七年级下册:第六章概率初步基础测试卷

合集下载

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

D.随机事件发生的概率介于0和1之间
·数学
5.书架上有2本数学书、3本语文书、3本英语书,从中随机 抽取一本,是数学书的概率是( A )
A.14
B.38
C.18
D.34
6.(跨学科融合)在单词statistics(统计学)中任意选择一个字母,
字母为“s”的概率是( C )
A.110
B.15
C.130
球的概率相同,那么a与b的关系是 a+b=10.
14.在x2 2xy y2的空格“ ”中,分别填上“+”或“-”,在
所得的代数式中,能构成完全平方式的概率是
1 2
.
·数学
15.如图,在4×4的正方形网格中,有3个小正方形已经涂黑, 若再涂黑任意一个白色的小正方形(每一分的图形是轴对
奖”这一事件是 随机事件 (填“必然事件”“不可能事件”
或“随机事件”).
12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.
从中随机抽取一张,编号是偶数的概率等于 2 5
.
·数学
13.一个袋中装有a个红球,10个黄球,b个白球,每个球除
颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄
顾客购物10元以上就能获得一次转动转盘的机会,
当转盘停止时,指针落在哪一区域就可以获得相应
的奖品.下表是活动进行中的几组统计数据. (1)计算并完成表格:
转动转盘的次数n 100 落在“铅笔”的次数m 67 落在“铅笔”的频率mn 0.670
200 145
0.725
500 357
0.714
800 552
(2)(1)(3)(5)(4).
·数学
21.暑假将至,某商场为了吸引顾客,设计了可以自由转动 的转盘(如图,转盘被均匀地分为20份),并规定:顾客每消 费200元的商品,就能获得一次转动转盘的机会.如果转盘停 止后,指针正好对准红色、黄色、绿色区域,那么顾客就可 以分别获得200元、100元、50元的购物券,凭购物券可以在 该商场继续购物.若某顾客购物300元. (1)求他此时获得购物券的概率是多少? (2)他获得哪种购物券的概率最大?请说明理由.

2022学年北师大版七年级数学下册第六章《概率初步》测试卷附答案解析

2022学年北师大版七年级数学下册第六章《概率初步》测试卷附答案解析

2022-2023学年七年级数学下册第六章《概率初步》测试卷【全卷满分120分考试时间120分钟】一、单选题(每题3分,共30分)1.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A.3个球中至少有1个黑球B.3个球中至少有1个白球C.3个球中至少有2个黑球D.3个球中至少有2个白球2.下列说法中,正确的是()A.任意投掷一枚质地均匀的硬币30次,出现正面朝上的次数一定是15次B.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图C.“太阳东升西落”是不可能事件D.调查某班40名学生的身高情况宜采用普查3.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件4.下列说法中:①如果一个事件发生的可能性很小,那么它的概率为0;②如果一个事件发生的可能性很大,那么它的概率为1;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;其中,正确的说法有()A.1个B.2个C.3个D.0个5.在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是()A.59B.49C.25D.126.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187.在4个相同的袋子中,装有除颜色外完全相同的10个球,任意摸出1个球,摸到红球可能性最大的是()A.1个红球,9个白球B.2个红球,8个白球C.5个红球,5个白球D.6个红球,4个白球8.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,再掷一次,正面朝上的概率是()A.13B.23C.12D.19.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A.12个B.16个C.20个D.30个10.“文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是()A.13B.14C.15D.16二、填空题(每题3分,共30分)11.下列事件是必然事件的是________.①射击一次,中靶;②100件某种产品中有2件次品,从中任取1件恰好是次品;③太阳从东方升起;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12.某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到______路车的可能性最大.13.在一个不透明的袋子里,装有2个红球和3个白球,这些球除颜色外没有任何区别,现从这个袋子中随机摸出一个球,摸到红球的概率是_____.14.一个不透明的箱子中有4个红球和若干个黄球,若任意摸出一个球,摸出红球的概率是25,则黄球个数是_____个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为________.17.有一个样本共有50个数据,分成若干组后,其中有一小组的频率是0.4,则该组的频数是_____.18.如图,甲、乙、丙3人站在55 网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是__________.19.不透明的口袋中有黑白围棋子若干颗,已知随机摸出一颗是白棋子的概率为310,若加入10颗白棋子,随机摸出一颗是白棋子的概率为13,口袋中原来有______颗围棋子.20.在一个不透明的布袋中有白球和黑球共20个,这些球除颜色外都相同.小明将布袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回布袋中.不断重复这一过程,共摸了100次球,发现有40次摸到黑球,则布袋中黑球的个数可能为________.三、解答题(共60分)21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为________人.家长表示“不赞同”的人数为________人;(2)请在图①中把条形统计图补充完整;(3)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是________;(4)求图②中表示家长“无所谓”的扇形圆心角的度数.22.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率mn0.60.610.60.590.604(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?23.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其他120.10请根据以上图表信息,解答下列问题:(1)频数分布表中的m=_________,n=_________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为_________.24.某校在“爱心捐款”活动中,同学们都献出了自己的爱心,他们的捐款额有5元、10元、15元、20元四种情况,根据随机抽样统计数据绘制了图1和图2两幅尚不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样的学生人数是________,捐款10元的人数是________;(2)本次捐款金额的中位数是________元;(3)已知捐款金额为5元的6名同学中有4名男生和2名女生,若从这6名同学中随机抽取一名进行访谈,且每一名同学被抽到的可能性相同,则恰好抽到男生的概率是________;(4)该校学生总人数为1000人,请估计该校一共捐款________元.25.2022年10月12日“天宫课堂”第三课在中国空间站开讲并直播,神舟十四号三位航天员相互配合,生动演示了微重力环境下的四个实验:A.毛细效应实验;B.水球变“懒”实验;C.太空趣味饮水;D.会调头的扳手.某校九年级数学兴趣小组成员为研究“九年级学生对这四个实验中最感兴趣的是哪一个?”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)本次被调查的学生有人;扇形统计图中D所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校九年级共有650名学生,请估计该校九年级学生中对B.水球变“懒”实验最感兴趣的学生大约有多少人?(4)李老师计划从小明、小刚、小兰、小婷四位学生中随机抽取两人参加学校的微重力模拟实验,请用树状图法或列表法求出恰好抽中小刚、小兰两人的概率.26.某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.比赛成绩频数分布表成绩分组(单位:分)频数频率x≤<600.128085x≤<a0.38590x≤<240c9095x≤≤500.195100合计b1请根据以上信息解答下列问题:(1)频数分布表中,b=,c=;(2)补全频数分布直方图;(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?27.2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A.太空“冰雪”实验B.液桥演示实验C.水油分离实验D.太空抛物实验我校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是_______;(填写“普查”或“抽样调查”)(2)本次被调查的学生有______人;扇形统计图中D 所对应的m =______;(3)我校九年级共有650名学生,请估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有______人;(4)十三班被调查的学生中对A .太空“冰雪”实验最感兴趣的有5人,其中有3名男生和2名女生,现从这5名学生中随意抽取1人进行观后感谈话,每人被抽到的可能性相同,恰好抽到女生的概率是______.28.国家规定,中小学生每天在校体育活动时间不低于1h ,为了解这项政策的落实情况,有关部门就“你每天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (h )进行分组(A 组:0.5t <,B 组:0.51t ≤<,C 组:1 1.5t ≤<,D 组: 1.5t ≥),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为__________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少?(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人?参考答案:1.A2.D3.B4.A5.B6.A7.D8.C9.B10.B11.③④##④③12.313.2514.615.0.116.6017.2018.21119.20020.821.解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人,故答案为:600、80;(2)补充图形如图:(3)恰好是“赞同”的家长的概率是60%;(4)表示家长“无所谓”的圆心角的度数为:40600×360°=24°.22.解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298472604落在“可乐”区域的频率mn0.60.610.60.60.590.604(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.23.解:(1)∵喜欢篮球的是30人,频率是0.25,∴样本数=30÷0.25=120,∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是36人,∴m=0.20×120=24,n=36÷120=0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为(1)24,0.30;(2)108°.24.(1)由于捐15元的有16人,所占比例为32%,本次抽样的学生人数是1632%50÷=(人);506161018---=人;故答案为:50,18;(2)把这数从小到大排列,中位数是第25、26个数的平均数,则中位数是1515152+=(元);故答案为:15;(3)∵6名同学中有4名男生和2名女生,∴P (恰好抽到男生)=4263=.故答案为:23;(4)6518101615102010001300050⨯+⨯+⨯+⨯⨯=元.故答案为:13000.25.(1)解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650︒⨯=︒.故答案为:50;36︒.(2)解:B 实验最感兴趣的人数为:501020515---=(人),补全条形统计图如图所示.(3)解:1565019550⨯=(人).答:该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有195人.(4)解:画树状图如下:共有12种等可能的结果,其中恰好抽中小刚、小兰两人的结果有2种,∴恰好抽中小刚、小兰两人的概率为21126=26.(1)解:根据题意得:600.12500b =÷=(人);2400.48500c ==;故答案为:5000.48,;(2)解:8590x ≤<的人数是:5006024050=150---(人),补图如下:(3)解:小丽被选中的概率是:153=5010.27.(1)解:兴趣小组采取的调查方式是抽样调查;故答案为:抽样调查(2)解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650m =︒⨯=︒;故答案为:50;36︒(3)解:65030%195⨯=,答:估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有195人;(4)解:根据题意得:恰好抽到女生的概率是25.28.(1)解:4020%200÷=(人),∴此次抽查的学生为200人;(2)C 组的人数2004080%=´=人,A 组的人数20060804020=---=人,补全条形统计图如图所示:(3)该生当天在校体育活动时间低于1小时的概率是206022005+=;(4)当天达到国家规定体育活动时间的学生有80401200720200+´=人.。

(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》检测卷(包含答案解析)

(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》检测卷(包含答案解析)

一、选择题1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.12B.13C.23D.162.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数3.事件:“在只装有3个红球和4个黑球的袋子里,摸出一个白球”是()A.可能事件B.不可能事件C.随机事件D.必然条件4.下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有()A.0个B.1个C.2个D.3个5.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上6.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B.12C.213D.27.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( )A.6 B.16 C.22 D.248.下列事件中,是必然事件的是()A.任意掷一枚骰子一定出现奇数点 B.彩票中奖率20%,买5张一定中奖C.晚间天气预报说明天有小到中雪 D.在13同学中至少有2人生肖相同9.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上10.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾 B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒 D.在一个仅装有白球和黑球的袋中摸球,摸出红球11.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.32012.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.13二、填空题13.写出一个你认为的必然事件_________.14.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.15.如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为_____.16.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.18.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为________.19.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.20.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.三、解答题21.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.22.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1、2、3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.23.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P;(5)在1---100之间,随机抽出一个整数是偶数的概率5P.24.将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率.25.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?26.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163,故选B.2.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“在只装有3个红球和4个黑球的袋子里,摸出一个白球”是不可能事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C解析:C【解析】【分析】确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断【详解】解:①上海明天是晴天,是随机事件;②铅球浮在水面上,是不可能事件,属于确定事件;③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;故选:C.【点睛】此题考查随机事件,解题关键在于根据定义进行判断5.C解析:C【解析】【分析】根据随机事件与必然事件的定义逐一进行判断即可.【详解】A.3天内会下雨是随机事件,故该选项不符合题意,B.打开电视机,正在播放广告是随机事件,故该选项不符合题意,C.367人中至少有2人公历生日相同是必然事件,故该选项符合题意,D.抛掷1个均匀的骰子,出现4点向上是随机事件,故该选项不符合题意,故选C.【点睛】本题考查了随机事件与必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件;在一定条件下,必然会发生的事件称为必然事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6.C解析:C【分析】直接利用频率的定义分析得出答案.【详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,∴字母“n”出现的频率是:213故选C.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.7.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.8.D解析:D【解析】【分析】根据概率的相关知识,判断出一定会发生的事情即可解出本题答案.【详解】A. 任意掷一枚骰子一定出现奇数点,可能出现偶数点,错误;B. 彩票中奖率20%,买5张一定中奖,是总票数的20%,那五张有可能在80%不中奖的里面,错误;C. 晚间天气预报说明天有小到中雪,天气预报预测的是可能的天气,并不确定,错误;D. 在13同学中至少有2人生肖相同,生肖一共十二个,正确.故答案为:D.【点睛】本题考查了概率的相关知识,熟练掌握该知识点是本题解题的关键.9.B解析:B【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、今年的除夕夜会下雪是随机事件,故A错误;B、在只装有红球的袋子里摸出一个黑球是不可能事件,故B正确;C、射击运动员射击一次,命中10环是随机事件,故C错误;D、任意掷一枚硬币,正面朝上是随机事件,故D错误;故选B.【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.B解析:B【解析】【分析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.11.B解析:B【解析】【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题.【详解】由条形统计图可得,选体育的学生的可能性是:162=8+16+10+65,故选B.【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.12.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 .故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14.【分析】根据概率的性质和概率公式即可求出当他掷第10次时正面向上的概率【详解】解:∵掷一枚质地均匀的硬币有两种结果:正面朝上反面朝上每种结果等可能出现∴她第10次掷这枚硬币时正面向上的概率是:故答案解析:12.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:12.故答案为:12.【点睛】本题考查了概率统计的问题,根据概率公式求解即可.15.【分析】用阴影区域所占的面积除以总面积即可得出答案【详解】解:观察发现:图中阴影部分面积=S矩形∴针头扎在阴影区域内的概率为;故答案为:【点睛】此题主要考查了几何概率以及矩形的性质用到的知识点为:概解析:1 2【分析】用阴影区域所占的面积除以总面积即可得出答案.【详解】解:观察发现:图中阴影部分面积=12S矩形,∴针头扎在阴影区域内的概率为12;故答案为:12.【点睛】此题主要考查了几何概率,以及矩形的性质,用到的知识点为:概率=相应的面积与总面积之比.16.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524=.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.40【解析】【分析】根据表格中的数据求出摸出黑棋的概率然后求出棋子的总个数再减去黑棋子的个数即可【详解】黑棋子的概率==棋子总数为10÷=50所以白棋子的数量=50﹣10=40(枚)故答案为:40【解析:40【解析】【分析】根据表格中的数据求出摸出黑棋的概率,然后求出棋子的总个数,再减去黑棋子的个数即可.【详解】黑棋子的概率=13023421131010+++++++++⨯=15,棋子总数为10÷15=50,所以,白棋子的数量=50﹣10=40(枚).故答案为:40.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.18.【分析】本题考查了概率的简单计算能力是一道列举法求概率的问题属于基础题可以直接应用求概率的公式【详解】因为一枚质地均匀的硬币只有正反两面所以不管抛多少次硬币正面朝上的概率都是故答案为【点睛】本题考查解析:1 2【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故答案为12.【点睛】本题考查了概率的意义,一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】试题分析:先求出棕色所占的百分比再根据概率公式列式计算即可得解棕色所占的百分比为:1﹣20﹣15﹣30﹣15=1﹣80=20所以P(绿色或棕色)=30+20=50=考点:(1)概率公式;(2解析:1 2【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.考点:(1)、概率公式;(2)、扇形统计图20.【解析】试题解析:.【解析】试题∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是.考点:概率.三、解答题21.(1)袋中红球的个数为175个;(2)从袋中任取一个球是黑球的概率为43 145.【解析】【分析】先求得白球的数量,再设黑球数量为x则可得2x+3+x=290﹣29,解得x=86,即可求得红球的数量.由(1)得出黑球的数量再除以总数量即可.【详解】(1)∵一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,从袋中任取一个球是白球的概率是110,∴白球的个数为:290×110=29(个),设黑球的个数为x个,则2x+3+x=290﹣29,解得:x=86,则2x+3=175,答:袋中红球的个数为175个;(2)由(1)得:从袋中任取一个球是黑球的概率为:86290=43145.【点睛】本题考查概率公式,熟练掌握概率的计算法则是解题关键.22.如图所示见解析.【解析】【分析】根据题意指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同,可知2和3的数字数量相等,且1是数量最多的,即可解答【详解】答案不唯一,写出1个即可,如图所示.【点睛】此题考查可能性的大小,难度不大23.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0;(2)选择题的答案是4选1,因此其概率为14;(3)袋子中摸到红球的概率为23;(4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为501 1002.试题考点:概率24.(1)P(抽到奇数)=23;(2)P(恰好抽到为35)=16【解析】试题分析:(1)先求出这组数中奇数的个数,再利用概率公式解答即可;(2)根据题意列举出能组成的数的个数及35的个数,再利用概率公式解答.试题(1)根据题意可得:有三张卡片,奇数只有“3和5”一张,故抽到奇数的概率P=;(2)根据题意可得:随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,共能组成6个不同的两位数:32,52,23,53,25,35.其中恰好为35的概率为.考点:概率公式25.(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.【详解】解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴转动一次转盘获得购物券概率=100.520=101202=.(2)因为红色概率=120,黄色概率=320,绿色概率=632010=,136 2001005040202020∴⨯+⨯+⨯=元,4030>∴选择转转盘对顾客更合算.考点:实验概率定义.26.(1)34;(2)12.【解析】试题分析:(1)判断菱形、平行四边形、矩形、正方形中轴对称图形的个数,即可得到所求的概率;(2)找出四个图形中轴对称图形的个数,列表得出所有等可能的情况数,找出两张都为轴对称图形的情况数,即可求出所求的概率.试题(1)平行四边形,不是轴对称图形;菱形,轴对称图形;矩形,轴对称图形;正方形,轴对称图形,则P(随机抽取一张卡片图案是轴对称图形)=34;故答案为:34;(2)列表如下:则P=612=12.。

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

一、选择题1.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上2.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等3.某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②4.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数5.下列事件是必然事件的是()A.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片6.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定7.下列说法正确的是( )A .蜡烛在真空中燃烧是一个随机事件B .在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同C .某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次D .天气预报明天降水概率为80%,表示明天下雨的可能性较大8.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为( )A .14B .18C .112D .1169.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是( )A .1B .67C .12D .010.下列事件是必然事件的是( ).A .购买一张彩票中奖B .通常加热到100℃时,水沸腾C .明天一定是晴天D .任意一个三角形,其内角和是360°11.下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若a ,b 异号,则0a b +<;属于确定事件的有( )个.A .1B .2C .3D .412.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )A .19B .16C .29D .13二、填空题13.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.14.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.15.有一小球在如图所示的地板上自由滚动,地板上的每个三角形均为等边三角形,则小球在地板上最终停留在黑色区域的概率为__.16.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 17.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.18.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.19.如图,A、B是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A、B两点),以A、B、C三点为顶点能画出三角形的概率是_____.20.香洲区某所中学下午安排三节课,分别是数学、体育、物理,把数学课安排在第一节课的概率为____.三、解答题21.(1)如图1是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图2中设计一个转盘:自由转动这个转盘,当转盘停止转动时,指针落在红色区域的概率为58,落在黄色区域的概率为14,落在白色区域的概率为18.22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为,是红球的概率为,是白球的概率为.(2)如果任意摸出一个球是绿球的概率是15,求袋中有几个白球?23.如图所示,转盘被等分..成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)若自由转动转盘,当它停止转动时,指针指向的数小于或等于4的概率是多少?24.某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题.(1)在扇形统计图中,a的值是,成绩为10分所在扇形的圆心角是度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.25.(7分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标,请用所学的知识求出点P落在△AOB内部的概率.26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【分析】根据统计图中的数据和频率与概率的关系,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】当移植棵数是1500时,该幼树移植成活的棵数是1356,所以此时“移植成活”的频率是0.904,但概率不一定是0.904,故①错误,随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880,故②正确,若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率也不一定是0.875,因为某一次或几次的频率太高或太低会影响估计概率,概率是一件事情发生的可能性,故③错误,故选:D.【点睛】此题考查频率与概率,统计图,解题关键在于看懂图中数据.4.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.5.A解析:A【解析】【分析】必然事件是一定会发生的事件,据此求解即可.【详解】A、长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,是必然事件;B、某彩票中奖率是1%,买100张一定会中奖是随机事件;C、2019年女足世界杯,德国队一定能夺得冠军,是随机事件;D、打开电视机,正在播放动画片,是随机事件,故选:A.【点睛】此题考查了概率的意义及随机事件的知识,必然事件是一定会发生的事件.6.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.7.D解析:D【解析】【分析】根据概率的定义,事件的定义一一判断即可.【详解】解:A、蜡烛在真空中燃烧是一个随机事件,错误,蜡烛在真空中燃烧是一个不可能事件.B、在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同,错误,射中靶心和没有射中靶心的两种情况的机会不等,因而不是等可能事件.C、某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次,错误,抽100次奖只能推断为:有可能中奖一次,也有可能一次也不中,还有可能中好几次,属于不确定事件中的可能性事件,而不是买100张一定会一等中奖.D、天气预报明天降水概率为80%,表示明天下雨的可能性较大,正确.故选D.【点睛】本题考查概率,事件的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为14;故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).10.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b<0是随机事件.综上所述:属于确定事件的有(3)(4),共2个,故选:B.【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 .故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.15.【分析】先求出黑色等边三角形在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色等边三角形4块共有16块等边三角形地板∴黑色等边三角形地板在整个地板中所占的比值∴小球停留在黑色区域的解析:1 4【分析】先求出黑色等边三角形在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色等边三角形4块,共有16块等边三角形地板,∴黑色等边三角形地板在整个地板中所占的比值41164==,∴小球停留在黑色区域的概率是14.故答案为:14.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.16.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524=.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考解析:1 2【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162,【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 18.【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=【详解】解:摸出的球是红球的概率=故答案为【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结解析:2 5【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=25.【详解】解:摸出的球是红球的概率=25.故答案为25.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数..19.3134【解析】【分析】在5×5的网格中共有36个格点除去AB两点有34个格点再找到以ABC三点为顶点画出三角形的格点数即可利用概率公式求解【详解】在5×5的网格中共有36个格点除去AB两点有34个解析:【解析】【分析】在5×5的网格中共有36个格点,除去A、B两点有34个格点,再找到以A、B、C三点为顶点画出三角形的格点数,即可利用概率公式求解.【详解】在5×5的网格中共有36个格点,除去A. B两点有34个格点,而以A. B. C三点为顶点画出三角形的格点有31个,故以A. B. C三点为顶点能画出三角形的概率是31÷34=.故答案为:.【点睛】本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.20.【解析】试题分析:根据随机事件概率大小的求法找准两点:①符合条件的情况数目②全部情况的总数二者的比值就是其发生的概率的大小解:把数学课安排在第一节课的概率为故答案为考点:概率公式解析:【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解:把数学课安排在第一节课的概率为,故答案为考点:概率公式.三、解答题21.(1)13,23;(2)见解析【分析】(1)用红色区域的面积除以圆的面积可得到指针落在红色区域的概率;用白色区域的面积除以圆的面积可得到指针落在白色区域的概率;(2)把圆分成8等份,然后把红色占5份,黄色占2份,白色占1份即可.【详解】解:(1)P(指针落在红色区域)1201 3603︒==︒.P(指针落在白色区域)3601202402 3603603︒︒︒︒︒-===(2)如图:(答案不唯一)【点睛】本是考查的是简单事件的概率问题,掌握概率的计算方法是解决此类问题的关键.22.(1)14,512,13;(2)袋中有7个白球.【解析】【分析】(1)依据有5个红球,3个绿球和4个白球,即可得到任意摸出一个球是绿球的概率,红球的概率,白球的概率;(2)设袋子内有n个白球,依据概率公式列出方程,即可得到白球的数量.【详解】(1)一共有3+5+4=12个球,任意摸出一个球是绿球的概率是312=14,任意摸出一个球是红球的概率是5 12,任意摸出一个球是白球的概率是412=13;故答案为:14,512,13;(2)设袋中有n个白球,则3 35n ++=15,解得:n=7,经检验n=7是分式方程的解,所以,袋中内有7个白球.【点睛】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)12;(2)23【解析】【分析】(1)先指出指向数字总共的结果,再指出指向奇数区的结果即可;(2)先指出指向数字总共的结果,再指出指针指向的数小于或等于4的结果即可.【详解】解:(1)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向奇数区的结果有3种,所以指针指向奇数区的概率是12.(2)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向的数小于或等于4的结果有4种,所以指针指向的数不大于4的概率是42 63 =.【点睛】本题考查的是概率,熟练掌握概率是解题的关键.24.(1)10,216; (2)见解析;(3)7 15.【解析】【分析】(1)用8分的人数除以60可求得a的值,用360度乘以10分所占的百分比即可求得答案;(2)分别求出8分以下的女生人数、16分的女生人数,然后补全条形统计图即可;(3)先求出男生的总人数,然后确定出成绩不是10分的人数,根据概率公式进行计算即可.【详解】(1)a%=(2+4)÷60=10%,所以a=10,成绩为10分所在扇形的圆心角是360°×(1-10%-10%-20%)=216°,故答案为:10,216;(2)成绩为8分以下的人数为:60×10=6,其中女生人数为:6-2=4人,成绩为16分的人数为:60×(1-10%-10%-20%)=36,其中女生人数为:36-16=20人,所以补全条形统计图如图所示:(3)男生共有2+4+8+16=30人,其中成绩为10分的有16人,成绩不是10分的有14人,所以从该班男生中随机抽取一人,成绩不是10分的概率是147 3015=.【点睛】本题考查了条形统计图与扇形统计图的综合运用,简单的概率计算,准确识图,从中找到有用的信息是解题的关键.25.1231(2,1)(3,1)(,1)(,1)2(1,2)(3,2)(,2)(,2)3(1,3)(2,3)(,3)(,3)(1,)(2,)(3,)(,)(1,)(2,)(3,)(,)当时,∴点(1,),(1,)在△AOB内部,当时,∴点(2,),(2,)在△AOB内部,当时,∴设上述点在△AOB内部,当时,则点(,1)(,2),(,)在△AOB内部,当时,则点(,1)(,2), (,)在△AOB内点,则点P在△AOB的内部概率P(内部)【解析】试题分析:由列表法得到所有的点,再找出在△AOB内部的点的个数即可.试题由题意得,列表如下:1231(1,2)(1,3)(1,)(1,)2(2,1)(2,3)(2,)(2,)3(3,1)(3,2)(3,)(3,)(,1)(,2)(,3)(,)(,1)(,2)(,3)(,)所有的点共有20个,当x=1时,y=2,点(1,),(1,)在△AOB内部,有2个;当x=2时,y=1,点(2,),(2,)在△AOB内部,有2个;当x=3时,y=0,没有点在△AOB内部,有0个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;可以发现落在△AOB内的点共有10个,所以点P落在△AOB内的概率为=.考点:1.概率公式;2.一次函数的性质.26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。

北师大版数学七年级下册数学第六章概率初步单元测试卷(含解析)

北师大版数学七年级下册数学第六章概率初步单元测试卷(含解析)

第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共10小题,满分30分,每小题3分)1.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中的灰色部分的概率,P(乙)小球停留在乙区域中的灰色部分的概率,下列说法正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定2.用如图所示的两个转盘进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出一个是红,一个是蓝)的概率是()A.1325B.625C.3625D.653.小张用一枚质地均匀的硬币做抛掷试验,前10次掷的结果都是反面向上,那么下一次掷得正面向上的概率为P(A),则()A.P(A)=1 B.P(A)=0 C.P(A)=0.5 D.P(A)≥0.5 4.一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有6个红球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在30%,那么估计盒子中小球的个数n为()A.15 B.18 C.20 D.245.在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为()A.45B.14C.15D.346.连续掷一枚质地均匀的硬币两次,掷出的结果两次都是“正面朝上”的概率为()A.12B.13C.14D.237.下列事件是必然事件的为()A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“成都新闻”D.任意一个三角形,它的内角和等于180 8.下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴有交点9.盒子里有15个象棋子,其中有5个炮,4个马,6个象,任意摸一个,摸到(________)的可能性最大,摸到(________)的可能性最小.A.马,象B.炮,马C.象,马D.都有可能10.下列事件为随机事件的是()A.在一个大气压下,加热到100Co水沸腾B.购买一张彩票,中奖C.奥运会上,百米的成绩为5秒D.掷一枚普通的骰子,朝上一面的点数为8二、填空题(共7小题,满分28分,每小题4分)11.写出一个不可能事件_____.12.“a是实数,则a2≥0”这一事件是___事件.(填“确定”或“随机”)13.一不透明的口袋里装有白球和红球共20个,这些球除颜色外完全相同,小明通过多次模拟试验后发现,其中摸到白色球的频率稳定在0.2左右,则口袋中红色球可能有___个.14.小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,搅匀后从中随机抽取1个题,他抽中综合题的概率是________________________. 15.“一个事件发生的可能性大小的数值,称为这个事件的概率”.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率记为P1,指针指向小于3的数的概率记为P2,指针指向偶数的概率记为P3,则P1、P2、P3的大小关系是_____.16.盒子里有材质、大小相同的红球、蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出______个球.17.一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是______.三、解答题(共6小题,满分42分,每题7分)18.掷三个普通的正方体的骰子,把三个骰子的点数相加,请问下列事件哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的,说说你的理由.(1)和为2;(2)和为6;(3)和大于2;(4)和等于18;(5)和小于19;(6)和大于18.19.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中,红球有1个,若从中随机摸出一个球,这个球是白球的概率为2 3 .(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.20.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?21.一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?22.在一个不透明的袋中装有3个绿球,5个红球和若干个白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(要求通过列式或列方程解答)(1)若袋内白球有4个,求任意摸出一个球是绿球的概率是多少?(2)如果任意摸出一个球是绿球的概率是310,求袋子内有几个白球?23.将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张.给出下列事件:(1)抽出的牌的点数是8;(2)抽出的牌的点数是0;(3)抽出的牌是“人像”;(4)抽出的牌的点数小于6;(5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.参考答案1.C【解析】【分析】利用概率的定义直接求出P(甲)和P(乙)进行比较. 【详解】解:P(甲)=26=13,P(乙)=39=13,所以P(甲)=P(乙).故答案为:C【点睛】本题考查了随机事件的概率,掌握概率的定义是解题的关键.2.A【解析】【分析】列表得出所有等可能的情况数,找出配成紫色的情况数,除以总情况数即为所求的概率.【详解】解:列表得:由表可知共有5×5=25种可能,配成紫色的有13种,所以配成紫色的概率是1325,故选:A.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.3.C【解析】【分析】根据概率的意义就是事件出现的机会的大小,硬币出现正面向上与反面的机会相等,据此即可选择正确选项.【详解】因为每次掷硬币正面朝上的概率都是12,前面的结果对后面的概率是没有影响的,所以出现正面向上的概率是相同的.故选C.【点睛】本题考查了概率的知识,概率等于所求情况数与总情况数之比.4.C【解析】【分析】看到频率稳定,那么这一定利用频率估计概率,利用概率求数量的题目,这句话“摸到红球的频率稳定在30%”是关键,可以告诉我们红球的概率,利用红球的概率可以得到所有小球的数量.【详解】解:设摸到红球的概率为P,∵摸到红球的频率稳定在30%,∴P(摸到红球)=0.3,∵P(摸到红球)=红球的数量所有小球的数量,∴6=200.3P==红球的数量所有小球的数量【点睛】本题主要考查学生利用概率求数量5.C【解析】【分析】根据题意,易得这个不透明的袋子里有10个球,已知其中有2个白球,根据概率的计算公式可得答案.【详解】解:这个不透明的袋子里有10个球,其中2个白球,小明随意地摸出一球,是白球的概率为:21 105;故选:C.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.6.C【解析】【分析】画树状图展示所有4种等可能的结果数,找出掷出的结果两次都是“正面朝上”的结果数,然后根据概率公式计算.【详解】解:画树状图为:共有4种等可能的结果数,其中掷出的结果两次都是“正面朝上”的结果数为1,所以掷出的结果两次都是“正面朝上”的概率=14.故选:C.【点睛】本题考查了列表法与树状图法.7.D【解析】【分析】必然事件即为一定会发生的事件,其概率为1,判断即可得出答案. 【详解】A明天太阳从西方升起是不可能事件,故选项A错误;B掷一枚硬币,正面朝上是随机事件,故选项B错误;C打开电视机,正在播放“成都新闻”是随机事件,故选项C错误;D任意一个三角形,它的内角和等于180°是一个必然事件,符合题意;故答案选择D.【点睛】此题考查了随机事件,解题的关键是理解必然事件和随机事件的概念.8.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、打开电视机正在播放广告是随机事件;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;C、任意画一个三角形,其内角和为180°是必然事件,D、任意一个二次函数图象与x轴有交点是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.C【解析】【分析】因为盒子里有5个炮,4个马,6个象,象的个数>炮的个数>马的个数,马的个数最少,所以摸到象的可能性最大,摸到马的可能性最小,据此解答.【详解】解:盒子里有15个象棋子,其中有5个炮,4个马,6个象,6>5>4,任意摸出一个,摸到象的可能性最大,摸到马的可能性最小,故答案为:C.【点睛】本题可以不用求出摸出三种球的可能性,可以直接根据每种球的个数的多少直接判断即可.10.B【解析】【分析】随机事件是可能发生也可能不发生的事件,依据定义找到正确选项即可.【详解】解:A、是必然事件,故错误;B、可能发生,也可能不发生,是随机事件,故正确;C、是不可能事件,故错误;D、是不可能事件,故错误;故选择:B.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.明天是三十二号【解析】不可能事件是指在一定条件下,一定不发生的事件.一个月最多有31天,故明天是三十二号不可能存在,为不可能事件.12.确定【解析】【分析】先判断命题的真假,然后根据必然事件、不可能事件、随机事件的概念求解.【详解】∵“a是实数,a2≥0”是真命题,∴“a是实数,a2≥0”这一事件是必然事件,是确定事件,.故答案是:确定.【点睛】考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.16【解析】【分析】由题意:“小明通过多次摸球试验后发现”知所得频率可以近似地认为是概率,再由概率之和为1计算出红色与黑色球的频率,最后由数据总数×频率=频数计算个数即可.【详解】解:Q白色球频率稳定在0.2左右,∴摸到红色与黑色球的频率为10.20.8-=,故口袋中红色与黑色球个数可能是200.816⨯=个,故答案为:16.【点睛】本题考查了概率的意义,大量反复试验下频率稳定值即概率.关键是算出摸到球的频率.14.11 20【解析】【分析】语文题4个,数学题5个,综合题11个,一共有20个题,从20个中抽到综合题的可能性,有11种,因此抽中综合题的概率是11 20【详解】解:设抽中综合题的概率为P,P(抽中综合题)=11=20抽中综合题的数量抽题的总数量【点睛】本题考查学生对于求简单概率问题的掌握15.P1=P3>P2【解析】【分析】根据概率公式计算出三者的概率,从而得出它们大小关系.【详解】∵指针指向大于3的数的概率记为P1=36=12,指针指向小于3的数的概率记为P2=26=13,指针指向偶数的概率记为P3=36=12,∴P1=P3>P2,故答案为:P1=P3>P2.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.16.3【解析】【分析】根据题意可知,盒子里共有两种颜色的球,想要摸出的球一定有2个同色,题中“一定”说明当摸出的球是两个时不符合,因为摸出两个球时,可以是两红,两蓝,一红一蓝,不符合一定有两个同色,所以至少当摸出第3个球时,才能保证一定有2个同色的球出现.【详解】摸出一个球出来,颜色情况可能是一个蓝或者一个红,此时只有一个球,不存在两个同色球的情况,不符合题意,排除.然后继续摸出第2个球出来时,此时两个球的颜色情况可能是两红、两蓝、一红一蓝,此时虽然出现了2个同色球的情况,但不符合题意中“一定”有2个同色的情况,因为还包含了一蓝一红,不符合题意,排除.当摸出第三个球出来时,此时的颜色情况可能是三红、三蓝、一红两蓝、一蓝两红。

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。

北师大版数学七年级下册第六章概率初步 达标测试卷

北师大版数学七年级下册第六章概率初步 达标测试卷

第六章概率初步达标测试卷一、选择题(每题3分,共30分)1.下列事件属于必然事件的是()A.太阳从西边升起B.若今天星期一,则明天星期二C.两条直线被第三条直线所截,同位角相等D.抛掷1枚质地均匀的骰子,出现5点向上2.下列成语中,描述的事件是不可能事件的是()A.守株待兔B.猴子捞月C.旭日东升D.水涨船高3.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是试验中的几组数据,则摸到白球的概率约是()A.0.4 B.0.5 C.0.6 D.0.74.有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为()A.14 B.12 C.34D.15.下列说法正确的是()A.概率很小的事情不可能发生B.抛掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次C.从1、2、3、4、5中任取一个数是偶数的可能性比较大D.在13名同学中,至少有两人的出生月份相同是必然事件6.下列试验中,结果具有“等可能性”的是()A.掷一枚质地均匀的骰子B.篮球运动员定点投篮C.掷一个矿泉水瓶盖D.从装有若干个小球的透明袋子中摸球7.如图是一个可自由转动的转盘,转动转盘一次,当转盘停止转动时,指针落在数字“Ⅳ”所示区域内的概率是()A.13 B.16 C.14 D.388.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.公平D.无法确定对谁有利9.已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n的值是()A.10 B.12 C.13 D.1410.一个小钢球在如图所示的区域内运动,三个圆的半径分别为r,2r,3r,则小钢球停止在蓝色区域的概率为()A.19 B.13 C.49 D.59 (第10题)(第15题)二、填空题(每题3分,共15分)3 11.生活中,为了强调某件事情一定会发生,有人会说“这件事百分之二百会发生”,这句话是______的.(填“正确”或“错误” )12.在不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是______.13.事件A 发生的概率为125,大量重复地做这种试验,事件A 平均每1 000次发生的次数是______.14.有5张相同的卡片,卡片正面分别标有-2,|-3|,(-2)2,-⎝ ⎛⎭⎪⎫140,(-1)-2,将卡片背面朝上,从中随机抽取1张,则抽取的卡片正面上的数是正数的概率为______.15.如图,是一张三角形纸板,其中AD =DF ,BE =ED ,EF =FC ,一只蚂蚁在这张纸板上自由爬行,则蚂蚁爬到阴影部分的概率为______. 三、解答题(一)(每题8分,共24分)16.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类? (1)明年8月5日广东沿海没有台风;(2)抛掷一枚质地均匀的硬币,硬币落地时正面朝上; (3)投出铅球后,经过一段时间铅球落到地面上; (4)从一副扑克牌中任意抽出两张,都是“红桃A”; (5)买一张电影票,排号和座位号都是奇数.17.手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到. (1)以下说法正确是__________. A .甲抢到的红包金额一定最多B.乙抢到的红包金额一定最多C.丙抢到的红包金额一定最多D.丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?18.在一个不透明的袋子中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋子中的球摇匀后,求从袋子中随机摸出一个球是黄球的概率;(2)若向这个袋子再加入5个红球,求从袋子中随机摸出一个球,摸到不是红球的概率.四、解答题(二)(每题9分,共27分)19.现有四根长度为2cm,3cm,4cm,5cm的木棒,小明任意取一根木棒,能与手中长度为3cm,6cm的木棒拼成一个三角形木框的概率是多少?20.“草莓音乐节”组委会设置了甲、乙、丙三种门票,初一二班购买了甲种门票3张,乙种门票7张,丙种门票10张,班长采取在全班同学中随机抽取的方式来确定观众名单,且每名同学只有一次机会,已知该班有50名学生,请根据题意解决以下问题:(1)该班某名学生恰能去参加“草莓音乐节”活动的概率是多少?(2)该班同学强烈呼吁甲种门票太少,要求每人抽到甲种门票的概率要达到20%,则还要购买甲种门票多少张?521.小蒙设计了两个抽奖游戏,游戏一是转盘游戏,如图,转盘被等分成了4个扇形,共有红、黄和蓝三种颜色,自由转动转盘,指针停在红色时会得到奖励;游戏二是摸球游戏,袋子里有2个红球、2个黄球和1个蓝球,每个球除颜色外其他都相同,任意摸出一个球,摸到红球会得到奖励.小雨要参加抽奖游戏,应选择参加哪一个游戏获得奖励的可能性比较大?请说明理由.五、解答题(三)(每题12分,共24分)22.“校园手机”现象越来越受到社会的关注.九(1)班学生在“统计实习”实践活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的态度,统计整理并制作了如下的统计图.(1)在图②中,AB是圆O的直径,求这次被调查的家长总人数,并补全图①;(2)求图②中表示家长“基本赞成”的圆心角的度数;(3)从这次接受调查的家长中,随机抽取一名,恰好是“无所谓”态度的家长的概率是多少?23.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针对准红色、黄色、绿色的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘被等分成16个扇形).(1)王老师购买了210元的商品,他获得奖金的概率是多少?(2)张老师购买了370元的商品,他获得20元奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为14,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?7答案一、1.B 2.B 3.C 4.B 5.D 6.A7.D8.C9.B10.B点拨:蓝色区域的面积为π(2r)2-πr2=3πr2,总面积为π(3r)2=9πr2,则小钢球停止在蓝色区域的概率为3πr29πr2=13.故选B.二、11.错误12.2513.4014.3515.17三、16.解:(1)(2)(5)属于随机事件,(3)属于必然事件,(4)属于不可能事件.17.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.18.解:(1)因为不透明的袋子中装有2个黄球,3个黑球和5个红球,所以从袋子中随机摸出一个球是黄球的概率是22+3+5=15.(2)因为向这个袋子再加入5个红球,所以红球共有10个,球的总数为2+3+5+5=15(个),所以从袋子中随机摸出一个球,摸到不是红球的概率是15-1015=13.四、19.解:因为小明手中两根木棒的长度分别为3cm和6cm,所以易得第三边的长度应满足大于3cm,小于9cm.所以能与小明手中两根木棒拼成三角形的木棒的长度是4cm或5cm,所以能与长度为3cm,6cm的木棒拼成一个三角形木框的概率是24=12.20.解:(1)因为该班有50名学生,且每名同学抽中的可能性相等,三种门票共有3+7+10=20(张),所以该班某名学生恰能去参加“草莓音乐节”活动的概率是2050=25.(2)设还要购买甲种门票x张,则根据题意得3+x 50=20%,解得x=7.答:还要购买甲种门票7张.21.解:游戏一:由于转盘被等分成了4个扇形,红色占2个,因此指针停在红色的概率为24=12.游戏二:袋子里有2个红球、2个黄球和1个蓝球,摸出一个球是红色的概率为22+2+1=25,因为12>25,所以应选择参加游戏一获得奖励的可能性较大.五、22.解:(1)由于AB是圆O的直径,所以“不赞成”占被调查总人数的50%,所以这次调查的家长总人数为200÷50%=400(人).“非常赞成”的人数为400×26%=104(人),“基本赞成”的人数为400-200-104-16=80(人),补全的统计图如下.(2)360°×80400=72°.答:题图②中表示家长“基本赞成”的圆心角的度数为72°.(3)在这次被调查的400名家长中,“无所谓”态度的家长有16名,所以恰好是“无所谓”态度的家长的概率是16400=125.23. 解:(1)王老师购买了210元的商品,能获得一次转动转盘的机会,获得奖金的概率是616=38.(2)张老师购买了370元的商品,能获得一次转动转盘的机会,获得20元奖金的概率是216=18.(3)设需要将x个无色区域涂上绿色,则由题意得x+316=14,解得x=1.所以需要将1个无色区域涂上绿色.9。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.下列事件中,为必然事件的是( ) A .明天早晨,大家能看到太阳从东方冉冉升起 B .成绩一直优秀的小华后天的测试成绩也一定优秀C .从能被2整除的数中,随机抽取一个数能被8整除D .从10本图书中随机抽取一本是小说3.下列事件中,确定事件是( )A .向量BC 与向量CD 是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形4.下列事件中,是必然事件的是( ) A .多边形的外角和等于360° B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,正面向上 5.下列事件为必然事件的是( ) A .掷一枚硬币,正面朝上 B .打开电视机,正在播放动画片C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形D .两角及一边对应相等的两个三角形全等 6.下列事件中,是确定事件的是( ) A .车辆随机经过一个路口,遇到红灯 B .三条线段能组成一个三角形C .将油滴入水中,油会浮在水面D .掷一枚质地均匀的骰子,掷出的点数是质数7.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为() A .15 个B .12 个C .8 个D .6 个8.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .239.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( ) A .6B .16C .22D .2410.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( ) A .0.42 B .0.50C .0.58D .0.7211.下列事件:(1)打开电视机,正在播放新闻; (2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1; (4)一个有理数的平方一定是非负数; (5)若a ,b 异号,则0a b +<; 属于确定事件的有( )个. A .1B .2C .3D .412.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π二、填空题13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________. 14.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级 餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个黄球的概率是_____.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是_______.18.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.19.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=______,P(摸到白球)=_______.20.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是_____(填“必然事件”、“随机事件”或“不可能事件”)三、解答题21.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14.求:(1)口袋里黄球的个数;(2)任意摸出一个球是黄球的概率.22.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率1P;(3)求向上点数之和不超过5的概率2P.23.在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和黄球的数量分别是多少?24.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P;(5)在1---100之间,随机抽出一个整数是偶数的概率5P.25.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.3.B解析:B根据“必然事件和不可能事件统称确定事件”逐一判断即可. 【详解】A. 向量BC 与向量CD 是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B . 【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.4.A解析:A 【分析】根据事件发生的可能性大小判断相应事件的即可. 【详解】解:A 、多边形的外角和等于360°,是必然事件; B 、车辆随机到达一个路口,遇到红灯,是随机事件; C 、如果a 2=b 2,那么a =b ,是随机事件;D 、掷一枚质地均匀的硬币,正面向上,是随机事件; 故答案为A . 【点睛】本题考查了随机事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.5.D解析:D 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】A .掷一枚硬币,正面朝上是随机事件,;B .打开电视机,正在播放动画片是随机事件;C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形是不可能事件;D .两角及一边对应相等的两个三角形全等是必然事件. 故选D . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A选项:车辆随机经过一个路口,遇到红灯,可能事件;B选项:三条线段能组成一个三角形,可能事件;C选项:将油滴入水中,油会浮在水面,确定事件;D选项:掷一枚质地均匀的骰子,掷出的点数是质数,可能事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m=所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.8.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形,则构成轴对称图形的概率为:31 62 =故选:C.此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.9.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.10.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为420=0.42,1000故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件, (4)一个有理数的平方一定是非负数是确定事件, (5)若a 、b 异号,则a+b <0是随机事件. 综上所述:属于确定事件的有(3)(4),共2个, 故选:B . 【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.二、填空题13.m+n =10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m 个红球10个黄球n 个白球摸到黄球的概率与不是黄球的概率相同∴m 与n 的关系是:m+n =10故答案为m+n =10【点睛】解析:m +n =10.【分析】直接利用概率相同的频数相同进而得出答案. 【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14.【分析】小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为据此可得两次摸出的球都是红球的概率【详解】∵小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为∴解析:16 81.【分析】小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,∴两次摸出的球都是红球的概率为:49×49=1681.故答案为16 81.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.15.丙【分析】不低于四星即四星与五星的和居多为符合题意的餐厅【详解】不低于四星即比较四星和五星的和丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少解析:丙【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16.【解析】【分析】由一个口袋里有相同的红绿黄三种颜色的小球其中有6个红球5个绿球若任意摸出一个绿球的概率是可求得球的总个数继而求得黄球的个数然后利用概率公式求解即可求得答案【详解】解:∵一个口袋里有相解析:9 20【解析】【分析】由一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,可求得球的总个数,继而求得黄球的个数,然后利用概率公式求解即可求得答案.【详解】解:∵一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.任意摸出一个绿球的概率是14,∴共有球:5÷14=20(个),∴黄球有:20﹣6﹣5=9(个),∴任意摸出一个黄球的概率是:920.故答案为:9 20.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】试题分析:抽出的数字可能是1234总共有4种结果其中是奇数的结果有2种所以抽出的数字是奇数的概率是故答案为考点:概率的计算解析:【解析】试题分析:抽出的数字可能是1,2,3,4,总共有4种结果,其中是奇数的结果有2种,所以抽出的数字是奇数的概率是12.故答案为12.考点:概率的计算.18.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率.19.【解析】∵有5个红球4个白球和3个黄球∴总球数是:5+4+3=12(个)∴P(摸到红球)=;P(摸到白球)==;故答案为:解析:51213【解析】∵有5个红球、4个白球和3个黄球,∴总球数是:5+4+3=12(个),∴P(摸到红球)= 512;P(摸到白球)=412=13;故答案为:512,13.20.随机事件【解析】试题分析:∵盒子中装有3个红球2个黄球∴从中随机摸出3个小球则事件所摸3个球中必含一个红球是随机事件故答案为随机事件考点:随机事件解析:随机事件.【解析】试题分析:∵盒子中装有3个红球,2个黄球,∴从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是随机事件,故答案为随机事件.考点:随机事件.三、解答题21.(1)口袋中黄球有11个;(2)11 20.【解析】【分析】(1)设有x个黄球,用绿球的个数除总数等于14,即可解答(2)用黄球个数除总数即可解答【详解】(1)设有x个黄球,根据题意,得:51 544x=++,解得:x=11,即口袋中黄球有11个;(2)∵袋子中共有11+4+5=20个小球,其中黄球有11个,∴任意摸出一个球是黄球的概率为1120.【点睛】此题考查概率公式,难度不大22.(1)列表见解析,共有36种等可能的结果;(2)15 36P=(3)25 18P=【解析】【分析】(1)首先根据题意列出表格,注意在列表的时候做到不重不漏,然后由表格求得所有等可能的结果;(2)由(1)可求得向上点数之和为8的情况,再利用概率公式即可求得答案;(3)由(1)可求得向上点数之和不超过5的情况,再利用概率公式即可求得答案.【详解】解:(1)列表得:(2)∵向上点数之和为8的有5种情况,∴15 36P=;(3)∵向上点数之和不超过5的有10种情况,∴2105 3618P==.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)P(摸到红球)=,P(摸到黄球)=;(2)5 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x个,则黄球为(8−x)个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P(摸到红球)=,P(摸到黄球)=;(2)设放入红球x个,则黄球为(8−x)个,由题意列方程得:解得:x=5.所以这8个球中红球和黄球的数量分别应是5个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.24.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0;(2)选择题的答案是4选1,因此其概率为14;(3)袋子中摸到红球的概率为23;(4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为501 1002=.试题考点:概率25.(1)这次调查了100个家长;(2)图形见解析;(3)持“赞成”态度的学生估计约有300个.【解析】试题分析:(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.试题(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,考点:1、条形统计图;2、扇形统计图;3、用样本估计总体26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

七年级数学下册第六章概率初步测试题

七年级数学下册第六章概率初步测试题

七年级数学下册第六章概率初步测试题一、选择题(每题3分,共30分)1. 以下事情发作的概率为0的是( )A.小明的爸爸买体彩中了大奖 B.小强的体重只要25公斤 C.未来的某天会有370天 D .未来三天必有强降雨2.小明用一枚平均的硬币实验,前7次掷得的结果都是下面向上,假设将第8次掷得下面向上的概率记为P,那么( )A.P=0.5 B.P0.5 C.P0.5 D.无法确定3. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( )A. B. C. D.4.一个袋中有a只红球,b只红球,它们除颜色不同外,其它均相反,假定从中摸出一个球是红球的概率为 ( )A. B. C.D .5. 小狗在如下图的方砖上走来走去,最终停在黑色方砖上的概率为( )A. B. C. D .6. 一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的时机是( )A. B. C. D.7.四张卡片区分标有0、1、2、3的数字,抽出一张的数字是偶数的概率为( )A. B. C. D.28.以下说法正确的选项是( ) A.小强往年12岁,明年百分之二百地是13岁. B.同时抛掷两枚硬币,同是正面或同是反面朝上的能够性比一正一反大.C.恣意掷出一枚骰子,点数6朝上的概率与点数1朝上的概率相反.D.盒子里装有10个完全相反的纸团,其中只要一个纸团内写有奖,而另九个纸团内均为谢谢惠顾,10名参与者可从中任摸一个纸团,那么先摸的比后摸的中奖概率要大.9.图中有四个可以自在转动的转盘,每个转盘被分红假定干等分,转动转盘,当转盘中止后,指针指向白色区域的概率相反的是( ).A.转盘2与转盘3B. 转盘2与转盘4C. 转盘3与转盘4D. 转盘1与转盘410. 李明用6个球设计了一个摸球游戏,共有四种方案,一定不能成功的是( )A.摸到黄球、红球的概率是B.摸到黄球的概率是,摸到红球、白球的概率都是C.摸到黄球、红球、白球的概率区分为、、D.摸到黄球、红球、白球的概率都是二.填空题:(每题3分,共30分)11. 小明在一个小正方体的六个面上区分标了1、2、3、4、5、6六个数字,随意地掷出小正方体,那么P(掷出地数字小于7)=________. P(掷出地数字等于7)=________.12. 王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在白色区域的概率为1/3,假设他将转盘等分红12份,那么白色区域应占的份数是 .13. 甲、乙两人下棋,甲赢的概率是0.5(填一定或不一定)14. 某商场举行有奖销售活动,方法如下:凡购货满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,某人买了120元的商品,那他中奖的概率应该是 .15.同地掷出两枚硬币,那么同为正面朝上的概率为 .16.有大小两个同心圆,它们的半径区分是1和3,飞镖钉在小圆中的概率是17.以下三个事情,它们的概率区分为多少,填在前面的横线上。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(有答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(有答案解析)

一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.下列说法正确的是()A.抛掷一枚质地均匀的硬币两次,必有一次正面朝上B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D.“0a ”是必然事件3.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上4.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等5.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是()A.B.C.D.6.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数7.下列事件属于必然事件的是( )A.掷一枚均匀的硬币,正面朝上B.车辆行驶到下一路口,遇到绿灯。

C.若a2=b2,则a=b D.若|a|>|b|,则a2>b28.“两个相等的角一定是对顶角”,此事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件9.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B.12C.213D.210.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来11.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限12.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7D.掷一枚硬币,正面朝上二、填空题13.某商场为消费者设置了购物后的抽奖活动,总奖项数量若干,小红妈妈在抽奖的时候,各个奖项所占的比例如图,则小红妈妈抽到三等奖以上(含三等奖)的可能性为__________.14.某班有男生和女生各若干,若随机抽取1人,抽到男生的概率是0.4,则抽到女生的概率是__________.15.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为偶数的卡片的概率是_____.16.有5张正面分别写有数字﹣1,-14,0,1,3的卡片,它们除数字不同外全部相同.将它们背面朝上,洗匀后从中随机的抽取一张,记卡片上的数字为a,则使以x为自变量的反比例函数37ayx-=经过二、四象限,且关于x的方程2221111ax x x+=-+-有实数解的概率是_____.17.一个不透明的盒子中装有4个白球,5个红球,这些球除颜色外无其他区别,从这个盒子中随意摸出一个球,摸到红球的可能性的大小是_____.18.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.19.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___.20.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是_____.三、解答题21.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.22.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算23.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.24.永辉超市进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:奖次特等奖一等奖二等奖三等奖圆心角1︒36︒53︒150︒促销公告凡购买我商场商品均有可能获得下列大奖:特等奖:彩电一台一等奖:自行车一辆二等奖:圆珠笔一支三等奖:卡通画一张(1)获得圆珠笔的概率是多少?(2)不获奖的概率是多少?(3)如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和实验规则)25.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.26.在一个不透明的袋子中装有3个红球和6个黄球,每个球除颜色外其余都相同.(1)从中任意摸出1个球,摸到________球的可能性大;(2)如果另拿5个球放入袋中并搅匀,使得从中任意摸出1个球,摸到红球和黄球的可能性大小相等,那么应放入几个红球,几个黄球?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:1;2故选A.【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A的等可能性是解题的关键.2.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.3.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【解析】【分析】先根据轴对称的性质分别求出5种图象中是轴对称图形的个数,除以总数5即为一次过关的概率.【详解】∵5种图象中,等腰梯形、圆、等腰三角形、菱形4种是轴对称图形,∴一次过关的概率是.故选D.【点睛】此题考查概率公式,轴对称图形,解题关键在于掌握概率计算公式.6.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.7.D解析:D【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【详解】A. 任意掷一枚均匀的硬币,正面朝上是随机事件,故本选项错误;B. 车辆行驶到下一路口,遇到绿灯是随机事件,故本选项错误;C. 若a2=b2,则a=b,也可能a,b互为相反数,所以是随机事件,故本选项错误;D. |a|>|b|,则a2>b2,是必然事件,故本选项正确。

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近  ;(2)假如你去摸一次,你摸到白球的概率是  ,摸到黑球的概率是  ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。

(必考题)初中数学七年级数学下册第六单元《概率初步》检测卷(包含答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》检测卷(包含答案解析)

一、选择题1.下列说法正确的是()A.抛掷一枚质地均匀的硬币两次,必有一次正面朝上B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D.“0a ”是必然事件2.下列说法中正确的是()A.“任意画出一个平行四边形,它是中心对称图形”是必然事件B.“正八边形的每个外角的度数都等于45°”是随机事件C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是不可能事件D.任意抛掷一枚质地均匀的硬币100次,则反面向上一定是50次3.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为13,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A.15 个B.12 个C.8 个D.6 个5.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是()A.必然事件B.不可能事件C.确定事件D.随机事件6.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上7.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=1 4D.P1=P2=1 48.下列说法中,正确的是( ) A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.“明天要降雨的概率为12”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次9.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为()A.0.42 B.0.50 C.0.58 D.0.7210.下列说法中正确的是()A.367人中至少有两人是同月同日生B.某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C.“打开电视机,正在播放《动物世界》”是必然事件D.“明天降雨的概率是80%”表示明天有80%的时间降雨11.下列成语描述的事件是必然事件的是()A.守株待兔B.翁中捉鳖C.画饼充饥D.水中捞月12.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是()A.七年(2)班肯定会输掉这场比赛B.七年(1)班肯定会赢得这场比赛C.若比赛10次,则七年(1)班会赢得8次D.七年(2)班也有可能会赢得这场比赛二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个.14.一个均匀的正方体,6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是____.15.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.16.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.17.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.18.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘②与转盘③B.转盘②与转盘④C.转盘③与转盘④D.转盘①与转盘④19.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为偶数的卡片的概率是_____.20.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币 1000 次,第 1000 次正面向上,其中为随机事件的有_____个.三、解答题21.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.22.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是1 4 .(1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?23.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,35,5+(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是________.(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或画树状(形)图法,求出两次抽取的卡片上的实数之差为有理数的概率.24.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.25.将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率.26.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,, 2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.A.“任意画出一个平行四边形,它是中心对称图形”是必然事件,故本选项正确;B.“正八边形的每个外角的度数都等于45°”是必然事件,故本选项错误;C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是随机事件,故本选项错误;D.任意抛掷一枚质地均匀的硬币100次,则反面向上不一定是50次,故本选项错误;故选:A.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3.B解析:B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.4.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.D 解析:D【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C解析:C【解析】【分析】根据随机事件与必然事件的定义逐一进行判断即可.【详解】A.3天内会下雨是随机事件,故该选项不符合题意,B.打开电视机,正在播放广告是随机事件,故该选项不符合题意,C.367人中至少有2人公历生日相同是必然事件,故该选项符合题意,D.抛掷1个均匀的骰子,出现4点向上是随机事件,故该选项不符合题意,故选C.【点睛】本题考查了随机事件与必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件;在一定条件下,必然会发生的事件称为必然事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件,所以P1=0,P2=1故选B.【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.8.A解析:A【解析】【分析】直接利用概率的意义分别分析得出答案.A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;C、“明天要降雨的概率为12”,表示明天有50%的可能降雨,故此选项错误;D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选A.【点睛】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.9.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42,故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.10.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.B解析:B【分析】根据必然事件指在一定条件下一定发生的事件对各选项分析判断利用排除法求解.【详解】A、守株待兔,是随机事件;B、瓮中捉鳖,是必然事件;C、画饼充饥,是不可能事件;D、水中捞月,是不可能事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.D解析:D【分析】根据概率的意义和题意分析“获胜的机会是80%”的意义,逐项作出判断即可求解.【详解】解:80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.七年(1)获胜的机会是80%,七年级(1)班有可能会赢得比赛,也有可能输掉比赛,只不过获胜的可能性大,而七年(2)班有可能会赢得比赛,也有可能输掉比赛,,只不过获胜的可能性小,故A、B、C选项均不正确,只有D选项符合题意.故选:D.【点睛】本题考查了对概率的理解,正确理解概率的意义是解题关键.二、填空题13.16【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个则解得x=16即箱子中共有16个球故答案为:16【点睛】此题考查了概率解析:16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个,则414x=,解得x=16,即箱子中共有16个球,故答案为:16.【点睛】此题考查了概率的求法:如果一个事件有n中可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.14.【分析】根据简单事件的概率公式计算解答【详解】6个面中有1个面是黄色的2个面是红色的3个面是绿色的任意掷一次该正方体则绿色面朝上的可能性是故答案为:【点睛】此题考查简单事件的概率理解事件中绿色发生的解析:1 2【分析】根据简单事件的概率公式计算解答.【详解】6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是31 62 =,故答案为:12.【点睛】此题考查简单事件的概率,理解事件中绿色发生的可能性大小是解题的关键.15.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.200【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手列出等式解答【详解】设红球的个数为x根据题意得:解得:x=200故答案为:200考点:利用频率估计概率解析:200【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】设红球的个数为x,根据题意得:10000.2x解得:x=200故答案为:200.考点:利用频率估计概率.17.5【分析】根据概率的意义即可求出答案【详解】由于每一次正面朝上的概率相等∴第21次抛掷的结果正面朝上的概率为05故答案为:05【点睛】本题考查概率的意义解题的关键是正确理解概率的意义本题属于基础题型解析:5【分析】根据概率的意义即可求出答案.【详解】由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5,故答案为:0.5【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.18.D【解析】【分析】分别计算转盘1到4出现白色区域的概率选择相同的概率即可【详解】解:转盘1指针指向白色区域的概率为:转盘2指针指向白色区域的概率为:转盘3指针指向白色区域的概率为:转盘4指针指向白色解析:D【解析】【分析】分别计算转盘1到4出现白色区域的概率,选择相同的概率即可.【详解】解:转盘1指针指向白色区域的概率为:1 4转盘2指针指向白色区域的概率为:21 = 63转盘3指针指向白色区域的概率为:42= 105转盘4指针指向白色区域的概率为:21 = 84所以转盘1和4指向白色区域的概率相同.故选D.【点睛】本题主要考查概率的计算,这是中考的必考题,应当熟练掌握计算方法.19.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片它们的标号分别为12345其中偶数有24共2个再根据概率公式即可得出答案【详解】∵共有5个数字偶数有2个分别是2和4∴随机抽取一张抽中标号为解析:25.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,其中偶数有2,4,共2个,再根据概率公式即可得出答案.【详解】∵共有5个数字,偶数有2个,分别是2和4,∴随机抽取一张,抽中标号为偶数的卡片的概率是25;故答案是:25.【点睛】考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.2【解析】【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件【解析:2【解析】【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.【点睛】本题主要考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.三、解答题21.()1不确定事件;()2不可能事件;()3必然事件【分析】(1)从口袋中任意取出一个球,可能是红球、篮球或白球,即可判断;(2)口袋中只有三个蓝球,则从口袋中一次任取5个球,不可能全是蓝球,即可判断; (3)由于口袋中有5个红球、3个蓝球和2个白球,任意一种或两种颜色的球的总数都小于9,所以从口袋中一次任意取出9个球,必然是三个颜色都有,即可做出判断.【详解】(1)从口袋中任意取出一个球,可能是红球、蓝球或白球,所以这个事件是不确定事件; (2)口袋中只有三个蓝球,则从口袋中一次任取5个球,不可能全是蓝球,所以这个事件是不可能事件;(3)由于口袋中有5个红球、3个蓝球和2个白球,任意一种或两种颜色的球的总数都小于9,所以从口袋中一次任意取出9个球,必然是三个颜色都有,因此这个事件是必然事件.【点睛】本题考查了不确定事件、不可能事件、必然事件的概念,熟练掌握各种事件的概念是判断此类问题的依据.22.(1)P (取到白球)是3 4;(2)袋中的红球有6只.【分析】根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;同时互为对立事件的两个事件概率之和为1.【详解】(1)P (取到白球)=1- P (取到红球)=1-14=34. (2)设袋中的红球有x 只,则有18x x +=14,解得x =6.所以袋中的红球有6只. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;组成整体的几部分的概率之和为1.23.(1)23;(2)13.【解析】试题分析:(1)由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,5,5+3,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.试题(1)23;(2)列表如下:因此,所求概率为:P=1 3 .考点: 1.列表法与树状图法;2.概率公式.24.(1)12;(2)这种游戏方案设计对甲、乙双方公平.【解析】试题分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式说明游戏是否公平;试题解:(1)∵不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,∴从中任取一球,球上的数字为偶数的概率为:2142;(2)画树状图得:∵共有12种等可能的结果,两个球上的数字之和为偶数的有(1,3),(2,4),(3,1),(4,2)共4种情况,∴两个球上的数字之和为偶数的概率为:41123,∴p (甲胜)=,p(乙胜)=,,不公平.考点:1、概率公式;2、游戏公平性的判断.25.(1)P(抽到奇数)=23;(2)P(恰好抽到为35)=16【解析】试题分析:(1)先求出这组数中奇数的个数,再利用概率公式解答即可;(2)根据题意列举出能组成的数的个数及35的个数,再利用概率公式解答.试题(1)根据题意可得:有三张卡片,奇数只有“3和5”一张,故抽到奇数的概率P=;(2)根据题意可得:随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,共能组成6个不同的两位数:32,52,23,53,25,35.其中恰好为35的概率为.考点:概率公式26.(1).(2).【解析】试题分析:(1)三个数中有理数有一个3,求出所求概率即可;(2)列表得出所有等可能的情况数,找出抽取的两数之积为有理数的情况数,即可求出所求的概率.试题(1)按照爸爸的规则小明能看比赛的概率P=.(2)列表如下:。

第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册

第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册

第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A. 13B. 29C. 23D. 492. 用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大?( )A. 转盘甲B. 转盘乙C. 两个一样大D. 无法确定3. 有六张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( )A. 23B. 12C. 13D. 164. 不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是15,则n的值是( )A. 250B. 10C. 5D. 15. 下列各选项的事件中,是随机事件的是( )A. 向上抛的硬币会落下B. 打开电视机,正在播新闻C. 太阳从西边升起D. 长度分别为4、5、6的三条线段围成三角形6. 从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B. 13C. 12D. 347. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从F出口落出的概率是( )A. 12B. 13C. 14D. 168. 一个质地均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,右图是这个立方体的展开图,抛掷这个立方体,则朝上一面上的数字恰好等于朝下一面上的数字的12的概率是( )A. 16B. 13C. 12D. 23二、填空题(本大题共7小题,共21分)9. 如图所示,一块飞镖游戏板由除颜色外都相同的9个小正方形构成.假设飞镖击中每1个小正方形是等可能的(击中小正方形的边界或没有击中游戏板,则重投一次).任意投掷飞镖一次,击中灰色区域的概率是__ _.10. 地球上陆地与海洋面积比约为3︰7,则宇宙飞来一块陨石落在海洋的概率为.11. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是______ .12. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是______.13. 正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.14. 如图,在圆形靶中,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,且∠BAC=30∘,则射击到靶中阴影部分的概率是.15. 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是.三、解答题(本大题共9小题,共75分。

七年级数学(下)第六章概率初步测试卷

七年级数学(下)第六章概率初步测试卷

北师大版七年级(下)数学第六章《概率初步》测试卷姓名: 得分:一、选择题:1. 下列事件是不可能事件是( )A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天 2.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.不确定事件C.必然事件D.以上都不是 3. 任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A.21 B.31 C.32 D.614.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( ) A.21P P > B.21P P < C.21P P = D.以上都有可能5. 一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A.21 B. 32 C.51 D.1016. 100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A.201 B. 10019C.51D.以上都不对7. 从1至9这些数字中任意取一个,取出的数字是偶数的概率是( )A .0 B.1 C.95 D.94 8. 6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .B .C .D .9. 用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )A.31B.41C.51D.61 10. 转动下列名转盘,指针指向红色区域的概率最大的是( )二、填空题。

11.必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______。

2022年北师大版七年级数学下册第六章概率初步综合测评试题(含解析)

2022年北师大版七年级数学下册第六章概率初步综合测评试题(含解析)

北师大版七年级数学下册第六章概率初步综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小梅随机选择在下周一至周五的某一天去打新冠疫苗,则她选择在周二去打疫苗的概率为()A.1 B.15C.17D.132、一个质地均匀的小正方体,六个面分别标有数字“1”,“2”,“3”“4”,“5”,“6”,抛出小正方体后,观察朝上一面的数字,出现偶数的概率是()A.16B.14C.13D.123、在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球,从袋中任意摸出一个球,是白球的概率为()A.79B.49C.13D.294、下列事件中是不可能事件的是()A.铁杵成针B.水滴石穿C.水中捞月D.百步穿杨5、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是()A.12B.14C.35D.346、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签的办法确定一个小组进行展示活动,则第2小组被抽到的概率是()A.12B.17C.114D.277、下列说法正确的是()A.在同一年出生的400名学生中,至少有两人的生日是同一天B.某种彩票中奖的概率是1%,买100张这种彩票一定会中奖C.天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨D.抛一枚图钉,钉尖着地和钉尖朝上的概率一样大8、下列事件为必然事件的是()A.明天是晴天B.任意掷一枚均匀的硬币100次,正面朝上的次数是50次C.两个正数的和为正数D.一个三角形三个内角和小于1809、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为()A.427B.29C.827D.22710、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为()A.0.1 B.0.2 C.0.9 D.0.8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为13,则袋中白球的个数是________.2、一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.12B.13C.23D.13、任意翻一下2021年日历,翻出1月6日的概率为__________;翻出4月31日的概率为__________.4、如图,转盘中有6个面积都相等的扇形,任意转动转盘1次,当转盘停止转动时,“指针所落扇形中的数为偶数”发生的概率为_______.5、某校初三(2)班想举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某位同学获一等奖的概率为______________.三、解答题(5小题,每小题10分,共计50分)1、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s,小明的爸爸由北往南开车随机地行驶到该路口.(1)他遇到红灯、绿灯、黄灯的概率各是多少?(2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?2、为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为______人;(2)若该校有1400名学生,估计选择参加舞蹈的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.3、在一个不透明的口袋里装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋里随机摸出一个球是绿球”发生的概率是__________;(2)事件“从口袋里随机摸出一个球是红球”发生的概率是__________;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是45,求x的值.4、如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数.求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率.5、如图所示有8张卡片,分别写有1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=;(2)P(抽到两位数)=;(3)P(抽到的数大于5)=;(4)P(抽到偶数)=.-参考答案-一、单选题1、B【分析】根据题意中从下周一至周五的某一天去打新冠疫苗,共有5种情况,且每种情况的可能性相同,即可得出选择周二打疫苗的概率.【详解】解:小梅选择周一到周五共有5种情况,且每种情况的可能性相同,均为15,∴选择周二打疫苗的概率为:15,故选:B.题目主要考查简单概率的计算,理解题意是解题关键.2、D【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得.【详解】解:∵掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,∴朝上一面的数字出现偶数的概率是31 62 ,故选:D.【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.3、D【分析】根据袋子中共有9个小球,其中白球有2个,即可得.【详解】解:∵袋子中共有9个小球,其中白球有2个,∴摸出一个球是白球的概率是29,故选D.【点睛】本题考查了概率,解题的关键是找出符合题目条件的情况数.4、C根据随机事件,必然事件和不可能事件的定义,逐项即可判断.【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得.【详解】解:由题意,从这4条线段中任选三条共有4种结果,即2,5,7、2,5,8、2,7,8、5,7,8,由三角形的三边关系定理可知,能组成三角形的有2种结果,即2,7,8和5,7,8,则所求的概率为2142P==,故选:A.【点睛】本题考查了求概率,熟练掌握等可能性下的概率计算方法是解题关键.6、B【分析】根据概率是所求情况数与总情况数之比,可得答案.【详解】解:第3个小组被抽到的概率是17,故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.7、A【分析】由题意根据概率的意义、随机事件的意义逐项进行分析判断即可.【详解】解:A. 在同一年出生的400名学生中,至少有两人的生日是同一天,因为一年最多有366天,故本选项正确;B. 某种彩票中奖的概率是1%,买100张这种彩票一定会中奖错误,故本选项错误;C. 天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨错误,故本选项错误;D. 抛一枚图钉,钉尖着地和钉尖朝上的概率一样大错误,故本选项错误;故选:A.【点睛】本题考查随机事件、概率的意义,熟练掌握随机事件和概率的意义是正确判断的前提.8、C【详解】解:A、“明天是晴天”是随机事件,此项不符题意;B、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意;C、“两个正数的和为正数”是必然事件,此项符合题意;D、“一个三角形三个内角和小于180︒”是不可能事件,此项不符题意;故选:C.【点睛】本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键.9、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率.【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到3×3×3=27(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为62 279=,故选:B.【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键.10、D【分析】利用成活的树的数量÷总数即可得解.【详解】解:8000÷10000=0.8,故选:D .【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.二、填空题1、6【分析】 随机摸出一个球是红球的概率是133n =,可以得到球的总个数,进而得出白球的个数.【详解】解:记摸出一个球是红球为事件A 13()3P A n== 9n ∴=∴白球有936-=个 故答案为:6.【点睛】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.2、等可能 14【详解】略3、1365【分析】根据概率的公式,即可求解.【详解】解:∵2021年共有365天,∴翻出1月6日的概率为1365,∵2021年4月没有31日,∴翻出4月31日的概率为0.故答案为:1365;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键.4、2 3【分析】直接利用概率公式求解即可.【详解】解:根据题意可得:指针指向的可能情况有6种,而其中是偶数的有4种,∴“指针所落扇形中的数为偶数”发生的概率为42 63 ,故答案为:23.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5、1 5【分析】由题意,用一等奖的份数除以全班学生数即为所求的概率.【详解】解:根据题意分析可得:共50分设计方案,拟评选出10份为一等奖,那么该班某同学获一等奖的概率为:101 505=.故答案为:15.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题1、(1)他遇到红灯、绿灯、黄灯的概率各是1940、12、140;(2)12.【分析】(1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;(2)将遇到红灯和黄灯的概率相加即可得.【详解】解:(1)红灯、绿灯、黄灯的总时间为57603120()s++=,则他遇到红灯的概率是5719 12040=,遇到绿灯的概率是601 1202=,遇到黄灯的概率是31 12040=,答:他遇到红灯、绿灯、黄灯的概率各是1940、12、140;(2)1911 40402+=,答:按照交通信号灯直行停车等候的概率是12.【点睛】本题考查了简单事件的概率,熟练掌握概率公式是解题关键.2、(1)200;(2)420人;(3)2 3【分析】(1)由参加唱歌的人数和所占百分比求出这次抽样调查的总人数,即可解决问题;(2)由该校学生人数乘以参加舞蹈的学生所占的比例即可;(3)画树状图,共有12种等可能的结果,恰为一男一女的结果有8种,再由概率公式求解即可.【详解】解:(1)这次抽样调查的总人数为:36÷18%=200(人),故答案为:200;(2)样本中参加舞蹈的学生人数为:200−36−80−24=60(人),∴1400×60200=420(人),即估计该校选择参加舞蹈有420人;(3)画树状图如图:共有12种等可能的结果,恰为一男一女的结果有8种,∴恰为一男一女的概率为82123=.【点睛】本题考查的是用列表法或画树状图法求概率的知识以及条形统计图和扇形统计图.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3、(1)0;(2)35;(3)4x=【分析】(1)根据口袋中没有黑球,不可能摸出黑球,从而得出发生的概率为0;(2)用红球的个数除以总球的个数即可;(3)根据概率公式列出算式,求出x的值即可得出答案.【详解】解:解:(1)∵口袋中装有4个白球和6个红球,∴从口袋中随机摸出一个球是绿球是不可能事件,发生的概率为0;故答案为:0;(2)∵口袋中装有4个白球和6个红球,共有10个球,∴从口袋中随机摸出一个球是红球的概率是63105=; 故答案为:35;(3)根据题意得:44105x +=, 解得:x =4,答:取走了4个红球.【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 4、(1)12;(2)512;(3)712;(4)16【分析】 根据题意找出符合条件的数,再利用概率公式分别计算其概率即可.【详解】解:(1) 10个数中正数有1,6,8,9,13,25,P (正数)=61=122.(2) 10个数中正数有-1,23-,-10,-2,-8,P (负数)=512. (3) 10个数中绝对值小于6的数有-1,23-,0,25,1,-2,13,P (绝对值小于6的数)=712. (4)相反数大于或等于8的数有-10,-8,P (相反数大于或等于8的数)=21=126.【点睛】 本题考查的是概率的公式:()m P A n=,n 表示该试验中所有可能出现的基本结果的总数目.m 表示事件A包含的试验基本结果数.5、(1)18;(2)0;(3)38;(4)12【分析】(1)(2)(4)根据概率公式直接求解即可,(3)根据确定性事件的定义即可判断.【详解】1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=18;(2)1,2,3,4,5,6,8,9这八个数字中,没有两位数,∴P(抽到两位数)=0;(3)大于5的有,6,8,9,共3个数∴P(抽到的数大于5)=38;(4)1,2,3,4,5,6,8,9这八个数字中,偶数有4个∴P(抽到偶数)=12.【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.。

七年级数学下册第六章概率初步综合测试题试题

七年级数学下册第六章概率初步综合测试题试题

第六章概率初步〔说明:全卷考试时间是是100分钟,满分是120分〕一、选择题〔每一小题3分,一共30分〕1.以下事件中是必然事件的是〔〕A.小菊上学一定乘坐公一共汽车B.某种彩票中奖率为,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上2.从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.那么从A 地到C地可供选择的方案有〔〕A.20种 B.8种 C. 5种 D.13种3.一只小狗在如图1的方砖上走来走去,最终停在阴影方砖上的概率是〔〕A. B. C. D.4.以下事件发生的概率为0的是〔〕A.随意掷一枚均匀的硬币两次,至少有一次反面朝上;B.今年冬天会下雪;C.随意掷两个均匀的骰子,朝上面的点数之和为1;D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

假设某人购物满100元,那么他中一等奖的概率是〔〕A. B. C. D.6、有6张写有数字的卡片,它们的反面都一样,现将它们反面朝上〔如图2〕,从中任意一张是数字3的概率是〔〕A. B. C. D.7.在李咏主持的"幸运52"栏目中,曾有一种竞猜游戏,游戏规那么是:在20个商标牌中,有5个商标牌的反面注明了一定的奖金,其余商标牌的反面是一张"哭脸",假设翻到"哭脸"就不获奖,参与这个游戏的观众有三次翻牌的时机,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是〔〕A. B. C. D.8.如图3,一飞镖游戏板,其中每个小正方形的大小相等,那么随意投掷一个飞镖,击中黑色区域的概率是 ( )A. B. C. D.9.如图4,一小鸟受伤后,落在阴影局部的概率为〔〕A. B. C. D.110.连掷两次骰子,它们的点数都是4的概率是〔〕A. B. C. D.二、填空题〔每一小题3分,一共30分〕11. 〔08〕在一个袋子中装有除颜色外其它均一样的2个红球和3个白球,从中任意摸出一个球,那么摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,如今要从他们三人中选出一人去帮王奶奶干活,那么小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,那么不中奖的概率是.14.从一副扑克牌〔除去大、小王〕中任抽一张,那么抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为15.任意翻一下2021年日历,翻出1月6日的概率为 ;翻出4月31日的概率为。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试卷(包含答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试卷(包含答案解析)

一、选择题1.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是102.下列事件中,为必然事件的是()A.明天早晨,大家能看到太阳从东方冉冉升起B.成绩一直优秀的小华后天的测试成绩也一定优秀C.从能被2整除的数中,随机抽取一个数能被8整除D.从10本图书中随机抽取一本是小说3.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上6.下列事件中必然事件有()①当x是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个B.2个C.3个D.4个7.事件:“在只装有3个红球和4个黑球的袋子里,摸出一个白球”是()A.可能事件B.不可能事件C.随机事件D.必然条件8.“两个相等的角一定是对顶角”,此事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件9.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上10.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.011.气象台预报“本市明天降水概率是83%”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册:第六章概率初步单元测试基础卷学校:___________姓名:___________班级:___________考号:___________一、单选题.(共10小题,每小题3分,满分30分)1.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A.12000B.1500C.3500D.32002.下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是1 2B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是8 253.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是()A.18B.14C.34D.124.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间在降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天5.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数7.在一副52张的扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是( )A.12B.14C.13D.08.对“某市明天下雨的概率是80%”这句话,理解正确的是(,A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大9.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为415,买10 000张该种彩票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上10.如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则( )A.a>b B.a<b C.a=b D.无法确定二、填空题.(共8小题,每小题3分,满分24分)11.如果x=y,那么12+2x=12+2y的可能性是________.12.下列事件是必然事件的是________.(填序号)①3个人分成两组,一定有2人分在一组;②随意掷两个完好的骰子,朝上一面的点数之和不小于2;③明天北京会刮大风,出现沙尘暴;④你百米可跑5秒.13.在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是_____.14.从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是________,15.一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入___个___球(只能再放入同一颜色的球),16.五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________17.如图,线段AB被等分成5段,在图上任取一点,这一点取在粗线段上的概率是____,18.小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.三、解答题.(共5小题,其中19-22题每题9分,23题10分,满分46分)19.(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球.(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?20.在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?21.用10个球分别设计一个摸球游戏(这些球除颜色不同外其余均相同),(1)使从中摸一个球,摸到红球的概率为1 5,(2)使从中摸一个球,摸到红球和白球的概率都是2 5 .22.如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?23.在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:(1)请将上表补充完整(结果精确到1%),(2)制作折线统计图表示摸到黄球的频率的变化情况;(3)估计从袋中摸出一个球是黄球的概率是多少.七年级下册:第六章概率初步单元测试基础卷参考答案1.C因为从10万张彩票中购买一张,每张被买到的机会相同,因而有10万个结果,奖金不少于50元的共有10+40+150+400=600(个),所以所得奖金不少于50元的概率=600100000=3500.故选:C.2.DA、李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是21=42,故A正确;B、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故B正确;C、对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定,故C正确;D、一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球两次摸到相同颜色的球的概率是1325故D错误.3.B观察这个图可知黑色区域(4块)的面积占总面积(16块)的14,故其概率为14故选B,4.D试题解析:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.故选D,5.B解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.6.BA.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为13,故本选项不符合题意;B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为16≈0.17,故本选项符合题意;C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是14=0.25,故本选项不符合题意;D.由于用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432,∴排出的数是偶数的概率为:4263=.故本选项不符合题意.故选B.7.BP(方块)=1352=14,故选B,8.DA选项,某市明天将有80%的时间下雨不符合对概率意义的理解, B选项,某市明天将有80%的地区下雨不符合对概率意义的理解, C选项,某市明天一定会下雨不符合对概率意义的理解,D选项,某市明天下雨的可能性较大符合对概率意义的理解.故选D.9.D【详解】A.小菊上学乘坐公共汽车是随机事件,不符合题意;B.买10000张一定会中奖也是随机事件,尽管中奖率是415,不符合题意;C.一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D.常温下豆油的密度<水的密度,所以豆油一定会浮在水面上,是必然事件,符合题意.故选D.10.C【解析】由图可知,阴影部分与空白部分的面积相等,故a =b .故选C. 11.1【解析】试题解析:当x y =时,112222x y +=+必然成立. 必然事件发生的可能性是1 .故答案为:1. 12.,, 【详解】①3个人分成两组,一定有2人分在一组,是必然事件;②随意掷两个完好的骰子,朝上一面的点数之和不小于2,是必然事件; ③明天北京会刮大风,出现沙尘暴,是随机事件; ④你百米可跑5秒,是不可能事件.故答案为,,13.14【详解】解:∵摸到红色球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%,即14.故答案为14.14.15【详解】∵1,2,3,…,10这10个自然数中只有4和8是4的倍数, 因此从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是21=105, 故答案为15, 15.2, 红 【详解】设必须往袋中再放入x 个红球,由题意,得:535353xx x+=++++ 解得:x =2.故答案为:2,红.16.35.【解析】试题分析:根据题意可知一共有5个数,奇数有3个,因此根据概率的意义可得P (数字为奇数)=35.17.25【详解】∵线段AB 被等分成5段,粗线段有2段,∴在图上任取一点,这一点取在粗线段上的概率为25.故答案为25.18.518【详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:1036=518.故答案为518. 19.(1)38 ;(2)27 【解析】试题解析:解:,1)因为P (白球)=353+=38,所以它是白球的概率是38.,2,因为P ,白球,=31531-+-=27,所以它是白球的概率27, 20.(1)12,33;(2) 5个和2 个 【解析】试题解析:(1)因为袋子中装有3个红球和6个黄球,所以随机摸出一球是红球和黄球的概率分别是31633=+,62633=+, ,2)设放入红球x 个,则黄球为()7x -个,由题意列方程得:3679797x x++-=++,解得5x =, 所以这7个球中红球和黄球的数量分别应是5个和2个.21.(1)10个球中有2个红球,8个黄球,(2)10个球中有4个红球,4个白球,2个绿球. 【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个绿球. 22.小鸟落在小圆区域外大圆区域内(阴影部分内)的概率为34. 【详解】小鸟落在小圆区域外大圆区域内(阴影部分内)的概率是:22221324πππ⋅-⋅=⋅. 23.(1)如图见解析;(2)如图见解析;(3)估计从袋中摸出一个球是黄球的概率是13. 【详解】 (1)23670.2980200==;0.34;861201360.360.330.34240360400===;;,故表格中空格依次是29%;34%;36%;33%;34%;(2)如图:(3)观察可知频率稳定在33%左右,故摸出一个黄球的概率是33%≈1 311。

相关文档
最新文档