信号与系统期末考试复习指导(选择填空)

合集下载

信号与系统期末考试试卷(有详细答案)

信号与系统期末考试试卷(有详细答案)

《 信号与系统 》考试试卷(时间120分钟)院/系 专业 姓名 学号一、填空题(每小题2分,共20分)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?)2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常 数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (Fωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

信号与系统试题五(1)

信号与系统试题五(1)

期末考试试题五一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。

(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。

(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。

(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。

(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=kt 22三、(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dt t df t s =求⎪⎭⎫⎝⎛2ωs 的傅里叶逆变换。

信号与系统期末考试题及答案(第五套)

信号与系统期末考试题及答案(第五套)

信号与系统期末考试题及答案(第五套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。

一、填空(共30分,每小题3分)1.。

2. 已知实信号的傅立叶变换,信号的傅立叶变换为。

3. 已知某连续时间系统的系统函数为,该系统属于类型。

低通4. 如下图A-1所示周期信号,其直流分量=。

4图A-15. 序列和=。

由于。

6. LTI 离散系统稳定的充要条件是。

的全部极点在单位圆内。

7. 已知信号的最高频率,对信号取样时,其频率不混迭的最大取样间隔=。

为。

8. 已知一连续系统在输入作用下的零状态响应,则该系统为系统(线性时变性)。

线性时变9. 若最高角频率为,则对取样,其频谱不混迭的最大间隔是。

)sgn(t )(t δ)(k δ)(t ε)(k ε________)42()3(55=+--⎰-dt t t δ5.0)3(21)2()3(21)42()3(25555-=-=---=+--=--⎰⎰t t dt t t dt t t δδ)(t f )()()(ωωωjX R j F +=)]()([21)(t f t f t y -+=)(ωj Y _________11)(+=s s H _________)(t f_________∑-∞=kn n )(ε_________)()1(0,00,1][k k k k k n kn εε+=⎩⎨⎧<≥+=∑-∞=_________)(z H )(t f )(0Hz f )2/(t f m ax T _________m axT 0max max 121f f T ==)(t f )4()(t f t y =_________)(t f m ω)2()4()(tf t f t y =_________mT ωπωπ34max max ==10. 已知的z 变换,得收敛域为时,是因果序列。

二、计算题(共50分,每小题10分)1. 某线性时不变连续时间系统的单位冲激响应和输入如图A-2所示,从时域求解该系统的零状态响应。

信号与系统 期末复习试卷1

信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________

信号与系统期末考试复习资料

信号与系统期末考试复习资料

第一章绪论1、选择题、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (-2t )左移25、f (t 0-a t )是如下运算的结果 C 。

A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。

A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 .信号)34cos(3)(π+=t t x 的周期为 C 。

A 、π2 B 、π C 、2π D 、π2、信号)30cos()10cos(2)(t t t f -=的周期为: B 。

A 、15π B 、5π C 、π D 、10π、dt t t )2(2cos 33+⎰-δπ等于 B 。

、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 .=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

信号与系统期末复习试题附答案

信号与系统期末复习试题附答案

一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为tt Be Ae 2--+,则其2个特征根为() A 。

信号系统期末考试

信号系统期末考试

常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库01试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、信号)(t f 波形如右图所示,则其表达式为 B ;A )]1()1([+--t u t u tB )]1()1([--+t u t u tC )]1()1([++-t u t u tD )]1()1([/1+--t u t u t2、下列说法错误的是 B ;A 系统的零状态响应包括自由响应和强迫响应两部分;B 若系统初始状态为零,则系统的零状态响应就是系统的强迫响应;C 零状态响应与系统起始状态无关,而由系统的激励信号产生;D 零输入响应与系统激励无关,而由系统的起始状态产生;3、已知()f t 的频谱函数为()F j ω,则()cos c f t t ω的频谱函数 为 A ;A[])()(21c c j j F j j F ωωωω-++ B [])()(21c c j j F j j F ωωωω--+ C [])()(21c c j j F j j F ωωωω+-- D [])()(41c c j j F j j F ωωωω--+4、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的单边..拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sF C. )0()(-+f s sF D. ⎰-∞-+0)(1)(ττd f ss sF5、已知1()f k 的Z 变换为1()F z ,2()f k 的Z 变换为2()F z ,则12()*()f k f k 的Z 变换结果为 C ;A 12()*()F z F zB 121()*()2F z F z π C 12()()F z F z D 121()()2F z F z π二、填空题15分,每题3分1、所谓线性系统是指其具有_________齐次性_______和___________ 叠加性____;2、积分(3)t t e dt δ∞--∞+⎰=______3e ____________;3、频谱函数)2()2()(++-=ωδωδωj F 的傅立叶逆变换)(t f 为t 2cos 1π;4、已知信号的最高频率为f ,要抽样后的信号能完全恢复原信号,则最大抽样间隔为 1/2f ;5、函数)(2cos t tu 的拉普拉斯变换为_____24ss +;三、计算卷积14分,每题7分1)()(2t u e t u e t t --*⎰⎰------==*tttt ttt u d eet u d eet u et u e 020)(22)()()()(τττττ4分)()()()1(22t u e e t u e e t t t t ----=-=3分2已知两个有限序列}3,2,1{)(-=k x ,}1,1,1,1{)(-=k h ,求)()(k h k x *;利用就地相乘法方法4分,结果2分1 1 1 1 × 123 = 3 3 3 3 2 2 2 2 1 1 1 1=1 3 6 6 5 3其中,k =0时的值为11分四、试判断系统)()(2t e t r =是否为线性的,时不变的,因果的 并证明之;9分 解:令)()]([)(2t e t e T t r ==,其中][⋅T 代表系统函数;)]([)(11t e T t r =,)]([)(22t e T t r =那么2221122112222112211)]()([)]()([)()()()(t e C t e C t e C t e C T t e C t e C t r C t r C +=+≠+=+ ∴系统是非线性的; 3分)]([)()-(0020t t e T t t e t t r -=-= ,∴系统是时不变的;3分由于)()(2t e t r =可知,系统输出只与当前的输入值有关,因而系统是因果的;五、已知)(t f 的双边拉普拉斯变换为)(s F ,试证明⎰∞-td f ττ)(的双边拉氏变换为s s F /)(;6分 证明:[])(t f L 代表)(t f 的拉普拉斯变换;⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t )(=)](*)([t u t f L 3分 ⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t)(=[]s s F s s F t u L t f L /)(/1)()]([)(=•=• 3分六、已知矩形脉冲信号)(t f 如右图所示, (1) 写出)(t f 的时域表达式; (2) 求)(t f 的频谱函数; (3) 画出)(t f 频谱图;12分 解:1)21()21()(--+=t u t u t f 3分2)(t f 中1=A ,1=τ1分⎪⎭⎫⎝⎛↔=2)()(ωτττSa A t g t f 4分-1/21/20t所以,)2()(ωωSa j F =1分34分其中,E =1,1=τ七、描述某系统的微分方程为)()(2)(t f t y t y =+',求输入)()(t u e t f t -=时系统的响应;14分解:取傅氏变换,有)()(2)(ωωωωj F j Y j Y j =+2分21)()()(+==ωωωωj j F j Y j H 2分输入信号11)()()(+=↔=-ωωεj j F t e t f t 3分 故:1111)1)(2(1)()()(+-+=++==ωωωωωωωj j j j j F j H j Y 4分 取反变换)()()(2t e e t y t t ε---=3分八、已知线性时不变系统的差分方程为()()()n u n y n y 512=-+ ,()11=-y ,求系统的全响应;15分 解:202-==+r r齐次解()()nh C n y 21-=3分特解()()(常数)时全为 5 05≥=n n u n x ()C n y p =∴)0(52≥=+n C C35=∴C 3分 全解()()()()3521+-=+=np h C n y n y n y 2分()迭代出由11=-y 3)1(25)0( 0=--==y y n 3分()(),得代入 解3521+-=nC n y()35301+==C y341=∴C 2分 ()()035234≥+-=∴n n y n 2分常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库02试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、函数)(t f 的波形如下图所示,则)(t f 的一次积分的波形为A ;A B C D2、连续周期信号的频谱具有 D ;A 连续性、周期性B 连续性、收敛性C 离散性、周期性D 离散性、收敛性3、已知)()(ωF t f ↔,则)24(t f -的频谱函数为 A ; A ωω2)2(21j e F -- B ωωj e F --)2(21 C ωω2)2(21j e F - D ωω2)2(21j e F ---4、拉普拉斯变换性质中,卷积定理的形式正确的是 A ;A )()()()(2121s F s F t f t f ↔*B )()(2)()(2121s F s jF t f t f *↔*πC )()(21)()(2121s F s F jt f t f π↔* D )()(2)()(2121s F s jF t f t f *↔π5、序列)(])1(1[21k u k -+的Z 变换为 B ;A 221z z +B 221z z -C 21z z +D 21z z -二、填空题15分,每题3分1、系统的全响应可分解为 零状态响应 和零输入响应两部分响应之和,又可以分解为 自由响应和强迫响应两部分响应之和; 2、积分⎰+∞∞-⋅dt t tt)(22sin δ等于 4 ;3、频谱结构中,当脉宽减小时,信号的频宽____增大 _;4、信号)()1()(t u e t f t α--=的象函数为_________()as s a +;5、12()2F z z z --=+对应的原始时间序列为 (1)2(2)k k δδ-+- 三、已知信号ft=)]23cos(31)22cos(21)2[cos(2111πωπωπωπ-+-+-t t ,画出ft 的单边、双边幅度频谱图和相位频谱图;12分解:单边谱:每图3分 双边谱:每图3分111四、设)()(ωj F t f ↔,求下列各式的频谱函数;15分,每题5分 1)3()3(t f t -- 解:由展缩特性)31(31)3(ωj F t f -↔-2分由频域微分特性)31(31)]31(31[)3(ωωωωj F d d j j F d d jt tf -=-↔-2分 因此)31()31(31)3(3)3()3()3(ωωωj F j F d d j t f t tf t f t ---↔---=--1分2dtt df )42(+-解:由展缩和时移特性,得ωωj e j F t f 2)21(21)42(--↔+-3分 再根据时域微分特性ωωωj e j F j t f dt d 2)21(21)42(--↔+-2分 3t j e t f 2)23(-- 解:由展缩和时移特性,得ωωj e j F t f 32)31(31)23(-↔-3分再根据频移特性)2(322)]2(31[31)23(+--+↔-ωωj tj e j F et f 2分 下方程和非零起始条件表示的连续时间因果LTI 系统,⎪⎩⎪⎨⎧==+=++--5)0(',2)0()(52)(4522y y t f dtdft y dt dy dt y d 五.已知输入)()(2t u e t f t-=时,试用拉普拉斯变换的方法求系统的零状态响应)(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t ;15分 解:方程两边取拉氏变换:)(455245)0(5)0(')0()()()(22s F s s s s s y y sy s Y s Y s Y zi zs ⋅++++++++=+=---3分 455221459222+++⋅+++++=s s s s s s s 43/713/134592)(2+-+=+++=s s s s s s Y zi 2分 )()37313()(4t u e e t y t t zi ---=3分42/122/111459221)(2+-+-+=+++⋅+=s s s s s s s s Y zs 3分 )()2121()(42t u e e e t y tt t zi -----=2分 )()61721316()()()(42t u e e e t y t y t y t t t zi zs -----=+=2分六、有一因果离散时间LTI 系统,激励为)()21()(1n u n f n =时,全响应为)()21()(2)(1t u n u n y n n -=;起始状态不变,激励为)()21(2)(2n u n f n =时,其全响应为)()21(2)(23)(2n u n u n y n n -⋅⋅=,求:1系统的零输入响应,2激励为)()21(5.0)(3n u n f n ⋅=时的完全响应起始状态保持不变;14分 解:设相同初始条件下,零输入响应分量)(n y zi ,则 )()()(11n y n y n y zi f +=2分 由线性关系)()(2)()()(122n y n y n y n y n y zi f zi f +=+=3分解得:)()21()(22)(1n u n u n y n n f -⋅=2分因此)(2)()()(11n u n y n y n y n f zi -=-=2分所以)()(5.0)()()(133n y n y n y n y n y zi f zi f +=+=3分)()21(21)(3n u n y n⋅-=2分 七、已知系统框图如下,求该系统的单位样值响应;14分解:可得()()()()()261523---+--=n y n y n x n x n y即()()()()()232615--=-+--n x n x n y n y n y 4分 求得齐次解n n C C 2321+2分假定差分方程式右端只有xn 项起作用,不考虑3xn-2项作用,此时系统单位样值响应为)(1n h ; 由1)0(1=h ,0)1(1=-h 可得⎪⎩⎪⎨⎧+=+=2121213101C C C C解得31=C ,22-=C())(23)(111n u n h n n ++-=4分当-3xn-2项起作用时,由线性时不变特性 ())2(233)(112---=--n u n h n n 2分)2()23(3)()23()()()(111121----=+=--++n u n u n h n h n h n n n n 2分也可通过Z 变换得到常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库03试题总分: 100 分 考试时限:120 分钟一、填空题本大题共10小题,每小题2分,共20分;不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;1、对于连续的线性系统,若输入为)(1t f 时的响应为)(1t y ,输入为)(2t f 时的响应为)(2t y ,则对于任意常数1a 和2a , 输入为)()(2211t f a t f a +时的响应为______)()(2211t y a t y a +2、某连续系统的输入信号为f t,冲激响应为h t,则其零状态响应为____)(*)(t h t f3、一线性时不变连续时间系统是稳定系统的充分且必要条件是系统函数的极点位于S 平面的 左半平面 ;4、=--)(*)(2τδt t u e t )()(2ττ---t u e t5、()dt t e t 12-⎰+∞∞--δ= e -2 ; 6、已知 ft 的傅里叶变换为Fj ω, 则f2t-3的傅里叶变换为 )2(2123ωωj F e j - ; 7、已知 651)(2+++=s s s s F ,则=+)0(f 1 ; =∞)(f 0 ;8、、若描述某线性时不变连续系统的微分方程为)(3)()(2)(2)(t f t f t y t y t y +'=+'+'',则该系统的系统函数Hs=__223)(2+++=s s s s H ___________; 9、信号)(n u a n 的z 变换为_____az z- ________;10、已知信号的最高频率为m f ,要使抽样后的信号能完全恢复原信号,则最大的抽样间隔为mf 21 二、选择题本大题共10小题,每小题2分,共20分;在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内;1、假如周期矩形脉冲信号的周期为T ,脉冲宽度为τ,高度为A ,下列关于对周期矩形脉冲信号的频谱叙述不正确的是 B ;A. 当T 不变,将τ减小时,频谱的幅度将减小B. 当T 不变,将τ减小时,相邻谱线的间隔将变密C. 当T 不变,将τ减小时,频谱包络线过零点的频率将增高D. 当τ不变,将T 增大到∞时,频谱将由离散谱变为连续谱 2、题2图中信号)(t f 的表达式是 A ;A. )1()]1()([-+--t u t u t u tB. )]1()([--t u t u tC. )]1()()[1(---t u t u tD. )]2()([--t u t u t3、已知)(t f 的波形如题3a 图所示,则)22(--t f 为图3b 图中的的波形为 A ;4、积分⎰∞∞--+dt t t )2()1(2δ的值为 D ;A.1B.3C.4D.55、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sFC. )0()(-+f s sFD. ⎰-∞-+0)(1)(ττd f s s sF6、周期信号)(t f 如题6图所示,其三角形式傅里叶级数的特点是 B ;A. 含余弦项的偶次谐波且含直流分量B. 含余弦项的奇次谐波且无直流分量C. 含正弦项的奇次谐波且无直流分量D. 含正弦项的偶次谐波且含直流分量7、已知dtt d t f )()(δ=,则其频谱)(ωj F 等于 C ; A.ωj 1 B.)(1ωπδω+jC. ωjD.)(21ωπδω+j 8、题8图a 中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态其初始状态分别为)0(-L i 和)0(-C u ,请在题8图b 中选出该电路的s 域模型为 B ;_题8图(a))(t u c b-L 1题8图(b)sc -A.-L 1sc -B.-L 1sc -C.-L 1sc -D.9、已知某离散序列,其它, , ⎩⎨⎧=≤=n N n n f 0||1)(该序列还可以表述为 C ; A. )()()(N n u N n u n f --+= B. )()()(N n u N n u n f ---+-= C. )1()()(---+=N n u N n u n f D. )1()()(----+-=N n u N n u n f 10、离散信号fn 是指 BA .n 的取值是连续的,而fn 的取值是任意的信号B .n 的取值是离散的,而fn 的取值是任意的信号C .n 的取值是连续的,而fn 的取值是连续的信号D .n 的取值是连续的,而fn 的取值是离散的信 三、计算题本题共16分1已知 6116332)(232+++++=s s s s s s F ,试求其拉氏逆变换ft ;8分解:1找极点())3)(2)(1(3322+++++=s s s s s s F 2分2展成部分分式 ()321321+++++=s k s ks k s F 2分 362511)( +++-++=s s s s F 所以 2分()[]1e αs t u L t +=-α根据 ()0e 6e 5e )(:32≥+-=---t t f tt t 得 2分2()。

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案第 1 页共 6 页《信号与系统》期末试卷A 卷班级:学号:__________ 姓名:________ _ 成绩:_____________⼀.选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。

A.⾮周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、⼀连续时间系统y(t)= x(sint),该系统是 C 。

A.因果时不变B.因果时变C.⾮因果时不变D. ⾮因果时变3、⼀连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。

A.因果稳定B.因果不稳定C.⾮因果稳定D. ⾮因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅⽴叶级数系数a k 是 D 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、⼀信号x(t)的傅⽴叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。

A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、⼀周期信号∑∞-∞=-=n n t t x )5()(δ,其傅⽴叶变换)(ωj X 为 A 。

A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、⼀实信号x[n]的傅⽴叶变换为)(ωj e X ,则x[n]奇部的傅⽴叶变换为上⼀页下⼀页。

信号与系统复习资料

信号与系统复习资料

得分一、选择题(共分)。

2010-2011学年第二学期信号与系统期末考试试卷班级:_______________学号:_______________姓名:_______________得分:_______________(卷面共有50题,总分100分,各大题标有题量和总分,每小题标号后有小分)一、选择题(50小题,共100分)[2分](1)下列信号中属于功率信号的是( )。

A、 B、 C、 D、[2分](2)已知某系统激励f(k)与响应y(k)之间的关系为y(k)=f(k)+80,则该系统为。

A、线性系统B、非线性系统[2分](3)下列说法正确的是。

A、是功率信号B、两个周期信号之和一定是周期信号C、所有非周期信号都是能量信号D、所有非周期信号都是功率信号[2分](4)下列叙述正确的是。

A、各种数字信号都是离散信号B、数字信号的幅度只取0和1C、各种离散信号都是数字信号D、将数字信号滤波可得模拟信号[2分](5)已知如下四个系统,f(t)、f(k)代表系统输入,y(t)、y(k)代表响应。

其中,线性系统的有();时不变系统有();因果系统有();记忆系统有。

A、B、C、D、[2分](6)A、B、C、D、[2分](7)A、sin3B、-sin3C、sin3tD、0[2分](8)A、3B、-3C、5D、-5[2分](9)A、0B、costC、sintD、u(t)[2分](10)信号[2分](11)下图中x(t)的表示式是A、B、C、D、[2分](12)已知A、B、C、D、[2分](13)已知,则()。

A是常数A、B、C、D、[2分](14)已知一个LTI系统的单位冲激响应h(t)如下图,若输入,则输出是。

A、1B、-1C、D、0[2分](15)已知一个LTI系统输入为时,输出、如下图所示,则系统单位冲激响应是。

A、u(t)B、2u(t)C、u(t)-u(t-1)D、u(t-1)-u(t-2)[2分](16)已知一个LTI系统输入为时,输出,若输入为,则对应的输出是()。

滨州学院信号与系统期末复习题及参考答案

滨州学院信号与系统期末复习题及参考答案

2023年下学期信号与系统(考试课)复习资料一、简答题1. 什么是信号(21分)答案:信号是指随时间、空间或者其他自变晕而变化的物理量或抽象量,例如声音、图像、电压等。

2. 什么是连续时间信号?(1分)答案:连续时间信号是指信号在任意时间点上都存在值,通常用函数的形式表示。

3. 什么是线性系统(1分)答案:线性系统是指满足叠加原理和比例原理的系统,即输入为xl和x2时,输出为yl和y2,则输入为ax l+bx2时,输出为ayl+by2。

4. 什么是时不变系统(1分)答案:时不变系统是指系统的性质不随时间而变化,即在不同时刻输入同一个信号,输出的响应相同。

5. 什么是滤波器(1分)答案:滤波器是一种信号处理系统,可以选择性地通过或者抑制信号的某些频率成分,常用千信号去噪、信号增强等应用场合。

6. 什么是离散时间信号(1分)答案:离散时间信号是指信号只在离散时间点上存在值,通常用序列的形式表示。

7信号与系统在实际工程领域中的应用有哪些(1分)答案:信号与系统广泛应用千通信、控制、图像处理、声音处理、生物医学工程等领域,包括无线电通信、数字信号处理、自动化控制、人脸识别、心电图分析等应用。

8. 什么是非线性系统(1分)答案:非线性系统是不满足叠加原理和比例原理的系统,其输出与输入之间的关系不是线性函数关系。

9简述无失真传输的理想条件。

(1分)答案:系统的幅频特性为一常数,而相频特性为通过原点的直线10. 什么是傅里叶变换(1分)答案:傅里叶变换是一种将时域信号转换为频域信号的方法,在频域中展示信号的频率成分和幅值特征。

11. 什么是系统(1分)答案:系统是指对输入信号进行处理并产生输出信号的物理或数学构架,例如滤波器、放大器等。

二、单项选择题12中]=c o s (产)+c o s (i 叫的基波周期N =()。

(1分)A .8 B.9 C.12 D.24 答案:D13.信号f(t)= o(t -2舫傅里叶变换为烈)co)=()。

信号与系统复习题

信号与系统复习题



n=0
50.使序列Z变换存在的取值范围称作 51.因果系统是未加激励不会产生 52.若系统的系统函数为H(S),其零点的位置 53.若系统的系统函数为H(S),其极点的位置
。 响应的系统。
系统的稳定性。 系统的稳定性。
54.若因果系统函数H(S)的所有极点均在S左半开平面,则系统

55.若因果系统函数H(S)的所有极点均在S右半开平面,则系统
A.相位相同,大小相等
B.相位相同,大小不等
C.相位相反,大小相等
D.相位相反,大小不等
4.GCL 并联谐振电路发生谐振时,电容 C 和电感 L 上的电流有以下关系:
A.相位相同,大小相等
B.相位相同,大小不等
C.相位相反,大小相等
D.相位相反,大小不等
5.RLC 并联谐振电路的固有谐振频率取决于:
求该离散系统的系统函数和差分方程。
96.已知序列f1(n) { 1 ,l,2,1,},f2(n){ 1 ,0,0,2}


n=0
n=0
若序列以f3(n)= f1(n)∗ f2(n),请用离散卷积定理计算f3(n)序列。
97.已知序列f1(n){ 1 ,0,l,2},f2(n)={ 1 ,l}


n=0
n=0
试求两序列的卷积和。
98.描述某系统的差分方程为 y(n) − 1 y(n −1) − 1 y(n − 2) = f (n) + 2 f (n −1)
A.电源电压幅值 B.电源电压的初始相位
C.电源电压频率 D.电路参数
6.已知信号 f(t)如(a)所示,其反转左移的信号 f1(t)是
7.已知信号 f(t)如图所示,其表达式为:

11-5-技术专-信号与系统期末考试试题答案

11-5-技术专-信号与系统期末考试试题答案

学号___________ 姓名_________ 贵州函授站得分______中国传媒大学远程与继续教育学院2010级广播电视技术专科第五学期《信号与系统》期末试卷一.单项选择题(本大题共10小题,每小题2分,共20分)。

1. 如右下图所示信号,其数学表示式为 (B)A. f (t ) = tu(t) − tu(t− 1)B. f (t ) = tu(t) − (t− 1)u (t− 1)C. f (t) = (1 − t )u (t) − (t− 1)u (t− 1)D. f (t ) = (1 + t )u (t) − (t + 1)u (t + 1)∞2. 序列和∑δ ( n ) 等于( A )n = − ∞C.u ( n)D. (n + 1)u ( n)A. 1B. ∞3. 已知:f (t ) = sgn(t ) 傅里叶变换为F ( jw) =2,则:F(jw)=jπsgn(w)的傅里叶jw1反变换f1(t)为(C)A. f1 (t ) =1B. f1 (t) = −2C. f1(t) = −1D. f1 (t ) =2t t t t24. 积分∫−2e tδ ( t− 3 ) dt等于(A)A. 0B. 1C. e3D. e−35. 周期性非正弦连续时间信号的频谱,其特点为 (C)A. 频谱是连续的,收敛的B. 频谱是离散的,谐波的,周期的C. 频谱是离散的,谐波的,收敛的D. 频谱是连续的,周期的6. 设: f (t ) ↔ F ( jw ) ,则: f 1 (t ) = f ( at − b ) ↔ F 1 ( jw ) 为( C ) A. F ( jw ) = aF ( j w ) ⋅ e − jbw B. F ( jw ) = 1 F ( j w ) ⋅ e − jbw1 a 1a aC. F ( jw ) = 1 F ( j w ) ⋅ e − j b wa 1 a a7. 已知某一线性时不变系统对信号H ( s ) = ( B )w − j b w D. F ( jw ) = aF ( j ) ⋅ e a1 a X (t ) 的零状态响应为 4 dX (t − 2) ,则该系统函数 dtA. 4 F ( s )B. 4 s⋅ e - 2SC. 4 e−2S / sD. 4 X ( s ) ⋅ e - 2S8. 单边拉普拉斯变换F ( s ) = 1 + s的原函数f (t ) = (D)A. e−t u (t )B. (1 + e−t )u (t )C. (t + 1)u (t )D. δ (t ) + δ' (t )9.如某一因果线性时不变系统的系统函数H(s)的所有极点的实部都小于零,则( C )A. 系统为非稳定系统B. | h(t) |<∞∞C. 系统为稳定系统D.∫0h (t )dt = 010. 离散线性时不变系统的单位序列响应h( n ) 为(A)A.输入为δ ( n ) 的零状态响应B.输入为u ( n ) 的响应C.系统的自由响应D.系统的强迫响应二.填空题(本大题共10小题,每小题2分,共20分)1. δ( −t ) =___ δ (t ) __ (用单位冲激函数表示 )。

信号与系统复习资料及答案

信号与系统复习资料及答案

信号与系统复习资料及答案2.设系统零状态响应与激励的关系是:"s (r )=∣∕α)∣,则以下表述不对的是(.A )。

B.系统是时不变的C.系统是因果的D.系统是稳定的4 .设一个矩形脉冲的面积为S,则矩形脉冲的FT (傅氏变换)在原点处的函数值等)o5 .信号(£(t )-£(t-2))的拉氏变换的收敛域为(C )。

6 .已知连续系统二阶微分方程的零输入响应κ,⑺的形式为A/+8",则其2个7 .函数£⑺是(8 .周期矩形脉冲序列的频谱的谱线包络线为()09 .能量信号其(B )010 .在工程上,从抽样信号恢复原始信号时需要通过的滤波器是(B )0A.高通滤波器C.带通滤波器D.带阻滤波器 二、填空题L 系统的激励是e(“,响应为若满足也乜,则该系统为线性、时不dt 变、因果。

一、选择题L 线性系统具有 D)o A.分解特性 B.零状态线性C.零输入线性D.ABC A.系统是线性的 3.零输入响应是( )0A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差A.S/2B.S/3C.S/4D.SA.Re[s]>OB.Re[s]>2C.全S 平面D.不存在特征根为(AA. -1,-2)o B. -1,2 C. 1,-2 D. 1,2 A.奇函数B.偶函数C.非奇非偶函数D.奇谐函数 A. δ函数B. Sa 函数C. £函数D.无法给出 A.能量E=OB.功率P=OC.能量E=8D.功率P=OOB.低通滤波器2.求积分Jjr2+∖)δ(t-2)dt的值为o3.当信号是脉冲信号/⑺时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号/⑺的最高频率是2kHz,则"2。

的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为相频特性为o6.系统阶跃响应的上升时间和系统的截止频率成反比。

《信号与系统》复习重点

《信号与系统》复习重点

《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。

课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。

二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。

结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。

(2)离线作业。

两次离线作业题目要熟练掌握。

(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。

特别要建立信号与系统的频域分析的概念以及系统函数的概念。

结合习题进行反复练习。

四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。

2. 掌握系统的描述、分类及特性。

3. 重点掌握确定信号及线性非时变系统的特性。

第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。

2.掌握连续信号与离散信号的基本运算。

3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。

第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。

2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。

4.掌握用卷积法计算离散时间系统的零状态响应。

第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。

2.掌握离散周期信号的频域分析方法。

第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。

2.掌握连续非周期信号的频域分析。

3.掌握离散非周期信号的频域分析。

《信号与系统》期末考试试题答案

《信号与系统》期末考试试题答案

第1 页(共4 页)《信号与系统》须知:符号e (t)(t)、、e (k)(k)分别为单位阶跃函数和单位阶跃序列。

分别为单位阶跃函数和单位阶跃序列。

LTI 表示线性时不变。

为加法器。

一、单项选择题(每小题4分,共32分)D 1、序列和33(2)ii i d ¥-=-¥-å等于A .3e (k –2)B .3e (k)C .1D .3 D 2、积分55(1)d 2t t e t d --ò等于A .0B .1C .eD .e 2 B 3、()(a )f t t d =A .(0)f t d()B .1(0)()|a |f t d C .(0)f aD .0()f t a æöd ç÷èøB 4、1()f t 、2()f t 波形如题4图所示,12()()*()f t f t f t =则(2)f =t1()f t -22240t2()f t 11-120题4图A .12B .1C .32D .2 B 5、已知)()()(21k f k f k f *=,)(1k f 、)(2k f 波形如题5图所示,)0(f 等于1()f k 012312()f k 011-11kk题5图A .1B .2C .3D .4 D 6、已知()1sgn()f t t =+则其傅立叶变换的频谱函数()F j w 等于A .12()j pd w +w B .2j wC .1()j pd w +wD .2()j 2pd w +w∑D 7、已知单边拉普拉斯变换的象函数22()1F s s =+则原函数)(t f 等于等于A .()te t -e B .2()te t -e C .2cos ()t t e D .2sin ()t t e B 8、已知)()(k k kf e =,其双边Z 变换的象函数)(z F 等于等于 A .1-z z B .2)1(-z z C .1--z z D .2)1(--z z二、填空题(每小题5分,共30分)分) 9、单边拉普拉斯变换定义()F S =0()stf t e dt-¥-ò;双边Z 变换定义式()F Z =()kk f k z¥-=-¥å10、已知()f t 的波形如题10图所示,则(12)f t -波形波形 (1) ;()df t dt波形波形(2) 。

【信号与系统期末试题附答案】填空题

【信号与系统期末试题附答案】填空题

信号与系统复习期末练习题二、填空题1.=-*-)()(21t t t t f δ________________。

2.从信号频谱的连续性和离散性来考虑,周期信号的频谱是_______________。

3。

符号函数)42sgn(-t 的频谱函数F(jω)=________________。

4。

频谱函数F (jω)=δ(ω-2)+δ(ω+2)的傅里叶逆变换f (t) = ________________。

5。

已知一线性时不变系统,在激励信号为)(t f 时的零状态响应为)(t y zs ,则该系统的系统 函数H(s)为_______。

6。

对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积分器数目最少是_______个。

7。

一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S 平面的__________。

8.如果一线性时不变系统的单位冲激响应为)(t h ,则该系统的阶跃响应g(t)为_________。

9.如果一线性时不变系统的输入为)(t f ,零状态响应为)(2)(0t t f t y zs -=, 则该系统的单位冲激响应)(t h 为_________________。

10.如果一LTI 系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)(t f =)(t t ε时,其零状态响应为_________________。

11.已知x(t)的傅里叶变换为X (jω),那么)(0t t x -的傅里叶变换为_________________。

12.已知)()(01t t t x -=δ,)(2t x 的频谱为π[δ(ω+ω0)+δ(ω-ω0)],且)()()(21t x t x t y *=,那么y(t 0)= _________________。

13.若已知f 1(t)的拉氏变换F 1(s )=1/s ,则)(t f =f 1(t)*f 1(t)的拉氏变换F (s )= _________________。

信号与系统常考的填空选择题

信号与系统常考的填空选择题

信号与系统常考的填空选择题摘要:1.信号与系统的基本概念2.填空选择题的解题技巧3.常见题型及解题方法4.提高解题效率的建议5.练习题及答案解析正文:信号与系统是一门涉及电子信息、通信工程等专业的核心课程,其主要研究信号的传输、处理和控制。

在学习过程中,填空选择题是巩固知识、提高能力的重要手段。

以下我们将介绍一些信号与系统中常见的填空选择题解题技巧。

1.信号与系统的基本概念信号是指随时间变化的物理量,可以分为连续信号和离散信号。

系统是指由多个部件组成的整体,其作用是对输入信号进行处理和输出。

在信号与系统中,我们需要掌握以下基本概念:- 信号的时域分析:包括信号的幅度、频率、周期等特性。

- 信号的频域分析:傅里叶变换、拉普拉斯变换等。

- 系统的输入输出关系:线性时不变系统、因果系统、稳定性等。

2.填空选择题的解题技巧在进行填空选择题解答时,可以采用以下方法:- 仔细阅读题目,提取关键信息。

- 分析题干,判断所属知识点。

- 根据所学知识,填入正确答案。

3.常见题型及解题方法信号与系统填空选择题常见题型包括:- 基本概念题:考察对信号与系统基本概念的理解。

- 数学运算题:如求解系统的传递函数、计算信号的幅度等。

- 系统分析题:如判断系统的稳定性、求解系统的零状态响应等。

针对不同题型,我们可以采用以下解题方法:- 对于基本概念题,要熟记相关定义,明确概念之间的关系。

- 对于数学运算题,要熟练掌握公式和计算方法。

- 对于系统分析题,要了解不同系统的性质,学会运用系统函数进行分析和判断。

4.提高解题效率的建议- 扎实掌握基本概念和原理,增强对知识的理解和运用能力。

- 多做练习,积累经验,熟悉题型和解题方法。

- 学会分析和总结,提高解题速度。

5.练习题及答案解析以下为一组填空选择题及答案解析:1.填空题:一个线性时不变系统的输入信号为x(t),输出信号为y(t),则系统的传递函数为______。

答案:H(s) = Y(s)/X(s)2.选择题:以下哪个信号是离散信号?A.正弦波B.方波C.指数函数D.所有选项都不是答案:B……通过以上分析和解答,希望能帮助大家更好地掌握信号与系统中填空选择题的解题方法。

信号与系统期末考试复习指导(选择填空)

信号与系统期末考试复习指导(选择填空)

选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /sB 。

200rad /sC 。

100rad /sD 。

50rad /s1516A C 17A 、C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为() A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统B 、非因果稳定系统C 21、()A 22A 、阶跃信号B 、正弦信号?C 、冲激信号?D 、斜升信号23.积分⎰∞∞-dt t t f )()(δ的结果为()A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24.卷积)()()(t t f t δδ**的结果为()A.)(t δB.)2(t δC.)(t fD.)2(t f25.零输入响应是()A.C.2A 、e 27.282A 29.函数)(t δ'是()A .奇函数B 。

偶函数C 。

非奇非偶函数D 。

奇谐函数30.周期矩形脉冲序列的频谱的谱线包络线为()A .δ函数B 。

Sa 函数C 。

ε函数D 。

无法给出31.能量信号其()A .能量E =0B 。

功率P =0C 。

能量E =∞D 。

功率P =∞32.在工程上,从抽样信号恢复原始信号时需要通过的滤波器是()A .高通滤波器B 。

低通滤波器C 。

带通滤波器D 。

带阻滤波器33.设一个矩形脉冲的面积为S ,则矩形脉冲的F T(傅氏变换)在原点处的函数值等于()A .34.A 35A 36A37A .38A C 39.A .微分特性B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

-1,-2 B 。

-1,2 C 。

1,-2 D 。

1,229.函数)(t δ'是( )A .奇函数B 。

偶函数C 。

非奇非偶函数D 。

奇谐函数30.周期矩形脉冲序列的频谱的谱线包络线为( )A .δ 函数B 。

Sa 函数C 。

ε 函数D 。

无法给出31.能量信号其( )A .能量E =0B 。

功率P =0C 。

能量E =∞D 。

功率P =∞32.在工程上,从抽样信号恢复原始信号时需要通过的滤波器是( )A .高通滤波器B 。

低通滤波器C 。

带通滤波器D 。

带阻滤波器33.设一个矩形脉冲的面积为S ,则矩形脉冲的F T(傅氏变换)在原点处的函数值等于( )A .S /2B 。

S /3C 。

S /4D 。

S34.,3,2,1,0,3sin )(±±±==k k k f … 是 ( )A .周期信号B 。

非周期信号C 。

不能表示信号D 。

以上都不对35.线性系统具有( )A .分解特性B 。

零状态线性C 。

零输入线性D 。

ABC36.设系统零状态响应与激励的关系是:)()(t f t y zs = ,则以下表述不对的是( )A .系统是线性的B 。

系统是时不变的C 。

系统是因果的D 。

系统是稳定的37.对于信号t t f π2sin )(=的最小取样频率是 ( )A .1 HzB 。

2 HzC 。

4 HzD 。

8Hz38.理想低通滤波器是( )A .因果系统B 。

物理可实现系统C 。

非因果系统D 。

响应不超前于激励发生的系统39.ωj 1 具有( )A .微分特性B 。

积分特性C 。

延时特性D 。

因果特性40.)1()2(sin --t t δπ等于( )A .)2(sin -t πB 。

)1(-t δC 。

1D 。

041.功率信号其 ( )A .能量E =0B 。

功率P =0C 。

能量E =∞D 。

功率P =∞42.信号⋯±±±==,3,2,1,0,6sin )(k k k f π其周期是( )A .π2B 。

12C 。

6D 。

不存在43.对于信号t t t f 33104sin 102sin )(⨯+⨯=ππ的最小取样频率是 ( )A .8kHzB 。

4kHzC 。

2kHzD 。

1kHz44.设系统的零状态响应⎰=tzs d f t y 0,)()(ττ 则该系统是 ( )A .稳定的B 。

不稳定的C 。

非因果的D 。

非线性的45.)4()]4([--t t Sa δπ等于 ( )A .)4(-t δB 。

)4(sin -t πC 。

1D 。

046.连续周期信号的频谱有( )A .连续性、周期性B 。

连续性、收敛性C 。

离散性、周期性D 。

离散性、收敛性47.某信号的频谱密度函数为,)]2()2([)(3ωπωεπωεωj e j F ---+=则=)(t f ()A .)]3(2[-t Sa πB 。

2)]3(2[-t Sa πC .)2(t Sa πD 。

2)2(t Sa π48.理想低通滤波器一定是( )A .稳定的物理可实现系统B 。

稳定的物理不可实现系统C .不稳定的物理可实现系统D 。

不稳定的物理不可实现系统49.单边拉氏变换3)()3(+=+-s e s F s 的原函数=)(t f ( )A .)1()1(3---t e t εB 。

)3()3(3---t e t εC .)1(3--t e t εD 。

)3(3--t e t ε50.当输入信号的复频率等于系统函数的零点时,系统的强迫响应分量为( )A .无穷大B 。

不为零的常数C 。

0D 。

随输入信号而定51.欲使信号通过系统后只产生相位变化,则该系统一定是( )A .高通滤波网络B 。

带通滤波网络C 。

全通网络D 。

最小相移网络52.已知信号)(t f 的傅氏变换为),(ωj F 则)23(tf -的傅氏变换为( )A .ωω3)2(2j e j F -B 。

ωω3)2(2j e j F --C .ωω6)2(2j e j F -D 。

ωω6)2(2j e j F --53.信号的时宽与信号的频宽之间呈( )A .正比关系B 。

反比关系C 。

平方关系D 。

没有关系54.时域是实偶函数,其傅氏变换一定是( )A .实偶函数B 。

纯虚函数C 。

任意复函数D 。

任意实函数55.幅度调制的本质是( )A .改变信号的频率B 。

改变信号的相位C .改变信号频谱的位置D 。

改变信号频谱的结构56.若),()()(t y t h t f =*则=*)3()3(t h t f ( )A.)3(t y B。

3)3(t y C 。

)3(31t y D 。

)3(t y 57.假设信号)(1t f 的奈奎斯特取样频率为1ω ,)(2t f 的奈奎斯特取样频率为,2ω且1ω>,2ω则信号)2()1()(21++=t f t f t f 的奈奎斯特取样频率为( )A .1ωB 。

2ωC 。

1ω+2ωD 。

1ω*2ω58.某信号的频谱是周期的离散谱,则对应的时域信号为( )A .连续的周期信号B 。

连续的非周期信号C .离散的非周期信号D 。

离散的周期信号59.若线性时不变因果系统的频率响应特性),(ωj H 可由系统函数)(s H 将其中的s 换成ωj 来求取,则要求该系统函数)(s H 的收敛域应为( )A .]Re[s >某一正数B 。

]Re[s >某一负数C .]Re[s <某一正数D 。

]Re[s <某一负数60.对于某连续因果系统,系统函数22)(+-=s s s H ,下面说法不对的是( ) A .这是一个一阶系统 B 。

这是一个稳定系统C .这是一个最小相位系统D 。

这是一个全通系统61.下列信号分类法中错误的是 ( )A.确定信号与随机信号B.周期信号与非周期信号C.能量信号与功率信号D.一维信号与二维信号62.下列各式中正确的是 ( )A.)()2(t t δδ=; ;B.)(2)2(t t δδ=;C.)(21)2(t t δδ=D.)2(21)(2t t δδ= 63.下列关于傅氏变换的描述的不正确的是 ( )A ..时域周期离散,则频域也是周期离散的;B 时域周期连续,则频域也是周期连续的;C. 时域非周期连续,则频域也是非周期连续的; D.时域非周期离散,则频域是周期连续的。

64.若对)(t f 进行理想取样,其奈奎斯特取样频率为s f ,对)231(-t f 进行取样,其奈奎斯特取样频率为 ( )A .3s fB 。

s f 31C 。

3(s f -2)D 。

)2(31-s f 65.)3()5(21-*+t f t f 等于 ( )A .)()(21t f t f *B 。

)8()(21-*t f t fC .)8()(21+*t f t fD 。

)1()3(21-*+t f t f66.积分⎰---55)2()3(dt t t δ等于( )A .-1B 。

1C 。

0D 。

-0。

567.已知某连续时间系统的系统函数11)(+=s s H ,该系统属于什么类型 ( ) A .高通滤波器 B 。

低通滤波器 C 。

带通滤波器 D 。

带阻滤波器68.以下为4个信号的拉普拉斯变换,其中不存在傅里叶变换的信号是 ( )A .s 1B 。

1C 。

21+sD 。

21-s 69.已知一连续系统在输入)(t f 的作用下的零状态响应为)4()(t f t y zs =,则该系统为( )A .线性时不变系统B 。

线性时变系统C .非线性时不变系统D 。

非线性时变系统70.已知)(t f 是周期为T 的函数,)(t f -)25(T t f +的傅里叶级数中,只可能有( ) A .正弦分量 B 。

余弦分量 C 。

奇次谐波分量 D 。

偶次谐波分量 71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为)()(3t e et t ε--+,强迫响应为)()1(2t e t ε--,则下面的说法正确的是 ( )A .该系统一定是二阶系统B 。

该系统一定是稳定系统C .零输入响应中一定包含)()(3t e e t t ε--+D 。

零状态响应中一定包含)()1(2t e t ε--72.已知信号)(t f 的最高频率)(0Hz f ,则对信号)2(t f 取样时,其频谱不混迭的最大奈奎斯特取样间隔m ax T 等于( )A .1/f 0B .2/f 0C .1/2f 0D 。

相关文档
最新文档