四川省巴中市巴州区2016届九年级数学下学期第一次月考试题

合集下载

2016巴中中考数学试题及答案

2016巴中中考数学试题及答案

2016巴中中考数学试题及答案【篇一:四川省巴中市2016年中考数学试卷含答案解析(word版)】ass=txt>一、选择题:本大题共10个小题,每小题3分,共30分1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()a. b. c. d.2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()a. b. c. d.3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为()4.下列计算正确的是()5.下列说法正确的是()a.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件b.审查书稿中有哪些学科性错误适合用抽样调查法c.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是s甲2=0.4,s乙2=0.6,则甲的射击成绩较稳定d.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为6.如图,点d、e分别为△abc的边ab、ac上的中点,则△ade的面积与四边形bced的面积的比为()a.1:2 b.1:3 c.1:4 d.1:17.不等式组:的最大整数解为()a.1 b.﹣3 c.0 d.﹣18.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()9.下列二次根式中,与a. b. c.是同类二次根式的是() d.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点a(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点b(﹣,y1)、c(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()a.1 b.2 c.3 d.4二、填空题:本大题共10个小题,每小题3分,共30分11.|﹣0.3|的相反数等于12.函数中,自变量x的取值范围是.13.若a+b=3,ab=2,则(a﹣b)2=.14.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为.15.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为.17.如图,?abcd中,ac=8,bd=6,ad=a,则a的取值范围是. 18.如图,将边长为3的正六边形铁丝框abcdef变形为以点a为圆心,ab为半径的扇形(忽略铁丝的粗细).则所得扇形afb(阴影部分)的面积为.19.把多项式16m3﹣mn2分解因式的结果是.三、解答题:本大题共11个小题,共90分24.已知:如图,四边形abcd是平行四边形,延长ba至点e,使ae+cd=ad.连结ce,求证:ce平分∠bcd.25.为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷).(1)求本次被调查的考生总人数及a、b、c的值;(2)将条形统计图补充完整;(3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?26.如图,方格中,每个小正方形的边长都是单位1,△abc在平面直角坐标系中的位置如图.(1)画出将△abc向右平移2个单位得到△a1b1c1;(3)求△a1b1c1与△a2b2c2重合部分的面积.27.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.29.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于a、b两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点c.cd⊥x轴,垂直为d,若ob=2oa=3od=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.31.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点a、b(点a在点b的左侧),该抛物线的对称轴与直线y=在直线y=x相交于点e,与x轴相交于点d,点px上(不与原点重合),连接pd,过点p作pf⊥pd交y轴于点f,连接df.,求抛物线的解析式;(1)如图①所示,若抛物线顶点的纵坐标为6(2)求a、b两点的坐标;【篇二:2016年四川省巴中市中考数学试卷】ss=txt>参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分1.(3分)(2016?巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()a. b. c. d.【考点】轴对称图形.【专题】平移、旋转与对称.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,故选d.【点评】2.(3分)(2016?巴中)如图是一个由4 ),a. bc【考点】【分析】【解答】故选a.【点评】3.(3分)(2016?0.000041米,0.000041这个数用科学记数法表示为()【考点】科学记数法—﹣6﹣﹣4﹣4故选:b.4.(3分)(2016?巴中)下列计算正确的是()﹣n﹣5﹣n【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,可得答案.【解答】解:a、积的乘方等于乘方的积,故a错误;b、同底数幂的除法底数不变指数相减,故b错误;c、积的乘方等于乘方的积,故c错误;d、同底数幂的除法底数不变指数相减,故d正确;故选:d.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)(2016?巴中)下列说法正确的是()a.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件b.审查书稿中有哪些学科性错误适合用抽样调查法c.甲乙两人在相同条件下各射击10s乙=0.6,则甲的射击成绩较稳定d.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”【考点】【分析】由随机事件和必然事件的定义得出a由方差的性质得出c 正确,由概率的计算得出d【解答】解:a5选项a错误;b2c、甲乙两人在相同条件下各射击s甲=0.4,s乙=0.6,则甲的射击成绩较稳定,选项cd”,不是,选项d错误;故选:c.【点评】6.(3?、△abc的边ab、ac上的中点,则△ade的面积与四边形bced22a.1:2 b.1:3 c.1:4 d.1:1【考点】相似三角形的判定与性质.【分析】证明de是△abc的中位线,由三角形中位线定理得出de∥bc,de=bc,证出△ade∽△abc,由相似三角形的性质得出△ade的面积:△abc的面积=1:4,即可得出结果.【解答】解:∵d、e分别为△abc的边ab、ac上的中点,∴de是△abc的中位线,∴de∥bc,de=bc,∴△ade∽△abc,∴△ade的面积:△abc的面积=()=1:4,∴△ade的面积:四边形bced的面积=1:3;故选:b.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.7.(3分)(2016?巴中)不等式组: 2a.1 b.﹣3 c.0 d.﹣1【考点】一元一次不等式组的整数解.【分析】最大整数即可.【解答】解:解不等式3x﹣1<x+1,得:x<1,解不等式2(2x﹣1)≤5x+1,得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0,故选:c.【点评】“同大取大;同小8.(3分)(2016?1.2米,台阶拆除后,换成供轮椅行走的斜坡, c.ac=1.2tan10dab=米【考点】-坡度坡角问题.【分析】故选:b.【点评】本题考查了坡度坡角,利用坡度是坡角的正切值是解题关键.9.(3分)(2016?巴中)下列二次根式中,与是同类二次根式的是()a. b. c. d.【考点】同类二次根式.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:a、=3,与不是同类二次根式,故此选项错误;b、c、d、==2=,与,与=,是同类二次根式,故此选项正确;不是同类二次根式,故此选项错误;,与不是同类二次根式,故此选项错误;故选:b.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.10.(3分)(2016?巴中)如图是二次函数y=ax+bx+c3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点b(﹣,y1)、c(﹣,y2)为函数图象上的两点,则y;③2a﹣b=0;④<0, 2其中,正确结论的个数是()a.1 b.2 cd.【考点】【专题】【分析】②根据点离对称轴的远近可判断;③根根据抛物线对称轴可判断;【解答】yc>0,故①正确;﹣1∴点b(﹣,y1∵抛物线开口向下,∴y1>y2,故②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,故③正确;由函数图象可知抛物线与x轴有2个交点,22∴b﹣4ac>0即4ac﹣b<0,∵a<0,∴>0,故④错误;综上,正确的结论是:①③,故选:b.2【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x2轴的交点个数,决定了b﹣4ac的符号.二、填空题:本大题共10个小题,每小题3分,共30分11.(3分)(2016?巴中)|﹣0.3|的相反数等于.【考点】绝对值;相反数.【分析】根据绝对值定义得出|﹣0.3|=0.3【解答】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3.故答案为:﹣0.3.【点评】0的相反数是0,难度适中.12.(3分)(2016?巴中)函数x【考点】函数自变量的取值范围.【专题】函数思想.【分析】【解答】2﹣≥0解得x≤.故答案为:x≤【点评】13.(3分)(,ab=2,则(a﹣b)=【考点】【专题】计算题.22【分析】将a+b=3两边平方,利用完全平方公式化简,将ab的值代入求出a+b的值,所求式子利用完全平方公式展开,将各自的值代入计算即可求出值.222【解答】解:将a+b=3平方得:(a+b)=a+2ab+b=9,22把ab=2代入得:a+b=5,222则(a﹣b)=a﹣2ab+b=5﹣4=1.故答案为:1【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键. 14.(3分)(2016?巴中)两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 7 . 2【篇三:2016年四川省巴中市中考数学试卷(含答案)】ss=txt>一、选择题:本大题共10个小题,每小题3分,共30分1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是() a.b.c.d.2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()a. b. c.d.4.下列计算正确的是()a.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件 b.审查书稿中有哪些学科性错误适合用抽样调查法c.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是s甲2=0.4,s乙2=0.6,则甲的射击成绩较稳定d.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为 6.如图,点d、e分别为△abc的边ab、ac上的中点,则△ade的面积与四边形bced的面积的比为()a.1:2b.1:3 c.1:4 7.不等式组:a.1b.﹣3d.1:1的最大整数解为() c.0d.﹣18.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()米b.是同类二次根式的是()c.d.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点a(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点b (﹣,y1)、c(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0.其中,正确结论的个数是()a.1 b.2c.3 d.4二、填空题:本大题共10个小题,每小题3分,共30分 11.|﹣0.3|的相反数等于 12.函数中,自变量x的取值范围是13.若a+b=3,ab=2,则(a﹣b)2=14.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为.15.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线17.如图,?abcd中,ac=8,bd=6,ad=a,则a的取值范围是. 18.如图,将边长为3的正六边形铁丝框abcdef变形为以点a为圆心,ab为半径的扇形(忽略铁丝的粗细).则所得扇形afb(阴影部分)的面积为.19.把多项式16m3﹣mn2分解因式的结果是.度.)0+|﹣2|+.23.先化简:整数值代入求值.24.已知:如图,四边形abcd是平行四边形,延长ba至点e,使ae+cd=ad.连结ce,求证:ce平分∠bcd.25.为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷).被调查考生选择意向统计表根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及a、b、c的值;(2)将条形统计图补充完整;。

2016年四川省巴中市中考数学试卷含答案

2016年四川省巴中市中考数学试卷含答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前四川省巴中市2016年高中阶段教育学校招生统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )ABCD 2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B CD3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( )A .64110-⨯B .54.110-⨯C .40.4110-⨯D .44.110-⨯ 4.下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 5.下列说法正确的是( )A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B .审查书稿中有哪些科学性错误适合用抽样调查C .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是2=0.4s 甲,2=0.6s 乙,则甲的射击成绩较稳定D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为126.如图,点D ,E 分别为ABC △的边AB ,AC 的中点,则ADE △的面积与四边形BCED 的面积比为( )A .1:2B .1:3C .1:4D .1:17.不等式组311,2(21)51x x x x -+⎧⎨-+⎩<≤的最大整数解为( ) A .1B .3-C .0D .1-8.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A .斜坡AB 的坡度是10 B .斜坡AB 的坡度是tan10 C . 1.2tan10AC =米D . 1.2=cos10AB 米9.下列二次根式中,( ) ABCD10.如图是二次函数2y ax bx c =++图象的一部分,图象过点(3,0)A -,对称轴为直线=1x -,给出四个结论:①0c >;②若13(,)2B y -,25(,)2C y -为函数图象上的两点,则12y y <; ③20a b -=;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)④2404ac b a-<. 其中,正确结论的个数是( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共120分)二、填空题(本大题共10小题,每小题3分,共30分).把答案填写在题中的横线上) 11.|0.3|-的相反数等于 .12.函数y 的自变量x 的取值范围是 .13.已知:3a b +=,=2ab ,则2()=a b - .14.两组数据,6,m n 与1,,2,7m n 的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 .15.已知二元一次方程组5,22x y x y -=-⎧⎨+=-⎩的解为4,1,x y =-⎧⎨=⎩则在同一平面直角坐标系中,直线1:5l y x =+与直线21:12l y x =--的交点坐标为 .16.如图,A ∠是O 的圆周角,=55OBC ∠,则=A ∠ . 17.如图,□ABCD 中,=8AC ,6BD =,AD a =,则a 的取值范围是 .18.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形AFB (阴影部分)的面积为 .19.把多项式3216m mn -分解因式的结果是 .20.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,连接AE .如果30ADB =∠,则=E ∠ 度.三、解答题(本大题11小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤) 21.(本小题满分5分)计算:2012sin 453()|2|2016--+-+22.(本小题满分6分) 定义新运算:对于任意实数,m n 都有2m n m n n =+☆,等式右边是常用的加法、减法、乘法及乘方运算.例如:232(3)2220-=-⨯+=☆.根据上述知识及解决问题:若2a ☆的值小于0,请判断方程:220x bx a -+=的根的情况.23.(本小题满分5分)先化简:2221()211x x x x x x+÷--+-,然后再从22x -<≤的范围内选取一个合适的x 的整数值代入求值.24.(本小题满分7分)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE CD AD +=.连接CE ,求证:CE 平分BCD ∠.25.(本小题满分10分)为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完形填空、阅读理解、口语应用”进行了问卷调查.要求每位考生都自主选择其中一个类型.为此随机调查了各考点部分考生的意向.并将调查结果绘制如下的统计图表(问卷回收率100%,并均为有效问卷).被调查考生选择意向统计表 被调查考生选择意向条形统计图数学试卷 第5页(共6页) 数学试卷 第6页(共6页)根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及,,a b c 的值; (2)将条形统计图补充完整;(3)巴中市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?26.(本小题满分10分)如图,方格中,每个小正方形的边长都是单位1,ABC △在平面直角坐标系中的位置如图.(1)画出将ABC △向右平移2个单位得到的111A B C △; (2)画出将ABC △绕点O 顺时针方向旋转90得到的222A B C △; (3)求111A B C △与222A B C △重合部分的面积.27.(本小题满分7分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠.国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶.现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.28.(本小题满分8分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN 的长为6π5.直线443y x =-+与x 轴、y 轴分别交于点,A B . (1)求证:直线AB 与O 相切;(2)求图中所示的阴影部分的面积(结果用π表示).29.(本小题满分10分)已知,如图,一次函数y kx b =+(,k b 为常熟,0k ≠)的图象与x 轴、y 轴分别交于,A B 两点,且与反比例函数ny x=(n 为常熟且0n ≠)的图象在第二象限交于点C .CD x ⊥轴,垂足为D .若236OB OA OD ===. (1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标;(3)直接写出不等式:n kx b x+≤的解集.30.(本小题满分10分)如图,随着巴中市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库.现测得油库C 在A 地的北偏东60方向上,在B 地的西北方向上,AB的距离为1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段建修铁路,油库C 是否会受到影响?请说明理由.31.(本小题满分12分)在平面直角坐标系中,抛物线245(0)y mx mx m m =+-<与x 轴交于点,A B (点A 在点B 的左侧),该抛物线的对称轴与直线y =相交于点E ,与x 轴相交于点D ,点P在直线y =上(不与原点重合),连接PD ,过点P 作PF PD ⊥交y 轴于点F ,连接DF.(1)如图1所示,若抛物线顶点的纵坐标为求抛物线的解析式;(2)求,A B 两点的坐标;(3)如图2所示,小红在探究点P 的位置发现:当点P 与点E重毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)合时,PDF ∠的大小为定值.进而猜想:对于直线y =上任意一点P (不与原点重合),PDF ∠的大小为定值.请你判断该猜想是否正确,并说明理由.四川省巴中市2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是“中”.【提示】利用轴对称图形定义判断即可. 【考点】轴对称图形 2.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形.【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】0.000041这个数用科学记数法表示为54.110⨯﹣.【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯﹣,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【考点】科学记数法—表示较小的数 4.【答案】D【解析】A .积的乘方等于乘方的积,故A 错误,B .同底数幂的除法底数不变指数相减,故B 错误,C .积的乘方等于乘方的积,故C 错误,D .同底数幂的除法底数不变指数相减,故D 正确.【提示】根据积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,可得答案.【考点】整式的乘方与除法运算 5.【答案】C【解析】A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上不是必然事件,是随机事件,选项A 错误,B .审查书稿中有哪些学科性错误适合用全面调查法,选项B 错误,C .甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是20.4S =甲,20.6S =乙,则甲的射击成绩较稳定,选项C 正确,D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为14,不是12,选项D 错误. 【提示】由随机事件和必然事件的定义得出A 错误,由统计的调查方法得出B 错误,由方差的性质得出C 正确,由概率的计算得出D 错误,即可得出结论.【考点】列表法与树状图法,全面调查与抽样调查,算术平均数,方差,随机事件. 6.【答案】B 【解析】,D E 分别为ABC △的边AB ,AC 上的中点,DE ∴是ABC △的中位线,12DE BC DE BC ∴=∥,,ADE ABC ∴△∽△,ADE ∴△的面积:ABC △的面积21142==():,ADE ∴△的面积:四边形BCED 的面积13=:,故选B . 【提示】证明DE 是ABC △的中位线,由三角形中位线定理得出1,2DE BC DE BC =∥,证出ADE ABC △∽△,由相似三角形的性质得出ADE △的面积:ABC △的面积14=:,即可得出结果.【考点】相似三角形的判定与性质. 7.【答案】C【解析】解不等式311x x -+<,得:1x <,解不等式22151x x -≤+(),得:3x ≥-,则不等式组的解集为:31x -≤<,则不等式组的最大整数解为0.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)【提示】分别求出每一个不等式的解集,根据口诀“大小小大中间找”确定不等式组的解集,在解集内找到最大整数即可. 【考点】一元一次不等式组的整数解. 8.【答案】B【解析】斜坡AB 的坡度是tan10BCAC︒=,故B 正确. 【提示】根据坡度是坡角的正切值,可得答案. 【考点】解直角三角形的应用—坡度坡角问题 9.【答案】B【解析】A故此选项错误,B是同类二次根式,故此选项正确,C错误,D==【分析】直接利用同类二次根式的定义分别化简二次根式求出答案. 【提示】同类二次根式 10.【答案】B【解析】由抛物线交y 轴的正半轴,0c ∴>,故①正确;对称轴为直线1x =-,13(,)2B y ∴点-距离对称轴较近,抛物线开口向下,12y y ∴>,故②错误;对称轴为直线1x =﹣,12ba∴-=-,即20a b -=,故③正确,由函数图象可知抛物线与x 轴有2个交点,240b ac -∴>,即240ac b -<,0a <,2404ac b a-∴>,故④错误;综上,正确的结论是:③④.【提示】①根据抛物线y 轴交点情况可判断,②根据点离对称轴的远近可判断,③根根据抛物线对称轴可判断,④根据抛物线与x 轴交点个数以及不等式的性质可判断. 【考点】二次函数图象与系数的关系.第Ⅱ卷二、填空题 11.【答案】0.3-【解析】0.30|3|.-=,0.3的相反数是0.3-,3||0.∴-的相反数等于0.3-.【提示】根据绝对值定义得出||0.30.3-=,再根据相反数的定义:只有符号相反的两个数互为相反数作答. 【考点】绝对值,相反数12.【答案】23x ≤【解析】根据题意得:230x -≥,解得23x ≤. 【提示】根据二次根式的意义,被开方数是非负数即可解答.【考点】函数自变量的取值范围 13.【答案】1【解析】将3a b +=得:222()29a b a ab b +=++=,把2ab =代入得:225a b +=,则222()2541a b a ab b -=+=-=-.【提示】将3a b +=两边平方,利用完全平方公式化简,将ab 的值代入求出a 2+b 2的值,所求式子利用完全平方公式展开,将各自的值代入计算即可求出值. 【考点】完全平方公式. 14.【答案】7【解析】组数据m ,6,n 与1,m ,2n ,7的平均数都是6,+61812724m n m n +=⎧∴⎨+++=⎩,解得:84m n =⎧∴⎨=⎩,若将这两组数据合并为一组数据,按从小到大的顺序排列为1,4,6,7,8,8,8,一共7个数,第四个数是7,则这组数据的中位数是7.【提示】根据平均数的计算公式先求出m 、n 的值,再根据中位数的定义即可得出答案. 【考点】中位数,算术平均数 15.【答案】(4,1)-【解析】二元一次方程组522x y x y -=-⎧⎨-=-⎩的解为41x x =-⎧⎨=⎩.121512l y x l y x ∴=+=--:与:的交点为(4,1)-.【提示】根据一次函数与二元一次方程组的关系进行解答即可.数学试卷 第3页(共6页) 数学试卷 第4页(共6页)【考点】一次函数与二元一次方程组. 16.【答案】35°【解析】55,55,180555570,OB OC OBC OCB BOC =∠=︒∴∠=︒∴∠=︒-︒-︒=︒,由圆周角定理得,1352A BOC ∠=∠=︒.【提示】根据等腰三角形的性质和三角形内角和定理求出BOC ∠的度数,根据圆周角定理计算即可. 【考点】圆周角定理 17.【答案】17a <<.【解析】∵四边形ABCD 是平行四边形,114,322OA AC OD BD ∴====,在A O D△中,由三角形的三边关系得:4343AD -+<>.【提示】由平行四边形的性质得出4,3OA OD ==,再由三角形的三边关系即可得出结果.【考点】平行四边形的性质,三角形三边关系 18.【答案】18 【解析】正六边形ABCDEF 的边长为3,3AB BC CD DE EF FA ∴======,3633=12BAF ∴=⨯--的长,∴扇形AFB (阴影部分)的面积1123182=⨯⨯=.【提示】由正六边形的性质得出BAF 的长=12,由扇形的面积12=弧长⨯半径,即可得出结果.【考点】正多边形和圆,扇形面积的计算 19.【答案】(4)4)m m n m n +-(【解析】原式22(16)m m n -=(4)(4)m m n m n =+-.【提示】先提公因式,再利用平方差公式进行因式分解即可. 【考点】提公因式法与公式法的综合运用20.【答案】15 【解析】连接AC,,30,,,,,,30,15.ABCD AD BE AC BD ADB CAD E DAE BD CE CE CA E AE CAD CAE DAE E E E ∴=∠=∠=︒∴∠=∠=∴=∴∠=∠∠=∠+∠∴∠+∠=︒∠=︒四边形是矩形∥,且即【提示】连接AC ,由矩形性质可得E DAE ∠=∠、BD AC CE ==,知E CAE ∠=∠,而30,ADB CAD E ∠=∠=︒∠可得度数. 【考点】矩形的性质. 三、解答题 21.【答案】3【解析】原式11212399=-++=. 【提示】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值 22.【答案】2a ☆的值小于0,22500a a a a ∴+=<<,解得:.在方程220x bx a +=-中,2()8580b a a ∆-=--≥>,∴方程220x bx a +=-有两个不相等的实数根.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)【提示】根据2a ☆的值小于0结合新运算可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,再由根的判别式得出2()8b a ∆=--,结合a 的取值范围即可得知∆的正负,由此即可得出结论.【考点】根的判别式23.【答案】4【解析】2222221()211(1)2(1)(1)(1)(1)(1)(1)11x x x x x x x x x x x x x x x x x x x x x +÷--+-+--=÷--+-=⨯-+=- 2222241121x x x x x ===---将代入中得:.【提示】先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x 的取值范围得出合适的x 的值,将其代入化简后的代数式中即可得出结论. 【考点】分式的化简求值24.【答案】四边形ABCD 是平行四边形,,,,,,.AB CD AB CD AD BC E DCE AE CD AD BE BC E BCE DCE BCE CE BCD ∴==∴∠=∠+=∴=∴∠=∠∴∠=∠∠∥,,,即平分【提示】由平行四边形的性质得出AB CD AB CD AD BC ==∥,,,由平行线的性质得出E DCE ∠=∠,由已知条件得出BE=BC ,由等腰三角形的性质得出E BCE ∠=∠,得出DCE BCE ∠=∠即可. 【考点】平行四边形的性质.25.【答案】(1)根据题意得:28035%800÷=,即本次被调查的考生总人数为800;完形填空的百分比160800100%20%b =÷⨯=,口语训练的百分比40800100%5%c =÷⨯=,则135%10%20%5%30%a =----=,(2)根据题意得:听力部分人数为80030%240⨯=,阅读理解人数为80010%80⨯=, 补全统计图,如图所示:(3)根据题意得:4200035%14700⨯=.则全市考生中最喜欢做“单项选择”这类客观题的考生有14700人.【提示】(1)由单项填空的人数除以占的百分比,求出总人数,确定出a ,b ,c 的值即可;(2)求出听力部分与阅读理解的人数,补全条形统计图即可; (3)根据单项选择的百分比乘以42000即可得到结果. 【考点】条形统计图,用样本估计总体 26.【答案】(1)如图,111A B C △为所作;(2)如图,222A B C △为所作,数学试卷 第3页(共6页) 数学试卷 第4页(共6页)(3)2211,B C A B 相交于点E ,2211,B A A B 相交于点F ,如图,()221120,1,(2,3),(1,0),(2,5),(5,0),B C B A A∴直线1155,A B y x =-为 直线221,B C y x =+为 直线22115A B y x =-+为,3552,15235(,),22155513,11015131510(,)13513313911531509.22222222621313676313BEF x y x y x y E y x x y x y F S ⎧=⎪=-⎧⎪⎨⎨=+⎩⎪=⎪⎩∴⎧=-=⎧⎪⎪⎪⎨⎨=-+⎪⎪=⎩⎪⎩∴∴=⨯---=△由解得点由解得点.1112221509676A B C A B C ∴△与△重合部分的面积为.【提示】(1)将ABC △向右平移2个单位即可得到111A B C △. (2)将ABC △绕点O 顺时针方向旋转90°即可得到222A B C △.(3)22B C 与11A B 相交于点E ,22B A 与11A B 相交于F ,如图,求出112222,,A B B C B A ,列出方程求出点E ,F 坐标即可解决问题.【考点】作图—旋转变换,作图—平移变换 27.【答案】设该种药品平均每场降价的百分率是x , 由题意得:2200(1)98x -=解得:1 1.7x =(不合题意舍去),20.330%x ==.【提示】设该种药品平均每场降价的百分率是x ,则两个次降价以后的价格是2200(1)x -据此列出方程求解即可. 【考点】一元二次方程的应用28.【答案】(1)证明:作OD AB D ⊥于,如图所示:65MN π劣弧的长为,9061805OM ππ⨯∴=,解得:125OM =,即⊙O 的半径为125,443y x =-+与x 轴,y 轴分别相交于点A 与B ,3;04y x x y ∴====,,, (3,0),(0,4)3,4,A B OA OB ∴∴==AB ∴1122125AOB AB OD OA OBOA OB OD OMAB ==⨯∴===△的面积半径∴直线AB 与⊙O 相切数学试卷 第5页(共6页) 数学试卷 第6页(共6页)(2)解:图中所示的阴影部分的面积21136341624252()5OMN AOB S S ππ==⨯⨯-⨯=-扇形△-.【提示】(1)作OD AB D ⊥于,由弧长公式和已知条件求出半径OM =125,由直线解析式求出点A 和B 的坐标,得出3,4OA OB ==,由勾股定理求出5AB =,再由AOB △面积的计算方法求出OD ,即可得出结论.(2)阴影部分的面积AOB OMN S S =-△扇形,即可得出结果.【考点】切线的判定,一次函数图象上点的坐标特征,弧长的计算,扇形面积的计算.29.【答案】(1)236,6,3,2,,,OB OA OD OB OA OD CD OA DC OB ===∴===⊥∴∥,63,510.OB AOCD AD OD CD ∴=∴=∴= ∴点C 为()()()2,10,0,6,3,0B A -6302626(2,10)2020b k b k b y x ny C x n y x =⎧∴⎨+=⎩=-⎧∴⎨=⎩∴=-+=-∴=-∴=-经过点(2)262025104y x y x x x y y =-+⎧⎪⎨=-⎪⎩=-=⎧⎧⎨⎨==-⎩⎩由或 故另一个交点坐标为(5,4)-.(3)由图象可知n kx b x+≤的解集:205x x -≤<或≥.【提示】(1)先求出A B C 、、坐标,再利用待定系数法确定函数解析式. (2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号. 【考点】反比例函数与一次函数的交点问题. 30.【答案】过点C CD AB D ⊥作于,cot45,cot30,AD CD CD BD CD ∴=︒==︒=1),1),BD AD AB CD +==+=250250200CD ∴=,米>米.【提示】根据题意,在ABC △中,30ABC ∠=︒,45BAC ∠=︒,1)AB =米,是否受到影响取决于C 点到AB 的距离,因此求C 点到AB的距离,作CD AB D ⊥于点. 【考点】解直角三角形的应用-方向角问题. 31.【答案】(1)245y mx mx m =+-,数学试卷 第3页(共6页) 数学试卷 第4页(共6页)2(45)(5)(1)y m x x m x x ∴=+-=+-,令0(5)(1)0y m x x =+-=得:, 0m ≠,51x x ∴=-=或, (5,0)(1,0)A B ∴-,∴抛物线的对称轴为2x =-, ∴抛物线的顶点坐标为,9m ∴-=m ∴= ∴抛物线的解析式为2y -= (2)(5,0)(1,0)A B -、(3)如图所示:OP的解析式为y =, 30,60,AOP PBF ∴∠=︒∴∠=︒,90,PD PF FO OD DPF FOD ⊥⊥∴∠=∠=︒,180DPF FOD ∴∠+∠=︒,∴点O D P F ,,,共圆, ,60.PDF PBF PDF ∴∠=∠∴∠=︒【提示】(1)先提取公式因式将原式变形为2(45)y m x x =+-,然后令0y =可求得函数图象与x 轴的交点坐标,从而可求得点A 、B 的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为2x =-,故此可知当2x =-时,y =,于是可求得m 的值, (2)由(1)的可知点A ,B 的坐标,(3)先由一次函数的解析式得到PBF ∠的度数,然后再由,PD PF FO OD ⊥⊥,证明点O ,D ,P ,F 共圆,最后依据圆周角定理可证明60PDF ∠=︒. 【考点】二次函数综合题。

四川省巴中市2016年中考数学试题(附解析)

四川省巴中市2016年中考数学试题(附解析)

2016年中考数学(四川巴中卷)一、选择题:本大题共10个小题,每小题3分,共30分1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【答案】D.【解析】试题分析:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.考点:轴对称图形;平移、旋转与对称.2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A.【解析】试题分析:从正面看易得第一层有2个正方形,第二层左边有一个正方形.故选A.考点:简单组合体的三视图.3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为()A.41×10﹣6B.4.1×10﹣5C.0.41×10﹣4D.4.1×10﹣4【答案】B.【解析】试题分析:0.000041这个数用科学记数法表示为4.1×10﹣5.故选B . 考点:科学记数法—表示较小的数.4.下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=-【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .考点:同底数幂的除法;幂的乘方与积的乘方.5.下列说法正确的是( )A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B .审查书稿中有哪些学科性错误适合用抽样调查法C .甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是2S 甲=0.4,2S 乙=0.6,则甲的射击成绩较稳定D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为12【答案】C .【解析】考点:列表法与树状图法;全面调查与抽样调查;算术平均数;方差;随机事件.6.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED 的面积的比为()A.1:2B.1:3C.1:4D.1:1【答案】B.考点:相似三角形的判定与性质.7.不等式组:3112(21)51x xx x-<+⎧⎨-≤+⎩的最大整数解为()A.1B.﹣3C.0D.﹣1【答案】C.【解析】试题分析:解不等式3x﹣1<x+1,得:x<1,解不等式2(2x﹣1)≤5x+1,得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0,故选C.考点:一元一次不等式组的整数解.8.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C .AC =1.2tan 10°米D .AB =1.2cos10米 【答案】B .【解析】试题分析:斜坡AB 的坡度是tan 10°=BC AC,故B 正确;故选B . 考点:解直角三角形的应用-坡度坡角问题.9 )A B C D 【答案】B .考点:同类二次根式.10.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,给出四个结论:①c >0; ②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b =0; ④244ac b a-<0,其中,正确结论的个数是( )A.1B.2C.3D.4【答案】B.【解析】考点:二次函数图象与系数的关系;推理填空题.二、填空题:本大题共10个小题,每小题3分,共30分11.|﹣0.3|的相反数等于.【答案】﹣0.3.【解析】试题分析:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3.故答案为:﹣0.3.考点:绝对值;相反数.12.函数y=x的取值范围是.【答案】23x≤.【解析】试题分析:根据题意得:2﹣3x≥0,解得23x≤.故答案为:23x≤.考点:函数自变量的取值范围;函数思想.13.若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.14.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 .【答案】7.考点:中位数;算术平均数.15.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:112y x =--的交点坐标为 . 【答案】(﹣4,1).【解析】试题分析:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,∴直线l 1:y =x +5与直线l 2:112y x =--的交点坐标为(﹣4,1),故答案为:(﹣4,1). 考点:一次函数与二元一次方程(组).16.如图,∠A 是⊙O 的圆周角,∠OBC =55°,则∠A = .【答案】35°.【解析】试题分析:∵OB=OC,∠OBC=55°,∴∠OCB=55°,∴∠BOC=180°﹣55°﹣55°=70°,由圆周角定理得,∠A=12∠BOC=35°,故答案为:35°.考点:圆周角定理.17.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.【答案】1<a<7.考点:平行四边形的性质;三角形三边关系.18.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为.【答案】18.【解析】试题分析:∵正六边形ABCDEF 的边长为3,∴AB =BC =CD =DE =EF =F A =3,∴弧BAF 的长=3×6﹣3﹣3═12,∴扇形AFB (阴影部分)的面积=12×12×3=18.故答案为:18. 考点:正多边形和圆;扇形面积的计算.19.把多项式3216m mn -分解因式的结果是 .【答案】m (4m +n )(4m ﹣n ).【解析】试题分析:原式=22(16)m m n -=m (4m +n )(4m ﹣n ).故答案为:m (4m +n )(4m ﹣n ). 考点:提公因式法与公式法的综合运用.20.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连结AE ,如果∠ADB =30°,则∠E = 度.【答案】15.考点:矩形的性质.三、解答题:本大题共11个小题,共90分21.计算:2012sin 453()22016--+-+ 【答案】3.【解析】试题分析:原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.试题解析:原式=11212299⨯-++=3. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.22.定义新运算:对于任意实数m 、n 都有m ☆n =2m n n +,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=2(3)22-⨯+=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:220x bx a -+=的根的情况.【答案】有两个不相等的实数根.考点:根的判别式;新定义.23.先化简:2221()211x x x x x x+÷--+-,然后再从﹣2<x ≤2的范围内选取一个合适的x 的整数值代入求值. 【答案】21x x -,4. 【解析】试题分析:先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x 的取值范围得出合适的x 的值,将其代入化简后的代数式中即可得出结论.试题解析:原式=2(1)2(1)(1)(1)x x x x x x x +--÷--=2(1)(1)(1)1x x x x x x +-⨯-+=21x x -.其中2210(1)010x xx xx⎧-+≠⎪-≠⎨⎪+≠⎩,即x≠﹣1、0、1.又∵﹣2<x≤2且x为整数,∴x=2.将x=2代入21xx-中得:21xx-=2221-=4.考点:分式的化简求值.24.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD.连结CE,求证:C E平分∠BCD.【答案】证明见解析.考点:平行四边形的性质;和差倍分.25.为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷).被调查考生选择意向统计表根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及a、b、c的值;(2)将条形统计图补充完整;(3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?【答案】(1)800,a=30%,b=20%,c=5%;(2)作图见解析;(3)14700.如图所示:(3)根据题意得:42000×35%=14700(人).则全市考生中最喜欢做“单项选择”这类客观题的考生有14700人.考点:条形统计图;用样本估计总体;数据的收集与整理.26.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.【答案】(1)作图见解析;(2)作图见解析;(3)1509 676.【解析】试题分析:(1)将△ABC向右平移2个单位即可得到△A1B1C1.(2)将△ABC绕点O顺时针方向旋转90°即可得到的△A2B2C2.(3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,求出直线A1B1,B2C2,A2B2,列出方程组求出点E、F坐标即可解决问题.(2,5),A 2(5,0),∴直线A 1B 1为y =5x ﹣5,直线B 2C 2为y =x +1,直线A 2B 2为115y x =-+,由551y x y x =-⎧⎨=+⎩解得:3252x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点E (32,52),由55115y x y x =-⎧⎪⎨=-+⎪⎩解得:15131013x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点F (1513,1013),∴S △BEF =35133139115322222222621313⨯-⨯⨯-⨯⨯-⨯⨯=1509676,∴△A 1B 1C 1与△A 2B 2C 2重合部分的面积为1509676.考点:作图-旋转变换;作图-平移变换;作图题.27.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率. 【答案】30%.考点:一元二次方程的应用;增长率问题.28.如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧MN的长为65π,直线443y x=-+与x轴、y轴分别交于点A、B.(1)求证:直线AB与⊙O相切;(2)求图中所示的阴影部分的面积(结果用π表示)【答案】(1)证明见解析;(2)36625π-.【解析】试题分析:(1)作OD⊥AB于D,由弧长公式和已知条件求出半径OM=125,由直线解析式求出点A和B的坐标,得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面积的计算方法求出OD,即可得出结论;(2)阴影部分的面积=△AOB的面积﹣扇形OMN的面积,即可得出结果.考点:切线的判定;一次函数图象上点的坐标特征;弧长的计算;扇形面积的计算.29.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数nyx=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;nkx bx+≤的解集.【答案】(1)y=﹣2x+6,20yx=-;(2)(5,﹣4);(3)﹣2≤x<0或x≥5.【解析】试题分析:(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.考点:反比例函数与一次函数的交点问题.30.如图,随着我市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库,现测得油库C 在A 地的北偏东60°方向上,在B 地的西北方向上,AB 的距离为1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C 是否会受到影响?请说明理由.【答案】油库C 是不会受到影响. 【解析】试题分析:根据题意,在△ABC 中,∠ABC =30°,∠BAC =45°,AB =1)米,是否受到影响取决于C 点到AB 的距离,因此求C 点到AB 的距离,作CD ⊥AB 于D 点.考点:解直角三角形的应用-方向角问题.31.如图,在平面直角坐标系中,抛物线245y mx mx m =+-(m <0)与x 轴交于点A 、B(点A 在点B 的左侧),该抛物线的对称轴与直线y =相交于点E ,与x 轴相交于点D ,点P 在直线3y x =上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为 (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线y x =上任意一点P(不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.【答案】(1)2y x x =;(2)A (﹣5,0)、B (1,0);(3)∠PDF =60°. 【解析】试题分析:(1)先提取公式因式将原式变形为2(45)y m x x =+-,然后令y =0可求得函数图象与x 轴的交点坐标,从而可求得点A 、B 的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x =﹣2,故此可知当x =﹣2时,y =m 的值; (2)由(1)的可知点A 、B 的坐标;考点:二次函数综合题.。

四川初三初中数学月考试卷带答案解析

四川初三初中数学月考试卷带答案解析

四川初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数中,无理数是()A.0B.C.D.-3.142.下列运算结果正确的是()A.B.C.D.3.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形4.如果给定数组中每一个数都加上同一个非零常数,则数据的A.平均数不变,方差不变B.平均数改变,方差改变C.平均数改变,方差不变D.平均数不变,方差改变5.如图,内接于,若,则的大小为()A.B.C.D.6.不论取何值,抛物线的顶点一定在下列哪个函数图像上()A.B.C.D.7.某公司把500万元资金投入新产品的生产,第一年获得一定的利润,在不抽掉资金和利润的前提下,继续生产,第二年的利润率提高8%,若第二年的利润达到112万元,设第一年的利润率为x,则可列方程为()A.500(1+x)(1+x+8%)=112B.500(1+x)(1+x+8%)="112" +500C.500(1+x)·8%=112D.500(1+x)(x+8%)=1128.如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是()二、填空题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达68 000 000 000元,这个数用科学记数法表示为元.2.当时,化简的结果是.3.对于抛物线,当x时,函数值y随x的增大而减小。

4.已知和的半径分别是一元二次方程的两根,且则和的位置关系是.5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有 20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是_______.6.如果一斜坡的坡度为i=1∶,某物体沿斜面向上推进了10米,那么物体升高了米.7.已知关于的方程有两个不相等的实数根,则k的取值范围是.8.已知a+b=4m+2,ab=1,若19a2+ 150ab+ 19b2的值为2012,则m=___________.9.如图,平行四边形ABCD中,AB=6,BC=4,∠A=60°,要用一块矩形铝板切割出这样的平行四边形,使废料最少,则所需铝板的面积最小应是_______10.如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=___________.三、计算题(8分)计算:四、解答题1.(8分)先化简,再求值:,其中满足2.(8分)已知:如图,为平行四边形ABCD的对角线,为的中点,于点,与,分别交于点.求证:⑴.⑵3.(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角.在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).4.(10分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中蓝球2个,红球1个,若从中任意摸出一个球,它是红球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.5.(10分)当太阳光线与地面成45o角时,在坡度为i="1:2" 的斜坡上的一棵树AB落在坡面上的影子AC长为5米,落在水平线上的影子CD长为3米,求这棵树的高度(参考数据,,,结果保留两个有效数字).6.(本题10分)为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).⑴请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;⑵如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?7.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。

巴中市九年级下学期数学第一次月考试卷

巴中市九年级下学期数学第一次月考试卷

巴中市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共30分) (共10题;共29分)1. (3分) (2018九上·扬州期中) 下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A . 4个B . 3个C . 2个D . 1个2. (3分)(2018·惠山模拟) 在△ABC中,∠C=90°,AC=1,BC=2,则 cos A的值是()A .B .C .D .3. (3分)平面内一个点到一个半径为3cm的圆的圆心的距离为4cm,那么此点在圆的().A . 圆上B . 圆外C . 圆内D . 不确定4. (3分) (2019九上·江阴期中) 如图,四边形内接于⊙ ,连接 .若 ,.则∠ABC的度数为()A . 110ºB . 120ºC . 125ºD . 135º5. (2分) (2018九上·平定月考) 两条抛物线y = x 2与y = -x 2在同一坐标系内,下列说法中错误的是()A . 顶点相同B . 对称轴相同C . 开口方向相反D . 都有最小值6. (3分) (2016九上·抚宁期中) 抛物线y=﹣3x2+2x﹣1与坐标轴的交点个数为()A . 0个B . 1个C . 2个D . 3个7. (3分)(2018·资中模拟) 在平面直角坐标系中,将抛物线y=(x+1)2向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是()A . y=(x﹣2)2﹣4B . y=(x﹣1)2﹣4C . y=(x﹣2)2﹣3D . y=(x﹣1)2﹣38. (3分)在Rt△ABC中,∠C=Rt∠,若∠A=30°,则cosA+sinB等于()A .B . 1C .D .9. (3分)在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”.由此说明()A . 圆是中心对称图形,圆心是它的对称中心B . 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴C . 圆的直径互相平分D . 垂直弦的直径平分弦及弦所对的弧10. (3分)如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为直线x=1,给出五个结论:①bc>0;②a+b+c<0;③方程ax2+bx+c=0的根为x1= -1,x2=3;④当x<1时,y随着x的增大而增大;⑤4a-2b+c>0其中正确结论是()A . ①②③B . ①③④C . ②③④D . ③④⑤二、填空题:(每题4分,共40分) (共10题;共38分)11. (4分) (2016九上·封开期中) 抛物线y=﹣3(x﹣1)2+5的顶点坐标为________.12. (4分) (2019九上·丰县期末) cos60°=________.13. (2分)如图是一把折扇,其平面图是一个扇形,扇面ABDC的宽度AC是骨柄长OA的一半.已知OA=30 cm,∠AOB=120°,则扇面ABDC的周长为________cm.14. (4分)(2019·温岭模拟) 如图所示,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA等于________.15. (4分)二次函数y=x2+4x﹣3中,当x=﹣1时,y的值是________.16. (4分) (2019九上·邗江月考) 二次函数y=2x2+bx+3的图象的对称轴是直线x=1,则常数b的值为________.17. (4分)(2017·河池) 如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1 , x的取值范围是________.18. (4分)如图,河堤横断面如图所示,迎水坡AB的坡比为1: ,则坡角∠A的度数为________19. (4分)如图,PA、PB是⊙O的切线,Q为上一点,过点Q的直线MN与⊙O相切,已知PA=4,则△PMN 周长=________.20. (4分)一条弦把圆分成1:3两部分,则弦所对的圆心角为________.三、解答题 (共2题;共30分)21. (15.0分)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m ﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.22. (15分) (2017九上·罗湖期末) 如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F 点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.参考答案一、选择题(每题3分,共30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:(每题4分,共40分) (共10题;共38分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共2题;共30分)21-1、21-2、22-1、22-2、22-3、第11 页共11 页。

2016年四川省巴中市中考数学试卷(含详细答案)

2016年四川省巴中市中考数学试卷(含详细答案)

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前四川省巴中市2016年高中阶段教育学校招生统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )ABCD 2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B CD3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( )A .64110-⨯B .54.110-⨯C .40.4110-⨯D .44.110-⨯ 4.下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 5.下列说法正确的是( )A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B .审查书稿中有哪些科学性错误适合用抽样调查C .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是2=0.4s 甲,2=0.6s 乙,则甲的射击成绩较稳定D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为126.如图,点D ,E 分别为ABC △的边AB ,AC 的中点,则ADE △的面积与四边形BCED 的面积比为( )A .1:2B .1:3C .1:4D .1:17.不等式组311,2(21)51x x x x -+⎧⎨-+⎩<≤的最大整数解为( ) A .1B .3-C .0D .1-8.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A .斜坡AB 的坡度是10 B .斜坡AB 的坡度是tan10 C . 1.2tan10AC =米D . 1.2=cos10AB 米9.下列二次根式中,( ) ABCD10.如图是二次函数2y ax bx c =++图象的一部分,图象过点(3,0)A -,对称轴为直线=1x -,给出四个结论:①0c >;②若13(,)2B y -,25(,)2C y -为函数图象上的两点,则12y y <; ③20a b -=;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)④2404ac b a-<. 其中,正确结论的个数是( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共120分)二、填空题(本大题共10小题,每小题3分,共30分).把答案填写在题中的横线上) 11.|0.3|-的相反数等于 .12.函数y 的自变量x 的取值范围是 .13.已知:3a b +=,=2ab ,则2()=a b - .14.两组数据,6,m n 与1,,2,7m n 的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 .15.已知二元一次方程组5,22x y x y -=-⎧⎨+=-⎩的解为4,1,x y =-⎧⎨=⎩则在同一平面直角坐标系中,直线1:5l y x =+与直线21:12l y x =--的交点坐标为 .16.如图,A ∠是O 的圆周角,=55OBC ∠,则=A ∠ . 17.如图,□ABCD 中,=8AC ,6BD =,AD a =,则a 的取值范围是 .18.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形AFB (阴影部分)的面积为 .19.把多项式3216m mn -分解因式的结果是 .20.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,连接AE .如果30ADB =∠,则=E ∠ 度.三、解答题(本大题11小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤) 21.(本小题满分5分)计算:2012sin 453()|2|2016--+-+22.(本小题满分6分) 定义新运算:对于任意实数,m n 都有2m n m n n =+☆,等式右边是常用的加法、减法、乘法及乘方运算.例如:232(3)2220-=-⨯+=☆.根据上述知识及解决问题:若2a ☆的值小于0,请判断方程:220x bx a -+=的根的情况.23.(本小题满分5分)先化简:2221()211x x x x x x+÷--+-,然后再从22x -<≤的范围内选取一个合适的x 的整数值代入求值.24.(本小题满分7分)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE CD AD +=.连接CE ,求证:CE 平分BCD ∠.25.(本小题满分10分)为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完形填空、阅读理解、口语应用”进行了问卷调查.要求每位考生都自主选择其中一个类型.为此随机调查了各考点部分考生的意向.并将调查结果绘制如下的统计图表(问卷回收率100%,并均为有效问卷).被调查考生选择意向统计表 被调查考生选择意向条形统计图数学试卷 第5页(共6页) 数学试卷 第6页(共6页)根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及,,a b c 的值; (2)将条形统计图补充完整;(3)巴中市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?26.(本小题满分10分)如图,方格中,每个小正方形的边长都是单位1,ABC △在平面直角坐标系中的位置如图.(1)画出将ABC △向右平移2个单位得到的111A B C △; (2)画出将ABC △绕点O 顺时针方向旋转90得到的222A B C △; (3)求111A B C △与222A B C △重合部分的面积.27.(本小题满分7分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠.国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶.现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.28.(本小题满分8分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN 的长为6π5.直线443y x =-+与x 轴、y 轴分别交于点,A B . (1)求证:直线AB 与O 相切;(2)求图中所示的阴影部分的面积(结果用π表示).29.(本小题满分10分)已知,如图,一次函数y kx b =+(,k b 为常熟,0k ≠)的图象与x 轴、y 轴分别交于,A B 两点,且与反比例函数ny x=(n 为常熟且0n ≠)的图象在第二象限交于点C .CD x ⊥轴,垂足为D .若236OB OA OD ===. (1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标;(3)直接写出不等式:n kx b x+≤的解集.30.(本小题满分10分)如图,随着巴中市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库.现测得油库C 在A 地的北偏东60方向上,在B 地的西北方向上,AB的距离为1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段建修铁路,油库C 是否会受到影响?请说明理由.31.(本小题满分12分)在平面直角坐标系中,抛物线245(0)y mx mx m m =+-<与x 轴交于点,A B (点A 在点B 的左侧),该抛物线的对称轴与直线y =相交于点E ,与x 轴相交于点D ,点P在直线y =上(不与原点重合),连接PD ,过点P 作PF PD ⊥交y 轴于点F ,连接DF.(1)如图1所示,若抛物线顶点的纵坐标为求抛物线的解析式;(2)求,A B 两点的坐标;(3)如图2所示,小红在探究点P 的位置发现:当点P 与点E重毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)合时,PDF ∠的大小为定值.进而猜想:对于直线y上任意一点P (不与原点重合),PDF ∠的大小为定值.请你判断该猜想是否正确,并说明理由.5 / 16四川省巴中市2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是“中”. 【提示】利用轴对称图形定义判断即可. 【考点】轴对称图形 2.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形.【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】0.000041这个数用科学记数法表示为54.110⨯﹣.【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯﹣,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【考点】科学记数法—表示较小的数 4.【答案】D【解析】A .积的乘方等于乘方的积,故A 错误,B .同底数幂的除法底数不变指数相减,故B 错误,C .积的乘方等于乘方的积,故C 错误,D .同底数幂的除法底数不变指数相减,故D 正确. 【提示】根据积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,可得答案. 【考点】整式的乘方与除法运算 5.【答案】C【解析】A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上不是必然事件,是随机事件,选项A 错误,B .审查书稿中有哪些学科性错误适合用全面调查法,选项B 错误,C .甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是20.4S =甲,20.6S =乙,则甲的射击成绩较稳定,选项C正确,D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为14,不是12,选项D 错误.数学试卷 第3页(共6页)数学试卷 第4页(共6页)【提示】由随机事件和必然事件的定义得出A 错误,由统计的调查方法得出B 错误,由方差的性质得出C 正确,由概率的计算得出D 错误,即可得出结论.【考点】列表法与树状图法,全面调查与抽样调查,算术平均数,方差,随机事件. 6.【答案】B【解析】,D E 分别为ABC △的边AB ,AC 上的中点,DE ∴是ABC △的中位线,12DE BC DE BC ∴=∥,,ADE ABC ∴△∽△,ADE ∴△的面积:ABC △的面积21142==():,ADE ∴△的面积:四边形BCED 的面积13=:,故选B . 【提示】证明DE 是ABC △的中位线,由三角形中位线定理得出1,2DEB C DE B C =∥,证出A D E ABC △∽△,由相似三角形的性质得出ADE △的面积:ABC △的面积14=:,即可得出结果. 【考点】相似三角形的判定与性质. 7.【答案】C【解析】解不等式311x x -+<,得:1x <,解不等式22151x x -≤+(),得:3x ≥-,则不等式组的解集为:31x -≤<,则不等式组的最大整数解为0.【提示】分别求出每一个不等式的解集,根据口诀“大小小大中间找”确定不等式组的解集,在解集内找到最大整数即可.【考点】一元一次不等式组的整数解. 8.【答案】B【解析】斜坡AB 的坡度是tan10BCAC︒=,故B 正确. 【提示】根据坡度是坡角的正切值,可得答案. 【考点】解直角三角形的应用—坡度坡角问题 9.【答案】B【解析】A故此选项错误,B是同类二次根式,故此选项正确,C故此选项错误,D是同类二次根式,故此选项错误.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案. 【提示】同类二次根式7 / 1610.【答案】B【解析】由抛物线交y 轴的正半轴,0c ∴>,故①正确;对称轴为直线1x =-,13(,)2B y ∴点-距离对称轴较近,抛物线开口向下,12y y ∴>,故②错误;对称轴为直线1x =﹣,12ba∴-=-,即20a b -=,故③正确,由函数图象可知抛物线与x 轴有2个交点,240b ac -∴>,即240ac b -<,0a <,2404ac b a-∴>,故④错误;综上,正确的结论是:③④.【提示】①根据抛物线y 轴交点情况可判断,②根据点离对称轴的远近可判断,③根根据抛物线对称轴可判断,④根据抛物线与x 轴交点个数以及不等式的性质可判断. 【考点】二次函数图象与系数的关系.第Ⅱ卷二、填空题 11.【答案】0.3-【解析】0.30|3|.-=,0.3的相反数是0.3-,3||0.∴-的相反数等于0.3-.【提示】根据绝对值定义得出||0.30.3-=,再根据相反数的定义:只有符号相反的两个数互为相反数作答. 【考点】绝对值,相反数 12.【答案】23x ≤【解析】根据题意得:230x -≥,解得23x ≤. 【提示】根据二次根式的意义,被开方数是非负数即可解答. 【考点】函数自变量的取值范围 13.【答案】1【解析】将3a b +=得:222()29a b a ab b +=++=,把2ab =代入得:225a b +=,则222()2541a b a a bb -=+=-=-. 【提示】将3a b +=两边平方,利用完全平方公式化简,将ab 的值代入求出a 2+b 2的值,所求式子利用完全平方公式展开,将各自的值代入计算即可求出值. 【考点】完全平方公式. 14.【答案】7数学试卷 第3页(共6页)数学试卷 第4页(共6页)【解析】组数据m ,6,n 与1,m ,2n ,7的平均数都是6,+61812724m n m n +=⎧∴⎨+++=⎩,解得:84m n =⎧∴⎨=⎩,若将这两组数据合并为一组数据,按从小到大的顺序排列为1,4,6,7,8,8,8,一共7个数,第四个数是7,则这组数据的中位数是7.【提示】根据平均数的计算公式先求出m 、n 的值,再根据中位数的定义即可得出答案. 【考点】中位数,算术平均数 15.【答案】(4,1)-【解析】二元一次方程组522x y x y -=-⎧⎨-=-⎩的解为41x x =-⎧⎨=⎩.121512l y x l y x ∴=+=--:与:的交点为(4,1)-.【提示】根据一次函数与二元一次方程组的关系进行解答即可. 【考点】一次函数与二元一次方程组. 16.【答案】35°【解析】55,55,180555570,OB OC OBC OCB BOC =∠=︒∴∠=︒∴∠=︒-︒-︒=︒, 由圆周角定理得,1352A BOC ∠=∠=︒.【提示】根据等腰三角形的性质和三角形内角和定理求出BOC ∠的度数,根据圆周角定理计算即可. 【考点】圆周角定理 17.【答案】17a <<.【解析】∵四边形ABCD 是平行四边形,114,322OA AC OD BD ∴====,在AOD △中,由三角形的三边关系得:4343AD -+<>.【提示】由平行四边形的性质得出4,3OA OD ==,再由三角形的三边关系即可得出结果. 【考点】平行四边形的性质,三角形三边关系 18.【答案】18 【解析】正六边形ABCDEF的边长为3,3AB BC CD DE EF FA ∴======,3633=12BAF ∴=⨯--的长,∴扇形AFB (阴影部分)的面积1123182=⨯⨯=.【提示】由正六边形的性质得出BAF 的长=12,由扇形的面积12=弧长⨯半径,即可得出结果.9 / 16【考点】正多边形和圆,扇形面积的计算 19.【答案】(4)4)m m n m n +-(【解析】原式22(16)m m n -=(4)(4)m m n m n =+-.【提示】先提公因式,再利用平方差公式进行因式分解即可. 【考点】提公因式法与公式法的综合运用 20.【答案】15 【解析】连接AC,,30,,,,,,30,15.ABCD AD BE AC BD ADB CAD E DAE BD CE CE CA E AE CAD CAE DAE E E E ∴=∠=∠=︒∴∠=∠=∴=∴∠=∠∠=∠+∠∴∠+∠=︒∠=︒四边形是矩形∥,且即【提示】连接AC ,由矩形性质可得E DAE ∠=∠、BD AC CE ==,知E C A E ∠=∠,而30,A D B C A D E ∠=∠=︒∠可得度数.【考点】矩形的性质. 三、解答题 21.【答案】3【解析】原式112123299=⨯-++-=. 【提示】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值 22.【答案】2a ☆的值小于0,22500a a a a ∴+=<<,解得:. 在方程220x bx a +=-中,数学试卷 第3页(共6页)数学试卷 第4页(共6页)2()8580b a a ∆-=--≥>,∴方程220x bx a +=-有两个不相等的实数根.【提示】根据2a ☆的值小于0结合新运算可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,再由根的判别式得出2()8b a ∆=--,结合a 的取值范围即可得知∆的正负,由此即可得出结论. 【考点】根的判别式 23.【答案】4【解析】2222221()211(1)2(1)(1)(1)(1)(1)(1)11x x x x x x x x x x x x x x x x x x x x x +÷--+-+--=÷--+-=⨯-+=- 2222241121x x x x x ===---将代入中得:.【提示】先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x 的取值范围得出合适的x 的值,将其代入化简后的代数式中即可得出结论. 【考点】分式的化简求值24.【答案】四边形ABCD 是平行四边形,,,,,,.AB CD AB CD AD BC E DCE AE CD AD BE BC E BCE DCE BCE CE BCD ∴==∴∠=∠+=∴=∴∠=∠∴∠=∠∠∥,,,即平分 【提示】由平行四边形的性质得出AB CD AB CD AD BC ==∥,,,由平行线的性质得出E DCE ∠=∠,由已知条件得出BE=BC ,由等腰三角形的性质得出E BCE ∠=∠,得出DCE BCE ∠=∠即可. 【考点】平行四边形的性质.25.【答案】(1)根据题意得:28035%800÷=,即本次被调查的考生总人数为800; 完形填空的百分比160800100%20b =÷⨯=,口语训练的百分比40800100%5c =÷⨯=,则135%10%20%5%3a =----=,(2)根据题意得:听力部分人数为80030%240⨯=,阅读理解人数为80010%80⨯=,补全统计图,如图所示:(3)根据题意得:4200035%14700⨯=.则全市考生中最喜欢做“单项选择”这类客观题的考生有14700人.【提示】(1)由单项填空的人数除以占的百分比,求出总人数,确定出a ,b ,c 的值即可;(2)求出听力部分与阅读理解的人数,补全条形统计图即可;(3)根据单项选择的百分比乘以42000即可得到结果.【考点】条形统计图,用样本估计总体26.【答案】(1)如图,111A B C △为所作;(2)如图,222A B C △为所作,(3)2211,B C A B 相交于点E ,2211,B A A B 相交于点F ,如图,数学试卷 第3页(共6页)数学试卷 第4页(共6页)()221120,1,(2,3),(1,0),(2,5),(5,0),B C B A A∴直线1155,A B y x =-为直线221,B C y x =+为 直线22115A B y x =-+为, 3552,15235(,),22155513,11015131510(,)13513313911531509.22222222621313676313BEF x y x y x y E y x x y x y F S ⎧=⎪=-⎧⎪⎨⎨=+⎩⎪=⎪⎩∴⎧=-=⎧⎪⎪⎪⎨⎨=-+⎪⎪=⎩⎪⎩∴∴=⨯---=△由解得点由解得点. 1112221509676A B C A B C ∴△与△重合部分的面积为. 【提示】(1)将ABC △向右平移2个单位即可得到111A B C △.(2)将ABC △绕点O 顺时针方向旋转90°即可得到222A B C △.(3)22B C 与11A B 相交于点E ,22B A 与11A B 相交于F ,如图,求出112222,,A B B C B A ,列出方程求出点E ,F坐标即可解决问题.【考点】作图—旋转变换,作图—平移变换27.【答案】设该种药品平均每场降价的百分率是x ,由题意得:2200(1)98x -=解得:1 1.7x =(不合题意舍去),20.330%x ==.【提示】设该种药品平均每场降价的百分率是x ,则两个次降价以后的价格是2200(1)x -据此列出方程求解即可.【考点】一元二次方程的应用28.【答案】(1)证明:作OD AB D ⊥于,如图所示:65MN π劣弧的长为, 9061805OM ππ⨯∴=, 解得:125OM =, 即⊙O 的半径为125, 443y x =-+与x 轴,y 轴分别相交于点A 与B , 03;04y x x y ∴====,,,(3,0),(0,4)3,4,A B OA OB ∴∴== AB ∴ 1122125AOB AB OD OA OB OA OB OD OM AB ==⨯∴===△的面积半径 ∴直线AB 与⊙O 相切(2)解:图中所示的阴影部分的面积21136341624252()5OMN AOB S S ππ==⨯⨯-⨯=-扇形△-.【提示】(1)作OD AB D ⊥于,由弧长公式和已知条件求出半径OM =125,由直线解析式求出点A 和B 的坐标,得出3,4OA OB ==,由勾股定理求出5AB =,再由AOB △面积的计算方法求出OD ,即可得出结论.(2)阴影部分的面积AOB OMN S S =-△扇形,即可得出结果.数学试卷 第3页(共6页)数学试卷 第4页(共6页)【考点】切线的判定,一次函数图象上点的坐标特征,弧长的计算,扇形面积的计算.29.【答案】(1)236,6,3,2,,,OB OA OD OB OA OD CD OA DC OB ===∴===⊥∴∥ ,63,510.OB AO CD ADOD CD ∴=∴=∴= ∴点C 为()()()2,10,0,6,3,0B A -6302626(2,10)2020b k b k b y x n y C xn y x=⎧∴⎨+=⎩=-⎧∴⎨=⎩∴=-+=-∴=-∴=- 经过点 (2)262025104y x y x x x y y =-+⎧⎪⎨=-⎪⎩=-=⎧⎧⎨⎨==-⎩⎩由或 故另一个交点坐标为(5,4)-.(3)由图象可知nkx b x+≤的解集:205x x -≤<或≥.【提示】(1)先求出A B C 、、坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.【考点】反比例函数与一次函数的交点问题.30.【答案】过点C CD AB D ⊥作于,cot45,cot30,AD CD CD BD CD ∴=︒==︒=1),1),BD AD AB CD +==+=250250200CD ∴=,米>米.【提示】根据题意,在ABC △中,30ABC ∠=︒,45BAC ∠=︒,1)AB =米,是否受到影响取决于C 点到AB 的距离,因此求C 点到AB 的距离,作CD AB D ⊥于点.【考点】解直角三角形的应用-方向角问题.31.【答案】(1)245y mx mx m =+-,2(45)(5)(1)y m x x m x x ∴=+-=+-,令0(5)(1)0y m x x =+-=得:,0m ≠,51x x ∴=-=或,(5,0)(1,0)A B ∴-,∴抛物线的对称轴为2x =-,∴抛物线的顶点坐标为,9m ∴-=m ∴=∴抛物线的解析式为2y +=. (2)(5,0)(1,0)A B -、数学试卷 第3页(共6页)数学试卷 第4页(共6页)(3)如图所示:OP的解析式为y x =, 30,60,AOP PBF ∴∠=︒∴∠=︒ ,90,PD PF FO OD DPF FOD ⊥⊥∴∠=∠=︒,180DPF FOD ∴∠+∠=︒,∴点O D P F ,,,共圆,,60.PDF PBF PDF ∴∠=∠∴∠=︒【提示】(1)先提取公式因式将原式变形为2(45)y m x x =+-,然后令0y =可求得函数图象与x 轴的交点坐标,从而可求得点A 、B 的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为2x =-,故此可知当2x =-时,y =,于是可求得m 的值,(2)由(1)的可知点A ,B 的坐标,(3)先由一次函数的解析式得到PBF ∠的度数,然后再由,PD PF FO OD ⊥⊥,证明点O ,D ,P ,F 共圆,最后依据圆周角定理可证明60PDF ∠=︒.【考点】二次函数综合题。

四川省巴中市九年级下学期数学第一次月考试卷

四川省巴中市九年级下学期数学第一次月考试卷

四川省巴中市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019九上·凤山期中) 若,则的值为()A . 7B . -3C . 7或-3D . 212. (2分)已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是()A . 点A在⊙O内B . 点A在⊙O上C . 点A在⊙O外D . 不能确定3. (2分)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1 , x2 ,则 + 的值为()A . 2B . ﹣1C .D . ﹣24. (2分) (2020八下·长兴期中) 如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是7,则△ABC的周长是()A . 8B . 10C . 12.D . 145. (2分) (2019九上·东台期中) 对于二次函数y=﹣x2 ,下列说法不正确的是()A . 开口向下B . 对称轴为y轴C . 顶点坐标是(0,0)D . y随x增大而减小6. (2分) (2018九上·武威月考) 下列图形中,哪一个右边的图形不能通过左边的图形旋转得的()A .B .C .D .7. (2分) (2017九上·双城开学考) 抛物线y=x2﹣bx+8的顶点在x轴上,则b的值一定为()A . 4B . ﹣4C . 2或﹣2D . 4 或﹣48. (2分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A .B .C . 2D .二、填空题 (共8题;共11分)9. (1分)某人在1〜6月份的收入如下:800元、880元、750元、1200元、340元、800元.则此人在这6个月中的收入极差为________.10. (1分) (2019九上·哈尔滨月考) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的外心和内心之间的距离为________.11. (2分) (2020九下·丹阳开学考) 将函数的图象向右平移()个单位,得到函数的图象,则的值为________.12. (2分) (2019九上·鼓楼期中) 如图,已知半径为1的⊙O上有三点A.B.C,OC与AB交于点D,∠ADO=85°,∠COB=40°,则阴影部分的扇形OAC面积是________13. (2分) (2020九上·定州期末) 如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB 的大小是________.14. (1分) (2017八上·江津期中) 一个正多边形的每一个外角都是36°,这个正多边形的边数是________.15. (1分)(2018·海南) 如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为________.16. (1分) (2019八上·江山期中) 在Rt△ABC中,∠C=Rt∠,BC=6,AC=8,则斜边上的中线长为________。

巴中市巴州区2016届九年级下第一次月考数学试卷含答案解析

巴中市巴州区2016届九年级下第一次月考数学试卷含答案解析

2015-2016学年四川省巴中市巴州区九年级(下)第一次月考数学试卷一、选择题1.下列二次根式中,的同类根式是()A.B.C.D.2.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+4)2=193.圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A.正方形B.等腰三角形C.圆D.等腰梯形4.在下列调查中,适宜采用全面调查的是()A.了解我省中学生的视力情况B.了解七(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查安徽卫视《第一时间》栏目的收视率5.已知抛物线y=x2+x﹣1经过点P(m,5),则代数式m2+m+2016的值为()A.2021 B.2022 C.2023 D.20246.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm27.如图,点D在△ABC的边AC上,要判断△ADC与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.CB2=CD•CA D.AB2=AD•AC8.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m,250m,200m;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝()A.甲的最高 B.乙的最低 C.丙的最低 D.乙的最高9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④ B.①④ C.①③ D.②③二、填空题11.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×10﹣5秒到达另一座山峰,已知光速为3×108米/秒,则这两座山峰之间的距离用科学记数法表示为米.12.一个正偶数的算术平方根是m,则和这个正偶数相邻的下一个正偶数的算术平方根是.13.函数的自变量x的取值范围是.14.已知一个二次函数的图象在y轴左侧部分是上升的,在y轴右侧部分是下降的,又经过点A(1,1).那么这个二次函数的解析式可以是(写出符合要求的一个解析式即可).15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.16.⊙O的半径为5cm,两条弦AB∥CD,AB=8cm、CD=6cm,则两条弦之间的距离为.17.如图,在Rt△ABC中,斜边上的高AD=3,cosB=,则AC= .18.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.19.某商品经过两次降价,零售价降为原来的一半.若设平均每次降价的百分率为x,则可列方程为.20.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.三、解答题(90分)21.计算:(1)(2)+|﹣2|22.解方程:2(x﹣2)2=(x﹣2)23.先化简,再求值:,其中x=﹣1.24.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.25.自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.26.如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3= .(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= .(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.27.如图,在△ABC中,AD是BC边上的中线,点E、F在AB边上,且E是BF中点,连接DE,CF交AD于G,.(1)求证:△AFG∽△AED;(2)若FG=3,G为AD中点,求CG的长.28.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.29.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?30.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B 的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)当△BDM为直角三角形时,求m的值.(3)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由.2015-2016学年四川省巴中市巴州区九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列二次根式中,的同类根式是()A.B.C.D.【考点】同类二次根式.【分析】根据同类二次根式的意义,将选项中的根式化简,找到被开方数为2者即可.【解答】解:A、=2,与的被开方数不同,故本选项错误;B、与的被开方数不同,故本选项错误;C、=2,与的被开方数相同,故本选项正确;D、与的被开方数不同,故本选项错误;故选C.【点评】本题考查了同类二次根式的知识,要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断.2.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+4)2=19【考点】解一元二次方程﹣配方法.【分析】移项,再配方,即可得出答案.【解答】解:x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4,(x﹣2)2=7,故选B.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方,难度适中.3.圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A.正方形B.等腰三角形C.圆D.等腰梯形【考点】点、线、面、体.【分析】根据圆锥柱体的特征得出沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥柱.【解答】解:沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥体;故选:B.【点评】此题主要考查圆锥的特征,明确等腰三角形绕对称轴旋转一周,可以得到一个圆锥.4.在下列调查中,适宜采用全面调查的是()A.了解我省中学生的视力情况B.了解七(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查安徽卫视《第一时间》栏目的收视率【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解我省中学生的视力情况,调查范围广,适合抽样调查,故A错误;B、了解七(1)班学生校服的尺码情况,适合普查,故B正确;C、检测一批电灯泡的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、调查安徽卫视《第一时间》栏目的收视率,调查范围广,适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.已知抛物线y=x2+x﹣1经过点P(m,5),则代数式m2+m+2016的值为()A.2021 B.2022 C.2023 D.2024【考点】二次函数图象上点的坐标特征.【分析】把点P的坐标代入抛物线解析式求出m2+m的值,然后求解即可.【解答】解:∵抛物线y=x2+x﹣1经过点P(m,5),∴m2+m﹣1=5,∴m2+m=6,∴m2+m+2016=6+2016=2022.故选B.【点评】本题考查了二次函数图象上点的坐标特征,把m2+m看作一个整体并求出其值是解题的关键.6.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.7.如图,点D在△ABC的边AC上,要判断△ADC与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.CB2=CD•CA D.AB2=AD•AC【考点】相似三角形的判定.【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当=时,即AB2=AD•AC,则△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当=时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选C.【点评】此题考查了相似三角形的判定.此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.8.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m,250m,200m;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝()A.甲的最高 B.乙的最低 C.丙的最低 D.乙的最高【考点】解直角三角形的应用﹣坡度坡角问题.【分析】利用所给角的正弦值求出每个小朋友放的风筝高度,比较即可.【解答】解:甲放的高度为:300×sin30°=150米.乙放的高度为:250×sin45°=125≈176.75米.丙放的高度为:200×sin60°=100≈173.2米.所以乙的最高.故选D.【点评】此题主要考查学生对坡度坡角的运用及多方案的选择能力.9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD【考点】垂径定理;圆周角定理.【分析】根据垂径定理得出=, =,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④ B.①④ C.①③ D.②③【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题11.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×10﹣5秒到达另一座山峰,已知光速为3×108米/秒,则这两座山峰之间的距离用科学记数法表示为 1.2×104米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4×10﹣5×3×108=1.2×104,故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个正偶数的算术平方根是m,则和这个正偶数相邻的下一个正偶数的算术平方根是.【考点】算术平方根.【分析】设这个正偶数为x,根据题意得到=m,则x=m2,易得和这个正偶数相邻的下一个偶数为m2+2,再根据算术平方根的定义易得和这个正偶数相邻的下一个偶数的算术平方根.【解答】解:设这个正偶数为x,则=m,所以x=m2,则和这个正偶数相邻的下一个偶数为m2+2,所以和这个正偶数相邻的下一个偶数的算术平方根,故答案为:.【点评】本题考查了算术平方根的定义,解决本题的关键是熟记一个正数的正的平方根叫这个数的算术平方根.13.函数的自变量x的取值范围是x≥﹣2且x≠1 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x+4≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.已知一个二次函数的图象在y轴左侧部分是上升的,在y轴右侧部分是下降的,又经过点A(1,1).那么这个二次函数的解析式可以是y=﹣x2+2(答案不唯一)(写出符合要求的一个解析式即可).【考点】二次函数的性质.【专题】开放型.【分析】设出符合条件的函数解析式,再根据二次函数的图象在y轴左侧部分是上升的,在y轴右侧部分是下降的可知该函数图象的开口向下,对称轴为y轴,即a<0,b=0,再把A(1,1)代入,得出符合条件的函数解析式即可.【解答】解:设出符合条件的函数解析式为:y=ax2+bx+c(a≠0),∵二次函数的图象在y轴左侧部分是上升的,在y轴右侧部分是下降的,∴该函数图象的开口向下,对称轴为y轴,即a<0,b=0,∵函数图象经过A(1,1),∴a+c=1,∴a=﹣1时,c=2,∴符合条件的二次函数解析式可以为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).【点评】本题考查的是二次函数的性质,先根据题意设出函数解析式,再根据二次函数的性质判断出a的符号及对称轴是解答此题的关键,此题属开放性题目,答案不唯一.15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.绕某个点旋转180°后能与自身重合的图形叫中心对称图形.16.⊙O的半径为5cm,两条弦AB∥CD,AB=8cm、CD=6cm,则两条弦之间的距离为1cm或7cm .【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】此题分为两种情况:两条平行弦在圆心的同侧或两条平行弦在圆心的两侧.根据垂径定理分别求得两条弦的弦心距,进一步求得两条平行弦间的距离.【解答】解:如图所示,连接OA,OC.作直线EF⊥AB于E,交CD于F,则EF⊥CD.∵OE⊥AB,OF⊥CD,∴AE=AB=4cm,CF=CD=3cm.根据勾股定理,得OE==3cm;OF==4cm,①当AB和CD在圆心的同侧时,如图1,则EF=OF﹣OE=1cm;②当AB和CD在圆心的两侧时,如图2,则EF=OE+OF=7cm;则AB与CD间的距离为1cm或7cm.故答案为1cm或7cm.【点评】本题考查了垂径定理的知识,此题综合运用了垂径定理和勾股定理,特别注意此题要考虑两种情况.17.如图,在Rt△ABC中,斜边上的高AD=3,cosB=,则AC= .【考点】解直角三角形.【分析】先根据等角的余角相等得到∠DAC=∠B,则cos∠DAC=cosB,在Rt△ADC中,根据余弦的定义得cos∠DAC==,然后把AD=3代入计算即可.【解答】解:∵AD⊥BC,∴∠B+∠BAD=90°,∵∠BAD+∠DAC=90°,∴∠DAC=∠B,∴cos∠DAC=cosB,在Rt△ADC中,cos∠DAC==,而AD=3,∴AC=.故答案为.【点评】本题考查了解直角三角形,解题的关键是将∠B的余弦值转化为∠DAC余弦值,从而将已知条件融合到一个直角三角形中求解.18.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 4 m.【考点】平行投影;相似三角形的应用.【专题】计算题.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.【点评】本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.19.某商品经过两次降价,零售价降为原来的一半.若设平均每次降价的百分率为x,则可列方程为(1﹣x)2=.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设降价前的零售价为1,则降价后的零售价为,根据增长率问题,一般增长后的量=增长前的量×(1+增长率)列出方程即可.【解答】解:设降价前的零售价为1,则降价后的零售价为,根据题意得:(1﹣x)2=,故答案为:(1﹣x)2=.【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.20.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2015个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.三、解答题(90分)21.计算:(1)(2)+|﹣2|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用乘方的意义,立方根定义,以及零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用特殊角的三角函数值,以及绝对值的代数意义计算即可得到结果.【解答】解:(1)原式=﹣4﹣3﹣3=﹣10;(2)原式=﹣1+2﹣=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解方程:2(x﹣2)2=(x﹣2)【考点】解一元二次方程﹣因式分解法.【分析】把右边的项移到左边后,利用因式分解法解方程即可.【解答】解:2(x﹣2)2=(x﹣2),原方程化为2(x﹣2)2﹣(x﹣2)=0,因式分解得:(x﹣2)(2x﹣4﹣1)=0,因此:(x﹣2)=0,或(2x﹣4﹣1)=0,解得:x1=2,x2=.【点评】本题考查了解一元二次方程的方法﹣因式分解法;熟练掌握提取公因式法分解因式是解决问题的关键.23.先化简,再求值:,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】先利用因式分解把分式化简,再把数代入求值.【解答】解:.当x=﹣1时,原式=﹣1+1=.【点评】本题主要考查分式的化简求值,式子化到最简是解题的关键.24.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为(﹣2,1);(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.【考点】作图﹣轴对称变换;轴对称﹣最短路线问题.【分析】(1)根据平面直角坐标系的特点作出坐标系,写出点B的坐标;(2)分别作出点A、B、C关于y轴的对称的点,然后顺次连接,写出B1点的坐标;(3)作点B关于y轴的对称点,连接AB1,与y轴的交点即为点P.【解答】解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.25.自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的频数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;(4)利用样本估计总体,即可求出全年级对奥运知识“了解较多”的学生大约有1000×(1﹣50%﹣20%)=300人.【解答】解:(1)∵20÷50%=40(人),答:该班共有40名学生;(2)C:一般了解的人数为:40×20%=8(人),补充图如图所示:(3)360°×(1﹣50%﹣20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的圆心角的度数为108°;(4)1000×(1﹣50%﹣20%)=300,所以全年级对奥运知识“了解较多”的学生大约有300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.26.如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1= 1 ;sin2A2+sin2B2= 1 ;sin2A3+sin2B3= 1 .(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= 1 .(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.【考点】勾股定理;互余两角三角函数的关系;解直角三角形.【专题】几何综合题;规律型.【分析】(1)由前面的结论,即可猜想出:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1;(2)在Rt△ABC中,∠C=90°.利用锐角三角函数的定义得出sinA=,sinB=,则sin2A+sin2B=,再根据勾股定理得到a2+b2=c2,从而证明sin2A+sin2B=1;(3)利用关系式sin2A+sin2B=1,结合已知条件sinA=,进行求解.【解答】解:(1)由图可知:sin2A1+sin2B1=()2+()2=1;sin2A2+sin2B2=()2+()2=1;sin2A3+sin2B3=()2+()2=1.观察上述等式,可猜想:sin2A+sin2B=1.(2)如图,在Rt△ABC中,∠C=90°.∵sinA=,sinB=,∴sin2A+sin2B=,∵∠C=90°,∴a2+b2=c2,∴sin2A+sin2B=1.(3)∵sinA=,sin2A+sin2B=1,∴sinB==.【点评】本题考查了在直角三角形中互余两角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.。

巴中市九年级下学期数学第一次月考试卷

巴中市九年级下学期数学第一次月考试卷

巴中市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七上·萧山期中) 下列各对数是互为倒数的是()A . 4和﹣4B . ﹣3和C . ﹣2和-D . 0和02. (2分)(2018·惠山模拟) 如图是某几何体的三视图及相关数据,则该几何体的全面积是()A . 15πB . 24πC . 20πD . 10π3. (2分) (2015八上·南山期末) 下列计算正确的是()A . x7÷x4=x11B . (a3)2=a5C . 2 +3 =5D . ÷ =4. (2分)如果代数式有意义,那么x的取值范围是()A .B . x≠1C .D . 且x≠15. (2分)如图,∠1=∠2,AC=AD,∠C=∠D,若AB=4 cm,BC=3 cm,AC=2 cm,则DE的长是()A . 4 cmB . 3 cmC . 2 cmD . 无法确定6. (2分) (2017八上·肥城期末) 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55149191135乙55151110135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大,上述结论正确的是()A . ①②③B . ①②C . ①③D . ②③7. (2分) (2018八下·萧山期末) 已知点P(a,m),Q(b,n)是反比例函数y 图象上两个不同的点,则下列说法不正确的是()A . am=2B . 若a+b=0,则m+n=0C . 若b=3a,则n mD . 若a<b,则m>n8. (2分)(2017·贵阳) 如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3 ,若S1=3,S3=9,则S2的值为()A . 12B . 18C . 24D . 48二、填空题 (共10题;共10分)9. (1分) (2018八上·顺义期末) 25的平方根是________ .10. (1分)(2017·徐汇模拟) 人体中成熟的红细胞的平均直径为0.0000077m,0.0000077用科学记数法表示为________.11. (1分)(2017·昆山模拟) 分解因式:ax2﹣ay2=________.12. (1分)(2017·河源模拟) 正五边形的外角和等于________(度).13. (1分)若关于x的方程有两个相等的实数根,则m=________ .14. (1分) (2020八上·常德期末) 如图,已知D,E分别是△ABC的边BC和AC的中点,若△ABC的面积为24,则△DEC的面积为________。

四川省巴中市九年级下学期数学第一次月考试卷

四川省巴中市九年级下学期数学第一次月考试卷

四川省巴中市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分) (2019七上·武威月考) 某市某日的气温是-2℃~6℃,则该日的温差是()A . 8℃B . 6℃C . 4℃D . -2℃2. (2分)下列计算正确的是()A . a10﹣a7=a3B . (﹣2a2b)2=﹣2a4b2C . +=D . (a+b)9÷(a+b)3=(a+b)63. (2分)点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2017八上·秀洲月考) 在△ABC中,AB=AC,∠A=40°,则∠B的度数为()A . 80°B . 70°C . 60°D . 40°5. (2分) (2016八上·延安期中) 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是()A . SSSB . ASAC . AASD . 角平分线上的点到角两边距离相等6. (2分)在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是()A .B .C .D .7. (2分) (2019八下·黄陂月考) 已知:在中,,若,,则的面积是)A .B .C .D .二、填空题 (共10题;共12分)8. (1分)(2016·江汉模拟) 15 000用科学记数法可表示为________9. (1分) (2020·衢州) 定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x-1)※x的结果为________。

四川省九年级下学期数学第一次月考试卷

四川省九年级下学期数学第一次月考试卷

四川省九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)一元二次方程的一次项系数()A . 4B . -4C . 4xD . -4x2. (2分)一元二次方程x(x-2)=2-x的根是A . ﹣1B . 2C . 1和2D . ﹣1和23. (2分) (2019九上·秀洲期中) 下列命题中,是真命题的是A . 三点确定一个圆B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦D . 的圆周角所对的弦是直径4. (2分)下面结论错误的是()A . 方程x2+4x+5=0,则x1+x2=﹣4,x1x2=5B . 方程2x2﹣3x+m=0有实根,则m≤C . 方程x2﹣8x+1=0可配方得(x﹣4)2=15D . 方程x2+x﹣1=0两根x1=, x2=5. (2分) (2019九下·常德期中) 下列说法中正确是()A . 一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定D . 一组数据8,3,7,8,8,9,10的众数和中位数都是86. (2分) (2019七上·毕节期中) 如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A . 着B . 沉C . 应D . 冷7. (2分)某城市2008年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2010年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A . 300(1+x)=363B . 363(1-x)2=300C . 300(1+2x)=363D . 300(1+x)2=3638. (2分)如图,将半径为6的⊙O沿AB折叠,弧AB与AB垂直的半径OC交于点D且CD=2OD,则折痕AB 的长为()A .B .C . 6D .二、填空题 (共10题;共10分)9. (1分) (2019九下·临洮期中) 若是一元二次方程的一个根,则 ________.10. (1分)(2019·宁波模拟) 在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是,则白色棋子的个数是________.11. (1分)(2019·襄州模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.520.05022.5﹣30.5330.5﹣38.5100.25038.5﹣46.51946.5﹣54.550.12554.5﹣62.510.025合计40 1.000(2)填空:在这个问题中,总体是________,样本是________.由统计结果分析的,这组数据的平均数是38.35(分),众数是________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?12. (1分) (2018九下·扬州模拟) 如图,四边形ABCD是平行四边形,其中边AD是⊙O的直径,BC与⊙O 相切于点B,若⊙O的周长是12π,则四边形ABCD的面积为________.13. (1分)(2017·盘锦模拟) 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是________ cm2 .14. (1分) (2019九上·长春月考) 关于的一元二次方程有两个相等的实数根,则m的值是________.15. (1分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为________.16. (1分)(2018·资中模拟) PA、PB分别切⊙O于点A、B,若PA=3cm,那么PB=________cm.17. (1分) (2018九上·扬州月考) 如图,四边形内接于,,则等于________°.18. (1分) (2017八下·江都期中) 如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC= ,OC= ,则另一直角边BC的长为________.三、解答题 (共10题;共81分)19. (10分)先化简,再求值:,其中a满足 .20. (10分) (2017八下·射阳期末) 已知关于x的方程(1)若方程有实数根,求k的取值范围;(2)若方程有两个相等的实数根,求k的值,并求此时方程的根。

四川省巴中市数学九年级下学期月考试卷

四川省巴中市数学九年级下学期月考试卷

四川省巴中市数学九年级下学期月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题4分,共40分) (共10题;共36分)1. (4分)如图,正方形OABC的面积是4,点B在反比例函数y= (x<0)的图象上.则反比例函数的解析式是()A . y=B . y=C . y=﹣D . y=﹣2. (2分) (2019九上·象山期末) 如图,直线1l//l2//l3 ,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A .B .C .D .3. (4分) (2018九上·库伦旗期末) 如图,在⊙O中,弦AB,CD相交于点P,若∠A=55°,∠APD=80°,则∠B等于()A . 40°B . 45°C . 50°D . 55°4. (4分) (2019九上·尚志期末) 小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为﹣3,④当0<x1<x2<2时,y1>y2 ,⑤对称轴是直线x=2.你认为其中正确的个数为()A . 2B . 3C . 4D . 55. (4分)在平面直角坐标系中,将二次函数y=x2的图象向上平移2个单位,所得图象的解析式为()A . y=x2﹣2B . y=x2+2C . y=(x﹣2)2D . y=(x+2)26. (4分)如图,某海域直径为30海里的暗礁区中心有一哨所A,值班人员发现有一民用轮船从哨所正西方向90海里的B处,以20节的速度(1节=海里1/小时)向哨所驶来,哨所及时向轮船发出了危险信号,但是轮船没有收到信号,该轮船又继续前进了45分钟,到达C处,此时哨所第二次发出了危险新号.当轮船收到第二次信号时,为避免触礁,轮船航向改变角度至少为东偏北α度,则tanα的值为()A .B .C .D . 27. (2分) (2016九上·淅川期中) 如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A .B .C .D .8. (4分) (2016九上·惠山期末) 某圆锥的母线长为6cm,其底面圆半径为3cm,则它的侧面积为()A . 18πcm2B . 18cm2C . 36πcm2D . 36cm29. (4分) (2017九下·富顺期中) 关于的函数和在同一坐标系中的图像大致是()A .B .C .D .10. (4分) (2020九上·覃塘期末) 如图,在正方形中,是边的中点,将沿折叠,使点落在点处,的延长线与边交于点 .下列四个结论:① ;② ;③ ;④ S正方形ABCD ,其中正确结论的个数为()A . 个B . 个C . 个D . 个二、填空题(本大题有4个小题,每小题5分,共20分) (共4题;共20分)11. (5分)如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是________ cm.12. (5分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2 .13. (5分)如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD 交于点F.若S△DEF=2,则S△ABE=________.14. (5分) (2020八上·岑溪期末) 如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积 S (单位: m2 与工作时间 (单位: h )之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是________ m2 .三、解答题 (共9题;共74分)15. (8分)(2016·北京) 计算:(3﹣π)0+4sin45°﹣ +|1﹣ |.16. (8分)如图,在Rt△ABC中,∠C=90°,求作Rt△ABC的外接圆(不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑).17. (8分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2) BC=6,AB=10,求菱形ADCE的面积.18. (2分)(2012·沈阳) 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.19. (10分)(2019·南岸模拟) 夏日来临,为了保证顾客每天都能吃到新鲜水果,“每日鲜果”水果店要求当日批发购进的某水果当夭必须全部售出.该水果购进的价格为5元/千克.经调查发现,当销售单价为10元/千克时,销售量为200千克;销售单价每上涨1元/千克,销售量就会减少40千克.(1)若每天至少卖出120千克,销售单价最高定为多少?(2)某天“每日鲜果”水果店按(1)中最高售价的方案进货,以(1)中的最高售价销售了3a千克的水果后,店内保鲜及冷凝系统发生故障,导致剩下水果中的a%变质而无法销售.店长马上决定将剩余可销售的水果立刻榨汁,并分装保鲜瓶中(每瓶能装果汁0.5千克)售卖,随后果汁被一抢而空.已知此水果的出汁率为40%(即1千克水果可榨出0.4千克果汁),每瓶果汁售价为10元.若当天销售完毕后水果店因销售此水果获得的总利润为648元.求a的值.20. (10分)如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.21. (2分) (2017九上·安图期末) 己知反比例函数y= (k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.22. (12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD 的面积为ym2 .(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?23. (14.0分)如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD 均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O 在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了________ cm(用含a、b的代数式表示)(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分) (共10题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题有4个小题,每小题5分,共20分) (共4题;共20分) 11-1、12-1、13-1、14-1、三、解答题 (共9题;共74分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、。

四川初三初中数学月考试卷带答案解析

四川初三初中数学月考试卷带答案解析

四川初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x3﹣x2=x D.x•x2=x32.函数中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≠03.如图是某一几何体的三视图,则这个几何体是()A.圆柱体B.圆锥体C.正方体D.球体4.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种5.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b|D.由a>b,得a2>b26.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A.6米B.7米C.8.5米D.9米7.一根圆锥的主视图是等边三角形,边长为2,则这个圆锥的表面积为()A.2πB.3πC.πD.)π8.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2) B.(1,﹣1) C.(﹣1,1) D.(2,1)9.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或1210.设a、b为常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下列图形之一,则a的值为()A.6或﹣1B.﹣6或 1C.6D.﹣111.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.2B.3C.4D.512.在因此女子体操比赛中,8名运动员的年龄(单位:岁)分别为:14,12,12,15,14,15,14,16.这组数据的中位数和方差分别为()A.14和2B.14.5和1.75C.14和1.75D.15和2二、填空题1.把多项式2mx2﹣4mxy+2my2分解因式的结果是.2.如图所示,在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC= 度.3.若a<0,化简|a﹣3|﹣= .4.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.5.己知菱形ABCD的边长是6,点E在直线AD上,DE=3,连接BE与对角线AC相交于点M,则的值是.6.已知a2﹣6a﹣5=0和b2﹣6b﹣5=0中,a≠b,则的值是.7.如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为.8.一组按规律排列的式子:,其中第7个式子是﹣,第n个式子是.三、计算题计算:.四、解答题1.先化简再求值:()•,其中x=.2.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.3.一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为.(1)取出绿球的概率是多少?(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?4.如图,若反比例函数y=﹣与一次函数y=mx﹣2的图象都经过点A(a,2)(1)求A点的坐标及一次函数的解析式;(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.5.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.6.已知:如图,AB是⊙O的直径,C是⊙O上的一点,且∠BCE=∠CAB,CE交AB的延长线于点E,AD⊥AB,交EC的延长线于点D.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若CE=3,BE=2,求CD的长.7.将背面完全相同,正面上分别写有数字1,2,3,4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.8.为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.(1)求这批赈灾物资运往甲、乙两县的数量各是多少吨?(2)若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?9.(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′= °.(2)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,说明理由.10.如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.四川初三初中数学月考试卷答案及解析一、选择题1.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x3﹣x2=x D.x•x2=x3【答案】D【解析】解:A、应为x2+x2=2x2,故本选项错误;B、应为x2÷x=x2﹣1=x,故本选项错误;C、x3与x2不是同类项,不能合并,故本选项错误;D、x•x2=x3正确.故选D.2.函数中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≠0【答案】C【解析】解:根据题意,得2﹣x>0,解得x<2,故选:C.3.如图是某一几何体的三视图,则这个几何体是()A.圆柱体B.圆锥体C.正方体D.球体【答案】A【解析】解:∵三视图中有两个视图为矩形,∴这个几何体为柱体,∵第3个视图的形状为圆,∴这个几何体为圆柱体,故选A.4.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种【答案】B【解析】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选B.5.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b|D.由a>b,得a2>b2【答案】B【解析】解:A、由a>b,得a﹣2>b﹣2,故选项错误;B、由a>b,得﹣2a<﹣2b,故选项正确;C、a>b>0时,才有|a|>|b|,0>a>b时,有|a|<|b|,故选项错误;D、1>a>b>0时,a2<b2,故选项错误.故选B.6.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A.6米B.7米C.8.5米D.9米【答案】D【解析】解:∵=即=,∴AC=6×1.5=9米.故选D.7.一根圆锥的主视图是等边三角形,边长为2,则这个圆锥的表面积为()A.2πB.3πC.πD.)π【答案】B【解析】解:一个圆锥的轴截面(过旋转轴的截面)是边长为2的等边三角形,所以圆锥的母线为:2;底面半径为:1;圆锥的底面周长为:2π.所以圆锥的表面积为:×2π×2+π12=3π故选B.8.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2) B.(1,﹣1) C.(﹣1,1) D.(2,1)【答案】C【解析】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.9.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或12【答案】C【解析】解:(1)当k>0时,y随x的增大而增大,即一次函数为增函数,∴当x=0时,y=﹣2,当x=2时,y=4,代入一次函数解析式y=kx+b得:,解得,∴kb=3×(﹣2)=﹣6;(2)当k<0时,y随x的增大而减小,即一次函数为减函数,∴当x=0时,y=4,当x=2时,y=﹣2,代入一次函数解析式y=kx+b得:,解得,∴kb=﹣3×4=﹣12.所以kb的值为﹣6或﹣12.故选C.10.设a、b为常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下列图形之一,则a的值为()A.6或﹣1B.﹣6或 1C.6D.﹣1【答案】A【解析】解:如图所示:从左起第1,2个图形对称轴为y轴,则b=0,故与已知矛盾,故第3,4个图形是正确图形,此时图象过原点,则a2﹣5a﹣6=0,故(a﹣6)(a+1)=0,解得:a=6或﹣1.故选:A.11.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.2B.3C.4D.5【答案】B【解析】解:由折叠可得DN=EN,设CN=x,则EN=8﹣x,∵CN2+CE2=EN2,∴x2+42=(8﹣x)2,解得x=3.故选B.12.在因此女子体操比赛中,8名运动员的年龄(单位:岁)分别为:14,12,12,15,14,15,14,16.这组数据的中位数和方差分别为()A.14和2B.14.5和1.75C.14和1.75D.15和2【答案】C【解析】解:排列数据:12、12、14、14、14、15、15、16,中位数为=14,=(14+12+12+15+14+15+14+16)=14,S2=[(14﹣14)2+(12﹣14)2+(12﹣14)2+(15﹣14)2+(14﹣14)2+(15﹣14)2+(14﹣14)2+(16﹣14)2]=1.75,故选:C.二、填空题1.把多项式2mx2﹣4mxy+2my2分解因式的结果是.【答案】2m(x﹣y)2【解析】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.2.如图所示,在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC= 度.【答案】140【解析】解:∵在Rt△ABC中,CD是斜边AB上的高,∴∠ABC=∠ACD=90°﹣∠BCD=40°,∴∠EBC=180°﹣∠ABC=140°.故答案为:140.3.若a<0,化简|a﹣3|﹣= .【答案】3【解析】解:∵a<0,∴a﹣3<0,∴|a﹣3|﹣=﹣a+3+a=3.故答案为:3.4.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.【答案】6【解析】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.5.己知菱形ABCD的边长是6,点E在直线AD上,DE=3,连接BE与对角线AC相交于点M,则的值是.【答案】【解析】解:分两种情况:(1)点E在线段AD上时,△AEM∽△CBM,∴=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴=.6.已知a2﹣6a﹣5=0和b2﹣6b﹣5=0中,a≠b,则的值是.【答案】﹣【解析】解:由已知可得:a、b为方程x2﹣6x﹣5=0的两个根,∴a+b=6,ab=﹣5.∴===﹣,故答案为:﹣.7.如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为.【答案】10【解析】解:如图,过A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD=4,∵∠B=30°,∠C=60°,∴∠BAE=90°,∴AE=BE(直角三角形30°角所对的直角边等于斜边的一半),在Rt△ABE中,BE2=AB2+AE2,即BE2=(3)2+(BE)2,BE2=27+BE2,BE2=36,解得BE=6,∴BC=BE+EC=6+4=10.故答案为:10.8.一组按规律排列的式子:,其中第7个式子是﹣,第n个式子是.【答案】﹣,.【解析】解:分子为b,其指数为2,5,8,11,…,其规律为3n﹣1,分母为a,其指数为1,2,3,4,…,其规律为n,分数符号为﹣,+,﹣,+,…,其规律为(﹣1)n,于是,第7个式子为﹣,第n个式子是.故答案为﹣,.三、计算题计算:.【答案】﹣1【解析】解:原式=﹣3+1﹣++1=﹣1.四、解答题1.先化简再求值:()•,其中x=.【答案】【解析】解:()•=(﹣)•=•=;当x=时,原式==.2.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【答案】见解析【解析】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.3.一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为.(1)取出绿球的概率是多少?(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?【答案】(1);(2)18个【解析】解:(1)P(取出绿球)=1﹣P(取出黄球)=1﹣=;(2)设袋中有绿球x个.根据题意,得:=,解得:x=18,经检验:x=18是所列方程的解.答:袋中的绿球有18个.4.如图,若反比例函数y=﹣与一次函数y=mx﹣2的图象都经过点A(a,2)(1)求A点的坐标及一次函数的解析式;(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.【答案】(1)y=﹣x﹣2;(2)﹣4<x<0或x>2【解析】解:(1)把y=2代入反比例函数y=﹣∴x=﹣4,∴A(﹣4,2).把A(﹣4,2)代入一次函数y=mx﹣2解得m=﹣1∴一次函数y=mx﹣2为y=﹣x﹣2.(2)根据题意把反比例函数y=﹣代入一次函数y=﹣x﹣2∴和∴B(2,﹣4)利用函数图象可得使一次函数的值小于反比例函数的值的x的取值范围是﹣4<x<0或x>2.5.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.【答案】(1)m=7或﹣1;(2)4.【解析】解:(1)∵方程有两个相等的实数根,∴(m﹣1)2﹣4(m+2)=0,∴m2﹣2m+1﹣4m﹣8=0,m2﹣6m﹣7=0,∴m=7或﹣1;(2)∵方程的两实数根之积等于m2﹣9m+2,∴m2﹣9m+2=m+2,∴m2﹣10m=0,∴m=0或m=10,当m=0时,方程为:x2+x+2=0,方程没有实数根,舍去;∴m=10,∴=4.6.已知:如图,AB是⊙O的直径,C是⊙O上的一点,且∠BCE=∠CAB,CE交AB的延长线于点E,AD⊥AB,交EC的延长线于点D.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若CE=3,BE=2,求CD的长.【答案】(1)DE是⊙O的切线;(2)CD=.【解析】解:(1)直线DE与⊙O相切;证明:如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°.∵OA=OC,∴∠OAC=∠ACO.∵∠BCE=∠CAB,∴∠BCE=∠ACO.∵AB是⊙O的直径,∴∠ACB=90°.∴∠BCE+∠BCO=∠BCO+∠ACO=∠OCE=90°.∴DE是⊙O的切线.(2)∵EC是圆O的切线,∴CE2=BE•AE.∵CE=3,BE=2,∴AE=.∵AD⊥AB,AB是⊙O的直径,∴DA是⊙O的切线.∴AD=CD.∵AD2+AE2=DE2,∴CD2+()2=(CD+3)2,∴CD=.7.将背面完全相同,正面上分别写有数字1,2,3,4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.【答案】(1)见解析,;(2)不公平,见解析【解析】解:(1)画树状图如下:或列表如下:由图(表)知,所有可能出现的结果有12种,其中差为0的有3种,所以这两数的差为0的概率为:;(2)不公平.理由如下:由(1)知,所有可能出现的结果有12种,这两数的差为非负数的有9种,其概率为:,这两数的差为负数的概率为:.因为,所以该游戏不公平.游戏规则修改为:若这两数的差为正数,则小明赢;否则,小华赢.(10分)8.为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.(1)求这批赈灾物资运往甲、乙两县的数量各是多少吨?(2)若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:A地B地C地为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【答案】(1)这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.(2)见解析;(3)该公司承担运送这批赈灾物资的总费用最多是60390元.【解析】解:(1)设这批赈灾物资运往乙县的数量是a吨,则运往甲县的数量是(2a﹣20)吨,则a+2a﹣20=100+100+80,a=100,2a﹣20=2×100﹣20=180,答:这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.(2)根据题意得:,解①得:x>40,解②得:x≤45,∴不等式组的解集为:40<x≤45,整数解为:41、42、43、44、45;则A、B两地的赈灾物资运往甲、乙两县的方案有五种;(3)设总费用为w元,则w=220x+250(100﹣x)+200(180﹣60﹣x)+220(x﹣20)+200×60+210×20,w=﹣10x+60800,∵﹣10<0,∴w随x的增大而减小,∴当x=41时,w有最大值,w=﹣10×41+60800=60390,大答:该公司承担运送这批赈灾物资的总费用最多是60390元.9.(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A 重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′= °.(2)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,说明理由.【答案】(1)A′D;=90°;(2)EP=FQ;见解析(3)HE=HF【解析】解:(1)如图2,由旋转的性质可知,△ABC≌△A′C′D,∴BC=A′D,∠ACB=∠C′AD,又∠ACB+∠CAB=90°,∴∠C′AD+∠CAB=90°,即∠CAC′=90°,故答案为:A′D;=90°;(2)EP=FQ,证明:∵△ABE是等腰直角三角形,∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,∴∠EAP=∠ABG,在△APE和△BGA中,,∴△APE≌△BGA,∴EP=AG,同理,FQ=AG,∴EP=FQ;(3)HE=HF,证明:作EP⊥GA交GA的延长线于P,作FQ⊥GA交GA的延长线于Q,∵四边形ABME是矩形,∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,∴∠EAP=∠ABG,又∠APE=∠BGA=90°,∴△APE∽△BGA,∴=,即AG=kEP,同理△AQF∽△CGA,∴=k,即AG=kFQ,∴EP=FQ,∵EP⊥GA,FQ⊥GA,∴EP∥FQ,又EP=FQ,∴HE=HF.10.如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P 点的坐标;若不存在,说明理由.【答案】(1)y=﹣x2+x;(2)见解析;(3)不存在,见解析【解析】解:(1)由题意可设抛物线的解析式为y=a(x﹣2)2+1∵抛物线过原点,∴0=a(0﹣2)2+1,∴.抛物线的解析式为y=﹣(x﹣2)2+1,即y=﹣x2+x(2)如图1,当四边形OCDB是平行四边形时,CD=OB,由0=﹣(x﹣2)2+1得x1=0,x2=4,∴B(4,0),OB=4.由于对称轴x=2∴D点的横坐标为6.将x=6代入y=﹣(x﹣2)2+1,得y=﹣3,∴D(6,﹣3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(﹣2,﹣3),当四边形OCBD是平行四边形时,D点即为A点,此时D点的坐标为(2,1)(3)不存在.如图2,由抛物线的对称性可知:AO=AB,∠AOB=∠ABO.若△BOP与△AOB相似,必须有∠POB=∠BOA=∠BPO设OP 交抛物线的对称轴于A′点,显然A′(2,﹣1) ∴直线OP 的解析式为y=﹣x由﹣x=﹣x 2+x ,得x 1=0,x 2=6.∴P (6,﹣3)过P 作PE ⊥x 轴,在Rt △BEP 中,BE=2,PE=3,∴PB=≠4. ∴PB≠OB , ∴∠BOP≠∠BPO , ∴△PBO 与△BAO 不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省巴中市巴州区2016届九年级数学下学期第一次月考试题
(120
一、选择题(每小题3分,共30分) 一、选择题(共30分) 1.下列二次根式中与是同类二次根式的是( ). A
B
C
D 2.用配方法解方程0342
=--x x ,下列配方结果正确的是( ).
A .19)4(2=-x
B .7)2(2=-x
C .7)2(2=+x
D .19)4(2=+x
3.圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的( )
A .正方形
B .等腰三角形
C .圆
D .等腰梯形 4.在下列调查中,适宜采用全面调查的是( ) A .了解我省中学生的视力情况
B .了解我校九(1)班学生校服的尺码情况
C .检测一批电灯泡的使用寿命
D .调查巴中电视台《新闻365》栏目的收视率
5.已知抛物线y=x 2+x-1经过点P(m ,5),则代数式m 2
+m+2016的值为( ) A .2021 B .2022 C .2023 D .2024
6.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上,已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10 cm 处,铁片与直尺的唯一公共点A 落在直尺的14 cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( ) A .圆形铁片的半径是4 cm B .四边形AOBC 为正方形
C .弧AB 的长度为4πcm
D .扇形OAB 的面积是4πcm 2
7.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( ).
A .∠ABD =∠C
B .∠ADB =∠AB
C C

AB CB
BD CA
= D .
AB AC
AD AB =
8.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m ,250 m ,200m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝
第7题图
第6题图
( )
A .甲的最高
B .乙的最低
C .丙的最低
D .乙的最高
9.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中 正确的是( ) A .AC =AB
B .∠
C =1
2
∠BOD
C .∠C =∠B
D .∠A =∠BOD
10.如图是二次函数y =ax 2
+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x =
-1,给出四个结论:①b 2
>4ac ;②2a +b =0;③a +b +c >0;④若点
B(-52,y 1),C(-1
2,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )
A .②④
B .①④
C .①③
D .②③ 填空题(共30分)
11.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×10-5
秒到达另一
座山峰,已知光速为3×108
米/秒,则这两座山峰之间的距离用科学计数法表示为 米.
12.一个正偶数的算术平方根是a ,那么与这个正偶数相邻的下一个正偶数的算术平方根是 . 13
.函数1
y =
的自变量x 的取值范围是 .
14.已知一个二次函数的图像在y 轴左侧部分是上升的,在y 轴右侧部分是下降的,又经过点A (1,1).那么这个二次函数的解析式可以是 (写出符合要求的一个解析式即可).
15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.
16.在半径为5cm 的⊙O 中,弦AB ∥CD ,且AB=8cm ,CD=6cm ,则AB 、CD 之间的距离为 .
17.如图,在Rt △错误!未找到引用源。

中,斜边错误!未找到引用源。

上的高AD=3,错误!未找到引用源。

,则错误!未找到引用源。

________.
第18题图
A 时
B 时 第9题图
18.如图,小明在A 错误!未找到引用源。

时测得某树的影长为2米,B 时又测得该树的影长为8米,若两次日照的光线互相垂直,则树的高度为___________米. 19.某商品经过两次降价,零售价降为原来的1
2
,已知两次降价的百分率均为x ,则列出方程是 .
20.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C -D —A 一B 一…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 .
解答题(90分)
21.(12分)计算:(1)01
32
)2()3
1
(272-⨯--+--π
(2)︒-︒45sin 260cos 2
1
+|﹣2|
22.(6分)解方程:2
2(2)(2)x x -=-
23.(8分)先化简,再求值:321121x x x x x -⎛⎫
- ⎪-+⎝⎭
·
,其中1x =
24.(9分)如图,在8×8网格纸中,每个小正方形的边长都为1. (1)请在网格纸中建立平面直角坐标系,使点A 、C 的坐标分别为(﹣4,4),(﹣1,3),并写出点B 的坐标为 ; (2)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标; (3)在y 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P
的坐标
25.(9分)自北京成功举办2008年夏季奥运会,去年又成功获得2022年冬季奥运会举办权以来,奥运知识在我国不断传播.小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A :熟悉,B :了解较多,C :一般了解.图25-1和图25-2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)该班共有 名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整. (3)在扇形统计图中,“了解较多”部分所对应的圆心角的度数为 ;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识 “了解较多”的学生人数. 26.(8
sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= . (1)观察上述等式,猜想:在Rt △ABC 中,∠C =90°,都有sin 2A +sin 2
B = .
(2)如图④,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角
函数的定义和勾股定理,证明你的猜想. 27.(8分)如图,在△ABC 中,AD 是BC 边上的中线,点E 、F 在AB 边上,且E 是BF 中点,连接DE ,CF 交AD 于G ,。

(1)求证:△AFG ∽△AED (2)若FG =3,G 为AD 中点,求CG 的长
人数 A 图25—1
图25—2 G
F E D C
B
A
28.(8分)如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接PA ,AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D. (1) 求证:PA 是⊙O 的切线;
(2) 若OC AC =2
3,且OC =4,求PA 的长.
(10分)巴中人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.
(1)设该种品牌服装的销售单价为x 元(x >50),销售量为y 件,请写出y 与x 之间的函数关系式;
(2)若商场获得了6000元销售利润,该服装销售单价x 应定为多少元?
(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少? 30.(12分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,2
3
-
),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.
(1)求A 、B 两点的坐标; (2)当△BDM 为直角三角形时,求m 的值.
(3)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;。

相关文档
最新文档