基坑变形监测方案
基坑变形监测工程方案
基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。
在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。
1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。
监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。
监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。
2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。
可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。
3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。
监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。
4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。
可以使用倾斜仪、位移计等仪器设备进行监测。
二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。
传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。
在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。
三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。
在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。
四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。
一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。
五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。
基坑监测方案
基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
施工单位基坑监测方案
施工单位基坑监测方案一、背景介绍基坑是施工过程中不可或缺的一部分,而基坑的稳定性与安全性对整个施工工程起着至关重要的作用。
为了确保基坑的安全稳定,施工单位需要制定一套科学合理的基坑监测方案,在施工过程中及时监测基坑的变形与沉降情况,以便及时采取相应措施保障工程的顺利进行。
二、监测目标与意义1.监测目标:a) 基坑开挖过程中的变形情况:通过监测基坑边坡的位移、裂缝等变化,及时判断边坡的稳定性,确保施工过程中的安全。
b) 基坑挖掘后的沉降情况:监测基坑沉降情况,及时发现沉降异常,保障建筑物的纵向平稳度。
c) 基坑周围地下水位的变化:监测地下水位的波动情况,及时发现并处理基坑工程中的渗水问题。
2.意义:a) 预防事故:通过监测基坑变形情况,可以及时预警潜在的坍塌、滑坡等危险,避免安全事故的发生。
b) 控制沉降:监测基坑沉降情况,可以控制建筑物的垂直变形,避免结构破坏,确保建筑物工程的质量。
c) 处理渗水问题:监测地下水位的变化,可以发现并及时处理基坑工程中的渗水问题,确保基坑的干燥与安全。
三、监测方法与仪器选用1.监测方法:a) 基坑变形监测:采用全站仪、GNSS测量系统等现代测量技术,对基坑边坡进行多次测量,得到相应的位移数据。
b) 基坑沉降监测:采用水准仪等测量仪器,对基坑及周边地点进行多次测量,得到沉降量的数据。
c) 地下水位监测:采用水位计等仪器,对示范点进行定期观测,确保监测数据的准确性。
2.仪器选用:a) 全站仪:通过测量基坑边坡的坐标变化,得到边坡的位移情况,选择精度和稳定性较高的全站仪进行测量。
b) GNSS测量系统:通过监测基坑周边地点的坐标变化,得到基坑的位移情况,选择精度高的GNSS测量系统进行监测。
c) 水准仪:通过测量基坑及周边地点的高程变化,得到沉降量的数据,选择稳定性较高的水准仪进行测量。
d) 水位计:通过监测示范点的地下水位波动情况,选择准确度较高的水位计进行监测。
四、监测频次与方案调整a) 基坑变形监测:在基坑开挖的关键阶段,每天进行一次测量;在其他施工情况下,每周进行一次测量。
基坑变形监测方案
基坑变形监测方案一、工程概况1.1 工程名称:XX项目基坑工程1.2 工程地点:XX项目现场1.3 工程简介:XX项目基坑工程是该项目的重要组成部分,主要包括基坑开挖、支护、排水等工程。
二、基坑变形监测目标2.1 总体目标:确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
2.2 具体目标:(1)监测基坑的横向、纵向和斜向变形;(2)评估基坑支护结构的稳定性;(3)预警基坑周边建筑和道路的沉降情况。
三、基坑变形监测原则3.1 安全性:确保监测方案能有效反映基坑变形的真实情况,为施工安全提供保障。
3.2 准确性:监测数据应准确可靠,监测方法应科学合理。
3.3 及时性:监测工作应迅速响应,及时反馈变形信息。
四、基坑变形监测内容4.1 监测项目:包括基坑顶部、侧壁的横向、纵向和斜向变形,以及周边建筑和道路的沉降。
4.2 监测方法:采用变形杆、倾斜仪、水准仪、激光测距仪等监测设备。
4.3 监测频率:根据基坑开挖进度和支护结构稳定性,确定监测频率。
五、基坑变形监测实施与调整5.1 监测方案应在基坑施工前编制完成,并经相关部门审批。
5.2 监测工作应在基坑开挖过程中同步进行,确保监测数据的实时性。
5.3 监测数据应及时反馈至项目管理部门,对异常变形情况应迅速采取措施进行处理。
六、基坑变形监测总结6.1 工程结束后,对基坑变形监测数据进行整理分析,评估监测方案的有效性。
6.2 撰写基坑变形监测总结报告,为今后类似工程提供借鉴和改进方向。
本基坑变形监测方案旨在确保基坑施工过程中周边环境及基坑本身的稳定,及时发现并处理变形异常情况。
在实际运行过程中,应根据实际情况及时调整和优化基坑变形监测策略,以实现设计目标。
基坑工程监测检测方案
基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑变形监测实施方案
基坑变形监测实施方案一、引言。
基坑工程是指在建筑、市政、交通等领域中,为了建设地下室、地下车库、地铁站等需要进行的挖土与支护工程。
基坑变形监测是指对基坑工程施工过程中的变形情况进行实时监测和分析,以保障施工安全和周边环境稳定。
本文将就基坑变形监测的实施方案进行探讨。
二、监测技术选择。
基坑变形监测技术包括全站仪监测、GPS监测、倾角仪监测、测斜仪监测、裂缝计监测等多种技术手段。
在实际应用中,应根据基坑工程的具体情况,选择合适的监测技术,并进行合理组合,以确保监测数据的准确性和全面性。
三、监测方案制定。
1. 监测点布设,根据基坑工程的特点和周边环境的影响,合理布设监测点,包括基坑内部、周边建筑物、地下管线等关键部位。
2. 监测频次,根据基坑工程的施工进度和变形情况,确定监测频次,一般情况下,应进行日常监测和重大施工节点的实时监测。
3. 监测数据处理,监测数据的采集和处理应当符合相关规范和标准,确保数据的准确性和可靠性。
4. 监测报告编制,监测数据应及时编制成监测报告,对基坑变形情况进行分析和评估,提出相应的处理意见和建议。
四、监测管理与应用。
1. 监测管理,建立健全的监测管理体系,包括监测责任人、监测设备管理、数据管理等内容,确保监测工作的有序进行。
2. 监测应用,监测数据的及时分析和应用,对基坑工程的施工安全和周边环境的影响进行预测和评估,及时采取相应的措施和对策。
五、监测成果评价。
监测成果的评价应当包括监测数据的准确性、监测方案的合理性、监测管理的有效性等方面,对监测工作进行全面评价和总结,为今后类似工程提供经验和借鉴。
六、结论。
基坑变形监测是基坑工程施工过程中的重要环节,对保障施工安全和周边环境稳定具有重要意义。
因此,应根据具体工程情况,制定科学合理的监测方案,保障监测数据的准确性和全面性,为基坑工程的施工和周边环境的保护提供可靠的技术支持。
基坑工程监测方案完整版
基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。
本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。
二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。
三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。
2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。
3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。
4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。
五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。
2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。
3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。
4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。
六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。
2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。
二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。
详细介绍了监测的目的、内容、方法及实施步骤。
二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。
三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。
基坑围护桩施工变形监测专项监控量测方案
基坑围护桩施工变形监测专项监控量测方案一、背景介绍基坑围护桩是基础建设中常用的一种施工方式,通过在基坑边缘打入桩体来支撑土壤,以防止边坡坍塌和基坑变形。
然而,基坑围护桩在施工过程中可能会出现变形现象,因此,对基坑围护桩的变形进行监测是非常重要的。
本文将介绍一种基坑围护桩施工变形监测专项监控量测方案。
二、监测设备的选择1.变形测量仪:用于测量基坑围护桩的变形情况,可以通过测量点位与参考点的相对位移来计算变形量。
2.倾斜仪:用于测量基坑围护桩的倾斜角度,可以通过倾斜角度来判断桩体的稳定性。
3.压力传感器:用于测量基坑围护桩的负荷压力,可以了解桩体所承受的力的大小。
4.GPS定位仪:用于确定监测点的位置,以便进行数据分析和处理。
三、监测点的设置为了全面了解基坑围护桩的变形情况,需要设置一系列的监测点。
监测点的设置应根据基坑围护桩的实际情况和施工要求进行确定,一般应包括以下几个方面的监测点:1.桩顶监测点:用于测量基坑围护桩的竖向位移和沉降情况。
2.桩身监测点:用于测量基坑围护桩的水平位移和倾斜情况。
3.周边土体监测点:用于测量基坑围护桩周边土体的位移和变形情况。
4.基坑内土体监测点:用于测量基坑内土体的位移和变形情况。
四、监测频次和周期基坑围护桩施工变形监测应根据实际需要和施工进度来确定监测频次和周期。
一般情况下,可以将监测频次设置为每周一次,监测周期设置为施工周期的两倍。
这样可以及时了解基坑围护桩的变形情况,以便及时采取相应的措施来保证施工的顺利进行。
五、数据处理和分析监测数据的处理和分析是基坑围护桩施工变形监测的重要环节。
监测数据的处理和分析应包括以下几个方面的内容:1.数据处理:对采集到的监测数据进行整理和清洗,排除异常值和错误数据。
2.数据分析:对处理后的监测数据进行统计和分析,得出基坑围护桩的变形特征和趋势。
3.结果评估:根据分析结果对基坑围护桩的变形情况进行评估,判断是否需要采取进一步的措施。
基坑工程变形监测方案
基坑工程变形监测方案1. 背景介绍基坑工程是指在建筑施工中,为了在地下建造高层建筑或者地下结构,需要在地面上开挖较深的坑,并按照设计图纸对坑下进行倒土处理,同时基坑周边的建筑、道路等都会受到一定的影响。
为了确保基坑工程的安全施工,避免对周边建筑物和地下设施造成不可挽回的损害,需要进行变形监测。
基坑工程变形监测是指在基坑开挖、支护、降水和地下室施工等过程中,从土壤内部和地面上一定深度位置等环境中,连续或定期监测基坑四周变形情况,以获取变形数据,从而判断基坑周围环境的稳定性和安全性。
合理地选择监测点位,对基坑工程进行变形监测,可以有效地监测基坑开挖过程中的变形情况,提前发现潜在危险,保障基坑施工的安全。
2. 变形监测方案变形监测的主要目的是为了监测基坑工程周围环境的变形情况,从而保障基坑工程施工的安全。
变形监测的方案包括:监测内容、监测方法、监测点位、监测频率和监测报告。
2.1 监测内容基坑工程变形监测的内容主要包括:地表变形监测、地下水位监测、支护结构变形监测、周边建筑物变形监测、基坑倒土变形监测等内容。
通过监测这些内容,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.2 监测方法基坑工程变形监测的方法主要包括:GPS定位法、倾斜仪法、水准仪法、测斜仪法、位移传感器法等。
通过这些监测方法可以有效地监测基坑工程周围环境的变形情况,提供准确的监测数据,从而保障基坑工程的施工安全。
2.3 监测点位基坑工程变形监测的点位主要包括:地表监测点位、地下水位监测点位、支护结构监测点位、周边建筑物监测点位、倒土监测点位等。
通过合理选择监测点位,可以全面掌握基坑工程周围环境的变形情况,提前发现潜在危险,保障施工的安全。
2.4 监测频率基坑工程变形监测的频率主要包括:连续监测、定期监测。
通过连续或者定期监测,可以不断地获取基坑工程周围环境的变形数据,及时发现潜在危险,保障施工的安全。
2.5 监测报告基坑工程变形监测报告是通过监测数据的分析和处理,得出基坑工程周围环境的变形情况,并提供有效的监测报告。
基坑监测方案
基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。
本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。
一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。
具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。
二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。
2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。
3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。
4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。
三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。
具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。
2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。
四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。
一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。
1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。
2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。
总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。
基坑监测监控方案
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑变形监测技术方案
基坑变形监测技术方案基坑变形监测是指对地下基坑在施工过程中或者使用过程中由于不均匀沉降、滑移、侧倾、地下水位变动等因素引起的变形进行实时、连续的监测和预警的技术手段。
基坑变形监测的目的是为了及时发现和评估基坑变形情况,为基坑的施工和使用提供科学依据。
1.监测点布置方案:根据基坑的形状、尺寸和地下结构的具体情况确定监测点的位置和数量。
一般来说,监测点应该均匀分布在基坑的不同位置以及周围的地表上,以保证监测结果的准确性和可靠性。
2.监测仪器选择方案:根据监测需求和具体情况选择合适的监测仪器设备。
常用的监测仪器包括测量仪器、位移传感器、应变传感器、倾斜传感器等。
这些仪器可以实时测量和记录基坑变形的各个参数,并将数据传输给监测系统进行分析和处理。
3.数据传输与处理方案:选择合适的数据传输方式和监测系统。
常见的数据传输方式包括有线传输和无线传输,可以根据具体情况选择合适的传输方式。
监测系统可以对传输过来的数据进行实时分析和处理,生成监测报告并进行预警处理。
4.监测报告与预警方案:根据监测结果生成监测报告,并根据预设的预警标准进行预警处理。
监测报告应包括基坑变形的具体情况、变形的趋势和可能的风险评估等内容,以便施工单位或者相关部门及时采取措施避免事故发生。
5.健全的管理与应急预案:建立健全的管理制度和应急预案,并进行培训和演练。
这样可以确保监测系统的正常运行和数据的准确性,同时也能够提高对基坑变形事故的应对能力和处理效率。
总之,基坑变形监测技术方案需要根据实际情况进行合理的选择和设计,并且要注重对监测结果进行分析和预警处理,以保证基坑的施工和使用的安全性和稳定性。
同时,还需要加强对相关技术人员的培训和管理,提高监测系统的使用效率和数据的可靠性。
基坑变形监测模板
基坑变形监测模板一、背景介绍。
基坑工程是城市建设中常见的工程类型,其施工过程中会受到地下水位、土体变形等因素的影响,因此需要进行变形监测以确保工程安全。
本文档旨在提供基坑变形监测的模板,以便工程监测人员能够依据此模板进行监测工作。
二、监测设备及方法。
1. 监测设备,监测基坑变形常用的设备包括测斜仪、水准仪、位移传感器等。
这些设备可以实时监测基坑周边土体和支护结构的变形情况。
2. 监测方法,监测人员应根据基坑工程的实际情况确定监测设备的布设位置和监测频率。
同时,监测人员还应制定监测方案,并在监测过程中及时记录监测数据。
三、监测数据处理。
1. 数据采集,监测人员应按照监测方案,定期对监测设备进行数据采集。
采集的数据应包括监测点的位置坐标、变形数据等。
2. 数据处理,监测人员应对采集的数据进行处理,包括数据的整理、分析和报告。
在数据处理过程中,应注意排除异常数据的影响,确保监测数据的准确性和可靠性。
四、监测报告编制。
1. 监测报告内容,监测报告应包括监测设备的布设情况、监测数据的采集情况、监测数据的处理结果等内容。
2. 报告格式,监测报告应按照规定的格式进行编制,包括封面、目录、正文、附录等部分。
报告的文字应简洁明了,图表应清晰易懂。
五、监测结果评定。
1. 结果评定标准,监测人员应根据监测数据的处理结果,对基坑变形进行评定。
评定标准应包括基坑变形的程度、变形趋势等内容。
2. 结果应用,监测结果应及时向相关部门和工程管理人员通报,以便及时采取相应的措施,确保基坑工程的安全。
六、总结与展望。
基坑变形监测是基坑工程安全施工的重要环节,监测人员应严格按照监测模板进行监测工作,确保监测数据的准确性和可靠性。
同时,监测人员还应不断总结经验,完善监测方法,提高监测水平,为基坑工程的安全施工提供可靠的数据支持。
七、附录。
1. 监测设备布设图。
2. 监测数据处理流程图。
3. 监测报告格式范例。
以上为基坑变形监测模板的内容,希望能为基坑工程的监测工作提供一定的参考价值。
基坑变形监测测技术方案
变形监测技术方案批准:审核:编制:目录一.工程概述1二.作业目的1三.作业依据及规范2四.工作内容2五.基坑及周边监测方案25.1 基准点的布设25.2护坡桩顶水平位移观测点的埋设25。
3护坡桩支护结构水平位移观测点的埋设35.4 变形监测点保护及意外情况处理45.5 基准点、监测点的观测方法及精度要求55.6 观测设备和人员投入55。
7 观测周期65。
8 成果处理6六.提交成果资料66.1 提交阶段成果76。
2 提交沉降观测技术报告书7七.补充说明7八.质量保证措施8九.附件8变形监测技术方案一.工程概述受..。
..的委托,。
.。
拟承担。
.。
.变形监测任务。
本项目位于。
....。
基坑深16-18米,南北长近100米,东西宽约60米。
开挖深度较大,周边不明管线复杂,采用—2米以下桩锚支护(2道锚杆),-2米以上组合柱砖墙支护形式。
二.作业目的本工程基坑挖掘较深,安全问题应引起高度的重视,通过监测及时分析反馈监测结果,掌握基坑围护结构及周边环境的情况,做到心中有数,确保基坑及周边环境的安全。
在基坑工程施工及地下结构施工期间,应对基坑围护结构受力和变形、周边重要道路等保护对象进行系统的监测,为避免基坑工程施工对工程周边环境及基坑围护本身的危害,采用先进、可靠的仪器及有效的监测方法,对基坑围护体系和周围环境的变形情况进行监控,通过监测,可以及时掌握基坑开挖及施工过程中围护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周围环境的安全与稳定提供监控数据,防患于未然,通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,为工程动态化设计和信息化施工提供所需的数据,从而使工程处于受控状态,确保基坑及周边环境的安全。
三.作业依据及规范1、《建筑变形测量规范》(JGJ8-2007);2、《工程测量规范》(GB50026—2007);3、本工程设计图纸及施工方案。
四.工作内容1、测定护坡桩顶部水平位移,周边道路的沉降量、计算沉降差及沉降速率。
基坑监测方案范文
基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。
因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。
二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。
如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。
2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。
如若超出,需要采取相应的排水措施,控制地下水的涌入。
3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。
通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。
4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。
三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。
它能够实时监测土层的变形情况,并通过数据分析给出预警。
2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。
通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。
3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。
4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。
四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
基坑变形监测方案
第一章基坑变形监测1 、监测目的为确保施工期间围护结构和坑壁的稳定性,以及周围地面建筑物、道路的安全及正常运营,施工期间必须加强监控量测,做到信息化施工。
基坑工程施工前,应由建设单位委托具备相应资质的第三方编制监测方案,方案应经评审后认定后对基坑工程实施现场监测。
在施工过程中对基坑围护结构的受力情况、周围地表位移等进行监测是十分必要的。
这样做,一是可以及时了解开挖过程中围护体系的实际状态,对比分析设计条件与现场实际的差异,以便及时修正设计;二是有利于正确估计开挖过程中围护体系的稳定性,掌握基坑开挖对周围环境的影响,为临近建筑物及地下管线的安全提供保证;三是可以通过接受反馈信息,科学合理安排下一步的施工工序,使施工更加安全,工程质量更好。
2 、监测内容根据本工程的情况,监测内容主要有:(1)坡顶水平位移及垂直位移(2)周边建筑物沉降(3)周边管线巡视检查及位移监测1)边坡有无塌陷、裂缝及滑移2)开挖后暴露的土质情况与岩土工程勘察报告有无差异3)基坑开挖有无超深开挖4)基坑周围地面堆截是否有超载情况5)基坑周边建筑物、道路及地表有无裂缝出现3、监测要求(1)监测方法及精度要求1)初始值:基坑工程监测工作的准备工作应在基坑开挖前完成。
应在至少连续三次测得的数值基本一致后,才能将其确定为该项目的初始值。
2)沉降观测:采用二级水准测量进行观测,其精度指标为:观测点测站高差中误差≤±0.5mm;附合闭合差≤±0.3 mm(n为测站点)。
3)坡顶水平位移:采用全站仪建立坐标系统,通过直接观测点位坐标值来确定水平位移。
观测点坐标中误差不大于±1.0mm。
(2)监测数据处理及反馈量测成果整理每次量测后,将原始数据及时整理成正式记录,对每一个量测断面内每一种量测项目,均进行以下资料整理:1)原始记录表及实际测点图。
2)位移(应力)值随时间及随开挖面距离的变化图。
3)位移速度、位移(应力)加速度随时间以及随开挖面变化图。
基坑变形监测计划
基坑变形监测计划下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download Tip: This document has been carefully written by the editor. I hope that after you download, they can help you solve practical problems. After downloading, the document can be customized and modified. Please adjust and use it according to actual needs. Thank you!基坑变形监测计划如下:①前期准备:根据基坑设计与地质勘察报告,确定变形监测范围、监测点布置、监测频率及精度要求,选用合适监测仪器与技术。
②点位布置:在基坑周边、关键结构物及可能受影响的邻近建筑物设置监测点,包括水平位移点、沉降点等,确保监测全面覆盖。
③仪器安装与校准:安装自动化或半自动化的监测仪器,如全站仪、水准仪、倾斜计等,进行精确校准,确保数据准确性。
④初始值采集:在施工前,对所有监测点进行一次全面测量,记录初始数据,作为后续变形量计算的基准。
⑤制定监测周期:根据基坑开挖进度、地下水位变化及施工工况,灵活调整监测频率,如每日、每周或雨季加密监测。
⑥数据采集与分析:按计划周期进行数据采集,及时录入监测系统,采用专业软件分析数据趋势,评估基坑稳定性。
⑦预警响应:设定变形预警值,当监测数据接近或超过预警阈值时,立即通知项目各方,采取加固或调整施工措施。
⑧报告编制与提交:定期汇总监测数据,编写监测报告,分析变形原因,提出建议措施,提交给业主、设计及施工单位。
⑨监测调整与终止:根据基坑变形趋势及工程进展,适时调整监测方案,直至基坑施工完毕,稳定一段时间后,经评估可终止监测。
基坑变形监测方案
4.设计单位:负责对监测数据进行审查,根据监测结果调整设计及施工方案。
九、其他
1.本方案未尽事宜,依据相关规范、设计文件及施工合同执行。
2.本方案经各方签字盖章后生效,修改、补充须书面同意。
3.各方应严格按照本方案要求,切实履行职责,确保基坑工程安全。
五、监测点布置
1.地表沉降监测点:沿基坑周边及影响范围内布置。
2.围护结构顶部水平位移监测点:布置在围护结构的关键部位。
3.围护结构深层水平位移监测点:布置在围护结构的关键深度位置。
4.支撑轴力监测点:根据支撑的分布情况合理布置。
5.地下水位监测点:布置在基坑周边及关键区域。
6.相邻建筑物及地下管线变形监测点:根据其位置及影响范围进行布置。
(4)支撑轴力监测;
(5)地下水位监测;
(6)相邻建筑物及地下管线变形监测。
四、监测方法及设备
1.地表沉降监测:采用水准仪、全站仪等设备,按照二等水准测量要求进行。
2.围护结构顶部水平位移监测:采用全站仪,按照三等导线测量要求进行。
3.围护结构深层水平位移监测:采用测斜仪进行。
4.支撑轴力监测:采用应变计或轴力计进行。
第2篇
基坑变形监测方案
一、前言
基坑工程作为建筑工程中的重要组成部分,其稳定性直接关系到整个工程的安全。为保障施工过程中基坑的稳定性,预防安全事故的发生,特制定本基坑变形监测方案。本方案依据《建筑基坑工程监测技术规范》等相关国家标准和规范,结合项目具体情况进行编制。
二、监测目标
1.实时掌握基坑在施工过程中的变形动态,确保施工安全。
1.监测成果包括:监测数据、分析报告、预警记录等。
基坑变形观测方案和日常巡查方案
基坑变形观测方案和日常巡查方案
1. 监测点设置,在基坑周边和内部设置监测点,以监测基坑周
边土体和支护结构的变形情况。
监测点的设置需要考虑基坑的深度、土质情况、支护结构类型等因素。
2. 监测参数,监测参数包括但不限于地表沉降、支护结构位移、周边建筑物变形等。
这些参数的监测可以通过测量仪器、全站仪、
倾斜仪等设备进行实时或定期监测。
3. 监测频率,根据基坑施工阶段和工程地质条件,确定监测频率,一般包括施工前、施工中和施工后的监测。
4. 监测记录和分析,及时记录监测数据,对监测数据进行分析,及时发现基坑变形趋势,采取相应的措施。
接下来是日常巡查方案:
1. 巡查内容,日常巡查内容包括基坑周边的支护结构、土体稳
定情况、降水排水情况、施工现场秩序等。
2. 巡查频率,根据施工进度和地质条件,确定日常巡查的频率,一般包括每日巡查和每周定期巡查。
3. 巡查记录和处理,及时记录巡查情况,对发现的问题及时处理,必要时及时向相关部门汇报。
4. 巡查人员,确定巡查人员及其职责,确保巡查工作的及时性
和有效性。
综上所述,基坑变形观测方案和日常巡查方案是基坑施工安全
管理的重要组成部分,通过科学合理的方案制定和实施,可以有效
地保障基坑施工的安全和质量。
基坑监测方案测斜仪在地下工程中的变形监测及数据处理
基坑监测方案测斜仪在地下工程中的变形监测及数据处理在地下工程中,基坑工作是为了建造地下结构而掘开的深坑。
基坑的监测是确保地下工程施工安全的重要环节之一。
而测斜仪是一种常用的工具,用于监测基坑的变形情况并进行数据处理。
本文将详细介绍基坑监测方案中测斜仪的应用,包括变形监测和数据处理。
一、基坑监测方案概述基坑监测方案是在地下工程开挖和建设过程中,为了控制和评估基坑变形情况,采取的一系列监测措施和方法的总称。
基坑监测方案的制定应根据具体工程的特点和要求,综合考虑各种因素,如土质、地下水位、工程类型等。
二、测斜仪在基坑变形监测中的应用1. 什么是测斜仪测斜仪是一种用于测量地下工程中土体或结构的倾斜和变形情况的仪器。
它通常由倾斜传感器、数据采集系统和数据处理软件组成。
2. 测斜仪的安装与布设在基坑监测过程中,测斜仪的布设要根据具体工程的要求和实际情况进行安排。
通常需要选择适当的位置和深度,以便能够准确捕捉基坑的变形情况。
安装时应注意固定牢固,并保持传感器与地下结构的良好接触。
3. 测斜仪数据的获取与传输安装完毕后,测斜仪将开始实时采集基坑变形的数据。
这些数据可以通过有线或无线方式传输到数据采集系统,然后进行存储和处理。
数据采集系统通常具有较大的存储容量,能够持续记录变形数据。
4. 测斜仪数据的处理与分析对于测斜仪采集到的数据,需要进行处理和分析。
数据处理可以使用专业的软件进行,例如将原始数据进行滤波和平滑处理,并计算出变形的量值和趋势。
通过分析处理后的数据,可以评估基坑的变形情况,判断是否存在安全隐患。
三、测斜仪数据处理的关键技术1. 差分测斜法差分测斜法是一种常用的测斜仪数据处理方法,通过将相邻两个监测点的数据进行对比,计算出变形的量值。
差分测斜法能够消除测斜仪本身的误差,提高数据的准确性。
2. 存储与传输技术测斜仪采集到的数据需要进行存储和传输。
现代测斜仪通常配备了大容量的存储设备,能够持续记录大量的数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、编制依据 (2)二、工程概况 (2)三、监测目的 (5)四、基坑监测项目 (5)五、基坑监测点布置及埋设 (7)5.1一般规定 (7)5.2坡顶及支护水平、竖向位移监测 (8)5.3周边建筑及道路沉降 (8)5.4地下水位监测 (8)5.5周边地面沉降监测 (9)5.6周边地表裂缝监测 (10)六、作业方法 (13)七、监测频率及报警值 (15)7.1监测频率 (15)7.2监测报警 (17)八、项目组织及资源配置 (21)九、质量安全及信息反馈体系 (22)十、安全文明措施 (24)十一、进度保障措施 (24)十二、监测成果报告编制 (25)一、编制依据1.1《建筑基坑工程监测技术规范》(GB50497-2009)1.2《工程测量规范》(GB50026-2016)1.3《建筑基坑支护技术规程》JGJ120-20121.4《国家一、二等水准测量规范》(GB12897-2006)1.5《天津市建筑地基基础设计规范》(TBJ1-88)1.6设计方提供的设计图纸依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。
二、工程概况2.1该项目包括:1#~15#剪力墙住宅楼,配建1~6栋配套公建以及一座地下车库。
住宅楼:11#、15#住宅楼为8层,结构高度23.5m。
其余住宅楼为20~26层,结构高度58.3~75.7m。
配建2、4为两层框架结构配套用房,结构高度6.9~7.5m。
配建6(幼儿园)为三层框架结构,结构高度11.9m。
配建1、3、5为单层框架结构变电站。
地下车库为单层板柱剪力墙结构。
总建筑面积:182916.01m2,其中地上为145296.76m2,地下为37620.25m2。
,地下一层,建筑高度57.55m;16#、17#楼地上15层,地下一层,建筑高度48.55m。
2.2相关参建单位2.3基坑支护形式基本概况1、根据拟建物的场地环境条件、土质条件和基坑深度综合考虑,该基坑采用二级放坡开挖,钻孔桩双排桩、钻孔桩单排桩加支撑、钻孔桩抗滑桩加坑内留土等方式支护,桩顶设冠梁。
2.4周边坏境东侧为大部分为多层民用住宅楼,西侧为单层仓库用房,南车津塘公路,北侧远洋道。
2.5工程地质与水文地质情况2.5.1按地层年代、成因分为10个工程地质层,按工程地质性质进而分为22个工程地质亚层。
2.5.2地基土分布特点(均匀性评价)该场区埋深100.0m以上场地土,在垂直方向上成层分布,在水平方向上除⑨1粉土、⑨3粘土层局部地段缺失,⑨2粉质粘土层多夹粉土透镜体,⑩粉质粘土层局部夹粉土透镜体、⑫粉质粘土层层局部夹粉土透镜体外,其余各层土水平方向上分布较均匀、稳定。
从各土层物理力学指标统计结果看,各土层离散性不大,属低变异性,因此本场区可视为较均匀地基。
2.5.3物理力学指标统计本工程共采取原状土样978个,对所取土样室内土工试验资料及原位测试资料进行统计分析,将该场区各土层物理力学性质指标列入表2-1。
为便于桩基沉降验算,将该场区⑨3粘土层以下各土层分级荷重下压缩模量Es 值列入表2-2。
2.5.4地基土承载力特征值根据本次勘察结果,将该场区地基土承载力特征值fak值列入表2-3。
表2-3:地基土承载力特征值2.5.5不良地质作用及特殊性岩土经钻探揭露,该拟建场地特殊土表层分布①1杂填土、①2素填土;3.4m以下普遍分布有⑥1淤泥质粉质粘土、⑥3淤泥质粉质粘土层。
其中①1杂填土、①2素填土、⑥1淤泥质粉质粘土在基坑开挖深度范围内,对本工程支护稳定性有一定影响,提请设计单位注意。
本场区不良地质作用主要为区域地面沉降,塘沽区最大累计沉降量(1959-2003年)为3.21m,近年平均沉降速率为25-28mm/a,预计本区域在未来地面沉降仍将按目前速率持续。
2.5.6地下水位该场区浅层地下水属潜水,受大气降水补给,排泄方式主要为蒸发。
地下水位随季节有所变化,年变幅0.5~1.0m左右。
勘察期间,该场区初见地下水位埋深0.4~2.0m,稳定水位埋深为0.2~1.7m 左右,水位平均大沽标高:1.0m左右。
三、监测目的在基坑开挖施工过程中,对基坑及周围环境的变形情况进行跟踪监测,所取得的数据能可靠地反映开挖及施工所造成的影响。
在基坑开挖和施工中,由于地质条件、荷载条件、材料性质、施工技术和外界其它因素的复杂影响,实际情况与理论上常常有出入。
在理论分析指导下有计划地进行现场监测工作,对于保证安全、减少不必要的损失是很重要的。
监测的目的可归纳为如下几点:(1)及时发现不稳定因素及时掌握基坑开挖过程中,支护体系的工作性状及对工程和周围环境的影响,及时获取相关信息,确保基坑稳定安全。
(2)验证设计、指导施工通过监测可以了解结构内部及周边土体及周围环境的实际变形(化),用于验证设计与实际符合程度,并根据变形情况为施工提供有价值的指导性意见。
(3)保障业主及相关社会利益通过对监测数据的分析,在理论分析指导下有计划地进行现场施工工作,对于保证安全、减少不必要的损失,起着重要作用,同时也有利于保障业主利益及相关社会利益。
(4)分析区域性施工特征通过对围护结构监测数据的收集、整理和综合分析,了解各监测对象的实际变形情况及施工对周边环境影响程度,分析区域性施工特征,为类似工程累积宝贵经验。
四、基坑监测项目4.1 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作:(1)坡顶,支护桩顶水平及竖向位移;(2)周边地表裂缝监测;(3)周边道路沉降;(4)周边建筑沉降;(5)周边地面沉降;(6)观测井水位监测;4.2根据项目要求和特点,设置本工程监测对象的精度要求如下:表2.1监测对象及精度4.3巡视对象及内容4.3.1 基坑工程整个施工期内,每天均应有专人进行巡视检查。
4.3.2 基坑工程巡视检查应包括以下主要内容:1 支护结构(1)支护结构成型质量;(2)冠梁、支撑、围檩有无裂缝出现;(3)支撑、立柱有无较大变形;(4)止水帷幕有无开裂、渗漏;(5)墙后土体有无沉陷、裂缝及滑移;(6)基坑有无涌土、流砂、管涌。
2 施工工况(1)开挖后暴露的土质情况与岩土勘察报告有无差异;(2)基坑开挖分段长度及分层厚度是否与设计要求一致,有无超长、超深开挖;(3)场地地表水、地下水排放状况是否正常,基坑降水、回灌设施是否运转正常;(4)基坑周围地面堆载情况,有无超堆荷载。
3 基坑周边环境(1)地下管道有无破损、泄露情况;(2)周边建(构)筑物有无裂缝出现;(3)周边道路(地面)有无裂缝、沉陷;(4)邻近基坑及建(构)筑物的施工情况。
4 监测设施(1)基准点、测点完好状况;(2)有无影响观测工作的障碍物;(3)监测元件的完好及保护情况。
5 根据设计要求或当地经验确定的其他巡视检查内容。
4.3.3 巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行。
4.3.4 巡视检查应对自然条件、支护结构、施工工况、周边环境、监测设施等的检查情况进行详细记录。
如发现异常,应及时通知委托方及相关单位。
4.3.5 巡视检查记录应及时整理,并与仪器监测数据综合分析。
现场巡视与仪器监测相结合,若监测数据出现较大波动,可通过现场巡视查找原因,并立即采取措施进行解决,以确保基坑和周边建筑安全。
五、基坑监测点布置及埋设5.1一般规定5.1.1 基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。
5.1.2 基坑工程监测点的布置应不妨碍监测对象的正常工作,并尽量减少对施工作业的不利影响。
5.1.3 监测标志应稳固、明显、结构合理,监测点的位置应避开障碍物,便于观测。
5.1.4 在监测对象内力和变形变化大的代表性部位及周边重点监护部位,监测点应适当加密。
5.1.5 应加强对监测点的保护,必要时应设置监测点的保护装置或保护设施。
5.2坡顶及支护水平、竖向位移监测监测点布置:基坑边坡顶部的水平位移和竖向位移监测点应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。
监测点间距不宜大于20m,每边监测点数目不应少于3个。
监测点宜设置在基坑边坡坡顶上按照设计要求水平位移与沉降监测点使用同一点,不再另行埋设。
基坑围护结构四周共布设47个垂直、水平位移监测点。
埋设方法:监测点设置于基坑四周围护结构桩顶部,预埋钢筋或用冲击钻在设计位置处钻孔后埋入钢筋并灌注混凝土,并在顶部刻上“+”标记作为监测平面位移使用,桩顶水平位移测点与沉降测点共用。
桩顶沉降及水平位移监测点布设图5.3周边建筑及道路沉降5.4地下水位监测监测点布置:基坑周边共设九口地下水位观测井,井管500mm、井深8.0m。
转角部位设有六个观测井,且在长边中间添加共计3个观测井,均位于止水帷幕外侧边(见附图)。
地下水位监测图(观测井)5.5周边地面沉降监测5.5.1 从基坑边缘以外1~3倍开挖深度范围内需要保护的建筑物、地下管线等均应作为监控对象。
必要时,尚应扩大监控范围。
5.5.2 位于重要保护对象安全保护区范围内的监测点的布置,尚应满足相关部门的技术要求。
5.5.3 建筑物的水平位移监测点应布置在建筑物的墙角、柱基及裂缝的两端,每侧墙体的监测点不应少于3处。
5.5.4 建筑物的裂缝监测点应选择有代表性的裂缝进行布置,在基坑施工期间当发现新裂缝或原有裂缝有增大趋势时,应及时增设监测点。
每一条裂缝的测点至少设2组,裂缝的最宽处及裂缝末端宜设置测点。
5.5.5 基坑周边地表竖向沉降监测点的布置范围宜为基坑深度的1~3倍,监测剖面宜设在坑边中部或其他有代表性的部位,并与坑边垂直,监测剖面数量视具体情况确定。
每个监测剖面上的监测点数量不宜少于5个。
5.5.6 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。
同一监测孔的测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。
测点布置:根据设计文件及监测技术规范要求,每30m左右布设一组地表点,共布设31组地表沉降监测点。
测点埋设:围挡内硬化区域选定位置钻孔,孔径120mm,将硬化面层钻穿后,在孔内植入0.5m~1m的螺纹钢筋,顶部略低于硬化层表面,避免受车辆碾压等影响。
红线外道路上的测点采用表层点布设,形式与管线间接监测点相同。
若红线外为填土区的,则采用浇筑混凝土观测墩的方法布设,墩顶高出自然地坪10cm,测量标志采用道钉。