()(2)a ab b a b a b +-=-+GH x =2AB CD x ==7077(10)BC x x =-=--()227(10)2141014(5)350S AB BC x x x x x =⋅=--⋅=--=--+ 214(5)350x --≤ 214(5)350350x ∴--+≤,;,,,四边形是平行四边形;(2)①如图1,,,,,,,,在与中,,,,;②如图2,延长至N ,使,联结、,在与中,,,,;,是线段的中垂线,,,,是等腰直角三角形,,,,,//AD BC 180D BCD ∴∠+∠=︒B D ∠=∠ 180B BCD D BCD ∴∠+∠=∠+∠=︒//AB CD ∴∴ABCD AB BC = CM BP =PM CM PC BP PC BC AB ∴=+=+==ABC ADC α∠=∠= 180BAP BPA α∴∠+∠=︒-180MPQ BPA α∠+∠=︒-BAP MPQ ∴∠=∠ABP △PMQ △PA PQ BAP MPQ AB PM =⎧⎪∠=∠⎨⎪=⎩(SAS)ABP PMQ ∴≌△△QM PB ∴=QM CM ∴=QP PN PQ =NA NB PBN △PMQ △12PB PM PN PQ =⎧⎪∠=∠⎨⎪=⎩(SAS)PBN PMQ ∴≌△△BN MQ ∴=PN PQ =90α=︒ AP ∴NQ AN AQ ∴=PA PQ = 90α=︒APQ ∴△45PAN PAQ ∴∠=∠=︒//AD BC 90BAD ABC ∴∠=∠=︒45DAQ BAP ∴∠+∠=︒又,;四边形是平行四边形,,,;在与中,,,,,;延长交于E ,则,,,四边形内角和为,,,在中,,.45BAN BAP ∠+∠=︒BAN DAQ ∴∠=∠ ABCD AD BC ∴=AB BC = AB AD ∴=ABN △ADQ △AB AD BAN DAQ AN AQ =⎧⎪∠=∠⎨⎪=⎩(SAS)ABN ADQ ∴≌△△BN DQ ∴=ABN ADQ ∠=∠DQ MQ ∴=PB AN 90ABE ∠=︒39090ABN ADQ CDQ ∴∠=∠-︒=∠-︒=∠3180CMQ CDQ PBN ∴∠+∠=∠+∠=︒ CDQM 360︒90DCM ∠=︒90DQM ∴∠=︒Rt DQM △22222DM DQ MQ DQ =+=DM ∴=。
初二数学人教版试卷
初二数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一次函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.已知:方程组,把(2)代入(1),得到正确的方程是()A.x2+2(1﹣x)=1 B.x2+2(x﹣1)=1 C.x2+(1﹣x)2=0 D.x2+(1﹣x)2=13.如图,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB, CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B4.高为3,底边长为8的等腰三角形腰长为().A.3 B.4 C.5 D.65.代数式,,,8﹣,中,分式的个数为()A.1个 B.2个 C.3个 D.4个6.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形7.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30° B.45° C.60° D.90°8.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=_____度.9.反比例函数 ( x<0)的图象在第()象限A.一、三 B.一 C.三 D.二、四10.如图,∠1=∠2,∠C=∠D,AC与BD相交于点E,下列结论中错误的是A.∠DAE=∠CBEB.△DEA≌△CEBC.CE=DAD.△EAB是等腰三角形二、判断题11.判断下列各题是否正确?正确的打“√”,错误的打“×”(1)不等式两边同时乘以一个整数,不等号方向不变.()(2)如果a>b,那么3-2a>3-2b.()(3)如果a是有理数,那么-8a>-5a.()(4)如果a<b,那么a2<b2.()(5)如果a为有理数,则a>-a.()(6)如果a>b,那么ac2>bc2.()(7)如果-x>8,那么x>-8.()(8)若a<b,则a+c<b+c.()12.因式分解:(1);(2).13.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.14.如下图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积(2)点B到AC边的距离。
初二数学试卷附答案解析
初二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列各式成立的是( ) A .=﹣3 B .+=C .﹣=3 D .•=2.、一个数的平方根与立方根相等,则这个数是( ) A .0 B .1 C .—1 D .0或—1或13.化简二次根式得 A .B .C .D .304.在下列二次根式中,的取值范围为的是( )A .B .C .D .5.下列条件中,不能判定两个直角三角形全等的是( ▲ ) A .两个锐角对应相等B .一条直角边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等 6.下列关于的说法中,错误的是 ( )A .是无理数 B .3<<4C .是12的算术平方根D .是最简二次根式7.下列解不等式的过程中错误的是( )A .去分母,得B .去括号,得C .移项、合并同类项,得D .系数化为1 ,得8.下列计算错误的是 ( )A.B.C.D.9.小亮在野外的平地上先以1.5米/秒的速度向东走80秒,接着以2米/秒的速度向南走45秒,这时他距离出发点()A.100米B.120米C.150米D.180米10.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于A.1 B.0 C.-1 D.2二、判断题11.一条直线平移1cm后,与原直线的距离为1cm。
()12.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度匀速前进,乙船沿南偏东某方向以每小时15海里速度匀速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?13.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板的斜边与含角的直角三角板的长直角边重合.问题解决将图①中的等腰直角三角板绕点顺时针旋转,点落在上,与交于点,连接,如图②.(1)求证:是等腰三角形;(2)若,求的长.(直角三角形中,的锐角所对的直角边等于斜边的一半)14.已知a ,b,c在数轴上的位置如图,化简:-│a+b│++│b+c│+.15.如图,将矩形纸片沿对角线折叠,点落在点处,交于点,连结.证明:(1)BF=DF .(2)若BC=8,DC=6,求BF 的长。
初二数学试卷
初二数学试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,点E 是□ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF=3,DE=2,则□ABCD 的周长为( )A .5B .7C .10D .142.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在BC 、CD 上,且BE=CF ,连接BF、DE交于点M ,延长ED 到H 使DH=BM ,连接AM ,AH ,则以下四个结论: ①△BDF ≌△DCE ; ②∠BMD=120°; ③△AMH 是等边三角形; ④S 四边形ABCD =AM 2.其中正确结论的个数是( )A .1B .2C .3D .43.(2015秋•衡阳校级期中)已知实数a 、b 在数轴上表示的点如图,化简|a+b|的结果为( )A .a+bB .﹣a ﹣bC .0D .2a4.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C. D.5.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CD B.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD6.如图,已知△ABC中,AC+BC=24,AO,BO分别是角平分线,且MN∥BA,分别交AC于N,BC于M,则△CMN的周长为()A.12 B.24 C.36 D.不确定7.如图,正方形ABCD的边长为5,P为DC上一点,设DP=x,△APD的面积为y,关于y与x的函数关系式为:y=,则自变量的取值范围为()A.0<x<5 B.0<x≤5 C.x<5 D.x>08.当x=3时,下列各式中值为零的分式是()A. B. C. D.9.使二次根式有意义的x的取值范围是()A.x> B.x >- C.x ≥ D.x ≥-10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有12个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶()A.2瓶 B.3瓶 C.4瓶 D.5瓶二、判断题11.如图,在公路的同侧、的异侧有两个城镇,,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路,的距离也必须相等,请用尺规找符合条件的点.(保留作图痕迹,不写作法)12.(8分)如图,已知在中,,为边的中点,过点作,垂足分别为.(1)求证:;(2)若,=,求的周长.13.(本题8分)正方形网格中,小格的顶点叫做格点,每个小正方形的边长为1,小方按下列要求作图:① 在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实现上;② 连接三个格点,使之构成直角三角形,小方在图①中作出了Rt△ABC(1) 请你按照同样的要求,在右边的正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形不全等,且有一个是等腰直角三角形,另一个不是等腰直角三角形(2) 图①中Rt△ABC边AC上的高h的值为___________14.某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)与行李质量x(kg)之间的函数表达式为,这个函数的图像如图所示,求:(1)k和b的值;(2)旅客最多可免费携带行李的质量;(3)行李费为4~15元时,旅客携带行李的质量为多少?15.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,(1)说明△BCD与△CAE全等的理由(2)请判断△ADE的形状,并说明理由.三、填空题16.如图,四边形ABCD 中,AB=6cm ,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2。
初二数学试卷带答案解析
初二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某一天的不同时刻老板把信交给秘书打字,每次都将信放在秘书信堆的最上面,秘书有时间就将信堆最上面的那封信取来打.假定共有5封信,且老板以1、2、3、4、5的顺序交来,在下列各顺序中,哪一顺序不可能是秘书打字的顺序?( )A .12345B .54321C .23541D .235142.一个直角三角形的三边分别是6cm 、8cm 、Xcm ,则X=( )cm A .100cmB .10cmC .10cm 或cmD .100cm 或28cm3.如图,已知,使用“”能直接判定≌的是A .B .C .D .4.如图,直线y=﹣x+2与x 轴.y 轴分别交于A .B 两点,把△AOB 沿直线AB 翻折后得到△AO′B ,则点O′的坐标是( ).A .(,3)B .(,)C .(2,2)D .(2,4)5.(2014•来宾)不等式组的解集在数轴上表示正确的是( )A .B .C .D .6.如图,在中,.将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( ) A .B .C .D .7.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,如果AC=10,BD=8,AB=x ,则x 的取值范围是 ( )A .1<x <9B .2<x <18C .8<x <10D .4<x <5 8.如图,在△ABC 中,点D 是BC 延长线上一点,∠B =40°,∠ACD=120°, 则∠A 等于( )A . 60°B .70°C .80° 90°9.如图,直线l 1、l 2相交于点A ,点B 是直线外一点,在直线l 1、l 2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有( )A .2个B .4个C .6个D .8个 10.已知一次函数经过两点(,)(,),若,则当时,( ).A .B .C .D .无法比较二、判断题11.已知关于x的两个一元二次方程,方程①:=0,方程②:=0.(1)若这两个方程中只有一个有实数根,请说明哪个方程没有实数根; (2)如果这两个方程有一个公共根a ,求代数式的值. 12.在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.(1)如图1,当点在线段上,如果,则度;(2)如图 2 如果,则= 度;(3)设,. ①如图3,当点在线段上移动,则之间有怎样的数量关系?请说明理由; ②当点在直线上移动,请直接写出之样的数量关系,不用证明。