异步电动机变压调速系统

合集下载

异步电动机变频调速控制系统

异步电动机变频调速控制系统

主电路(续)
泵升限制电路——由于二极管整流器不能为 异步电机的再生制动提供反向电流的通路,所 以除特殊情况外,通用变频器一般都用电阻吸 收制动能量。减速制动时,异步电机进入发电 状态,首先通过逆变器的续流二极管向电容C 充电,当中间直流回路的电压(通称泵升电压) 升高到一定的限制值时,通过泵升限制电路使 开关器件导通,将电机释放的动能消耗在制动 电阻上。为了便于散热,制动电阻器常作为附
所谓“通用”,包含着两方面的含义: (1)可以和通用的笼型异步电机配套使用; (2)具有多种可供选择的功能,适用于各种
不同性质的负载。
下页图绘出了一种典型的数字控制通用变 频器-异步电动机调速系统原理图。
1. 系统组成
K
UR
RR00
RR11
RRbb
UI
~
M 3~
RR22
VTb
显示

设定


接口
件单独装在变频器机箱外边。
二极管整流电流波形具有较大的谐波分 量,使电源受到污染。
为了抑制谐波电流,对于容量较大的 PWM变频器,都应在输入端设有进线电抗 器,有时也可以在整流器和电容器之间串 接直流电抗器。还可用来抑制电源电压不 平衡对变频器的影响。
电路分析(续)
控制电路——现代PWM变频器的控制电路 大都是以微处理器为核心的数字电路,其 功能主要是接受各种设定信息和指令,再 根据它们的要求形成驱动逆变器工作的 PWM信号,再根据它们的要求形成驱动逆 变器工作的PWM信号。微机芯片主要采用 8位或16位的单片机,或用32位的DSP,现 在已有应用RISC的产品出现。
控制电路(续)
信号设定——需要设定的控制信息主要有:U/f 特性、工作频率、频率升高时间、频率下降时间 等,还可以有一系列特殊功能的设定。由于通用 变频器-异步电动机系统是转速或频率开环、恒 压频比控制系统,低频时,或负载的性质和大小 不同时,都得靠改变 U / f 函数发生器的特性来补 偿,使系统达到恒定,甚至恒定的功能(见第 6.2.2节),在通用产品中称作“电压补偿”或 “转矩补偿”。

(完整版)异步电动机变频调速系统..

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》课程实习报告异步电动机变频调速系统1.4.1 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。

因为本设计中采用中等容量的电动机,所以采用三相380V电源。

整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。

在本设计中采用三相不可控整流。

它可以使电网的功率因数接近1。

滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变部分将直流电逆变成我们需要的交流电。

在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。

电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。

控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。

这些信号经过光电隔离后去驱动开关管的关断。

1.4.2 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。

随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。

静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。

1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。

由于中间不经过直流环节,不需换流,故效率很高。

因而多用于低速大功率系统中,如回转窑、轧钢机等。

但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。

2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。

简述交流异步电动机变压调速系统的特点及应用场合

简述交流异步电动机变压调速系统的特点及应用场合

简述交流异步电动机变压调速系统的特点及应用场合交流异步电动机变压调速系统是一种常见的电动机调速控制系统,其特点和应用场合如下:特点:1. 变压调速系统采用变压器来调整电动机的输入电压,从而实现调速控制。

通过调整输入电压,可以改变电动机的转速,从而满足不同工况下的需求。

2. 交流异步电动机变压调速系统结构简单,成本低廉。

相比其他调速方法,如变频调速系统,变压调速系统的设备和维护成本较低。

3. 变压调速系统的调速响应速度较快,精度较高,可在短时间内实现从低速到高速的平稳调速。

4. 变压调速系统的稳定性较强,适用于工况变化较大的场合。

由于其调速控制是通过调整输入电压实现的,所以对负载的适应性较好。

应用场合:1. 工业生产线:交流异步电动机变压调速系统常用于工业生产线上,如输送带、搅拌设备、风机等。

由于生产线上的负载和工况经常变化,变压调速系统能够快速、稳定地满足不同负载要求。

2. 电梯系统:电梯是一个需要精确调速的系统,交流异步电动机变压调速系统可根据电梯载重情况和乘客需求来调整电梯的运行速度,提高乘坐的舒适性和安全性。

3. 污水处理系统:污水处理系统中的泵和风机需要根据进水量和水质变化来调整运行速度,以保证处理效果。

交流异步电动机变压调速系统能够根据实时需求来调整设备的转速,提高处理效率。

4. 能源系统:交流异步电动机变压调速系统可用于风力发电机组和太阳能跟踪系统中,根据天气条件和电网负荷情况来调整发电设备的转速,最大限度地利用风能和太阳能资源。

总之,交流异步电动机变压调速系统具有调速响应快、稳定性强、成本低廉等特点,广泛应用于工业生产线、电梯系统、污水处理系统和能源系统等场合。

它为各种设备和系统的调速控制提供了可靠的解决方案。

交流异步电动机变压变频调速系统设计与仿真

交流异步电动机变压变频调速系统设计与仿真

交流异步电动机变压变频调速系统设计与仿真异步电动机变压变频调速系统是一种常见的电动机调速系统,可以实现电动机转速的精确控制和调节。

本文将介绍异步电动机变压变频调速系统的设计和仿真。

首先,异步电动机的调速原理简要介绍。

异步电动机是一种常用的交流电动机,其转速通常由额定电压和频率决定。

通过改变电动机的电压和频率,可以实现对电动机的调速。

变压变频调速系统通过调节电压和频率的大小,改变电动机的转速。

在设计异步电动机变压变频调速系统之前,首先要确定电动机的参数。

电动机的参数包括额定功率、额定电压、额定电流等,这些参数可以从电动机的标牌上获取。

另外,还需要确定变压变频器的参数,包括额定电压范围、频率范围等。

这些参数将决定整个系统的性能。

设计异步电动机变压变频调速系统的关键是选取合适的变压变频器。

变压变频器是将电网的交流电转换为可调频率和可调电压的交流电的装置。

根据电动机的额定电压和变压变频器的额定电压范围,选取合适的变压变频器,以满足调速系统的要求。

设计异步电动机变压变频调速系统的下一步是进行系统的电路设计。

电路设计包括电动机的接线和变压变频器的接线。

电动机的接线要根据电动机的型号和相数来进行,确保电机的正常运行。

变压变频器的接线要根据变压变频器的接线图进行,确保变压变频器与电动机的连接正确。

完成电路设计后,还需要进行系统的控制设计。

控制设计包括电机的启动和停止控制、电机的转速控制等。

启动和停止控制一般采用按钮控制或者遥控控制,可以通过按钮或者遥控装置来启动和停止电动机。

转速控制一般采用PID控制器进行,通过调节变压变频器的输出电压和频率,来实现对电动机转速的控制和调节。

完成设计后,可以使用仿真软件进行系统的仿真。

常用的仿真软件有MATLAB/Simulink、PSIM等。

通过仿真可以验证系统的设计是否正确,并进行性能评估。

仿真结果可以用来优化系统的设计,提高系统的性能。

综上所述,异步电动机变压变频调速系统的设计和仿真是一个系统工程,需要从确定电动机和变压变频器的参数开始,进行电路设计和控制设计,最后进行仿真验证。

异步电机调压调速系统的matlab仿真代码

异步电机调压调速系统的matlab仿真代码

异步电机调压调速系统的matlab仿真代码异步电机是一种常见的电动机类型,广泛应用于各个领域的工业控制系统中。

在工业生产中,对异步电机的调压调速系统进行仿真设计可以帮助工程师们更好地理解电机的工作原理,并且优化控制算法,提高电机的性能和效率。

本文将根据异步电机调压调速系统的需求,介绍如何使用Matlab进行仿真设计。

异步电机调压调速系统主要包括三个部分:电机模型、调速控制器和电源电压。

首先,我们需要建立电机的模型。

在Matlab中,我们可以使用Simulink来搭建电机模型。

在搭建电机模型之前,我们需要明确电机的参数,例如额定功率、额定转速、定子电阻、定子电感、转子电阻、转子电感等。

根据这些参数,我们可以使用Simulink中的“Synchronous Machine”模块来搭建电机模型。

通过调整模块的参数,我们可以设定电机的额定功率和转速。

此外,我们还可以通过添加噪声、扰动等,模拟电机在实际工况下的运行情况。

接下来,我们需要设计调速控制器。

常见的调速控制算法有PID控制、模糊控制、自适应控制等。

在Matlab中,我们可以使用Simulink中的“PID Controller”模块来实现PID控制算法。

在使用PID控制器模块之前,我们需要根据电机的特性调整控制器的参数,例如比例系数、积分时间和微分时间。

通过不断调整参数和观察仿真结果,我们可以优化控制器的性能,实现电机的稳定调速。

最后,我们需要模拟电源电压对异步电机的影响。

在实际应用中,供电电压的波动会对电机的转速和输出功率产生影响。

在Matlab中,我们可以通过添加波动的直流电压源来模拟这种影响。

通过调整电压源的幅值和频率,我们可以观察电压波动对电机转速和输出功率的影响。

这对于调压调速系统的设计和优化非常重要。

在完成上述步骤后,我们可以对整个异步电机调压调速系统进行仿真。

通过控制器和电源电压的输入,我们可以观察电机的转速、输出功率和电流等参数的变化情况。

第6章交流异步电动机调速系统

第6章交流异步电动机调速系统

结论: 结论:
基频f 以下调速,Φ 基频fN以下调速,Φm恒定,转矩恒定,即恒转矩调速; 基频f 以上调速,n 基频fN以上调速,n升高时转矩降低,即恒功率调速;
§6.3.3 异步电动机电压—频率协调控制时 异步电动机电压— 的机械特性
一、恒压恒频正弦波供电时异步电动机的机械特性 一、恒压恒频正弦波供电时异步电动机的机械特性 二、基频以下电压— 二、基频以下电压—频率协调控制时的机械特性 三、基频以上恒压变频调速时的机械特性 三、基频以上恒压变频调速时的机械特性
§6.3.1 VVVF调速的基本原理 VVVF调速的基本原理
由式, 由式 n1 = 当极对数p不变时,同步转速n 当极对数p不变时,同步转速n1与电源频率 f1成正比,f1可以向上(大于fN)也可以向下(小于fN)。 成正比,f 可以向上(大于f )也可以向下(小于f
60 f1 p
三相异步电动机定子每相电动势的有效值:
sm =
Rr'
' Rs2 + ω12 ( L1s + L1r ) 2
Te max =
3n pU s2
' 2ω1 [ Rs + Rs2 + ω12 ( L1s + L1r ) 2 ]
对上面两式分析:改变U 对上面两式分析:改变Us ①同步转速n1不变(因为 n1 = 同步转速n 不变( ) Te ∝ U s2 ,即转矩随电压的平方而改变。 ② 即转矩随电压的平方而改变。 ③最大转差率sm(或额度转差率sN)不变。因为sm与Us 最大转差率s 或额度转差率s 不变。因为s 无关。 无关。
60 f1 p
不同U 不同Us下感应电动机的机械特性
从上图看出, 从上图看出 , 当负载一定时: TL=C,则三个电压下的转速为 A,B,C. A,B,C. 结论:调速范围小! 结论:调速范围小!

5.3 异步电动机的变压变频调速解析

5.3 异步电动机的变压变频调速解析
返回目录
5.3.2 变压变频调速时的机械特性 式(5-5)已给出异步电机在恒压恒频正弦 波供电时的机械特性方程式 Te= f (s)。 当采 用恒压频比控制时,可以改写成如下形式:
Us s1 Rr' Te 3np ( sR R ' ) 2 s 2 2 ( L L' ) 2 (5-28) s r 1 ls lr 1

对于直流电机,励磁系统是独立的,只要 对电枢反应有恰当的补偿, m 保持不变 是很容易做到的。 在交流异步电机中,磁通 m 由定子和转 子磁势合成产生,要保持磁通恒定就需要 费一些周折了。

• 定子每相电动势
Eg 4.44 f1Ns kNS Φm
(5-11)
式中:Eg —气隙磁通在定子每相中感应电动势的有 效值,单位为V; f1 —定子频率,单位为Hz;
2
• 特性分析 当s很小时,可忽略上式分母中含s各项,则
U s s1 Te 3np R' s r 1
2
(5-29)
s1
Rr'Te Us 3n p 1
2
10 R T 60 n sn1 s1 2 n p n
阻抗压降所占的份量就比较显著,不再能
忽略。这时,需要人为地把电压 Us 抬高一
些,以便近似地补偿定子压降。
带定子压降补偿的恒压频比控制特性示
于下图中的 b 线,无补偿的控制特性则为a 线。
• 带压降补偿的恒压频比控制特性
Us
UsN
b —带定子压降补偿
a —无补偿
O
f 1N
图5-9 恒压频比控制特性
2
Eg R s1 Rr' 3np R '2 s 2 2 L'2 s 1 lr 1 r

1、调压调速系统

1、调压调速系统

3n
pU
2 s
Rr'
s
2
s2

Rs2s2

2sRs Rr'

Rr' 2

(3)当s很小时,忽略分母中含s各项
Te

3n
pU
2 s
s
1Rr'

s
转矩近似与s成正比,机械特性近似为直线
Te 1 12
Lls L'lr
3n
pU
2 s
Rr'
s
2
s2

Rs2s2

2sRs Rr'
根据电机学原理,异步电动机的电磁功率为
Pm

Tem1

Te1
np

Te
np(1
s)
电机的转差功率为
PS sPm
(1-4) (1-5)
不同性质负载的转矩可用下式表示
TL Ca
式中C为常数,
(1-6)
0、1、2 分别代表恒转矩负载、与转速成比例的负载和与转速的平
方成比例的负载(风机、泵类等)。
由电机原理可知,电动机的电磁转矩与定子电压的平方成正比。
由于受电动机绝缘和磁路饱和的限制,定子电压只能降低,不能 升高,故又称作降压调速。
晶闸管交流调压器的主电路接法有以下几种方式,如图1-1所示:
SCR KS
MI
MI
a) 电机绕组Y联接时的三相分支双向电路
VD
SCR
MI b) 电机绕组Y联接时的三相分支单向电路
(2) 转折点:
对s求导,并令
dTe 0 ds
可得:
最大转矩,又称临界转矩

4章 交流异步电动机变频调速系统

4章 交流异步电动机变频调速系统

为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。

本文将对三相异步电动机变频调速系统进行详细的设计。

1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。

电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。

2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。

变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。

控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。

3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。

在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。

同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。

此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。

4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。

速度信号检测可以通过安装编码器或霍尔传感器等装置实现。

根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。

通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。

5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。

常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。

通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。

总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。

第六章交流异步电动机变频调速系统PPT课件

第六章交流异步电动机变频调速系统PPT课件

电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速

交流调速系统之调压调速_课件

交流调速系统之调压调速_课件

异步电动机调压调速系统
设VT1的导通角为 ,则有约束条件:
将此约束条件代入电流表达式,得到由阻抗角和触发角计算 角的
方程式:
该方程为超越方程,难于求解,结果已被作成曲线,实用中可以
查曲线求 。
22
异步电动机调压调速系统
f (,)
对该曲线说明如下:
23
异步电动机调压调速系统
24
2)带零线的三相全波星形联接 调压电路
9
异步电动机调压调速系统
3)三相半控星形联接的调压电路
5)晶闸管三角形联接的调压电路
4)晶闸管与负载接成内三角形的 调压电路
10
异步电动机调压调速系统
二. 三相交流调压电路的工作原理
原理分析使用下图的三相全波星形连接调压电路:
* 触发脉冲要求:双脉冲或宽脉冲,与电源电压同步。
交流调速系统之调压调速_课件
交流调速系统之调压调速_课件
异步电动机调压调速系统
第一节 调压调速的原理与方法
一. 异步电动机调压调速原理 二. 异步电动机调压调速方法
3
异步电动机调压调速系统
一. 异步电动机调压调速原理
调压调速即通过调节通入异步电动机的三相交流电压大 小来调节转子转速的方法。
理论依据来自异步电动机的机械特性方程式:
因异步电动机的拖动转矩与供电电压的平方成正比,因 此降低供电电压,拖动转矩就减小,电机就会降到较低的运 行速度。
不同供电电压对应的机械特性曲线如图所示。图中垂直 虚线为恒转矩负载线,可以看出调压调速对于恒转矩负载, 调速范围很小(A-B-C),而对于风机类负载调速范围则较大 (F-E-D)。
4
异步电动机调压调速系统
16
异步电动机调压调速系统

异步电动机采用调压调速时

异步电动机采用调压调速时

异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电动机或绕线式异步电动机在转子中串入适当的电阻后是机械特性变软后,其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此长采用双闭环调速系统。

双闭环三相异步电动机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”,“速度变换”,“触发电路”,“正桥功放”等组成。

其系统原理框图如图所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统想同,而电流环的作用则有所不同。

在稳定运行的情况下,电流环对电网扰动仍有较大的抗绕作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转和能耗制动。

但在恒转矩负载下不能长时间低速运行,因为低速运行时转差率功率Ps=SPm全部消耗在转子电阻中,会使转子过热。

222222交流调速调压系统的电气原理图如图所示。

交流调压调速系统的仿真模型如图所示。

下面介绍各部分的建模与参数设置过程。

1.系统的建模和模型参数设置(1)主电路的建模和参数设置由图可见,主电路由三相对称交流电压源,晶闸管三相交流调压器,交流异步电动机,电动机信号分配器等部分组成。

此处着重讨论晶闸管三相交流调压器,交流异步电动机,电动机测试信号分配器的建模和参数设置问题。

@1晶闸管三相交流调压器的建模和参数设置。

晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管采用“相位控制”方式,利用电网自然换流。

图()所示为晶闸管三相交流调压器的仿真模型及模块符号。

图()所示为三相交流调压器中的晶闸管元件的参数设置情况。

在图()中我们是用单个晶闸管元件按三相交流调压的接线要求建成仿真模型的,单个晶闸管元件的参数设置仍然遵循晶闸管整流桥的参数设置原则。

三相异步电动机变频调速

三相异步电动机变频调速

.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。

根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。

所以调节三相异步电动机的转速有三种方案。

异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。

改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。

如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。

三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。

如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。

因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。

.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。

这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。

笼型异步电动机变压变频调速系统转差功率不变型系统

笼型异步电动机变压变频调速系统转差功率不变型系统
• 直到20世纪60~70年代,随着电力电子技术 的发展,使得采用电力电子变换器的交流 拖动系统得以实现,特别是大规模集成电 路和计算机控制的出现,高性能交流调速 系统便应运而生,一直被认为是天经地义 的交直流拖动按调速性能分工的格局终于 被打破了。
交流调速系统概述
• 由于直流电机具有电刷和换相器,因而必 须经常检查维修、换向火花使直流电机的 应用环境受到限制、以及换向能力限制了 直流电机的容量和速度等缺点日益突出起 来,因此交流拖动控制系统已经成为当前 电力拖动控制的主要发展方向。
(6-1)
制好 Eg 和 f1 ,便可达到 式中:Eg —气隙磁通在定子每相中感应电动势的有 控制磁通m 的目的,对 效值,单位为V; 此,需要考虑基频(额定 f1 —定子频率,单位为Hz; 频率)以下和基频以上两 Ns —定子每相绕组串联匝数; 种情况。 kNs —基波绕组系数;
m —每极气隙磁通量,单位为Wb。
U s1 0 n Te 3np s s 0 ' R 1 r
2
Temax
Te
示。
1
Temax
Te
图6-3 恒压恒频时异步电机的机械特性
6.2.2 基频以下电压-频率协调控制时 的机械特性
Us s1 Rr' Te 3np (6-4) ' 2 2 2 ' 2 1 ( sRs Rr ) s 1 ( Lls Llr )
2. 恒 Eg /1 控制
Eg 4.44 f1Ns kNS Φm
如果在电压-频率协调控制中,恰当地 提高电压 Us 的数值,使它在克服定子阻 抗压降以后,能维持 Eg /1 为恒值(基频 以下),则由式(6-1)可知,无论频率

交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告一、引言随着现代工业技术的快速发展,变频调速技术得到了广泛应用。

异步电动机作为一种常用的驱动设备,其效率和可靠性对工业生产的效率和质量有着直接的影响。

本报告将介绍异步电动机变频调速系统的设计原理、硬件和软件设计以及测试结果。

二、设计原理1.变频调速原理变频调速系统是通过改变电机供电频率来实现转速调节的方法。

通过变频器将电网的交流电转换成可变频率的交流电,从而控制电机的转速。

2.动态模型异步电动机可以通过Rotor磁场实现电磁耦合,将输入电源的电能转化为机械能。

异步电动机的数学模型可以表示为:dp/dt = (3Rh-is)-Rpdq/dt = (3Ris+Vs)-Rqds/dt = (3wRhf/h-2Vq/h)cos(theta_m)-wrdVs/dt = (3wRqf/h-2Vd/h)sin(theta_m)-wr其中,dp/dt和dq/dt分别代表气隙磁链通量向量的坐标变化率;is 代表定子电流向量;Vs为定子电压向量;p和q代表气隙磁链通量向量的坐标;s代表气隙磁链通量幅值;f代表电源频率;h代表极数;theta_m代表转子与气隙磁链之间的角度差;w代表角速度;Rp和Rq代表定子参数;Rh代表转子参数;wr代表机械转速。

3.变频器控制策略变频器控制策略包括开环控制和闭环控制。

开环控制是通过设定电机转速来控制变频器输出频率;闭环控制是通过测量电机转速反馈信号,与设定值比较后控制变频器输出频率。

闭环控制能够提高系统的稳定性和响应速度。

三、硬件设计1.变频器选择根据电机的额定功率和电源特性,选择适合的变频器。

常见的变频器有电压型变频器和矢量控制型变频器,根据实际应用需求进行选型。

2.控制电路设计设计包括电源模块、信号处理模块和控制逻辑模块。

电源模块用于将电网交流电转换为适合驱动异步电动机的交流电;信号处理模块用于处理输入信号,包括测量电机转速和控制信号;控制逻辑模块根据控制策略生成控制信号,并将其传递给变频器。

实验四 异步电动机转速开环变压变频调速系统

实验四 异步电动机转速开环变压变频调速系统

实验四基于SVPWM及SPWM的交流变频调速系统一、实验目的1.加深理解异步电动机变压变频调速的基本工作原理。

2.熟悉PWM变频器主回路结构和异步电动机转速开环变压变频调速系统的基本结构。

3.异步电动机转速开环变压变频调速系统机械特性。

二、实验系统组成及工作原理异步电动机变压变频调速实验系统如图4-1所示,主回路由不可控整流桥、直流滤波环节、全控型电力电子器件IGBT或POWER-MOSFET构成的逆变桥组成,M为三相异步电动机,G为负载直流发电机。

控制器包括驱动电路、微机数字控制器、控制键盘和运行显示等几部分。

~实验图4-1 异步电动机转速开环变压变频调速系统三、实验设备及仪器1. NMCL-32主控制2.三相异步电动机-负载直流发电机组3. NMCL-13A挂箱4.双踪示波器5.万用表,电压表,电流表四、实验内容1.用SPWM变频器给三相异步电动机供电,实现变频调速运行。

2.观测在不同频率和不同负载下的输出电流波形,测试开环机械特性。

3.改变V/f曲线,观察变频器在不同低频补偿条件下的低速运行情况。

4.改变加速时间,观察加速过程。

五、实验步骤及方法1. 实验系统的连接按实验图4-1连接系统,合上控制电源开关,电源指示灯亮,表示微机系统处于等待接受指令状态,按“运行”或“停止”按钮可启动或停止调速系统的运行。

2. 变频调速将负载直流发电机输出电路断开,按“运行”按钮使调速系统进入运行状态,通过给定电位器或键盘改给定频率,记录不同频率下三相异步电动机的空载转速和空载定子电流,并3.测试开环机械特性 (1) 基频开环机械特性测试接通负载直流发电机输出电路,并将负载电阻调到最大,按“运行”按钮使变频器进入运行,将频率给定设定为50Hz ,逐步减小负载电阻,记录异步电动机的转速、定子电流和负载直流发电机的输出电压和电流。

实验过程中应使定子电流小于1.2倍的额定电流,如调速系统不能带载启动,可先断开负载直流发电机励磁,待启动后再接通励磁。

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种
三相异步电动机是工业生产中常见的一种电动机,它在工业生产中具有广泛的应用。

在实际应用中,为了满足不同的生产需求,三相异步电动机需要进行调速。

那么,三相异步电动机调速方法有几种呢?接下来,我们将介绍三种常见的调速方法。

第一种调速方法是变频调速。

变频调速是通过改变电动机的输入电压和频率来实现调速的方法。

在变频调速系统中,通过变频器对电源电压和频率进行调整,从而改变电动机的转速。

这种调速方法具有调速范围广、精度高、效率好等优点,因此在工业生产中得到了广泛的应用。

第二种调速方法是级联调速。

级联调速是通过改变电动机的绕组接法来实现调速的方法。

在级联调速系统中,通过改变电动机的绕组接法,使电动机在不同的运行状态下具有不同的极数,从而实现调速的目的。

这种调速方法具有结构简单、成本低、可靠性高等优点,适用于一些对调速要求不是很高的场合。

第三种调速方法是变压调速。

变压调速是通过改变电动机的输入电压来实现调速的方法。

在变压调速系统中,通过改变电动机的输入电压,从而改变电动机的转矩和转速。

这种调速方法具有调速范围广、结构简单、成本低等优点,适用于一些对调速要求不是很高的场合。

综上所述,三相异步电动机调速方法主要包括变频调速、级联调速和变压调速三种。

不同的调速方法适用于不同的场合,可以根据具体的生产需求选择合适的调速方法。

希望本文介绍的内容对大家有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闭环变压调速系统的近似动态结构图
20:59
一、交流拖动控制概述
1.交流拖动控制系统的应用领域
目前,交流拖动控制系统的应用领域主要有三个方面:
(1)一般性能的节能调速
(2)高性能的交流调速系统和伺服系统
(3)特大容量、极高转速的交流调速
交流传动是传动领域的主要发展方向.
20:59
2.异步电动机

负载变化时,如果电压调节到极限值, 闭环系统便失去控制能力,系统的工作 点只能沿着极限开环特性变化。

尽管异步力矩电机的机械特性很软,但 由系统放大系数决定的闭环系统静特性 却可以很硬。

采用PI调节器,照样可以做到无静差。
改变给定信号,则静特性平行地上下移
动,达到调速的目的。
静态参数计算:
晶闸管交流调压器和触发装置的放大系数
第5章 交流调压调速系统
(异步电动机变压调速系统) (一种转差功率消耗型调速系统)
20:59
---主要内容-- 交流拖动控制概述
交流拖动控制系统的应用领域 异步电动机的调速方法 对上述调速方法按电动机的转差功率分类
异步电动机变压调速电路 异步电动机改变电压时的机械特性 闭环控制的变压调速系统及其静特性
二、异步电动机变压调速电路
图1: 利用晶闸管交流调压器变压调速
TVC——双向晶闸管交流调压器(调节定子外加相电压)
20:59
图2:采用晶闸管反并联的异步电机可逆和制动电路
晶闸管1~6控制电动机正转运行, 反转时,可由晶闸管1,4和7~10 提供逆相序电源,同时也可用于 反接制动。 当需要能耗制动时,可以根据制 动电路的要求选择某几个晶闸管 不对称地工作,例如让1,2,6 三个器件导通,其余均关断,就 可使定子绕组中流过半波直流电 流,对旋转着的电机转子产生制 动作用。必要时,还可以在制动 电路中串入电阻以限制制动电流。
Te
m1
Pm

3n p
1
I r' 2
Rr' s
3n pU s2 Rr' / s
2 Rr' 1 Rs 12 Lls L'lr s


2

• 当异步电动机等效电路的参数不变时,在相同的转速下,电磁转矩 Te与定子电压Us的平方成正比.
转差功率消耗型调速系统
转差功率回馈型调速系统
转差功率不变型调速系统
20:59
转差功率消耗型调速系统 这种类型的全部转差功率都转换成热能消耗在转子回路中。在三类异 步电动机调速系统中,这类系统的效率最低,而且越到低速时效率越低, 它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。可是 这类系统结构简单,设备成本最低,所以还有一定的应用价值。 转差功率回馈型调速系统 在这类系统中,一部分转差功率被消耗掉,大部分则通过变流装置回 馈给电网或转化成机械能予以利用,转速越低,能回收的功率越多,这类 系统的效率是比较高的,但要增加一些设备。 转差功率不变型调速系统 在转差功率中,转子铜损是不可避免的,在这类系统中,无论转速高 低,转差功率的转子铜损部分基本不变,因此效率也较高。其中变极对数 调速是有级的,应用场合有限。只有变压变频调速应用最广,可以构成高 动态性能的交流调速系统,取代直流调速。
按照交流异步电动机的原理,从定子传入转子的电磁 功率Pm可分成两部分:
拖动负载的有效功率,称作机械功率:Pmech=(1-s)Pm
传输给转子电路的转差功率,与转差率成正比:Ps=sPm。
从能量转换的角度看,转差功率是否增大,是消耗掉 还是得到回收,是评价调速系统效率高低的标志。据此, 异步电动机的调速系统分成三类:
五、闭环变压调速系统的近似动态结构图
• 改善动态性能
转速调节器ASR:PI调节器,用以消除静差并
ns 1 WASR ( s ) K n ns
• 晶闸管交流调压器和触发装置
Ks WGT V ( s ) Ts s 1
20:59
• 测速反馈环节
W FBS ( s )

Ton s 1
在一般情况下 Lm Lls ,C1 1 ,这相当于上述假定条件的第③条改为 “忽略铁损和励磁电流”。 Us ' Is Ir ' 2 2 R Rs r 12 Lls L'lr s


' ' 令电磁功率和同步机械角转速: Pm 3I r2 Rr / s
2 U sA
1
)
Te TL
J d ( ) n p dt
TL 0 ,图中小闭环传递函数可变换成
np 1 Js 2 2 3n pU sA n p 3n pU sA J 1 2 ' s 2 ' 1 Rr Js n p 1 Rr
20:59
异步电动机的近似线性化传递函数为
--- 异步电动机的转速 ---
n
60 f (1 s) n1 (1 s) np
--- 异步电动机的调速方法 --变电压调速 串级调速 转差离合器 调速 转子串电阻 调速 交-交变频 交-直-交变 频
变转差率调速Βιβλιοθήκη 变极对数调速变频调速
•变压调速是异步电动机调速方法中比较简便的一种。
3.对调速方法按电动机的转差功率分类
(U sA U s ) 2 ( s A s )
展开,并忽略两个和两个以上微偏量的乘积
1 Rr' s 1 1
Te
3n p
2 ( 2U sA s A U s U sA s )
s

Te
3n p
1

' 1 Rr
(2U sA s A U s
2 U sA
R r' R s s 假定s很小 Rr' 1 ( Lls Llr ) s
• 异步电动机MA
Te 3n pU s2 Rr' /s
Rr' 2 2 ' 2 1 ( Rs ) 1 ( Lls Llr ) s
Te
3n p
1 Rr'
U s2 s (在假定条件下异步电动机近似的线性机械特性)
•用微偏线性化方法求一个近似的传递函数。设A为近似线性机械特性上 的一个稳态工作点,则在A点上
TeA
20:59
3n p
1 Rr'
2 U sA s A
在A点附近有微小偏差时,
Te TeA Te
TeA Te
U s U sA U s
3n p
s s A s
1 Rr'
1
)
带恒转矩负载时电力拖动系统的运动方程式:
Te TL
J d n p dt
稳态工作点A附近的微偏量运动方程式:
20:59
Te TL
J d ( ) n p dt
忽略电磁惯性时异步电动机微偏线性化的近似动态结构图
Te 3n p

' 1 Rr
(2U sA s A U s
3n p 2 s A1 2U sA s A ' ( s ) 1 Rr K MA U sA WMA ( s ) 2 3n pU sA J12 Rr' U s ( s ) Tm s 1 J s 1 s 2 ' 2 3n 2U sA np 1 Rr p

K s U s /U c
转速反馈系数
Un / n
异步电动机机械特性方程式,它是一个非线性函数
n f (U s , Te )
* 稳态时 U n U n n , T ,根据负载需要的n和TL可由机械特性方 Te L ,
程式计算出或用机械特性图解法求出所需的Us以及相应的Uc。
The end
20:59
K MA ——异步电动机的传递系数 Tm ——异步电机拖动系统的机电时间常数
使用动态结构图时要注意下述两点: (1)由于它是偏微线性化模型,只能用于机械特性线性段上工作点附近 的稳定性判别和动态校正,不适用于起制动时转速大范围变化的动态响 应。 (2)由于它完全忽略了电磁惯性,只剩下同轴旋转体的机电惯性,异步 电动机便近似成一个线性的一阶惯性环节。分析与计算有很大的近似性。
n1=60f/np
f为电源频率、np是磁场的磁极对数、n的单位是:每分钟转数。
t1=0
t2=1/3π
t3=2/3π
t4=π
--- 异步电动机旋转的基本原理 --有了旋转磁场,在转子导体中产生了感应电流,而载流导体(转子导 体)在磁场中又受到电磁力的作用,于是使转子转动起来。因为转子导体 中的电流是靠电磁感应产生的,所以异步电动机又叫做感应电动机。 转子和旋转磁场转向相同,转速不等 。 --- 转差率 --同步转速n1与电动机转速n之差(n1-n),用符号Δn表示,叫做转速差。 转速差与同步转速的比值叫转差率,用符号s表示。转差率s通常用百分数 表示,即: s=(n1-n)/n1×100%
变弱。
四、闭环控制的变压调速系统及其静特性
对于恒转矩性质的负载,要求调速范围大于D=2时,往 往采用带转速反馈的闭环控制系统。 图:带转速负反馈闭环控制的交流变压调速系统 (原理图;静特性)
20:59
对比: 异步电动机闭环变压调速系 统与直流动电机闭环变压调 速系统的不同

特性左右两边都有极限,不能无限延长, 它们是额定电压UsN下的机械特性和最 小输出电压Usmin下的机械特性。
m1 1 / n p
异步电动机 的机械特性 方程式
则异步电动机的电磁转矩为
Te
m1
Pm
相关文档
最新文档