2020年八年级数学下册 期末复习 解答题培优练习(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年八年级数学下册期末复习解答题培优练习

1.A、B两个村庄在笔直的小河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建一水厂向A、B两村输送自来水,铺设管道的工程费用为每千米2万元.请你在CD上选择水厂的位置并作出点O,使铺设水管的费用最节省,并求出铺设水管的总费用.

2.如图,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE

的长.

3.我们学习了勾股定理后,都知道“勾三、股四、弦五”.

观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.

(1)请你根据上述的规律写出下两组勾股数:11、;13、;

(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别表示为和,请用所学知识说明它们是一组勾股数.

4.如图所示为一棱长为3cm的正方体,把所有的面分成3×3个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至右侧面点B处,最少要花几秒钟?

5.阅读下列解题过程:

已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.

解:因为a2c2-b2c2=a4-b4,①

所以c2(a2-b2)=(a2-b2)(a2+b2)②

所以c2=a2+b2.③

所以△ABC是直角三角形.④

回答下列问题:

(1)上述解题过程,从哪一步开始出现错误?该步的序号为.

(2)错误的原因为.

(3)请你将正确的解答过程写下来.

6.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC.

(1)如图1,判断△BCE的形状,并说明理由;

(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.

7.如图,已知在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD≌△CBF;

(2)四边形CDEF为平行四边形.

8.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.

(1)求AE的长.

(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?

9.如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.

10.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

11.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,4).

(1)求k的值;

(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;

(3)探究:当P运动到什么位置时,△OPA的面积为12,并说明理由.

12.一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分钟内

既进水又出水,每分钟的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.

13.如图,在平面直角坐标系中,直线y=﹣x+4与x 轴、y 轴分别交于点A、点B,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.

(1)求AB 的长;

(2)求点C 和点D 的坐标;

(3)y 轴上是否存在一点P,使得2S △PAB =S △OCD ?若存在,直接写出点P 的坐标;若不存在,请说明理由.

14.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.

(1)求OC长度;

(2)求点B'的坐标;

(3)求矩形ABCO的面积.

15.如图所示,在平面直角坐标系中,已知一次函数y=0.5x+1的图象与x轴,y轴分别交于A,

B两点,以AB为边在第二象限内作正方形ABCD.

(1)求边AB的长;

(2)求点C,D的坐标;

(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.

16.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.

(1)该物流公司5月份运输两种货物各多少吨?

(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?

17.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:

物资种类食品药品生活用品

每辆汽车运载量(吨)654

每吨所需运费(元/吨)120160100

(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;

(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;

(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.

相关文档
最新文档