广东省深圳市2015-2016学年七年级上期末数学试卷含答案解析

合集下载

广东省广州市荔湾区七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

广东省广州市荔湾区七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市荔湾区2015-2016学年七年级数学上学期期末考试试题一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.22.﹣6的绝对值等于()A.6 B.C.﹣D.﹣63.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式4.已知下列方程:其中一元一次方程有()①x﹣2=;②﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=16.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.88.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上D.延长直线AB9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,某某省某某市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.12.计算:﹣(﹣1)2=.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是.15.如图,C、D为线段AB上的任意两点,那么图中共有条线段.16.如图,射线OA表示的方向是.三、解答题:本题共7题,共62分.17.计算:(1)12+(﹣17)﹣(﹣23)(2).18.计算:(1)﹣72+2×(2)﹣14.19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.计算:(1)7(3﹣x)﹣5(x﹣3)=8(2).21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.2015-2016学年某某省某某市荔湾区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.﹣6的绝对值等于()A.6 B.C.﹣D.﹣6【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质解答即可.【解答】解:根据绝对值的性质,|﹣6|=6,故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.3.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式【考点】多项式.【分析】根据多项式的项和次数的概念解题即可.【解答】解:多项式3x2﹣xy2是三次四项式,故选D【点评】此题主要考查了多项式,此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.4.已知下列方程:其中一元一次方程有()①x﹣2=;②0.2x﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:①x﹣2=是分式方程;②0.2x﹣2=1是一元一次方程;③是一元一次方程;④x2﹣3x﹣4=0是一元二次方程;⑤2x=0是一元一次方程;⑥x﹣y=6是二元一次方程;故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=1【考点】解一元一次方程.【专题】计算题.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:3x+2﹣2x=4,解得:x=2,故选C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【考点】实数与数轴.【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.【点评】本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.8【考点】同解方程.【分析】先求出方程x=﹣5的解,然后把x的值代入方程2x﹣4=3m,求出m值.【解答】解:解方程x=﹣5得,x=﹣10,把x=﹣10代入方程2x﹣4=3m,得﹣20﹣4=3m,解得:m=﹣8,故选:B.【点评】本题考查了同解方程,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.8.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上D.延长直线AB【考点】相交线.【专题】存在型.【分析】分别根据直线的表示方法及直线的特点对四个选项进行逐一分析.【解答】解:A、因为直线可以用一个小写字母表示,所以说直线mn与直线ab是错误的,只能说直线a、直线b、直线m、直线n,故本选项错误;B、直线可用表示直线上两点的大写字母表示,而不能只用一个大写字母表示,故本选项错误;C、直线可用表示直线上两点的大写字母表示,故此说法正确,故本选项正确;D、由于直线向两方无限延伸,故本选项错误.故选C.【点评】本题考查的是直线的特点及表示方法,是一道较为简单的题目.9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】本题等量关系:利润=售价﹣进价.【解答】解:设这件衣服的进价为x元,则132×0.9=x+10%x解得:x=108故选D.【点评】注意售价有两种表示方式:标价×折数;进价+利润.10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】利用三棱柱及其表面展开图的特点解题.三棱柱上、下两底面都是三角形.【解答】解:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱.故选B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且都是三角形.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,某某省某某市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为 1.4×106元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 400 000=1.4×106,故答案为:1.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:﹣(﹣1)2= ﹣1 .【考点】有理数的乘方.【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣1)2=﹣1.故答案为:﹣1.【点评】本题考查了有理数的乘方的定义,是基础题,计算时要注意符号的处理.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).【考点】列代数式.【分析】首先根据题意可得这批图书共有ab册,它的一半就是册.【解答】解:由题意得:这批图书共有ab册,则图书的一半是:册.故答案为:.【点评】此题主要考查了列代数式,关键是弄清题目的意思,表示出这批图书的总数量,注意代数式的书写方法,除法要写成分数形式.14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是8 .【考点】一元一次方程的应用.【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于45求解即可.【解答】解:设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=45,解得x=15,∴x﹣7=8;x+7=22.故答案为8.【点评】考查一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.15.如图,C、D为线段AB上的任意两点,那么图中共有 6 条线段.【考点】直线、射线、线段.【分析】根据线段的特点即可得出结论.【解答】解:∵线段有两个端点,∴图中的线段有:线段AC,线段AD、线段AB、线段CD、线段CB、线段DB,共6条.故答案为:6.【点评】本题考查的是直线、射线和线段,熟知线段有两个端点是解答此题的关键.16.如图,射线OA表示的方向是北偏东60°.【考点】方向角.【分析】先求出∠AOC的度数,再由方向角的定义即可得出结论.【解答】解:∵∠AOB=30°,∴∠AOC=90°﹣30°=60°,∴射线OA表示的方向是北偏东60°.故答案为:北偏东60°.【点评】本题考查的是方向角,熟知方向角的定义是解答此题的关键.三、解答题:本题共7题,共62分.17.计算:(1)12+(﹣17)﹣(﹣23)(2).【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果.(2)根据乘法法则,可以得到结果.【解答】解:(1)原式=12﹣17+23=18,(2)原式=×××(﹣)=﹣4【点评】此题考查了有理数的加法,乘法运算,熟练掌握运算法则是解本题的关键.18.计算:(1)﹣72+2×(2)﹣14.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣49+18﹣54=﹣103+18=﹣85;(2)原式=﹣1﹣××11=﹣1﹣=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)【考点】合并同类项;去括号与添括号.【专题】计算题.【分析】(1)按照合并同类项的法则计算:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(2)先去括号,再按照合并同类项的法则计算即可.【解答】解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4=.0+ab﹣4=ab﹣4(2)原式=﹣x+4x﹣4﹣9x﹣15=﹣6x﹣19【点评】本题考查了合并同类项的法则以及去括号的法则,解题的关键是牢记法则,特别要注意去括号时的符号变化.20.计算:(1)7(3﹣x)﹣5(x﹣3)=8(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:21﹣7x﹣5x+15=8,移项合并得:﹣12x=﹣28,解得:x=;(2)去分母得:3(x﹣1)﹣2(2x+1)=12,去括号得:3x﹣3﹣4x﹣2=12,移项合并得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.【考点】两点间的距离.【专题】计算题.【分析】根据线段的中点的概念,得AB=BC==4cm,CD==2cm,再由AD=AC﹣CD求解即可.【解答】解:因为AC=8cm,B是线段AC的中点,D是线段BC的中点,所以AB=BC==4cm所以CD==2cm所以AD=AC﹣CD=8﹣2=6cm.答:线段AD的长为6cm.【点评】本题考查两点间距离,属于基础题,关键是结合图形掌握线段的中点的概念.22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?【考点】一元一次方程的应用.【专题】方程思想.【分析】由已知设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据已知分别表示出去时和原路返回的时间,由原路返回比去时多用了12分钟列出方程求解.【解答】解:设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据题意得:+﹣(+)=,解得:x=42,则2x﹣14=2×42﹣14=70,答:去时上、下坡路程各为42千米、70千米.【点评】此题考查的知识点是一元一次方程的应用,解题的关键设去时上坡路为x千米,表示出下坡路,再根据原路返回比去时多用了12分钟列出方程求解.23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=150°或30°;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.【考点】角的计算;角平分线的定义.【分析】(1)画出符合条件的两种情况,①当射线OC在∠AOB内部时,②当射线OC在∠AOB 外部时,分别求出即可;(2)画出符合条件的两种情况,①当射线OC在∠AOB内部,②当射线OC在∠AOB外部,求出即可;(3)画出符合条件的两种情况,求出∠COD和∠COE的度数,即可求出答案.【解答】解:(1)分为两种情况::①如图1,当射线OC在∠AOB内部时,∠COB=∠AOB﹣∠AOC=90°﹣60°=30°;②如图2,当射线OC在∠AOB外部时,∠COB=∠AOB+∠AOC=90°+60°=150°;(2)在图3中,∵∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC,∴∠DOC=∠BOC=×30°=15°,∠COE=∠AOC=×60°=30°,∴∠DOE=∠COD+∠COE=15°+30°=45°;在图4中,∵∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC,∴∠DOC=∠BOC=×(90°+60°)=75°,∠COE=∠AOC=×60°=30°,∴∠DOE=∠COD﹣∠COE=75°﹣30°=45°;(3)能求出∠DOE的度数.①当OC在∠AOB内部时,如图3,∵∠AOB=90°,∠AOC=2α°,∴∠BOC=∠AOB﹣∠AOC=90°﹣2α°,∵OD、OE分别平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°﹣α°,∠COE=∠AOC=α°,∴∠DOE=∠DOC+∠COE=(45°﹣α°)+α°=45°;②当OC在∠AOB外部时,如图4,∵∠AOB=90,∠AOC=2α°,∴∠BOC=∠AOB+∠AOC=90°+2α°,∵OD、OE分别平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α°,∠COE=∠AOC=α°,∴∠DOE=∠DOC﹣∠COE=(45°+α°)﹣α°=45°;综合上述,∠DOE=45°.故答案为:150°或30°;45°.【点评】本题考查了角的有关计算的应用,主要考查学生的计算能力,注意一定要进行分类讨论.。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

2016年广东省深圳市龙岭中学七年级上学期数学期中试卷带解析答案

2016年广东省深圳市龙岭中学七年级上学期数学期中试卷带解析答案

2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣22.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×1073.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣28.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有(写出所有正确结果的序号)10.(3分)绝对值不大于3的所有整数的积等于.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有个.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣2【解答】解:﹣||=﹣,﹣的相反数为,故选:B.2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×107【解答】解:将28.3亿用科学记数法表示为2.83×109.故选:B.3.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个【解答】解:①正确;②2和﹣2的绝对值相等,则数轴上表示数2和﹣2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选:D.4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.【解答】解:由展开图可知:A、B、C能围成正方体,不符合题意;D、围成几何体时,有两个面重合,故不能围成正方体,符合题意.故选:D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式【解答】解:A、单项式y的次数是1,系数是1,故选项错误;B、多项式中x2的系数是﹣,故选项正确;C、多项式t﹣5的项是t和﹣5,故选项错误;D、是二次二项式,故选项错误.故选:B.6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个【解答】解:(﹣a)2=a2,正确;(﹣a)2=a2,﹣a2≠a2,故错误;(﹣a)3=﹣a3,﹣a3≠a3,故错误;|﹣a3|≥,当a<0时,a3<0,故错误.∴其中正确的有1个.故选:A.7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣2【解答】解:由题意可得(﹣1)2﹣(﹣2)﹣1=1+2﹣1=2.故选:B.8.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b【解答】解:根据数轴上点的位置得:a<0<b,∴a﹣b<0,则原式=b﹣a+b﹣a=﹣2a+2b,故选:B.二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有①②④(写出所有正确结果的序号)【解答】解:①正方体能截出三角形;②圆锥沿着母线截几何体可以截出三角形;③圆柱不能截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①②④.10.(3分)绝对值不大于3的所有整数的积等于0.【解答】解:绝对值不大于3的所有整数有:0,±1,±2,±3,∴它们的积为0.故答案为0.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=8.【解答】解:∵若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,∴m﹣1=3,n﹣3=1,∴m=4,n=4,∴m+n=8,故答案为:8.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是15.【解答】解:依题意,圆柱体的周长为2﹣(﹣1)=3,高=5,∴圆柱体的侧面积=底面周长×高=3×5=15.故答案为:15.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有5个.【解答】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有2列,由主视图可得此图形可得最高的有两个立方体组成,故构成这个立体图形的小正方体有5个.故答案为:5.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是9月11日2时.【解答】解:根据题意得:15﹣13=2,则现在纽约时间是9月11日2时,故答案为:9月11日2时15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是1.【解答】解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1,故答案为:1.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.【解答】解:观察一系列等式得:第n个数为(﹣1)n+1•,当n=7时,(﹣1)7+1•=,故答案为:.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.【解答】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).【解答】解:(1)原式=﹣9+1+1+=﹣;(2)原式=﹣8﹣36+18+10﹣30=﹣46.19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.【解答】解:(1)原式=﹣a2+a﹣2﹣a+2﹣1=﹣a2﹣1;(2)原式=﹣a2b+9ab2﹣3a2b﹣4ab2+2a2b=﹣2a2b+5ab2,由|a﹣1|+(b+2)2=0,得到a=1,b=﹣2,则原式=4+20=24.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.【解答】解:(1)10月3日人数最多;10月7日人数最少;它们相差:(1.6+0.8+0.4)﹣(1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2)=2.2万人;(2)3.6+4.4+4.8+4.4+3.6+3.8+2.6=27.2(万人).答:这7天的游客总人数是27.2万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?【解答】(1)当≤3时,应收车费为8元;当>3时,应收车费为8+1.5(x﹣3)=(1.5x+3.5)元;(2)当x=8时,1.5x+3.5=15.5元.22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.【解答】解:拔河绳看作数轴,标志物开始在原点,甲在正方向,乙在负方向,标志物最后表示的数=0.5﹣0.8﹣0.5+1.5+1.2=1.9,即标志物向甲移了1.9m<2m,由此判断甲没获胜.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.【解答】解:(1)3+4+5+9+10+11+15+16+17=90,90=10×9,则方框框出的9个数的和是方框正中间的数10的9倍.(2)中间的数为a,则有其他的数的数值如下表:(a﹣7)+(a﹣1)+(a+5)+(a﹣6)+a+(a+6)+(a﹣5)+(a+1)+(a+7)=9a,故九个数的和为9a.(3)不能,理由如下:∵9个数的和为270∴中间的数为30∵30在第5行、第6列,在边上,∴无法框出这样的9个数.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

的价格如图所
17.(6 分)计算:
1 2 2
1
4 x2 1

x 1
2 x

1.
3 (
2014 1) 2 tan 60
0
28 . 18.(6 分)解方程:
19.(7 分)为积极响应南山区“我的中国梦”征文活动,我校在八,九年级开展征文活动,校学生会对这两个 年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图. (1)求扇形统计图中投稿篇数为 2 所对应的扇形的圆心角的度数: (2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3)在投稿篇数为 9 篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市 的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
A. 2a + 3b = 5ab
B.3x 2 y - 2x 2 y = 1
C. (2a 2 )3 = 6a 6


D.5x ÷ x = 5x
5.纳米是非常小的长度单位,1 纳米=109 米. 某种病菌的长度约为 50 纳米,用科学3 记数2法表示该病菌的长
度,结果正确的是


A. 51010 米
23.(9 分)如图,在平面直角坐标系 xOy 中,抛物线 y=ax2+bx+3 的顶点为 M(2,-1),交 x 轴于 A、B 两
点,交 y 轴于点 C,其中点 B 的坐标为(3,0).
(1)求该抛物线的解析式; (2)设经过点 C 的直线与该抛物线的另一个交点为 D,且直线 CD 和直线 CA 关于直线 BC 对称,求直线 CD
的解析式;
(3)点 E 为线段 BC 上的动点

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

深圳市高级中学2015-2016学年第一学期期中测试高一数学命题人:程正科 审题人:范铯本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为1-12题,共60分;第Ⅱ卷为13-22题,共90分。

全卷共计150分。

考试时间为120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡相应的位置。

2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再涂其它答案。

全部答案在答题卡上完成,答在本试题上无效。

3、考试结束,监考人员将答题卡按座位号、页码顺序收回。

第Ⅰ卷(本卷共60分)一.选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}|24x A x =≤,集合{}|lg(1)B x y x ==-,则AB 等于( ) (A )(1,2) (B ) (1,2] (C ) [1,2)(D )[1,2]2.函数()()2log 31xf x =-的定义域为( )(A )[)1,+∞ (B )()1,+∞ (C )[)0,+∞ (D ) ()0,+∞ 3.已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x,则))91((f f =( ) (A )12 (B )14 (C )16 (D )184.已知f (x )=(a -1)x 2+3ax +7为偶函数,则f (x )在区间(-5,7)上为 ( )(A )先递增再递减 (B )先递减再递增 (C )增函数 (D ) 减函数5.三个数a =0.42,b =log 20.4,c =20.4之间的大小关系是( )(A )a c b << (B )a b c << (C )b a c << (D )b c a <<6.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,得数据如下:(789( ) (A )12(B )12-(C )2 (D )2-10.函数()f x 是R 上的偶函数,在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是 ()(A )(0,1)(,)e +∞ (B )1(0,)(1,)e -+∞ (C )1(,1)e - (D ) 1(,)e e -11.已知函数53()28f x ax bx x =++-且10)2(=-f ,那么=)2(f ( )(A )26- (B )26 (C )10- (D )10 12.已知函数2()2f x x x =-,()2(0)g x ax a =+>,且对任意的1[1,2]x ∈-,都存在2[1,2]x ∈-,使21()()f xg x =,则实数a 的取值范围是( )(A )[3,+∞) (B )(0,3] (C )⎣⎡⎦⎤12,3 (D )⎝⎛⎦⎤0,12第Ⅱ卷(本卷共计90分)二.填空题:本大题共四小题,每小题5分。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

2020_2021学年南山区七年级(上)期末数学试卷

2020_2021学年南山区七年级(上)期末数学试卷

2014-2015学年广东省深圳市南山区七年级(上)期末数学试卷一.选择题:(本题共12小题,每小题3分,共36分..在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)|﹣3|的相反数的倒数是()A.﹣3 B.﹣C.3 D.2.(3分)下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.(3分)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.(3分)下列运算中,正确的是()A.×(﹣7)+(﹣)×7=1 B.(﹣)2=C.2a+3b=5ab D.3a2b﹣4ba2=﹣a2b5.(3分)下面几何体的截面图可能是圆的是()A.正方体B.棱柱 C.圆锥 D.三棱锥6.(3分)如图几何体的展开图形最有可能是()A.B.C.D.7.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg8.(3分)登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是()℃.A.﹣50 B.﹣42 C.﹣40 D.﹣329.(3分)下列说法错误的是()A.过两点有且只有一条直线B.直线AB和直线BA表示同一条直线C.两点之间,线段最短D.AB=BC,则点B是线段AC的中点10.(3分)如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,∠COE=()°.A.60 B.70 C.90 D.不能确定11.(3分)已知|a|=4,b2=9且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±712.(3分)下列说法中:①若mx=my,则x=y;②若x=y,则mx=my;③若|a|=﹣a,则a<0;④若﹣ab2m与2a n b6是同类项,则mn=3;⑤若a、b互为相反数,那么a、b的商必等于﹣1;⑥若关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含有二次项,则k=3,其中说法正确数有()个.A.3 B.4 C.5 D.6二.填空题:(本题共4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)时钟表面5点时,时针与分针所夹角的度数为.14.(3分)已知2y2+3y的值是6,则y2+﹣的值是.15.(3分)已知A、B、C三点在同一条直线上,且AB=10,BC=4,点O为线段AC的中点,则线段OB的长度是.16.(3分)某车间有100名工人,每人平均每天可加工螺栓18个或螺母24个,要使每天加工的螺栓和螺母配套(一个螺栓配两个螺母),应分配加工螺栓和螺母工人各人.三.解答题:(本题共7小题,共52分)17.(12分)计算与化简:(1)﹣36×();(2)﹣12008÷(﹣5)2×(﹣)+18.(6分)(1)解方程:﹣1=;|0.8﹣1|;(3)化简求值:2x2﹣3(﹣x2+xy﹣y2)﹣3x2,其中x=2,y=﹣1;(4)已知有理数a,b,c 在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|.(2)设k为整数,方程kx=8﹣x的解为自然数,求k的值.19.(6分)为了了解南山区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)本次共调查的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=;(3)表示“足球”的扇形的圆心角是度;(4)若南山区初中学生共有60000人,则喜欢乒乓球的有多少人?20.(6分)如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21.(6分)从2开始的连续偶数相加,它们和的情况如下表:加数的个数(n)和(S)1 2=1×22 2+4=6=2×33 2+4+6=12=3×44 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6……(1)请猜想:2+4+6+…+200=;(2)请猜想:2+4+6+…+2n;(3)计算:40+42+44+ (402)22.(6分)某单位在2015年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为4000元/人,两家旅行社同时都对12人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)若设参加旅游的员工共有a(a>12)人,当旅游人数达到多少时两家收费一样?(2)如果计划在2月份外出旅游七天,假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)23.(10分)如图,数轴原点为O,A、B是数轴上的两点,点A对应的数是1,点B对应的数是﹣4,动点P、Q同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t秒(t>0).(1)AB两点间的距离是;动点P对应的数是;(用含t的代数式表示)动点Q对应的数是;(用含t的代数式表示)(2)几秒后,点O恰好为线段PQ中点?(3)几秒后,恰好有OP:OQ=1:2?2014-2015学年广东省深圳市南山区七年级(上)期末数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题3分,共36分..在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)(2014秋•深圳期末)|﹣3|的相反数的倒数是()A.﹣3 B.﹣C.3 D.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:|﹣3|=3,3的相反数是﹣3,﹣3的倒数是﹣,故选:B.【点评】本题考查了倒数,先求绝对值,再求相反数,最后求倒数.2.(3分)(2015秋•郓城县期末)下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解电视机的使用寿命,采用抽样调查,故A错误;B、为了了解全国中学生的视力状况,采用抽样调查,故B错误;C、对载人航天器“神舟六号”零部件的检查,采用普查的方式,故C错误;D、为了了解人们保护水资源的意识,采用抽样调查的方式,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)(2013•内江)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将11500000000用科学记数法表示为:1.15×1010.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014秋•深圳期末)下列运算中,正确的是()A.×(﹣7)+(﹣)×7=1 B.(﹣)2=C.2a+3b=5ab D.3a2b﹣4ba2=﹣a2b【分析】根据有理数的运算,可判断A、B;根据合并同类项,可判断C、D.【解答】解:A、×(﹣7)+(﹣)×7=﹣1+(﹣1)=﹣2,故A错误;B、(﹣)2=,故B错误;C、不是同类项的不能合并,故C错误;D、合并同类项系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项系数相加字母部分不变.5.(3分)(2014秋•深圳期末)下面几何体的截面图可能是圆的是()A.正方体B.棱柱 C.圆锥 D.三棱锥【分析】根据正方体、棱柱、圆锥、三棱锥的形状分析即可.【解答】解:正方体、棱柱、三棱锥的截面都不可能有弧度,所以截面不可能是圆,而圆锥只要截面与底面平行,截得的就是圆.故选:C.【点评】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.6.(3分)(2014秋•深圳期末)如图几何体的展开图形最有可能是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题,注意带图案的三个面有一个公共顶点.【解答】解:选项A能折叠成原正方体的形式,而选项A带图案的三个面没有一个公共顶点,不能折叠成原正方体的形式;选项B折叠后带圆圈的面在右面时,带三角形的面在上面与原正方体中的位置不同,选项D中带图案的三个面位置相同,但图案对应的方向不同.故选C.【点评】本题主要考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.7.(3分)(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.(3分)(2014秋•深圳期末)登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是()℃.A.﹣50 B.﹣42 C.﹣40 D.﹣32【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣20﹣(5000﹣3000)÷1000×6=﹣20﹣12=﹣32(℃),故选D【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.9.(3分)(2014秋•深圳期末)下列说法错误的是()A.过两点有且只有一条直线B.直线AB和直线BA表示同一条直线C.两点之间,线段最短D.AB=BC,则点B是线段AC的中点【分析】根据直线的性质可得A正确;根据直线的表示方法可得B正确;根据线段的性质可得C正确;根据线段中点的定义可得D错误.【解答】解:A、过两点有且只有一条直线,说法正确;B、直线AB和直线BA表示同一条直线,说法正确;C、两点之间,线段最短,说法正确;D、AB=BC,则点B是线段AC的中点,说法错误,应为AB=BC=AC,则点B是线段AC的中点;故选:D.【点评】此题主要考查了直线和线段,关键是掌握线段中点的表示方法.10.(3分)(2014秋•深圳期末)如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,∠COE=()°.A.60 B.70 C.90 D.不能确定【分析】根据角平分线定义得出∠BOC=∠AOB,∠BOE=∠BOD,根据∠AOD=∠AOB+∠BOD=180°,求出∠BOC+∠BOE=90°,即可得出答案.【解答】解:∵射线OC、OE分别是∠AOB、∠BOD的平分线,∴∠BOC=∠AOB,∠BOE=∠BOD,∵∠AOD=∠AOB+∠BOD=180°,∴(∠AOB+∠BOD)=90°,即∠BOC+∠BOE=90°,∴∠COE=90°.故选C.【点评】本题考查了角的平分线定义的应用,主要考查学生的计算能力.11.(3分)(2014秋•深圳期末)已知|a|=4,b2=9且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7【分析】根据绝对值的性质和有理数的乘方求出a、b,然后判断出a、b的对应情况,再代入代数式计算即可得解.【解答】解:∵|a|=4,b2=9,∴a=±4,b=±3,∵|a+b|≠a+b,∴a+b<0,∴a=﹣4,b=±3,∴a﹣b=﹣4﹣3=﹣7,或a﹣b=﹣4﹣(﹣3)=﹣4+3=﹣1,综上所述,a﹣b=﹣1或﹣7.故选C.【点评】本题考查了代数式求值,主要利用了绝对值的性质,有理数的乘方,熟记性质并确定出a、b的值是解题的关键.12.(3分)(2014秋•深圳期末)下列说法中:①若mx=my,则x=y;②若x=y,则mx=my;③若|a|=﹣a,则a<0;④若﹣ab2m与2a n b6是同类项,则mn=3;⑤若a、b互为相反数,那么a、b的商必等于﹣1;⑥若关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含有二次项,则k=3,其中说法正确数有()个.A.3 B.4 C.5 D.6【分析】根据等式的性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立,可得答案.【解答】解:①若mx=my,m=0时,两边除以0无意义,故①错误;②若x=y,两边都乘以m,得mx=my,故②正确;③若|a|=﹣a,则a≤0,故③错误;④若﹣ab2m与2a n b6是同类项,n=1,m=3,得mn=3,故④正确;⑤若a、b互为相反数,a=b=0时,故⑤错误;⑥若关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含有二次项,﹣3k+9=0,得k=3,故⑥正确;故选:A.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.二.填空题:(本题共4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)(2014秋•深圳期末)时钟表面5点时,时针与分针所夹角的度数为150°.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:钟面每份是30°,5点时,时针与分针所夹角的度数为30°×5=150°,故答案为:150°.【点评】本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.14.(3分)(2014秋•深圳期末)已知2y2+3y的值是6,则y2+﹣的值是.【分析】根据已知条件求出y2+y,然后代入代数式计算即可得解.【解答】解:∵2y2+3y的值是6,∴y2+y=3,∴y2+y﹣=3﹣=.故答案为:.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.15.(3分)(2014秋•深圳期末)已知A、B、C三点在同一条直线上,且AB=10,BC=4,点O为线段AC的中点,则线段OB的长度是7或3.【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AO的长,再根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=10﹣4=6,由点O为线段AC的中点,得AO=AC=×6=3,由线段的和差,得BO=AB﹣AO=10﹣3=7;当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=10+4=14,由点O为线段AC的中点,得AO=AC=×14=7,由线段的和差,得BO=AB﹣AO=10﹣7=3;故答案为:7或3.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.16.(3分)(2014秋•深圳期末)某车间有100名工人,每人平均每天可加工螺栓18个或螺母24个,要使每天加工的螺栓和螺母配套(一个螺栓配两个螺母),应分配加工螺栓和螺母工人各40、60人.【分析】先设分配x人加工螺栓,则分配(100﹣x)人加工螺母,根据加工的螺母数是螺栓数的2倍建立方程求出其解即可.【解答】解:设分配x人加工螺栓,则分配(100﹣x)人加工螺母,由题意,得2×18x=24(100﹣x),解得:x=40,则加工螺母的人数为:100﹣40=60(人).即:分配40人加工螺栓,分配60人加工螺母.故答案是:40、60.【点评】本题考查了一元一次方程的运用,解答时根据加工的螺母数是螺栓数的2倍建立方程是关键.三.解答题:(本题共7小题,共52分)17.(12分)(2014秋•深圳期末)计算与化简:(1)﹣36×();(2)﹣12008÷(﹣5)2×(﹣)+|0.8﹣1|;(3)化简求值:2x2﹣3(﹣x2+xy﹣y2)﹣3x2,其中x=2,y=﹣1;(4)已知有理数a,b,c 在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(4)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=﹣9+20﹣3=8;(2)原式=1÷25×+=;(3)原式=2x2+x2﹣2xy+3y2﹣3x2=﹣2xy+3y2,当x=2,y=﹣1时,原式=4+3=7;(4)根据数轴上点的位置得:c<b<0<a,∴b﹣c>0,b﹣a<0,c+a<0,则原式=b﹣c+2b﹣2a﹣a﹣c=﹣3a+3b﹣2c.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)(2014秋•深圳期末)(1)解方程:﹣1=;(2)设k为整数,方程kx=8﹣x的解为自然数,求k的值.【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,求出解即可;(2)表示出方程的解,根据方程解为自然数,k为整数,求出k的值即可.【解答】解:(1)方程整理得:5x﹣1=,去分母得:15x﹣3=20x﹣8,移项合并得:5x=5,解得:x=1;(2)方程变形得:(k+1)x=8,当k≠﹣1时,x=,由x为自然数,得到k=0,1,3,7.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.19.(6分)(2014秋•深圳期末)为了了解南山区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)本次共调查的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中m=10,n=20;(3)表示“足球”的扇形的圆心角是72度;(4)若南山区初中学生共有60000人,则喜欢乒乓球的有多少人?【分析】(1)根据喜欢篮球的有12人,所占的百分比是30%,据此即可求得总人数,然后利用总人数减去其它组的人数求得喜欢足球的人数,进而作出直方图;(2)根据百分比的意义即可求解;(3)利用360°乘以对应的百分比即可求解;(4)利用总人数乘以对应的百分比即可求解.【解答】解:(1)调查的总人数是:12÷30%=40(人),则喜欢足球的人数是:40﹣4﹣12﹣16=8(人)..故答案是:40;(2)喜欢排球的所占的百分比是:×100%=10%,则m=10;喜欢足球的所占的百分比是:×100%=20%,则n=20.故答案是:10,20;(3)“足球”的扇形的圆心角是:360°×20%=72°,故答案是:72;(4)南山区初中学生喜欢乒乓球的有60000×40%=24000(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(6分)(2015秋•丹东期末)如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.【分析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为1,3,2,依此画出图形即可.【解答】解:如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.(6分)(2014秋•深圳期末)从2开始的连续偶数相加,它们和的情况如下表:加数的个数(n)和(S)1 2=1×22 2+4=6=2×33 2+4+6=12=3×44 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6……(1)请猜想:2+4+6+…+200=10100;(2)请猜想:2+4+6+…+2n n(n+1);(3)计算:40+42+44+ (402)【分析】(1)(2)首先确定有几个加数,由上述可得规律:加数的个数为最后一个加数÷2,据此解答;(3)把40+42+44+…+402变形为2+4+6+8+…+402﹣(2+4+6+8+…+38),再进一步利用(2)规律计算即可.【解答】解:(1)2+4+6+…+200=100×(100+1)=10100;(2)2+4+6+…+2n=n(n+1);(3)40+42+44+…+402=2+4+6+8+...+402﹣(2+4+6+8+ (38)=201×202﹣19×20=40602﹣380=40222.【点评】此题考查数字的变化规律,学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.22.(6分)(2014秋•深圳期末)某单位在2015年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为4000元/人,两家旅行社同时都对12人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)若设参加旅游的员工共有a(a>12)人,当旅游人数达到多少时两家收费一样?(2)如果计划在2月份外出旅游七天,假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)【分析】(1)根据甲旅行社对每位员工七五折优惠,乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠,列出方程,解方程即可求解.(2)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)甲旅行社的费用为:4000×75%a=3000a(元),乙旅行社的费用为3200(a﹣1)元;依题意有3000a=3200(a﹣1),解得a=16.故当旅游人数达到16人时两家收费一样;(2)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3,∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27(不合题意舍去);故他们可能于2月6号或15号出发.【点评】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.23.(10分)(2014秋•深圳期末)如图,数轴原点为O,A、B是数轴上的两点,点A对应的数是1,点B对应的数是﹣4,动点P、Q同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t秒(t>0).(1)AB两点间的距离是5;动点P对应的数是1+t;(用含t的代数式表示)动点Q对应的数是﹣4+3t;(用含t的代数式表示)(2)几秒后,点O恰好为线段PQ中点?(3)几秒后,恰好有OP:OQ=1:2?【分析】(1)根据数轴上两点间的距离等于两点所表示的数的差的绝对值求出AB,然后根据路程=速度×时间计算即可得解;(2)根据点O恰好为线段PQ中点列方程求出t,再求解即可;(3)分P、Q在原点的两边和P、Q在原点的一边两种情况讨论求解.【解答】解:(1)AB两点间的距离是1﹣(﹣4)=5;动点P对应的数是1+t;(用含t的代数式表示)动点Q对应的数是﹣4+3t;(用含t的代数式表示)故答案为:5,1+t,﹣4+3t;(2)设t秒后,点O恰好为线段PQ中点,依题意有1+t+(﹣4+3t)=0,解得t=.故秒后,点O恰好为线段PQ中点;(3)P、Q在原点的两边,2(1+t)+(﹣4+3t)=0,解得t=.P、Q在原点的一边,2(1+t)=(﹣4+3t),解得t=6.故或6秒后,恰好有OP:OQ=1:2.【点评】本题考查了一元一次方程的应用,数轴,主要利用了数轴上两点间的距离的求解,难点在于(3)要分情况讨论.参与本试卷答题和审题的老师有:2300680618;caicl;HLing;wdxwwzy;feng;郝老师;sks;sd2011;HJJ;星期八;dbz1018;zhjh;73zzx(排名不分先后)菁优网2016年12月13日。

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷、选择题(每小题 3分,共36分)A . 1B. 2C. 3D. 42. (3分)下列长度的线段不能构成直角三角形的是( )A . 8, 15, 17 B. 1.5, 2, 3C. 6, 8, 10 D . 5, 12, 13 3. (3分)如图,笑脸盖住的点的坐标可能为()A . (5, 2)B . (3, -4) C. (- 4, - 6) D. (- 1 , 3)4. (3分)点M (2, 1)关于x 轴对称的点的坐标是( )A. (1, - 2)B. (- 2, 1)C. (2, - 1)D.( - 1, 2)5. (3分)下列各式中,正确的是( )A . VT&=- 4 B. ±VT^=4 C .为 _ 事=-3 D . J (一 4)~~= - 4 A.中位数 B.平均数 C.众数 D.加权平均数10. (3分)2016年龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来, 同时小丽也往回走,遇到妈妈后聊了 一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为 t,小丽与体育馆的距离为S,下面能反映S 与t 的函数关系的大致图象是()勇扼,°・3中无理数的个数是(6. A.7. I k l(3分)右函数 y= (k - 1) xk= 土 1, b= - 1 B. k= 土 1, b=0 ((3 分)在 Rt△ ABC 中,Z C=90 °,D W4+b+1是正比例函数,贝U k 和b 的值为() 36T(3分)下列命题中,不成立的是( A.两直线平行,同旁内角互补 B .同位角相等,两直线平行C. 一个三角形中至少有一个角不大于D. 三角形的一个外角大于任何一个内角 A. B. 12 25C. 8.60度么最终买什么水果,下面的调查数据中最值得关注的是(班长对全班学生爱吃哪几种水果作了民意调查.)A.1.(3分)数学11. (3分)如图,/ X 的两条边被一直线所截,用含 a 和6的式子表示/ X 为(A . a _ 3 B. 3- a C. 180 - a+ 3D. 180 - a~ 312. (3分)如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )、填空题(每小题 3分,共12分)13. (3分)16的平方根是.14. (3分)数据3, 4, 6, 8, x, 7的众数是7,贝U 数据4, 3, 6, 8, 2, x 的中位数是 15. (3分)观察下列各式: 日—V2+1你发现的规律计算:(1 .1.1. - 1 (++ _+,, + ______ _________2+V?妮+2 V2016 +V201516. (3分)如图,在矩形 ABCD 中,AB=3 , BC=4,现将点A 、C 重合,使纸片折叠压平,折痕为EF,那么重叠部分三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) _.1'木历’志=2柄..请利用A . 3B . V10C . ^2D . 2龙△ AEF 的面积=17.(5分)计算:遍- |昨商-40"鹿.19. (7分)每年9月举行 全国中学生数学联赛”,成绩优异的选手可参加 全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入 国家集训队”.第31界冬令营已于2015年12 月在江西省鹰谭一中成功举行.现将脱颖而出的 50名选手分成两组进行竞赛,每组 25人,成绩整理并绘制成如下的统计图:18. (6分)解方程组:Q 5x+0.7y=35 jc+O. 4y=40二铝(1)请你将表格补充完整:平均数一组74二组 —中位数 众数 方差104 72(2)从本次统计数据来看, 组比较稳定.请你根据以上提供的信息解答下列问题:20.(8分)已知:如图,/ C= / 1 ,』2和』D互余,BE ± FD于点G.求证:AB // CD.21.(8分)双十一”当天,某淘宝网店做出优惠活动,按原价应付额不超过200元的一律9折优惠,超过200元的,其中200元按9折算,超过200元的部分按8折算.设某买家在该店购物按原价应付x元,优惠后实付y元.(1)当x> 200时,试写出y与x之间的函数关系式(如果是一次函数,请写成y=kx+b的形式);(2)该买家挑选的商品按原价应付300元,求优惠后实付多少元?22.(9分)如图,11反映了甲离开A地的时间与离A地的距离的关系12反映了乙离开A地的时间与离开A地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地千米;(2)当时间为时,甲、乙两人离A地距离相等;(3)图中P点的坐标是;(4) 11对应的函数表达式是:S1=;(5)当t=2时,甲离A地的距离是千米;(6)当S=28时,乙离开A地的时间是时.23.(9分)如图,在直角坐标系中,矩形OABC的顶点。

2015-2016学年七年级(上)第一次月考数学试卷

2015-2016学年七年级(上)第一次月考数学试卷

2015-2016学年七年级(上)第一次月考数学试卷一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=14.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=05.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×1037.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±110.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作12.将数据0.235精确到百分位为.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?.14.在有理数中,绝对值等于它本身的数有:;相反数等于其本身的有;倒数等于其本身的有:.(填哪些数)15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式,底数是,指数是.16.计算:4﹣32=,6÷(﹣3)=,(﹣3×2)2=.17.若|x﹣6|+|y+5|=0,则x﹣y=.1)﹣|﹣3|的相反数是,(2)|3.14﹣π|=.(3)比较﹣和﹣的大小:﹣﹣.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?2015-2016学年七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数考点:有理数.分析:利用正数、负数的定义与性质,以及整数的概念与分类(正整数,0,负整数)即可解答.解答:解:①没有最小的正数,也没有最大的正数,因此选项错误;②没有最小的负数,也没有最大的负数,因此选项错误;③整数包括正整数和负整数,没有最小的整数,因此选项错误;④最小的正整数是1,因此选项正确.故选D.点评:此题考查正数、负数的定义,整数的概念与分类(正整数,0,负整数),运用概念和性质是解决这类问题的关键.2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个考点:有理数的乘方.分析:根据相反数、绝对值的定义,乘方的运算法则先化简各数,再根据负数的定义求解.解答:解:∵﹣(﹣5)=5,﹣(﹣5)2=﹣25,﹣|﹣5|=﹣5,(﹣5)3=﹣125,∴﹣(﹣5)2,﹣|﹣5|,(﹣5)3都是负数,共3个.故选A.点评:此题关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、立方、绝对值,正负号的变化等知识点.3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=1考点:有理数的乘方.专题:计算题.分析:原式各项利用乘方的意义计算得到结果,即可做出判断.解答:解:A、原式=﹣4,正确;B、原式=﹣4,错误;C、原式=9,错误;D、原式=﹣1,错误,故选A点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.4.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=0考点:绝对值.分析:根据绝对值的性质选择.解答:解:根据绝对值性质可知,若|a|=|b|,则a与b相等或互为相反数,即a+b=0或a﹣b=0.故选C.点评:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个考点:相反数.分析:根据相反数的定义和性质回答即可.解答:解:①0的相反数是0,故①错误;②0的相反数是0,故②错误;③正确;④只有符号不同的两个数互为相反数,故④错误.故选:A.点评:本题主要考查的是相反数的定义和性质,掌握相反数的定义和性质是解题的关键.6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×103考点:科学记数法与有效数字.专题:应用题.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数它的有效数字的个数只与a有关,而与n的大小无关.解答:解:用四舍五入法保留两个有效数字得11 377的近似值为11 000,其精确到千位,用科学记数法表示为1.1×104.故选A.点评:本题旨在考查基本概念,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.7.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大考点:有理数的乘法;有理数的加法.分析:此题根据有理数的加法和乘法法则解答.解答:解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选A.点评:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据正数大于,可得答案.解答:解:如果一个数的相反数比它本身大,那么这个数为负数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,相反数大于它本身,相反数是正数,原数是负数.9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±1考点:绝对值;有理数的加法.分析:根据绝对值相等的数有两个,可得这两个数,再根据有理数的加法可求出和,再由绝对值的意义,可得和的绝对值.解答:解:|x|=4,|y|=5,x=±4,y=±5,当x=﹣4,y=﹣5时,|x+y|=9当x=﹣4,y=5时,|x+y|=1,当x=4,y=﹣5时,|x+y|=1,当x=4,y=5时,|x+y|=9,故选:C.点评:题考查了绝对值,先有绝对值求出相反数,再求出和的绝对值,注意要分分类讨论,不能漏掉.10.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b考点:两点间的距离.专题:数形结合.分析:根据AB两点之间的距离即为0到B的距离与0到A的距离之和,由数轴可知a<0,b>0,得出AB的距离为b﹣a.解答:解:∵A、B两点所对的数分别为a、b,∵a<0,b>0,∴AB之间的距离为b﹣a,故选C.点评:本题考查了两点之间的距离,图形结合,判断出a、b的符号,难度适中.二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作+60°考点:正数和负数.专题:规律型.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:由题意知顺时针旋转记作负数,那么逆时针旋转就记作正数,∴逆时针方向旋转60°记作+60°.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.将数据0.235精确到百分位为0.24.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:0.235≈0.24,故答案为:0.24.点评:本题主要考查了近似数和有效数字,近似数与精确数的接近程度,可以用精确度表示,精确到哪一位,对它后边的一位进行四舍五入是解答此题的关键.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?气温下降30℃.考点:正数和负数.分析:根据有理数乘法的意义列出算式即可求解.解答:解:﹣6×5=﹣30(℃).故气温下降30℃故答案为:气温下降30℃.点评:考查了正数和负数和有理数乘法,解题的关键是根据题意列出算式.14.在有理数中,绝对值等于它本身的数有:正数和0;相反数等于其本身的有0;倒数等于其本身的有:±1.(填哪些数)考点:倒数;相反数;绝对值.分析:根据绝对值的性质,倒数和相反数的定义回答即可.解答:解:绝对值等于它本身的数有正数和零;相反数等于其本身的数是0;倒数等于其本身的数是±1.故答案为:正数和0;0;±1.点评:本题主要考查的是绝对值的性质,倒数和相反数的定义,掌握绝对值的性质,倒数和相反数的定义是解题的关键.15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.考点:有理数的乘方.专题:计算题.分析:原式利用乘方的意义化简,计算即可得到结果.解答:解:把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.故答案为:(﹣)4;﹣;4点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.16.计算:4﹣32=﹣5,6÷(﹣3)=﹣2,(﹣3×2)2=36.考点:有理数的除法;有理数的乘方.分析:先算乘方,再算乘除,最后算加减,有括号应该先算括号里面,然后运算顺序计算即可.解答:解:4﹣32=4﹣9=﹣5;6÷(﹣3)=﹣(6÷3)=﹣2;(﹣3×2)2=(﹣6)2=36.故答案为:﹣5;﹣2;36.点评:本题主要考查的是有理数的计算,掌握有理数的运算法则和运算顺序是解题的关键.17.若|x﹣6|+|y+5|=0,则x﹣y=11.考点:非负数的性质:绝对值.专题:计算题.分析:先根据非负数的性质求出x、y的值,再代入x﹣y进行计算即可.解答:解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得x=6,y=﹣5,∴原式=6+5=11.故答案为:11.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.1)﹣|﹣3|的相反数是3,(2)|3.14﹣π|=π﹣3.14.(3)比较﹣和﹣的大小:﹣<﹣.考点:有理数大小比较;相反数;绝对值.分析:(1)先根据绝对值的性质得出|﹣3|=3,再由相反数的定义即可得出结论;(2)根据绝对值的性质即可得出结论;(3)根据负数比较大小的法则进行比较即可.解答:解:(1)∵|﹣3|=3,∴﹣|﹣3|=﹣3,∵﹣3的相反数是3,∴﹣|﹣3|的相反数是3.故答案为:3.(2)∵3.14<π,∴3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故答案为:π﹣3.14;(3)∵|﹣|==,|﹣|==,>,∴﹣<﹣.故答案为:<.点评:本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣3)﹣(﹣7)﹣(﹣5)+(﹣4)=﹣3+7+5﹣4=5;(2)22﹣|﹣7|﹣2×(﹣)=4﹣7+1=﹣2;(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)=16﹣12﹣4=0;(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)=﹣16+(﹣5)×[﹣8+2]+16÷(﹣)=﹣16+5×6﹣32=﹣16+30﹣32=﹣18.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,x与y的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,cd=1,x=±1,y=﹣1,则原式=0+1﹣1+1=1.点评:此题考查了代数式求值,绝对值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.考点:绝对值;有理数的加法.分析:首先根据条件确定a,b的值,然后再代入即可.解答:解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a>b,∴a=±4,b=﹣6,当a=4,b=﹣6时,a+b=﹣2;当a=﹣4,b=﹣6时,a+b=﹣10.点评:本题主要考查了绝对值的意义,根据a>b确定a,b的值是解答此题的关键.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?考点:数轴;正数和负数.专题:计算题.分析:(1)根据题意画出数轴,如图所示;(2)找出A与D之间的距离即可;(3)根据列出算式,计算即可得到结果.解答:解:(1)根据题意画出数轴,如图所示:(2)根据题意得:|AD|=2;(3)根据题意得:10÷10×6.20×(2+1.5+5.5)=55.8(元),则此款货车汽油费为55.8元.点评:此题考查了数轴,以及正数与负数,熟练掌握运算法则是解本题的关键.第11页(共11页)。

深圳市初一上学期期末考试数学试卷含答案

深圳市初一上学期期末考试数学试卷含答案

深圳市初一上学期期末考试数学试卷含答案深圳市初一第一学期期末考试题数学(本试卷满分100分,在90分钟内完成)一. 填空题 : (第1-----11题每空1分,第12—15题每空2分,共25分 )1 .在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有 .2. 用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 . 3.深圳市某天早晨的温度是12° C, 中午上升了9° C, 夜间下降了6° C, 则这天夜间的温度是 .4. +8与互为相反数,请赋予它实际意义:5 .用科学记数法表示:5678000000 = .6. 甲、乙争论“ 和哪个大(是有理数)”.甲: “ 一定比大” .乙: “ 不一定” .又说: “ 你漏掉了两种可能. ”请问:乙说的是什么意思? 答: ; .7 . 的平方的3倍与-5的差,用代数式表示为 ,当时,代数式的值为 .8. 如图,是按照某种规律排列的多边形:第20个图形是边形,第41个图形的颜色是色.9 .如图:∠AOB=∠COD=90°,∠AOD=130°, 则∠BOC的度数是 .10. 数轴的A点表示-3,让A点沿着数轴移动2个单位到B点,B点表示的数是 ;线段BA上的点表示的数是 .11. 北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是 .12 .如图,A点表示数 ,B点表示数 ,在中正数是 .13 .A、B、C是直线上的三点,BC= AB,若BC=6,则AC的长等于 .14 .一商店把彩电按标价的九折出售,仍可获利20% ,若该彩电的进价是2400元,则该彩电的标价为元.15 .某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水吨.二.选择题( 每题2分,共20分,将答案直接填在下表中 )1. 下面的算式: ①.-1-1=0; ② ;③ (-1) 2004 =2004 ; ④ -4 2 =-16;⑤⑥ ,其中正确的算式的个数是A . 1个 B. 2 个 C. 3个 D. 4个2 .下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A . ①,② B. ②,③ C. ③,④ D. ④,①3. 下列图形中,是正方体的展开图是:① ② ③ ④A .① ② B.③ ④ C.③ D.④4. 在8:30这一时刻,时钟上的时针和分针之间的夹角为A . 85° B. 75° C. 70° D. 60°5 .与是同类项,那么等于A . -2 B. -1 C. 0 D. 16 .下列说法正确的是:A . 经过一点可以作两条直线; B. 棱柱侧面的形状可能是一个三角形;C. 长方体的截面形状一定是长方形;D. 棱柱的每条棱长都相等.7 . 下列算式正确的是:A . . B. . C. . D.8 . 下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度;②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,……,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片.④元旦节这一天刚好是1月1日.A . ①, ② B. ①, ③ C. ①, ④ D. ③, ④9 .天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A . 教室地面的面积. B. 黑板面的面积.C. 课桌面的面积.D. 铅笔盒盒面的面积10 .下列说法,正确的是① . 用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X米,则可列方程为2(X+X-1)=10 .② . 小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③ . X表示一个两位数,把数字3写到X的左边组成一个三位数,这个三位数可以表示为300+X.④ . 甲、乙两同学从学校到少年宫去,甲每小时走4千米 ,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程A . ①, ② B. ①, ③ C. ②, ④ D. ③, ④三.计算题(要求写出详细的计算过程,不准用计算器。

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷【解析版】

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷【解析版】

广东省深圳市龙华新区2015~2016学年度七年级上学期期末数学试卷一、选择题:本题共12小题,每小题3分,共36分.每小题有四个选项,其中只有一个是正确的.1.6的相反数是()A.6 B.﹣6 C.D.﹣2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A.B.C.D.3.在2015年深圳高交会上展出了现实版“钢铁侠”战衣﹣﹣马丁飞行喷射包,可连续飞行30分钟,载重120公斤,其网上预售价为160万元,数据160万元用科学记数法表示为()A.1.6×104元B.1.6×105元C.1.6×106元D.0.16×107元4.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.两点确定一条直线D.两点之间,线段最短5.小明每个月收集废电池a个,小亮比小明多收集20%,则小亮每个月收集的废电池数为()A.(a+20%)个B.a(1+20%)个C.个D.个6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠18.若x=3是方程ax+2x=14﹣a的解,则a的值为()A.10 B.5 C.4 D.29.小亮为表示出2015年他们家在“生活开支”项目的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.当x的值变大时,代数式﹣2x+3的值()A.变小 B.不变 C.变大 D.无法确定11.下列各式一定成立的是()A.﹣B.|﹣a|=a C.(﹣a)3=a3D.(﹣a)2=a212.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM 为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数是()A.60°B.67.5° C.75°D.85°二、填空题:每小题3分,共12分.请把答案填在答题卷相应的表格里.13.如果节约20元记作+20元,那么浪费10元记作元.14.若3a m+3b n+2与﹣2a5b是同类项,则mn=.15.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是.16.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n个图案中有65根小棒,则n的值为.三、解答题:本题7题,共52分.17.计算:(1)﹣14﹣(﹣22)+(﹣36).(2)﹣22+|﹣36|×().18.(1)化简:﹣3(x2+2xy)+6(x2﹣xy)(2)先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2015,y=﹣1.19.(1)解方程:5x+12=2x﹣9(2)解方程:.20.2015年,深圳市人居环境委通报了2014年深圳市大气PM2.5来源研究成果.报告显示主要来源有,A:机动车尾气,B:工业VOC转化及其他工业过程,C:扬尘,D:远洋船,E:电厂,F:其它.某教学学习小组根据这些数据绘制出了如下两幅尚不完整的统计图(图1,图2).请你根据统计图中所提供的信息解答下列问题:(1)图2的扇形统计图中,x的值是;(2)请补全图1中的条形统计图;(3)图2的扇形统计图中,“A:机动车尾气”所在扇形的圆心角度数为度.21.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.列方程解应用题:本题共3小题,第(1)小题4分,第(2)小题5分,共9分。

2023-2024学年广东省深圳市龙岗区七年级(上)期末数学试卷+答案解析

2023-2024学年广东省深圳市龙岗区七年级(上)期末数学试卷+答案解析

2023-2024学年广东省深圳市龙岗区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若零上记作,则零下可记作()A. B. C. D.2.下列各数:,…,,0,,,其中有理数有()A.6个B.5个C.4个D.3个3.2023年9月23日,伴随着主火炬台上的熊熊火焰,第19届亚洲运动会在杭州盛大开幕.本次开幕式主火炬的燃料——零碳甲醇,燃烧高效、排放清洁,在人类历史上第一次被用于大型体育赛事.此次点燃的主火炬塔在大火状态下,燃烧1小时仅需550000g燃料.将数据550000用科学记数法表示为()A. B. C. D.4.单项式的同类项为()A. B. C. D.5.下列选项中是一元一次方程的是()A. B. C. D.6.如图是正方体展开图,将《论语》十二章中的一句话:“学而不思则罔”这六个字写在正方体展开图的六个面内,则“而”对面的文字是()A.不B.思C.则D.罔7.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线8.如图,OB平分,则等于()A.B.C.D.9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算和的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算,左、右手依次伸出手指的个数是()因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以A.2,4B.1,4C.3,4D.3,110.我国古代的“九宫图”是由的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是()2025x23A.2020B.C.2019D.二、填空题:本题共5小题,每小题3分,共15分。

2015-2016学年广东省深圳市宝安区七年级(上)期末数学试卷

2015-2016学年广东省深圳市宝安区七年级(上)期末数学试卷

2015-2016学年广东省深圳市宝安区七年级(上)期末数学试卷一、选择题(每小题3分,共36分):每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.(3分)﹣2的倒数是()A.﹣B.C.﹣2D.22.(3分)阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108×109×1010×10103.(3分)下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.(3分)下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.5.(3分)下列运算中,正确的是()A.﹣2﹣1=﹣1B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x26.(3分)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.(3分)已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1B.C.D.8.(3分)如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2B.3C.4D.69.(3分)下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大10.(3分)一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元11.(3分)如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是()A.a2b2B.ab﹣πa2C.D.12.(3分)有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0C.|b﹣1|<1D.|a﹣b|>1二、填空题(每小题3分,共12分):请把答案按要求填到答题卷相应位置上.13.(3分)单项式的系数是.14.(3分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.15.(3分)如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.16.(3分)如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三、解答题(共52分):17.(8分)计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().18.(9分)化简(1)化简(2m+1)﹣3(m2﹣m+3)(2)化简(2m+1)﹣3(m2﹣2a2b)19.(9分)解方程(1)3(2x﹣1)=5x+2(2).20.(8分)在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于度.(3)请将图2的统计图补充完整.(4)通过计算得出类礼盒销售情况最好.21.(5分)列方程解应用题22.(8分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.23.(5分)某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A、B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量(x件)每件奖励金额(元)0<x≤10010100<x≤30020x>30030(1)在工艺改进前一个月,员工共获得奖励金额多少元?(2)如果某车间员工想获得5500元奖金,需要生产多少件工艺品;(3)改进工艺前一个月,生产的A、B两种工艺品分别为多少件?2015-2016学年广东省深圳市宝安区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分):每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.(3分)﹣2的倒数是()A.﹣B.C.﹣2D.2【解答】解:﹣2的倒数是﹣.故选:A.2.(3分)阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108×109×1010×1010【解答】×1010.故选:C.3.(3分)下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,故选:A.4.(3分)下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.5.(3分)下列运算中,正确的是()A.﹣2﹣1=﹣1B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x2【解答】解:因为﹣2﹣1=﹣3,﹣2(x﹣3y)=﹣2x+6y,3÷6×=3×,5x2﹣2x2=3x2,故选:D.6.(3分)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.7.(3分)已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1B.C.D.【解答】解:∵2x3y2m和﹣x n y是同类项,∴2m=1,n=3,∴m=,∴m n=()3=.故选:D.8.(3分)如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2B.3C.4D.6【解答】解:∵M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=4.故选:C.9.(3分)下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【解答】解:A、绝对值等于它本身的数是非负数,错误;B、何有理数的绝对值都不是负数,正确;C、线段AC=BC,则线段上的点C是线段AB的中点,错误;D、角的大小与角两边的长度无关,错误;故选:B.10.(3分)一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元【解答】解:设这种服装每件的成本价为x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.11.(3分)如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是()A.a2b2B.ab﹣πa2C.D.【解答】解:由图可得,阴影部分的面积是:ab﹣=,故选:C.12.(3分)有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0C.|b﹣1|<1D.|a﹣b|>1【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选:D.二、填空题(每小题3分,共12分):请把答案按要求填到答题卷相应位置上.13.(3分)单项式的系数是﹣.【解答】解:单项式的系数为﹣.故答案为:﹣.14.(3分)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=1.【解答】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.15.(3分)如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.16.(3分)如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1根小棒.【解答】解:图案(2)比图案(1)多了5根小棒,图案(3)比图案(2)多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.三、解答题(共52分):17.(8分)计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().【解答】解:(1)原式=10+5﹣9+6=12;(2)原式=﹣1+10÷4×=﹣1+=﹣.18.(9分)化简(1)化简(2m+1)﹣3(m2﹣m+3)(2)化简(2m+1)﹣3(m2﹣2a2b)【解答】解:(1)原式=2m+1﹣3m2+3m﹣9=﹣3m2+5m﹣8;(2)原式=2m+1﹣3m2+6a2b.19.(9分)解方程(1)3(2x﹣1)=5x+2(2).【解答】解:(1)去括号得:6x﹣3=5x+2,移项合并得:x=5;(2)去分母得:10x+15﹣3x+3=15,移项合并得:7x=﹣3,解得:x=﹣.20.(8分)在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有250盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于126度.(3)请将图2的统计图补充完整.(4)通过计算得出A类礼盒销售情况最好.【解答】解:(1)商场中的D类礼盒的数量为1000×25%=250(盒);(2)A部分所对应的圆心角的度数为360°×35%=126°;(3)C部分礼盒的销售数量为500﹣168﹣80﹣150=102(盒);如图,(4)A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.21.(5分)列方程解应用题【解答】解:设小明家到西湾公园距离x千米,根据题意得:=+解得:x=16.答:小明家到西湾公园距离16千米.22.(8分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.【解答】解:(1)∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;(2)由(1)的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.23.(5分)某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A、B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量(x件)每件奖励金额(元)0<x≤10010100<x≤30020x>30030(1)在工艺改进前一个月,员工共获得奖励金额多少元?(2)如果某车间员工想获得5500元奖金,需要生产多少件工艺品;(3)改进工艺前一个月,生产的A、B两种工艺品分别为多少件?【解答】解:(1)413×30=12390(元).答:在工艺改进前一个月,员工共获得奖励金额12390元;(2)∵100×20=2000(元),300×20=6000(元),∴2000<5500<6000,∴每件奖励金额为20元,设需要生产x件工艺品,20x=5500,解得:x=275,答:如果某车间员工想获得5500元奖金,需要生产275件工艺品;(3)设在新办法出台前一个月,生产A种工艺品y件,则生产B种工艺品(413﹣y)件,根据题意得:25%y+20%(413﹣y)=510﹣413,解得y=288,413﹣y=413﹣288=125.答:改进工艺前一个月,生产的A、B两种工艺品分别为288件、125件.。

2015-2016学年广东省深圳市宝安中学高一上学期期中考试数学试题 word版

2015-2016学年广东省深圳市宝安中学高一上学期期中考试数学试题 word版

宝安中学2015—2016学年第一学期期中考试高一数学试题命题: 2015.11.09 选择题(1—12题,每小题5分,共60分) 1.集合{01}M =,,则其真子集有A .1个 B. 2个 C. 3个 D. 4个 2.下列函数中,在其定义域内既是奇函数又是减函数的是 A .y x =B .3y x =-C .1y x =D . 1()2x y = 3. 下列四个图形中不可能是函数()y f x =图象的是A4.若3a =2,则log 38-2log 36用a 的代数式可表示为A a -2B 3a -(1+a )2C 5a -2D 3a -a 25. 函数43y x =的大致图像是6. 函数)23(log )(231+-=x x x f 的单调递增区间为A .(-∞,1)B .(2,+∞)C .(-∞,23) D .(23,+∞) 7. 函数()xf x e =(e 是自然对数的底数),对任意的实数R y x ∈,都有 A )()()(y f x f y x f +=+ B )()()(y f x f xy f +=C )()()(y f x f y x f ⋅=+D )()()(y f x f xy f ⋅=x y o .....x8.右图给出了红豆生长时间(月)与枝数y (枝)的散点图:那么 “红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?A .指数函数:t y 2=B .对数函数:t y 2log =C .幂函数:3t y =D .二次函数:22t y =9. 函数1(0,1)x y a a a a=->≠的图象可能是A B C D 10.若集合22{(,)|0},{(,)|0,,}M x y x y N x y x y x R y R =+==+=∈∈,则有 A 、M ∪N =M B 、M ∪N =N C 、M ∩N =M D 、M ∩N =∅11.设函数⎩⎨⎧+∞∈-∞∈=),2(,log ]2,(,2)(2x x x x f x ,则满足4)(=x f 的x 的值是A .2B .16C .2或16D .-2或16 12.若函数2()ln(21)f x ax ax =++)0(≠a 在其定义域内存在最小值,则实数a 的取值范围是A (1,)+∞B (,0)(1,)-∞+∞C (,0)-∞D (0,1) 填空题(13—16题,每小题5分,共20分)13.设2()23,f x x mx =-+若)(x f 在]3,(-∞上是减函数,则实数m 的取值范围是______________.14. 不等式)5(log )1(log 9131+>-x x 的解集是 .15. 已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g .16.已知实数a 满足20152015(5)250a a a ++++=,则= (保留小数点后两位。

七年级数学上学期周测试题(含解析) 新人教版-新人教版初中七年级全册数学试题

七年级数学上学期周测试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市北大附中为明实验学校2015-2016学年七年级数学上学期周测试题一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.34.有理数的相反数是()A.﹣B.﹣3 C.D.35.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<06.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.49.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.13.若x=﹣x,则x=;若|﹣x|=5,则x=.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)=.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n=.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c0.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为.(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?2015-2016学年某某省某某市北大附中为明实验学校七年级(上)周测数学试卷(2)参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<0.5,∴各数中,最小的数为﹣2.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米【考点】正数和负数.【分析】根据正负数表示相反意义的量,向东记为正,可得向西的表示方法.【解答】解:向东走80米,记为+80米,向西走60米,记为﹣60米,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】求出大于﹣3.5,小于2.5的整数,然后可求解.【解答】解:大于﹣3.5,小于2.5的整数有﹣3,﹣2,﹣1,0,1,2,所以共有6个.故答案为A.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.有理数的相反数是()A.﹣B.﹣3 C.D.3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<0【考点】有理数大小比较;数轴.【分析】根据数轴上数的排列特点:右边的数总比左边数大,很容易解答.【解答】解:根据数轴上右边的数总是比左边的数大可得b<a<0<c.故选C.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.【考点】绝对值.【分析】首先根据|a|=1,|b|=3,分别求出a、b的值各是多少;然后根据绝对值的求法,分类讨论,把a、b的值代入|a+b|,求出算式的值是多少即可.【解答】解:∵|a|=1,|b|=3,∴a=﹣1或1,b=﹣3或3,(1)当a=﹣1,b=3时,|a+b|=|﹣1+3|=2;(2)当a=﹣1,b=﹣3时,|a+b|=|﹣1﹣3|=4;(3)当a=1,b=3时,|a+b|=|1+3|=4;(4)当a=1,b=﹣3时,|a+b|=|1﹣3|=2;∴|a|=1,|b|=3,则|a+b|的值为2或4.故选:C.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定【考点】数轴.【分析】此题需注意考虑两种情况:点向左移动和点向右移动;数的大小变化规律:左减右加.【解答】解:当数轴上﹣3的对应点向左移动5个单位时,对应点表示数是﹣3﹣5=﹣8;当向右移动5个单位时,对应点表示数﹣3+5=2.故选C.【点评】数轴上点的移动分为向左和向右两种情况,对应的数也就会有两个结果.8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.4【考点】有理数的加法.【分析】根据有理数加法的运算方法逐项判断即可.【解答】解:∵(﹣4)+(﹣5)=﹣9,∴(﹣4)+(﹣5)=﹣9正确;∵5+(﹣6)=﹣1,∴5+(﹣6)=﹣11不正确;∵(﹣7)+10=3,∴(﹣7)+10=3正确;∵(﹣2)+2=0,∴(﹣2)+2=4不正确.∴计算正确的有2个:(﹣4)+(﹣5)=﹣9,(﹣7)+10=3.故选:B.【点评】此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.9.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【考点】有理数的减法.【专题】应用题.【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值【考点】绝对值.【分析】根据题意,可得|x﹣1|+|x+1|表示数轴上某一点到点﹣1、点1的距离的和,S的最小值是2,x 取[﹣1,1]之间的任意一个值时,S都能取到最小值2,据此解答即可.【解答】解:如图,,∵S=|x﹣1|+|x+1|,1﹣(﹣1)=2,∴S的最小值是2,∵x取[﹣1,1]之间的任意一个值时,S都能取到最小值2,∴有无穷个x使S取最小值.故选:D.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为﹣5 .【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣2﹣3=﹣5.故答案为:﹣5.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.【考点】规律型:数字的变化类.【分析】分子是从1开始连续的自然数,分母比对应的分子多1,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第6个数为.故答案为:.【点评】此题考查数字的变化规律,找出分子分母之间的联系,得出数字之间的运算规律与符号规律解决问题.13.若x=﹣x,则x= 0 ;若|﹣x|=5,则x= ﹣5或5 .【考点】绝对值.【分析】首先根据绝对值的含义和求法,可得0的相反数还是0,所以若x=﹣x,则x=0;然后根据|﹣x|=5,可得﹣x=5或﹣x=﹣5,据此求出x的值是多少即可.【解答】解:∵x=﹣x,∴x=0;∵|﹣x|=5,∴﹣x=5或﹣x=﹣5,解得x=﹣5或x=5,∴若|﹣x|=5,则x=﹣5或5.故答案为:0;﹣5或5.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)= 1 .【考点】有理数的减法.【专题】新定义.【分析】根据新定义运算,用运算符号前面的数减去运算符号后面的数,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)△(﹣3),=(﹣2)﹣(﹣3),=﹣2+3,=1.故答案为:1.【点评】本题考查了有理数的减法,是基础题,熟记运算法则并理解新定义的运算方法是解题的关键.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n= 2 .【考点】代数式求值;有理数;相反数.【分析】由a,b互为相反数,m是最大的负整数,n是最小的正整数,得出a+b=0,m=﹣1,n=1,进一步代入求得答案即可.【解答】解:∵a,b互为相反数,m是最大的负整数,n是最小的正整数,∴a+b=0,m=﹣1,n=1,∴a+b﹣m+n=0﹣(﹣1)+1=2.故答案为:2.【点评】此题考查代数式求值,掌握相反数、负整数、正整数的定义及性质是解决问题的关键.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c <0.【考点】有理数的加法;绝对值.【分析】首先根据a<0,b>0,c>0,可得|a|=﹣a,|b|=b,|c|=c,然后根据|a|>|b|+|c|,可得﹣a >b+c,据此判断出a+b+c的正负即可.【解答】解:∵a<0,b>0,c>0,∴|a|=﹣a,|b|=b,|c|=c,又∵|a|>|b|+|c|,∴﹣a>b+c,∴a+b+c<0.故答案为:<.【点评】(1)此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.【考点】有理数大小比较;数轴.【分析】把各个数在数轴上表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按从小到大的顺序用“<”连接起来.【解答】解:在数轴上表示为:按从小到大的顺序排列为:﹣3<﹣1<0<1<4.5.【点评】此题考查了数轴,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.【考点】有理数的加减混合运算.【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)﹣150+250=100(2)﹣5﹣65=﹣70(3)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=18﹣(20+14+13)=18﹣47=﹣29(4)8+(﹣)﹣5﹣(﹣0.25)=8﹣5+[(﹣)+0.25)]=3+0=3(5)﹣18+(﹣14)+18﹣13=﹣18+18﹣14﹣13=0﹣27=﹣27(6)3.7﹣6.9﹣9﹣5=3.7﹣(6.9+9+5)【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确有理数加减混合运算的方法:有理数加减法统一成加法.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式进行计算即可.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,则a+b﹣1=0.【点评】本题考查的是非负数的性质,有限个非负数的和为零,那么每一个加数也必为零.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0答:守门员最后回到了球门线的位置.(2)由观察可知:5﹣3+10=12米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54米.答:守门员全部练习结束后,他共跑了54米.【点评】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为18 .(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?【考点】一元一次方程的应用;数轴.【分析】(1)用B点表示的数减去A点表示的数即可得到A,B之间的距离;(2)设A点表示的数为x,根据A、B之间的距离为12列出方程|x﹣(﹣2)|=12,解方程即可;(3)设t秒后A、B相距2个单位长度,首先表示出t秒后A、B两点表示的数,再根据A、B相距2个单位长度列出方程,解方程即可.【解答】解:(1)A,B之间的距离=10﹣(﹣8)=10+8=18.故答案为18;(2)设A点表示的数为x,根据题意,得|x﹣(﹣2)|=12,即x+2=12,或x+2=﹣12,解得x=10或﹣14.答:点A表示的数是10或﹣14;(3)设t秒后A、B相距2个单位长度,此时A点表示的数为10+2t或﹣14+2t,B点表示的数为﹣2+t,根据题意得|10+2t﹣(﹣2+t)|=2,或|﹣14+2t﹣(﹣2+t)|=2,即t+12=±2,或t﹣12=±2,解得t=﹣10或﹣14或14或10(负值舍去).答:14或10秒后A、B相距2个单位长度.【点评】本题考查了一元一次方程的应用以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷

2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷

2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷一、选择题(每小题3分,共36分1.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.63.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y) B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y)D.(2x﹣y)(﹣2x+y)4.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣25.(3分)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣36.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.(3分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°8.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°9.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°10.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°11.(3分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.12.(3分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.二、填空题(每小题3分;共12分)13.(3分)若a2﹣b2=,a﹣b=,则a+b的值为.14.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.15.(3分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=度.16.(3分)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是.(把你认为正确结论的序号都填上)三.解答题(共6大题,共52分)17.(12分)计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).18.(7分)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.19.(7分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(9分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)21.(8分)小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?22.(9分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).2015-2016学年广东省深圳市龙岭学校七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分1.(3分)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣1【分析】根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.2.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.3.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣2x﹣y)(2x﹣y) B.(﹣2x+y)(﹣2x﹣y)C.(2x+y)(﹣2x+y)D.(2x﹣y)(﹣2x+y)【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x项的符号相反,故能使用平方差公式,A 错误;B、两个括号中,含y项的符号相反,x项的符号相同,故能使用平方差公式,B 错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C 错误;D、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,D正确;故选:D.【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.4.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.5.(3分)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.6.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.7.(3分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110° D.120°【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.【点评】本题利用对顶角相等和平行线的性质,需要熟练掌握.8.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.9.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的大小为()A.60°B.50°C.40°D.30°【分析】先根据直角三角形的性质得出∠D的度数,再由平行线的性质即可得出结论.【解答】解:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.11.(3分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为B.故选:B.【点评】此题考查了函数的图象;用到的知识点是函数图象的应用,需注意容器粗细和水面高度变化的关联.12.(3分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题(每小题3分;共12分)13.(3分)若a2﹣b2=,a﹣b=,则a+b的值为.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.15.(3分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠ABC,根据平行线的性质得出∠1=∠ABC,即可得出答案.【解答】解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,故答案为:45.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠1=∠ABC和求出∠ABC的度数,注意:两直线平行,同位角相等.16.(3分)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是②③.(把你认为正确结论的序号都填上)【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【解答】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故②正确;火车的长度是150米,故①错误;整个火车都在隧道内的时间是:35﹣5﹣5=25秒,故③正确;隧道长是:35×30﹣150=1050﹣150=900米,故④错误.故正确的是:②③.故答案是:②③.【点评】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三.解答题(共6大题,共52分)17.(12分)计算:(1)(﹣x2y5)•(xy)3;(2)4a(a﹣b+1);(3)3x(3y﹣x)﹣(4x﹣3y)(x+3y).【分析】(1)根据同底数幂的乘法计算即可;(2)根据单项式与多项式的乘法计算即可;(3)根据整式的乘法计算即可.【解答】解:(1)原式=﹣x2y5•x3y3=﹣x5y8.(2)原式=4a2﹣4ab+4a.(3)原式=9xy﹣3x2﹣(4x2+12xy﹣3xy﹣9y2)=9xy﹣3x2﹣(4x2+9xy﹣9y2)=﹣7x2+9y2.【点评】此题考查整式的混合计算,关键是根据法则进行计算.18.(7分)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.【解答】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(7分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.20.(9分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.21.(8分)小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.22.(9分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).【分析】(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.【解答】解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有 球,圆
柱,圆锥 ,属于四棱柱的有 正方体,长方体 .
【考点】认识立体图形.
【分析】找出几何体中不属于柱体的与四棱柱的即可.
【解答】解:在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的
有球,圆柱,圆锥,属于四棱柱的正方体,长方体.
A.1 个 B.2 个 C.3 个 D.4 个
17.下面说法:正确的是( )
①如果地面向上 15 米记作 15 米,那么地面向下 6 米记作﹣6 米;②一个有理数不是正数
就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.
块;
(2)第 n 个图形中有白色地砖 块.
36.8 人分别乘两辆小汽车赶往火车站,其中一辆小汽车在距离火车站 15 千米的地方出了
故障,此时离火车停止检票时间还有 42 分钟.这时唯一可以利用的交通工具只有一辆小汽
(3)﹣2(ab﹣5a2)+(4ab﹣9a2)
(4)﹣2x2y﹣[2x2y﹣(2xy2﹣x2y)﹣4x2y]﹣ xy2.
四.解答题(共 39 分)
30.解方程
(1)8(2x﹣4)=4﹣6(4﹣x)
(2)x﹣ =2+ .
31.当|x﹣2|+(y+3)2=0 时,求代数式 的值.
A.85° B.75° C.70° D.60°
20.xmym+n 与 2x3y 是同类项,那么 n 等于( )
A.﹣2 B.﹣1 C.0 D.1
21.下列说法正确的是( )
A.经过一点可以作两条直线
B.棱柱侧面的形状可能是一个三角形
C.长方体的截面形状一定是长方形

A.①,② B.①,③ C.②,④ D.③,④
三、计算题(要求写出详细的计算过程,不准用计算器,每题 4 分,共 16 分)
26.(1)﹣1﹣(﹣2)+(﹣3)+(﹣4)2
(2)[﹣32×(﹣ )2﹣0.8]÷(﹣5 )
名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性
是 .
12.如图,A 点表示数 a,B 点表示数 b,在 a+b,b﹣a,ab,a+b+3 中正数
是 .
2.用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 .
3.深圳市某天早晨的温度是 12℃,中午上升了 9℃,夜间下降了 6℃,则这天夜间的温度
是 .
4.+8 与 互为相反数,请赋予它实际意义: .
【考点】有理数的加减混合运算.
【分析】直接利用有理数加减运算法则分别得出中午以及夜间的温度即可.
【解答】解:∵早晨的温度是 12℃,中午上升了 9℃,
∴中午的度数为:12+9=21(℃),
2015-2016 学年广东省深圳市七年级(上)期末数学试卷
一.填空题:(第 1-----11 题每空 1 分,第 12-15 题每空 2 分,共 25 分)
1.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的
有 ,属于四棱柱的有 .
车,连司机在内限乘 5 人.这辆小汽车的平均速度为 60 千米/时,人行走的速度为 5 千米/
时.这 8 人能赶上火车吗?若能,请说明理由.
第 4 页(共 17 页)
A.教室地面的面积 B.黑板面的面积
C.课桌面的面积 D.铅笔盒盒面的面积
25.下列说法,正确的是( )
①用长为 10 米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形
的长比宽多 1 米,设长方形的长为 x 米,则可列方程为 2(x+x﹣1)=10.
彩电的标价为 元.
15.某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过
15 吨,按每吨 1 元收费,若超过 15 吨,则超过部分每吨按 2 元收费.如果小明家 12 月份
交纳的水费 29 元,则小明家这个月实际用水 吨.
2015-2016 学年广东省深圳市七年级(上)期末数学试

参考答案与试题解析
一.填空题:(第 1-----11 题每空 1 分,第 12-15 题每空 2 分,共 25 分)
34.如图是市民对“净畅宁工程”满意程度的扇形统计图.回答下列问题.
(1)非常不满意的人占的百分比是多少?
(2)非常满意的人数是非常不满意人数的几倍?
(3)若被调查的市民中非常满意的人数有 600 Leabharlann ,那么调查了多少市民?这些市民中非常
张.这 6 张中,一定有写着偶数的卡片.
④元旦节这一天刚好是 1 月 1 日.
A.①,② B.①,③ C.①,④ D.③,④
24.天安门广场的面积约为 44 万平方米,请你估计一下,它的百万分之一大约相当于
( )
第 2 页(共 17 页)
13.A、B、C 是直线 l 上的三点,BC= AB,若 BC=6,则 AC 的长等于 .
第 1 页(共 17 页)
14.一商店把彩电按标价的九折出售,仍可获利 20%,若该彩电的进价是 2400 元,则该
10.数轴的 A 点表示﹣3,让 A 点沿着数轴移动 2 个单位到 B 点,B 点表示的数
是 ;线段 BA 上的点表示的数是 .
11.北环中学初一年级共 10 个班,每班有 43 名学生,现从每个班中任意抽一名学生共 10
不满意的有多少人?
35.用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案:
(1)第 4 个图案中有白色地砖 块;第 10 个图案中有白色地砖
故答案为:球,圆柱,圆锥;正方体,长方体.
2.用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 圆柱 .
【考点】截一个几何体.
【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三
角形.
【解答】解:长方体沿体面对角线截几何体可以截出三角形;
5.用科学记数法表示:5678000000= .
6.甲、乙争论“a 和 哪个大(a 是有理数)”.
甲:“a 一定比 大”.
乙:“不一定”.又说:“你漏掉了两种可能.”
请问:乙说的是什么意思?答: ; .
7.“x 平方的 3 倍与﹣5 的差”用代数式表示为: .当 x=﹣1 时,代数式的值
②小明存人银行人民币 2000 元,定期一年,到期后扣除 20%的利息税后得到本息和为
2120 元,若该种储蓄的年利率为 x,则可列方程 2000(1+x)80%=2120.
③x 表示一个两位数,把数字 3 写到 x 的左边组成一个三位数,这个三位数可以表示为
五棱柱沿顶点截几何体可以截得三角形;
圆柱不能截出三角形;
圆锥沿顶点可以截出三角形.
故不能截出三角形的几何体是圆柱.
故答案为:圆柱.
3.深圳市某天早晨的温度是 12℃,中午上升了 9℃,夜间下降了 6℃,则这天夜间的温度
是 15℃ .
D.棱柱的每条棱长都相等
22.下列计算中,正确的是( )
A.4a﹣2a=2 B.3a2+a=4a2C.﹣a2﹣a2=﹣2a2D.2a2﹣a=a
23.下列事件中是必然事件的有( )
①明天中午的气温一定是全天最高的温度;
②小明买电影票,一定会买到座位号是双号的票;
③现有 10 张卡片,上面分别写有 1,2,3,…,10,把它们装人一个口袋中,从中抽出 6
二.选择题(每题 2 分,共 20 分,将答案直接填在下表中)
16.下面的算式:
①﹣1﹣1=0;② ;③(﹣1)2004=2004;④﹣42=﹣16;⑤ ;⑥﹣5÷
×3=﹣5,
其中正确的算式的个数是( )
A.①,② B.②,③ C.③,④ D.④,①
18.下列图形中,是正方体的展开图是( )
A.①② B.③④ C.③ D.④
19.在 8:30 这一时刻,时钟上的时针和分针之间的夹角为( )
32.画出下面立体图形的主视图、俯视图:
33.如图,是一副三角板组成的图形.
(1)图中有几个小于平角的角?用字母和符号把它们一一表示出来,并写出它们的度数.
(2)图中有几对互相垂直的线段?用字母和符号把它们一一表示出来.
第 3 页(共 17 页)
300+x.
④甲、乙两同学从学校到少年宫去,甲每小时走 4 千米,乙每小时走 6 千米,甲先出发半
小时,结果还比乙晚到半小时,若设学校与少年宫的距离为 s 千米,则可列方程 ﹣ = +
为 .
8.如图,是按照某种规律排列的多边形:
第 20 个图形是 边形,第 41 个图形的颜色是 色.
9.如图:∠AOB=∠COD=90°,∠AOD=130°,则∠BOC 的度数是 .
相关文档
最新文档