第五章数据分布特征习题

合集下载

统计学基础各章习题整理

统计学基础各章习题整理

统计学基础各章习题整理第⼀章绪论⼀、单项选择题1.政治算术学派的代表⼈物是()A、康令B、威廉?配第C、凯特勒D、恩格尔2. 政治算术学派的创始⼈之⼀是( )。

A.阿亨⽡尔B.凯特勤C.约翰·格朗特D.⽪尔逊3、数理统计学的奠基⼈是:()A、威廉?配第B、阿痕⽡尔C、凯特勒D、恩格尔4、国势学派对统计学的主要贡献是:()A、采⽤了数量分析⽅法B、引⼊了⼤数法则C、提出了“统计学”这⼀名词D、证明了⼩样本理论5.“统计”⼀词的基本涵义是()A统计调查、统计整理、统计分析B统计设计、统计分组、统计计算C统计⽅法、统计分析、统计计算D统计学、统计⼯作、统计资料6.要了解某企业职⼯的⽂化⽔平情况,总体单位是()A该企业的全部职⼯; B该企业每⼀个职⼯的⽂化程度;C该企业的每⼀个职⼯; D该企业全部职⼯的平均⽂化程度。

7.以⼀、⼆、三等品来衡量产品质地的优劣,那么该产品等级是()。

A. 品质标志B. 数量标志C. 质量指标D. 数量指标8.下列标志中,属于数量标志的是()A学⽣的性别;B学⽣的年龄;C学⽣的专业;D学⽣的住址。

9.某⼯⼈⽉⼯资150元,则“⼯资”是()A数量标志;B品质标志;C质量指标;D数量指标。

10.下列变量中,属于连续变量的是()A⼤中型企业个数; B⼤中型企业的职⼯⼈数;C⼤中型企业的利润额;D⼤中型企业拥有的设备台数。

⼆、多项选择题1.对某地区⼯业⽣产进⾏调查,得到如下资料,其中,统计指标有()A某企业亏损20万元; B全地区产值3亿元; C某企业职⼯⼈数2000⼈;D全地区职⼯6万⼈; E全地区拥有各种设备6万台。

2.总体和总体单位不是固定不变的,随着研究⽬的不同()A总体单位可转化为总体; B总体可转化为总体单位; C总体和总体单位可以互相转化;D 只能是总体单位转化为总体;D只能是总体转化为总体单位。

3.下列标志中,属于数量标志的有()A性别;B⼯种;C⼯资;D民族;E年龄。

第五章数据分布特征习题

第五章数据分布特征习题

第五章数据分布特征的描述练习题一、填空题1.常用的数值平均数有和以及。

2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的的大小。

3.计算算术平均数的基本公式。

4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。

5.加权算术平均数等于简单算术平均数的前提条件是。

6.利用组距数列计算算术平均数,应首先计算各组的。

7.统计中的变量数列是以为中心而左右波动,所以平均数反映了总体分布的。

8.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。

中位数和众数也可以称为平均数。

9.调和平均数是平均数的一种,它是的算术平均数的。

10.现象的是计算或应用平均数的原则。

11.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。

12.较常使用的离中趋势指标有、、、、。

13.极差是总体单位的与之差,在组距分组资料中,其近似值是。

14.是非标志的平均数为、标准差为。

15.标准差系数是与之比。

16.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。

17.标准差用的方法解决了离差之和为0而不能求平均离差的问题,因此它在数学处理上优于,因此应用范围更为广泛。

18.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。

19.测定峰度,往往以为基础。

依据经验,当β=3时,次数分配曲线为;当β<3时,为曲线;当β>3时,为曲线。

20.在对称分配的情况下,平均数、中位数与众数是的。

在偏态分配的情况下,平均数、中位数与众数是的。

如果众数在左边、平均数在右边,称为偏态。

如果众数在右边、平均数在左边,则称为偏态。

二、单选题1.下列属于平均指标的是( )。

A某县平均每亩粮食产量B全员劳动生产率C某县平均每人占有耕地D某县平均每户拥有小汽车的数量2,平均数反映了( )。

医学统计学练习题与答案

医学统计学练习题与答案

一、单向选择题1。

医学统计学研究的对象是 E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是E 。

依照随机原则抽取总体中的部分个体3。

下列观测结果属于等级资料的是 D.病情程度4. 随机误差指的是 E 。

由偶然因素引起的误差5. 收集资料不可避免的误差是 A.随机误差1。

某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是A 。

中位数2. 算术均数与中位数相比,其特点是 B 。

能充分利用数据的信息3. 一组原始数据呈正偏态分布,其数据的特点是 D 。

数值分布偏向较小一侧4. 将一组计量资料整理成频数表的主要目的是E 。

提供数据和描述数据的分布特征1. 变异系数主要用于 A .比较不同计量指标的变异程度2. 对于近似正态分布的资料,描述其变异程度应选用的指标是E. 标准差3.某项指标95%医学参考值范围表示的是D 。

在“正常"总体中有95%的人在此范围4.应用百分位数法估计参考值范围的条件是B .数据服从偏态分布5.已知动脉硬化患者载脂蛋白B 的含量(mg/dl )呈明显偏态分布,描述其个体差异的统计指标应使用 E .四分位数间距1.样本均数的标准误越小说明 E 。

由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是D 。

个体差异3.对于正偏态分布的的总体,当样本含量足够大时,样本均数的分布近似为C.正态分布4。

假设检验的目的是 D 。

检验总体参数是否不同5。

根据样本资料算得健康成人白细胞计数的95%可信区间为7。

2×109/L ~9。

1×109/L ,其含义是 E 。

该区间包含总体均数的可能性为95%1. 两样本均数比较,检验结果05.0 P 说明 D 。

不支持两总体有差别的结论2. 由两样本均数的差别推断两总体均数的差别, 其差别有统计学意义是指E. 有理由认为两总体均数有差别3. 两样本均数比较,差别具有统计学意义时,P 值越小说明 D.越有理由认为两总体均数不同4。

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
xt mn − ∑ xt ⎛ m ⎞ i∑ =1 ⎟ p q i =1 . = ∏⎜ ⋅ ⎜ ⎟ i =1 ⎝ x i ⎠ n
n n
4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有 n 条,涂 上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有 m 条鱼,而涂有红漆的鱼则 有 k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有 N 条鱼,有涂有红漆的鱼所占比例为
样本标准差 s = 3.7778 ≈ 1.9437 .
2. 证明:对任意常数 c, d,有
∑ ( x − c)( y − d ) = ∑ ( x − x )( y − y ) + n( x − c)( y − d ) .
i =1 i i i =1 i i
n
n
证: ∑ ( xi − c)( y i − d ) = ∑ [( xi − x ) + ( x − c)][( y i − y ) + ( y − d )]
频数 9 9 5 4 4 1 1 3 4 30
频率 0.225 0.225 0.125 0.1 0.1 0.025 0.025 0.075 0.1 1
累计频率 0.225 0.45 0.575 0.675 0.775 0.8 0.825 0.9 1
6. 对下列数据构造茎叶图 472 425 400 382 418 392 429 428 381 443 解:茎叶图为
1572 − 738 ≈ 140 , 6 区间端点可取为 735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.9

第四版统计学课后习题答案

第四版统计学课后习题答案

第四版统计学课后习题答案《统计学》第四版统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案一、思考题1.什么叫时间序列,构成时间序列的基本要素有哪些?P1212.序时平均数与一般平均数有何异同?P1273.时间数列与时点数列有哪些区别?P124-1254.环比增长速度与定基增长速度之间有什么关系?P1365.什么是平均发展速度?说说水平法和累计法计算平均发展速度的基本思路,各在什么情况下选用?P1386.测定长期趋势有哪些常用的方法?测定的目的是什么?P1367.实际中如何根据时间序列的发展变化的数列特征来判断合适的趋势方程形式?P1458.影响时间序列指标数值大小的因素有哪些?这些因素共同作用的理论模型有哪些?P140二、判断题1.时间序列也称动态数列,它是变量数列的一种形式。

(×)【解析】时间序列是数列,而变量数列是静态数列。

2.时间数列和时点数列属于总量指标时间序列。

(√)3.所谓序时平均数是指将同一总体的不同时期的平均数按时间先后顺序排列起来。

(×)【解析】序时平均数是将不同时期的发展水平加以平均而得到的平均数。

4.间隔相等的时期数列计算平均发展水平时,应用首末折半法。

(×)【解析】间隔相等的时点数列计算平均发展水平时,应用首末折半法。

5.平均增长速度等于各期环比增长速度连乘积开n次方。

(×)【解析】平均发展速度等于各期环比发展速度连乘积开n次方,平均增长速度=平均发展速度-1(或100%)6.两个相邻时期的定基发展速度之比等于相应的环比发展速度。

(√)7.用移动平均法测定长期趋势时,移动平均项数越多越好。

(×)【解析】移动平均法所取项数的多少,应视资料的特点而定。

8.某一时间序列有25年的数据,若采用五项移动平均,则修匀后的数列缺少4项数据。

(√)9.如果时间序列是年度数据,则不存在季节变动。

(√)10.用相同方法拟合趋势方程时,t的取值不同,则得到的趋势方程也不同,但趋势预测值不变。

(√)三、单项选择题1.时间序列的构成要素是()。

概率论与数理统计(茆诗松)课后第五章习题参考答案

概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。

考研资料_厦门大学卫生综合_卫生统计厦大内部习题集_第五章 常用概率分布

考研资料_厦门大学卫生综合_卫生统计厦大内部习题集_第五章 常用概率分布

第五章常用概率分布习题一、是非题1.在确定某个指标的医学参考值范围时,必须选取足够多的健康人来进行计算。

2.对于服从正态分布的资料,变量取值位于-1.96到1.96之间的可能性为0.95。

3.Poisson分布有两个参数:n和μ。

4.在μ足够大时,Poisson分布就是正态分布。

5.设X服从Poisson分布,则Y=2X也服从Poisson分布。

6.用X表示某个放射性物体的每分钟脉冲数,其平均每分钟脉冲数为5次(可以认为服从Poisson分布),用Y表示连续观察20分钟的脉冲数,则可以认为近似服从正态分布,但不能认为X近似服从正态分布。

二、选择题1.关于二项分布,错误的是( )。

A.服从二项分布随机变量为离散型随机变量B.当n很大,π接近0.5时,二项分布图形接近正态分布C.当π接近0.5时,二项分布图形接近对称分布D.服从二项分布随机变量,取值的概率之和为1E.当nπ>5时,二项分布接近正态分布2.关于泊松分布,错误的是( )。

A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布B.泊松分布由均数λ唯一确定C.泊松分布的均数越大,越接近正态分布D.泊松分布的均数与标准差相等E.如果X1和X2分别服从均数为λl和λ2的泊松分布,且相互独立。

则X1+X2服从均数为λl+λ2泊松分布3.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的( ) A.99%B.95%C.47.5%D.49.5%E.90%4.标准正态曲线下,中间95%的面积所对应的横轴范围是( )。

A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58D.-2.58到+2.58 E.-1.64到+1.645.服从二项分布的随机变量的总体均数为( )。

A.n(1-π) B.(n-1)π(1-π) C.nπ(1-π) D.nπE.6.服从二项分布的随机变量的总体标准为( )。

A B.(n-1)π(1-π) C.nπ(1-π) D E7.以下方法中,确定医学参考值范围的最好方法是( )A.百分位数法B.正态分布法C.对数正态分布法D.标准化法E.结合原始数据分布类型选择相应的方法8.下列叙述中.错误的是( )。

《统计学》--数据分布特征的统计描述练习

《统计学》--数据分布特征的统计描述练习

第三章数据分布特征的统计描述练习题一、单项选择题1、一组数据排序后处于25%和75%位置上的值称为(C)A、众数B、中位数C、四分位数D、均值2、离散系数的主要用途是(C)A、反映一组数据的离散程度B、反映一组数据的平均水平C、比较多组数据的离散程度D、比较多组数据的平均水平3、离散系数(C)A、只能消除一组数据的水平对标准差的影响B、只能消除一组数据的计量单位对标准差的影响C、可以同时消除数据的水平和计量单位对标准差的影响D、可以准确反映一组数据的离散程度4、峰态通常是与标准正态分布相比较而言的,如果一组数据服从标准正态分布,则峰态系数的值(A)A、等于0B、大于0C、小于0D、等于15、如果峰态系数K>0,表明该组数据是(A)A、尖峰分布B、扁平分布C、左偏分布D、右偏分布6、某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。

在上面的描述中,众数是(B)A、1200B、经济管理学院C、200D、理学院7、某居民小区准备采取一项新的物业管理措施,为此,随机抽取了100户居民进行调查,其中表示赞成的有69户,表示中立的有22户,表示反对的有9户,描述该组数据的集中趋势宜采用(A)A、众数B、中位数C、四分位数D、均值8、甲、乙两组工人的平均日产量分别为18件和15件。

若甲、乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量(B)A、上升B、下降C、不变D、可能上升,也可能下降9、权数对平均数的影响作用取决于(C)。

在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。

A、各组标志值的大小B、各组的次数多少C、各组次数在总体单位总量中的比重D、总体单位总量10、当各个变量值的频数相等时,该变量的(A)A、众数不存在B、众数等于均值C、众数等于中位数D、众数等于最大的数据值11、有8名研究生的年龄分别为21,24,28,22,26,24,22,20岁,则他们的年龄中位数为(B)A、24B、23C、22D、2112、下列数列平均数都是50,在平均数附近离散程度最小的数列是(b)A、0 20 40 50 60 80 100B、0 48 49 50 51 52 100C、0 1 2 50 98 99 100D、0 47 49 50 51 53 10013、如果你的业务是提供足球运动鞋的号码,那么,哪一种平均指标对你更有用?(d)A、算术平均数B、几何平均数C、中位数D、众数14、假定某人6个月的收入分别是1800元,1840元,1840元,1840元,1840元,8800元,反映其月收入一般水平应该采用(C)A、算术平均数B、几何平均数C、众数D、调和平均数15、某组数据分布的偏度系数为正时,该数据的众数、中位数、均值的大小关系是(B )A、众数>中位数>均值B、均值>中位数>众数C、中位数>众数>均值D、中位数>均值>众数二、填空题1、某班的经济学成绩如下表所示:43 55 56 56 59 60 67 69 73 75 77 77 78 79 80 81 82 83 83 83 84 86 87 88 88 89 90 90 95 97该班经济学成绩的平均数为77 ,众数为83 ,中位数为,上四分位数为,下四分位数为,四分位差为,离散系数为。

第五章数据分布特征的描述习题参考答案

第五章数据分布特征的描述习题参考答案

第五章数据分布特征的描述习题参考答案一、名词解释集中趋势指标:集中趋势指标是指一组数据向某一中心值靠拢的倾向,测度集中趋势指标就是寻找数据一般水平的代表值或中心值。

这个代表值或中心值就是集中趋势指标。

数值平均数:数值平均数是将总体各单位数量标志值通过一定的数学公式计算出来所得到的集中趋势指标。

具体有算术平均数、调和平均数和几何平均数三种。

位置平均数:位置平均数是通过查找位置,所找到位置对应的数值作为集中趋势指标。

具体有众数和中位数两种。

离中趋势指标:离中趋势指标又称标志变动度,是反映总体各单位数量标志值差异程度的综合指标,用来反映总体各单位数量标志值的变动范围和离散程度。

极差:极差也称全距,是总体各单位数量标志值的最大值与最小值之差,反映总体各单位数量标志值的变动范围,常用R表示。

平均差:平均差是总体各单位数量标志值与其算术平均数离差绝对值的算术平均数。

常用“A.D”表示。

它综合反映了总体各单位数量标志值的变动程度。

方差:方差是总体各单位数量标志值与其算术平均数离差平方的算术平均数,通常以2σ表示。

标准差:标准差是方差的平方根,也是测度数量标志值的差异程度的指标。

标准差又称均方差,一般用σ表示。

离散系数:离散系数通常指标准差系数,是一组数据的标准差与其相应的算术平均数之比,是测度数据离散程度的相对指标。

偏态:偏态是指数据分布的偏斜方向和程度。

峰度:峰度是指次数分布曲线顶峰的尖平程度,是次数分布的又一重要特征。

二、单项选择题1~5:D C D C C 6~10:B C C D A三、判断题(正确的打“√”,错误的打“×”)1~5:√××××6~10:√√×四、简答题1、计算和应用集中趋势指标时应注意哪些问题?答:众数是一种位置代表值,易理解,不受极端值的影响。

任何类型的数据资料都可以计算,但主要适合于作为定类数据的集中趋势测度值,即使资料有开口组仍然能够使用众数。

第五章 习题参考答案与提示

第五章 习题参考答案与提示

第五章习题参考答案与提示第五章数理统计初步习题参考答案与提示1.在总体中随机抽取一长度为36的样本,求样本均值)3.6,52(~2NXX落50.8到53.8之间的概率。

答案与提示:由于)/,(~2nNXσμ,所以{50.853.8}0.8293PX<<=。

2.在总体中随机抽取一长度为100的样本,问样本均值与总体均值的差的绝对值大3的概率是多少?)20,8(~2NX答案与提示:由于2~(,/XNnμσ),所以{83}0.1336PX−>=3.设为来自总体n XXX,,,21)(~λPX的一个样本,X、分别为样本均值和样本方差。

求2SXD及。

2ES答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体期望、总体方差的关系,显然应由定理5-1来解决这一问题。

2,DXDXESnnλλ===。

4.设是来自正态总体的随机样本,。

试确定、b使统计量4321XXXX,,,)30(2,N243221)32()2(XXbXXaX−+−=a X服从分布,并指出其自由度。

2χ答案与提示:依题意,要使统计量X服从分布,则必需使及服从标准正态分布。

解得2χ)2(212/1XXa−)32(432/1XXb−a=1/45;b=1/117。

5.设X和Y独立同分布和分别是来自N()032,,921XXX,,,921YYY,,,X和Y 的简单抽样,试确定统计量UXXYY=++++112929 所服从的分布。

答案与提示:应用t分布的定义,得UXXYY=++++191292~()t96.设随机变量~()Xtn(1n> ),试确定统计量21YX=所服从的分布。

答案与提示:先由t分布的定义知nVUX=,再利用F分布的定义即可。

—1—第五章习题参考答案与提示)1,(~12nFXY=。

7.设总体X服从正态分布,而是来自总体)2,0(2N1521,,,XXX X的简单随机样本,试确定随机变量)(221521121021XXXXY++++=所服从的分布。

统计学课后习题参考答案

统计学课后习题参考答案

思考题与练习题参考答案【友情提示】请各位同学完成思考题和练习题后再对照参考答案。

回答正确,值得肯定;回答错误,请找出原因更正,这样使用参考答案,能力会越来越高,智慧会越来越多。

学而不思则罔,如果直接抄答案,对学习无益,危害甚大。

想抄答案者,请三思而后行!第一章绪论思考题参考答案1.不能,英军所有战机=英军被击毁的战机+英军返航的战机+英军没有弹孔的战机,因为英军被击毁的战机有的掉入海里、敌军占领区,或因堕毁而无形等,不能找回;没有弹孔的战机也不可能自己拿来射击后进行弹孔位置的调查。

即便被击毁的战机找回或没有弹孔的战机自己拿来射击进行实验,也不能从多个弹孔中确认那个弹孔是危险的。

2.问题:飞机上什么区域应该加强钢板?瓦尔德解决问题的思想:在他的飞机模型上逐个不重不漏地标示返航军机受敌军创伤的弹孔位置,找出几乎布满弹孔的区域;发现:没有弹孔区域是军机的危险区域。

3.能,拯救和发展自己的参考路径为:①找出自己的优点,②明确自己大学阶段的最佳目标,③拟出一个发扬自己优点,实现自己大学阶段最佳目标的可行计划。

练习题参考答案一、填空题1.调查。

2.探索、调查、发现。

3. 目的。

二、简答题1.瓦尔德;把剩下少数几个没有弹孔的区域加强钢板。

2.统计学解决实际问题的基本思路,即基本步骤是:①提出与统计有关的实际问题;②建立有效的指标体系;③收集数据;④选用或创造有效的统计方法整理、显示所收集数据的特征;⑤根据所收集数据的特征、结合定性、定量的知识作出合理推断;⑥根据合理推断给出更好决策的建议。

不解决问题时,重复第②-⑥步。

3.在结合实质性学科的过程中,统计学是能发现客观世界规律,更好决策,改变世界和培养相应领域领袖的一门学科。

三、案例分析题1.总体:我班所有学生;单位:我班每个学生;样本:我班部分学生;品质标志:姓名;数量标志:每个学生课程的成绩;指标:全班学生课程的平均成绩;指标体系:上学期全班同学学习的科目;统计量:我班部分同学课程的平均成绩;定性数据:姓名;定量数据:课程成绩;离散型变量:学习课程数;连续性变量:学生的学习时间;确定性变量:全班学生课程的平均成绩;随机变量:我班部分同学课程的平均成绩,每个同学进入教室的时间;横截面数据:我班学生月门课程的出勤率;时间序列数据:我班学生课程分别在第一个月、第二个月、第三个月、第四个月的出勤率;面板数据:我班学生课程分别在第一个月、第二个月、第三个月、第四个月的出勤率;选用描述统计。

统计学练习题及答案

统计学练习题及答案

统计学练习题及答案数据分布特征的描述1.下面是我国人口和国土面积资料:────────┬─────────────── │根据第四人次人口普查调整数├──────┬──────── │1982年│ 1990年────────┼──────┼──────── 人口总数│ __ │ __ 男│ __ │ __ 女│ __ │ __────────┴──────┴────────国土面积960万平方公里。

试计算所能计算的全部相对指标。

2.某企业2022年某产品单位成本520元,2022年计划规定在上年的基础上单位成本降低5%,实际降低6%,试确定2022年单位成本的计划数与实际数,并计算2022年降低成本计划完成程度指标。

3.某市共有50万人,其市区人口占85%,郊区人口占15%,为了解该市居民的收入水平,在市区抽查了1500户居民,每人平均收入为1400元;在郊区抽查了1000 户居民,每人年平均收入为1380元,若这两个抽样数字具有代表性,则计算该市居民年平均收入应采用哪一种形式的平均数方法进行计算?4.有两个班级统计学成绩如下:根据上表资料计算:(1)哪个班级统计学成绩好?(2)哪个班级的成绩分布差异大?5.2022年8月份甲、乙两农贸市场资料如下:────┬──────┬─────────┬─────────品种│价格(元/斤)│甲市场成交额(万元)│乙市场成交量(万斤)────┼──────┼─────────┼───────── 甲│ 1.2 │ 1.2 │ 2 乙│ 1.4 │ 2.8 │ 1 丙│ 1.5 │ 1.5 │ 1────┼──────┼─────────┼───────── 合计│ ── │ 5.5 │ 4────┴──────┴─────────┴─────────试问哪一个市场农产品的平均价格较高?并说明原因。

6.某车间有甲、乙两个生产组,甲组平均每个工人的日产量36件,标准差9.6件。

2024八年级数学下册第5章数据的频数分布5.1频数与频率习题课件新版湘教版

2024八年级数学下册第5章数据的频数分布5.1频数与频率习题课件新版湘教版
格),D(不合格)四个等级.现从中随机抽测了若干名学生的
“综合素质”等级作为样本进行数据处理,并作出了如下频
数分布表和如图所示的条形统计图(不完整).请根据图表中
的信息回答下列问题.
等级
频数
频率
A
a
0.2
B
1 600
b
C
1 400
0.35
D
200
0.05
(1)求频数分布表中a,b的值;
【解】由题易知被抽测的人数为200÷0.05=4 000,
不是质地均匀的;
②第2 000次试验的结果一定是“盖面朝上”;
③随着试验次数的增大,“盖面朝上”的频率接近0.53.
其中正确的是
①③
.
思维发散练2
利用频数、频率的关系补全统计图表
9. [2023·邵阳节选 新考法·图像信息法]某市对九年级学生进
行“综合素质”评价,评价的结果为A(优),B(良好),C(合
植的成活率,所统计的银杏树苗移植成活的相关数据如下
表所示:
300
600 1 000 7 000 15 000
移植的棵数a 100
成活的棵数b
成活的频率


84
279
505
847
0.84
0.93
0.842
0.847
6 337 13 581
0.905
0.905
根据表中的信息,估计银杏树苗在一定条件下移植成活的
知识点2
频率
3.[2022·牡丹江]王老师对本班40名学生的血型做了统计,列
出如下的统计表,则本班A型血的人数是( A )
组别
A型
B型
AB型

概率论与数理统计第五章习题详解 (2)

概率论与数理统计第五章习题详解  (2)

习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925=.2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61ii X X==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪⎪ ⎪⎝⎭,于是6117()62i k E X k ==⋅=∑6221191()66i k E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=-3512=,1,2,,6i =因此 617()()6212ii E X E X===⨯=∑6135()()612i i D X D X ===⨯∑352=故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。

炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.{}1|()|7P X E X =--≥解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑420400380400--≈Φ-Φ11()()33=Φ-Φ-12()13=Φ- 20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001ii X X==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=,100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少? (2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001ii X=∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑15P ⎫⎪=>12 1.5i i P X =⎫⎪=>⎬⎪⎭2(1(1.5))=-Φ 0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni ii i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑210.9≈Φ-≥ .即0.95Φ≥查正态分布得 1.64≥即21012()446.161.64n ≤≈取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X -⨯>≈-Φ1(6.932)=-Φ 0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn i i Z X n==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()ki k E X α= (1,2,3,4;1,2,,)k i n ==有22()iE X α=,2242()((i iiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X nα==⋅=∑2242211()()()nn i i D Z D X n nαα==⋅=-∑{}15P X =>因此,根据中心极限定理:(0,1)nZU Nα-=即当n充分大时,n Z近似服从2242(,())N nααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解(1)(100,0.2)X B,所以{}1001000.20.80,1,2,,100k k kP X k C k-===()20E X np==,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---⎧⎫=≤≤(2.5)( 1.5)=Φ-Φ-(2.5)( 1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤1000.910.95n -=-Φ=1000.9 1.65n-=-解得117n =,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。

八年级数学下册《第五章 数据的频数分布》练习题与答案(湘教版)

八年级数学下册《第五章 数据的频数分布》练习题与答案(湘教版)

八年级数学下册《第五章数据的频数分布》练习题与答案(湘教版)一、选择题1.已知数据:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频数为4的一组是( )A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.52.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为( )A.0.3B.0.4C.0.5D.0.63.四大名著知识竞赛成绩结果统计如下表:成绩在91﹣100分的为优胜者,则优胜者的频率是( )分数段(分) 61﹣70 71﹣80 81﹣90 91﹣100人数(人) 2 8 6 44.A校女生占全校总人数的40%,B校女生占全校总人数的55%,则女生人数( )A.A校多于B校B.A校与B校一样多C.A校少于B校D.不能确定5.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5A.0.2B.0.4C.0.5D.0.97.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( ).A.90B.75C. 60D.458.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如表所示,则棉花纤维长度的数据在8≤x<32这个范围的百分比为( )A.80%B.70%C.40%D.20%9.为绘制一组数据的频数分布直方图,首先要算出这组数据的变动范围,即是指数据的( )A.最大值B.最小值C.个数D.最大值与最小值的差10.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约等于( )A.50%B.55%C.60%D.65%11.在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值12.对一组数据进行适当整理,下列结论正确的是( )A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,小长方形的高与频数成正比D.各组的频数之和等于1二、填空题13.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是________.14.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示.根据图示所提供的样本数据,可得学生参加体育活动的频率是_______15.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有名.16.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交的作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2∶3∶4∶6∶1,第二组的频数为9,则全班上交的作品有______件.17.对某校同龄的70名学生的身高进行测量,得到一组数据,其中最大值是175 cm,最小值是149 cm,对这组数据进行整理时,可得到其极差(最大值与最小值的差)为__________,如果确定它的组距为3 cm,那么组数为__________.18.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.三、解答题19.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?20.某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):3 2 1 2 3 3 5 2 2 42 4 2 5 234 4 1 33 2 5 14 2 3 1 2 4一目了然知道整个测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?21.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数.22.某学校为了增强学生的安全意识,举行了一次安全知识竞赛,全校800名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中随机抽取了部分学生的成绩进行统计(满分100分,而且成绩均为整数).绘制了不完整的统计图表请你根据图表中提供的信息解答以下问题:(1)求表中的a、n的值,并将图中补充完整;(2)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时) 频数(人数)频率0<t≤2 2 0.042<t≤4 3 0.064<t≤6 15 0.306<t≤8 a 0.50t>8 5 b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分) 频数(人数) 频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.某兴趣小组对部分中小学生去年暑假看电视的时间进行了抽样调查,根据调查的数据绘制了频数、频率分布表和频数分布直方图(小时数取整数).0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5以上合计看电视时间(小时)频数20 30 15 10 100频率0.2 0.25 0.1 1(1)此次调查的样本容量是多少?(2)补全频数、频率分布表和频数分布直方图;(3)请估计1200名中小学生大约有多少学生暑假期间看电视的时间会低于60小时.参考答案1.D2.C.3.C4.D5.A.6.C7.A8.A9.D10.C11.A12.C13.答案为:0.4.14.答案为:0.3.15.答案为:150.16.答案为:4817.答案为:26 cm 918.答案为:48.19.解:根据分析,可以估计其中有红桃约为6张,黑桃约为10张,梅花约为14张,方块约为1张.抽到红桃的频数=30×0.20=6张;方块的频数=30×0.03≈1张;黑桃的频数=30×0.32≈10张;梅花的频数=30×0.45=13张.20.解:(1)选择条形统计图测试成绩(个) 测试成绩人数1 42 103 74 6 53(2)获得的信息如:成绩为五个的有3人,占10%;成绩为2个的人数最多. (3)(4+10+7)÷30×150=105(名).21.解:(1)m ≥10的人数有15人,则频率=12;(2)1000×12=500(人)即1000个18~35岁的青年人中“日均发微博条数”为A 级的人数为500人. 22.解:(1)抽取的总数a=4÷0.08=50,m=0.24,n=50×0.32=16;(2)该校安全意识不强的学生约有800×(0.08+0.16)=192(人). 答:该校安全意识不强的学生约有192人. 23.解:(1)根据题意得:2÷0.04=50(人)则a =50﹣(2+3+15+5)=25;b =5÷50=0.10;故答案为:25;0.10; (2)阅读时间为6<t ≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人)则该校2000名学生中评为“阅读之星”的有200人.24.解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48% 故答案为:48%.25.解:(1)由频率分布表可知,此次调查的样本容量是100;(2)如图:看电视时间(小时) 0.5~20.5 20.5~40.540.5~60.560.5~80.580.5以上合计频数20 25 30 15 10 100 频率0.2 0.25 0.3 0.15 0.1 1(3)1200×(0.2+0.25+0.3)=1200×34=900即1200名中小学生大约有900学生暑假期间看电视的时间会低于60小时.。

数据分布特征的统计描述习题

数据分布特征的统计描述习题

第三章 数据分布特征的统计描述思考与练习一、选择题1.有n 辆汽车在同一距离的公路上行驶的速度资料,确定汽车平均每小时行驶速度的平均数公式是:( C )A .n x∑B .∑∑fxf C .∑x n 1D .∑∑xm m2.权数对加权算术平均数的影响,取决于(B )A. 权数所在组标志值的大小;B. 权数的大小;C. 各组单位数的多少;D. 总体单位数的多少 3.是非标志不存在变异时,意味着:(B ,C )A. 各标志值遇到同样的成数;B. 所有单位都只具有某种属性C. 所计算的方差为0;D. 所计算的方差为0.254.能够综合反映总体各个单位标志值的差异,对总体标志变异程度作全面客观评定的指标有(A ,C )A.方差B.算术平均数C.标准差D.全距二、判断题1.甲乙两地,汽车去程时速20公里,回程时速30公里,其平均速度为25公里。

[答]错。

本题应采用调和平均法计算平均速度。

2.权数起作用的前提是各组的变量必须互有差异。

[答]对。

3.变量同减某个数再同除于另一数然后求其方差,其方差等于原方差乘于除数的平方。

[答]对。

4.与平均数相比,中位数比较不受极端值的影响。

[答]对。

三、计算题1.甲乙两企业生产三种产品的单位成本和总成本资料如下表,试比较哪个企业的平均成本高,并分析其原因。

[解]甲企业的平均成本210030001500660019.4118210030001500340152030++===++乙企业的平均成本325515001500625518.2895 325515001500342152030++===++由上面的计算得知,甲企业的平均成本高于乙企业。

因为乙企业单位成本低的A产品生产的数量多,占总成本一半以上,即成本低的产品相对权数大,而甲企业生产单位成本低的A产品数量少,仅占总成本的31.8%(=2100/6600)。

由于权数的作用,乙企业的平均成本低于甲企业。

2.甲、乙两市场农产品价格及成交量资料如下表,试比较哪个市场的平均价格高,并分析其原因。

统计学:变量分布特征的描述习题与答案

统计学:变量分布特征的描述习题与答案

一、单选题1、在下列两两组合的平均指标中,哪一组的两个平均数完全不受极端数值的影响?()A.几何平均数和众数B.算术平均数和调和平均数C.调和平均数和众数D.众数和中位数正确答案:D2、如果所有标志值的频数都减少为原来的1/5,而标志值仍然不变,那么算术平均数()A.不能预测其变化B.减少为原来的1/5C.不变D.扩大到5倍正确答案:C3、某企业有A、B两车间,2000年A车间人均工资720元,B车间730元,2001年A车间增加10%工人,B车间增加8%工人,如果A、B两车间2001年人均工资都维持上年水平,则全厂工人平均工资2001比2000()A.下降B.不一定C.提高D.持平正确答案:A4、若两数列的标准差相等而平均数不等,则()A.代表性也相等B.平均数小代表性大C.无法判断D.平均数大代表性大正确答案:D5、某班45名学生中,25名男生某门课的平均成绩为78分,20名女生的平均成绩为82分,则全班平均成绩为()A.80B.79.78C.79.28D.80.38正确答案:B6、某小组40名职工,每人工作天数相同。

其中20人每天工作10小时,15人每人工作8小时,5人每天工作6小时。

则计算该组职工平均每天工作时数应采用()A.加权算术平均数B.简单算术平均数C.简单调和平均数D.加权调和平均数正确答案:A7、平均差与标准差的主要区别是()A.适用条件不同B.反映了变异程度的不同C.对离差的数学处理方法不同D.意义有本质的不同正确答案:C8、各变量值与其算术平均数离差平方的平均数称为()A.极差B.标准差C.方差D.平均差正确答案:C9、离散系数主要是用于()A.比较多组数据的离散程度B.比较多组数据的平均水平C.反映一组数据的离散程度D.反映一组数据的平均水平正确答案:A10、某大学经济学院有1200名学生,管理学院800名学生,人文学院320名学生,理学院200名学生,在上面描述中,众数是()A.经济学院B.200C.1200D.800正确答案:A二、多选题1、全国人口数、商品库存量、人口出生数、出口总额这四个指标()A.都是总量指标B.都是质量指标C.都是时期指标D.有两个时期指标,两个时点指标正确答案:A、D2、平均指标与变异指标结合运用体现在()A.以平均指标为基础,用变异指标说明经济活动的均衡性B.以平均指标为基础,用变异指标说明经济活动的节奏性C.用变异指标说明平均指标代表性的大小D.以变异指标为基础,用平均指标说明经济活动的均衡性正确答案:A、B、C3、标志变异指标中的标准差和变异系数的区别是()A.与平均数的关系不同B.两者的作用不同C.两者的计算方法不同D.指标表现形式不同正确答案:C、D4、加权算术平均数的大小()A.受各组标志值大小的影响B.受标志的多少影响C.受各组次数大小的影响D.受各组单位数占总体总数比重的影响正确答案:A、C、D5、计算与应用相对指标应注意的原则有()A.保持对比指标的可比性B.把相对指标和绝对指标结合起来C.正确选择对比的基数D.把相对指标和分组法结合运用正确答案:A、B、C、D1、平均指标抽象了各单位标志值数量差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章数据分布特征的描述练习题一、填空题1.常用的数值平均数有和以及。

2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的的大小。

3.计算算术平均数的基本公式。

4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。

5.加权算术平均数等于简单算术平均数的前提条件是。

6.利用组距数列计算算术平均数,应首先计算各组的。

7.统计中的变量数列是以为中心而左右波动,所以平均数反映了总体分布的。

8.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。

中位数和众数也可以称为平均数。

9.调和平均数是平均数的一种,它是的算术平均数的。

10.现象的是计算或应用平均数的原则。

11.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。

12.较常使用的离中趋势指标有、、、、。

13.极差是总体单位的与之差,在组距分组资料中,其近似值是。

14.是非标志的平均数为、标准差为。

15.标准差系数是与之比。

16.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。

17.标准差用的方法解决了离差之和为0而不能求平均离差的问题,因此它在数学处理上优于,因此应用范围更为广泛。

18.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。

19.测定峰度,往往以为基础。

依据经验,当β=3时,次数分配曲线为;当β<3时,为曲线;当β>3时,为曲线。

20.在对称分配的情况下,平均数、中位数与众数是的。

在偏态分配的情况下,平均数、中位数与众数是的。

如果众数在左边、平均数在右边,称为偏态。

如果众数在右边、平均数在左边,则称为偏态。

二、单选题1.下列属于平均指标的是( )。

A某县平均每亩粮食产量B全员劳动生产率C某县平均每人占有耕地D某县平均每户拥有小汽车的数量2,平均数反映了( )。

A总体分布的集中趋势B总体中总体单位分布的集中趋势C总体分布的离散趋势D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )。

A接近于标志值大的一方B接近于标志值小的一方C不受权数的影响D无法判断4.由相对数计算平均数时,如果掌握的权数是相对数的子项数值时,则采用( )。

A 、加权算术平均数公式 B 、加权调和平均数公式 C 、简单算术平均数公式 B 、简单几何平均数公式5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )。

A 简单算术平均法B 加权算术平均法C 加权调和平均法D 几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( )。

A 简单算术平均法B 加权算术平均法C 加权调和平均法D 几何平均7.某厂有两个车间,1984年甲车间工人平均工资为120元,乙车间为130元;1985年,甲车间工人在全厂工人中的比重提高,乙车间的比重下降。

在两车间工人平均工资没有变化的情况下,1985年全厂总平均工资比1984年全场总平均工资( )。

A 、增加B 、减少C 、持平D 、不能作结论8,某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )。

A 计划产值 B 实际产值 C 工人数 D 企业数 9.中位数和众数是一种( )。

A 代表值B 常见值C 典型值D 实际值10.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。

A 各组的次数必须相等B 各组标志值必须相等C 各组标志值在本组内呈均匀分布D 各组必须是封闭组 11.四分位数实际上是一种( )。

A 算术平均数B 几何平均数C 位置平均数D 数值平均数 12.离中趋势指标中,最容易受极端值影响的是( )。

A 极差 B 平均差 C 标准差 D 标准差系数13.平均差与标准差的主要区别在于( )。

A 指标意义不同B 计算条件不同C 计算结果不同D 数学处理方法不同 14.标准差指标数值越小,则反映变量值( )。

A 、越分散,平均数代表性越低B 、越集中,平均数代表性越高C 、越分散,平均数代表性越高D 、越集中,平均数代表性越低15.已知某班40名学生,其中男、女学生各占一半,则该班学生性别成数方差为( )。

A25% B 30% C 40% D 50%16.当数据组高度偏态时,哪一种平均数更具有代表性? ( )。

A 算术平均数 B 中位数 C 众数 D 几何平均数 17.方差是数据中各变量值与其算术平均数的( )。

A 离差绝对值的平均数B 离差平方的平均数C 离差平均数的平方D 离差平均数的绝对值18.一组数据的偏态系数为1.3,表明该组数据的分布是( )。

AlE 态分布 B 平顶分布 C 左偏分布 D 右偏分布19.对于右偏态有下列结论正确的是( )。

A 、X M M e <<0 B 、o eM X M<<C 、e oM M X << D 、o eM MX <<20.当44=β时,次数分布曲线为( )。

A 、正态峰度 B 、平顶峰度 C 、尖顶峰度 D 、无法判断 三、多选题1.正确选择权数是计算平均数的重要问题,选择权数时要考虑( )。

A 它应该是标志值的直接承担着B 它与标志值相乘具有实际的经济意义C 它应该是次数D 它应该是频率E 它可以是绝对数表示的次数,也可以是用相对数形式表示的频率 2.加权算术平均数的大小受哪些因素的影响( )。

A 受各组频数或频率的影响B 受各组标志值大小的影响C 受各组标志值和权数的共同影响D 只受各组标志值大小的影响E 只受权数大小的影响3.平均数的作用是( )。

A 反映总体的一般水平B 对不同时间、不同地点、不同部门的同质总体平均数进行对1C 测定总体各单位的离散程度D 测定总体各单位分布的集中趋势E 反映总体的规模 4.众数是( )。

A 位置平均数B 总体中出现次数最多的标志值C 不受极端值的影响D 适用于总体单位数多,有明显集中趋势的情况E 处于变量数列中点位置的那个标志值5.在什么条件下,加权算术平均数等于简单算术平均数( )。

A 各组次数相等 B 各组标志值不等 C 变量数列为组距变量数列 D 各组次数都为1 E 各组次数占总次数的比重相等 6.加权算术平均数的计算公式有( )。

An∑χB∑∑f f χ C ∑∑∑⎪⎪⎭⎫⎝⎛f f D ∑∑xm m E∑xn17.计算和应用平均数的原则是( )。

A 现象的同质性B 用组平均数补充说明总平均数C 用变量数列补充说明平均数D 用时间变量数列补充说明平均数E 把平均数和典型事例结合起来8.下列变量数列中可以计算算术平均数的有( )。

A变量数列B等距变量数列C品质变量数列D时间变量数列E不等距变量数列9.几何平均数主要适用于( )。

A标志值的代数和等于标志值总量的情况B标志值的连乘积等于总比率的情况C标志值的连乘积等于总速度的情况D具有等比关系的变量数列E求平均比率时10.中位数是( )。

A由标志值在变量数列中所处的位置决定的B根据标志值出现的次数决定的C总体单位水平的平均值D总体一般水平的代表值E不受总体中极端数值的影响11.有些离中趋势指标是用有名数表示的,它们是( )。

A极差B平均差C标准差D平均差系数E四分位差12.不同总体间的标准差不能简单进行对比,是因为( )。

A平均数不一致B标准差不一致C计量单位不一致D总体单位数不一致E与平均数的离差之和不一致13.不同数据组间各标志值的差异程度可以通过标准差系数进行比较,因为标准差系数( )。

A消除了不同数据组各标志值的计量单位的影响B消除了不同数列平均水平高低的影响C消除了各标志值差异的影响D数值的大小与数列的差异水平无关E数值的大小与数列的平均数大小无关14.下列指标中,反映数据分布的对称、尖峭程度的指标有( )。

A标准差分位值B偏度系数C峰度系数D标准差系数E标准差15.若一组数据的偏度系数是—0.25,则下列说法正确的有( )。

A平均数、中位数与众数是分离的B众数在左边、平均数在右边C数据的极端值在右边,数据分配曲线向右延伸D众数在右边、平均数在左边E数据的极端值在左边、数据分配曲线向左延伸16.若某个观察值的标准差分位值为—1.5,则下列说法正确的有( )。

A该观察值低于平均数B该观察值高于平均数C该观察值比该数据组的平均数低1.5个标准差D该观察值比该数据组的平均数高1.5个标准差E该观察值比该数据组的平均数低1.5个单位17.关于峰度系数,下列说法正确的有( )。

A当β=3时,次数分配曲线为正态曲线B当β<3时,为平顶曲线C当β接近于1.8时,次数分配趋向一条水平线D当β小于1.8时,次数分配曲线是“U”形分配E如果β的数值越大于3,则次数分配曲线的顶端越尖峭。

18.关于极差,下列说法正确的有( )。

A只能说明变量值变异的范围B不反映所有变量值差异的大小C反映数据的分配状况D最大的缺点是受极端值的影响E最大的优点是不受极端值的影响19.下列指标中,反映数据组中所有数值变异大小的指标有( )。

A四分位差B平均差C标准差D极差E离散系数四、判断题1.权数对算术平均数的影响作用取决于权数本身绝对值的大小。

( ) 2.算术平均数的大小,只受总体各单位标志值大小的影响。

( ) 3.在特定条件下,加权算术平均数可以等于简单算术平均数。

( ) 4.中位数和众数都属于平均数,因此它们数值的大小受到总体内各单位标志值大小的影响。

( ) 5.分位数都属于数值平均数。

( ) 6.在资料已分组时,形成变量数列的条件下,计算算术平均数或调和平均数时,应采用简单式;反之,采用加权式。

( ) 7.当各标志值的连乘积等于总比率或总速度时,宜采用几何平均法计算平均数。

( ) 8.众数是总体中出现最多的次数。

( ) 9.未知计算平均数的基本公式中的分子资料时,应采用加权算术平均数方法计算。

( ) 10.按人口平均的粮食产量是一个平均数。

( ) 11.变量数列的分布呈右偏分布时,算术平均数的值最小。

( ) 12.若数据组的均值是450,标准差为20,那么,所有的观察值都在450±20的范围内.。

( ) 13.是非标志的标准差是总体中两个成数的几何平均数。

( ) 14.总体中各标志值之间的差异程度越大,标准差系数就越小。

( ) 15.同一数列,同时计算平均差,标准差,二者必然相等。

( ) 16.如果两个数列的极差相同,那么,它们的离中程度就相同。

相关文档
最新文档